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Abstract — With reference to a protection system featuring active subjects that attempt
to access passive, typed objects, we propose a set of mechanisms supporting the distribution,
verification, review and revocation of access privileges. In our approach, a protection
domain is a collection of access rights for the protected objects. An access control list is
associated with each object to specify the access rights in each protection domain. Objects
are grouped into clusters. To access the objects in a given cluster, a subject presents a
gate referencing this cluster. The gate is a form of password capability that identifies one
or more domains. The gate grants the access rights specified for these domains by the
access control lists of the objects in the cluster. A subject that holds a gate and is aimed
at distributing the access privileges in this gate in restricted form can reduce the gate to
eliminate domains; the gate reduction procedure requires no intervention of the protection
system. A small set of protection primitives allows subjects to manage objects and access
control lists. Forms of revocation of access permissions are supported at both levels of
gates and access control lists.

Keywords: access control list; access right; password capability; domain; one-way function;
protection.

1 INTRODUCTION

In a classic protection system, a set of active subjects (users, processes) attempts to access
a set of passive, typed entities called objects [16], [29]. The type of a given object states
the set of the operations that can be executed on this object, and the access rights that
are necessary to accomplish each operation successfully. A subject aimed at executing a
given operation on a given object must possess the access rights required by this operation,
as is stated by the object type. A protection domain is a collection of access rights for the
protected objects. At any given time, each subject is executed in a protection domain,
and can take advantage of the access rights included in this domain to operate on the
protected objects. In the course of execution, the subject can change domain, according
to the access right requirements of the different execution phases.

1.1 Capabilities and access control lists

Let b0, b1, . . . be a set of objects, and d0, d1, . . . be a set of protection domain. In a well-
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known representation, the state of the protection system takes the form of a matrix, called
the access matrix, featuring a row for each domain and a column for each object [11], [22].
Element AMi,j of the access matrix, corresponding to row i and column j, contains the
specification of the access rights included in domain di for object bj . An important aspect
is that a domain can also be a protected object, and in this case the domain corresponds
to both a row and a column of the access matrix.

The access matrix tends to be large and sparse. Most elements of the access matrix
are likely to be empty, so storage in matrix form is usually inadequate. Two alternative,
well-known approaches to represent the access matrix are capability lists and access control
lists [24]. In the capability list approach, the access matrix is stored by rows. A capability
list is a collection of capabilities, which is associated with each domain, and specifies the
access rights included in this domain. A capability is a pair (b, ar), where ar specifies a
set of access rights for object b [13]. In the access control list approach, the access matrix
is stored by columns. An access control list ACLb is associated with each given object b.
Each element of ACLb has the form (d, ar), and specifies the set ar of access rights for b

that is included in domain d.
Capability lists make it easy to determine the access rights that are included in a given

domain; however, in a capability environment, it is hard if not impossible to determine
the domains that include access rights for a given object (an action of this type requires
the inspection of all the capability lists). Conversely, access control lists facilitate the
identification of the access rights associated with a given object for each domain; however,
in an access control list environment, it is difficult to determine the access rights included
in a given domain (an action of this type requires the inspection of all the access control
lists).

Capabilities need to be segregated into protected memory regions [5], [14], [28]. This is
necessary to prevent a subject that holds a given capability from modifying this capability,
e.g. the access right field, to obtain an undue amplification of access rights, or the object
identifier field, to forge a capability referencing a different object. In a segmented memory
environment, the capability segregation problem can be solved by reserving ad hoc memory
segments for capability storage, the capability segments (in contrast, the data segments will
be reserved for storage of ordinary information items) [6], [9]. Each capability segment can
contain a capability list. Capability segments can only be accessed in a strictly controlled
fashion, by executing special machine instructions, the capability instructions. In an
alternative approach, in a system featuring a form of tagged memory, a one-bit tag can
be associated with each memory cell to specify whether this cell contains a capability or
an ordinary information item [2], [18], [27]. A cell tagged to contain a capability can be
accessed only by using the capability instructions.

Password capabilities are an alternative, effective solution to the capability segregation
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problem [4], [8], [15], [19]. In a password capability environment, one or more passwords
are associated with each protected object. Each password corresponds to a set of access
rights for this object. A password capability is a pair (b, w), where b identifies an object,
and w is a password. If w matches one of the passwords associated with object b, the
password capability grants the corresponding access rights on b. If passwords are large
and sparse, the probability that a malevolent subject guesses a valid password to forge a
password capability is vanishingly low [3]. It follows that password capabilities can be
mixed in memory with ordinary information items, and can be manipulated by using
standard machine instructions.

In this paper, we propose the organization of a protection system that takes advantage
of both access control lists, for the protection of ordinary objects, and a form of password
capability, called gate, for the protection of domains.

1.2 Clusters

Objects are grouped into clusters. For each object, the cluster includes the corresponding
access control list. To access the objects in a given cluster, a subject must demonstrate the
right to take advantage of all, or part of, the domains specified by the access control lists in
that cluster. This is a problem of certified identity whose solution is the main contribute
of this paper, and is based on gates. A gate referencing a given cluster identifies one or
more domains in that cluster. A subject that possesses the gate can access the objects in
the cluster with the access rights specified for these domains by the access control lists of
these objects.

The rest of this paper is organized as follows. Section 2 introduces the gate concept
with special reference to the relation existing between a gate for a given cluster and
a base gate generated when the cluster is created. Gate validation and reduction, to
eliminate access permissions, are analyzed in special depth. Section 3 presents a small set
of primitives, the protection primitives, which allows subjects to access the objects and to
manage their access control lists. Section 4 considers the problems related to the review
of access permissions, with special reference to gate revocation. Section 5 discusses the
motivations for the gate paradigm in reference to a number of important viewpoints, which
include fraudulent gate forging, the properties of the proposed form of gate revocation,
and gate equivalency. A few considerations concerning performance are presented, in
both terms of the memory requirements for gate storage and the execution times for gate
validation. Section 6 gives concluding remarks.
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2 GATES

Let C be a cluster, and let b0, b1, . . . be the protected objects included in C. The cluster
implements an object protection technique based on domains and access control lists. Let
d0, d1, . . . , dn−1 be the protection domains for b0, b1, . . .. An access control list ACLb is
associated with each given object b. Each element of ACLb has the form (d, ar), where ar

denotes the set of access rights for b that is included in domain d.
A subject S, aimed at accessing cluster C to execute operation op on object b, must

present a gate referencing C. This gate gives the right to take advantage of one or more
domains in C. The access control list ACLb of b specifies a set of access rights for each of
these domains. The access will be accomplished successfully only if the union of these sets
of access rights includes the access rights that are required to execute op.

The gate concept is a variant of the classical password capability concept. A gate G

for cluster C has the form G = (W, R). Quantity W is a password; as will be made clear
shortly, this password univocally identifies the cluster. Quantity R, called the domain
selector, identifies one or more domains in C, as follows. R is partitioned into n − 1
subfields, called primary selectors and denoted by r. Thus, R = (rn−2, rn−3, . . . , r0). The
size of a primary selector is n bits, one bit for each domain (the least significant bit, bit 0,
corresponds to the first domain, d0). For each bit that is asserted in a primary selector, the
corresponding domain is eliminated from the gate. It follows that the domains referenced
by G are those corresponding to cleared bits in quantity rn−2 ∨ rn−3 ∨ . . . ∨ r0. A primary
selector whose value is 0 is called null. All null primary selectors are placed in the most
significant positions of domain selector R, at the highest order numbers. In a given gate,
if all primary selectors are null, R = 0 and the gate references all the domains in the
corresponding cluster. We wish to point out that n − 1 primary selectors allow us to
specify any combination of active domains, even if each non-null primary selector has a
single bit asserted.

Figure 1 shows two different configurations of domain selector R of gate G = (W, R).
In both cases, n = 4, that is, cluster C referenced by G includes four domains, and
consequently R is formed by three primary selectors. Thus we have R = (r2, r1, r0). The
size of each primary selector is four bits. In the configuration of Figure 1a, bits 0 and
2 of primary selector r0 are asserted to indicate that domains d0 and d2 are laking from
G. This is similar to the meaning of primary selector r1 for domain d1. The remaining
primary selector r2 is null, so it eliminates no domain. We may conclude that gate G

references a single domain, d3. In the configuration of Figure 1b, bits 0, 1 and 2 of primary
selector r0 are asserted to indicate that domains d0, d1 and d2 are excluded from gate
G. The remaining primary selectors r1 and r2 are null. In this case, too, the resulting
gate G includes a single domain, d3. However, as will be illustrated shortly, the two cases
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Figure 1: Two different configurations of domain selector R, corresponding to a single domain,
d3. In both cases, the cluster is supposed to include four domains. Consequently, the domain
selector is partitioned into three primary selectors, R = (r2, r1, r0), and the size of each primary
selector is four bits.

correspond to different passwords. In fact, in the given cluster we may have several distinct
passwords for the same set of domains.

2.1 Password derivation

A password, called the base password, is associated with each given cluster C when the
cluster is created. This password is denoted by BWC . A gate expressed in terms of BWC

is called the base gate and is denoted by BGC . In the base gate, the domain selector is
always null, thus we have BGC = (BWC , 0). The base gate references all the domains in
cluster C; possession of the base gate is equivalent to possession of the access privileges in
all these domains.

In gate G = (W, R), if one or more primary selectors are non-null, R 6= 0 and the
non-null primary selectors identify a password generation path that proceeds from BWC to
produce password W . This password generation path is constructed by using a parametric
one-way function.

Function f is one-way if given a value x it is easy to compute f(x), and given a value
y it is computationally unfeasible to determine x such that y = f(x) [1], [10]. One-way
functions can be constructed based on a block cipher to minimize the implementation
effort; the block cipher must be adapted to guarantee that the resulting function is not
invertible [17], [20]. Function gr(x) is a parametric one-way function if given a value y and
a parameter r, it is computationally unfeasible to determine a value x such that y = gr(x)
[26]. Thus, a parametric one-way function corresponds to a family of one-way functions, a
one-way function for each value of the parameter [23]. Let f be a one-way function, and
let Ex(r) denote the encryption of r using symmetric cipher E with key x. An example of
practical implementation is gr(x) = f(Ex(r)) [26].

In our protection system, we take advantage of a parametric one-way function, called
the generation function. This function has the form gr(w), where argument w is a password
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Figure 2: Evaluation of password W for a specific configuration of domain selector R of gate
G = (W, R).

and parameter r is a primary selector. In gate G = (W, R), if R 6= 0 then password W is
produced by a password generation path that starts from base password BWC and uses g

iteratively. Let R = (rn−2, rn−3, . . . , r0) be the composition of the domain selector. We
have Wj+1 = grj

(Wj), j = 0, 1, . . . , n − 2, where W0 = BWC and W = Wn−1. If one or
more primary selectors are null, the iterations terminate at the primary selector, say rk,
that precedes the first null primary selector, and in this case W = Wk+1.

Figure 2 shows the evaluation of password W for a specific configuration of domain
selector R of gate G = (W, R). In this example, n = 4, that is, cluster C referenced by G

includes four domains, and consequently R is formed by three primary selectors. Thus we
have R = (r2, r1, r0). The size of each primary selector is four bits. If R = (0000 0010 0101),
bit 3 is cleared in all the primary selectors. Thus, possession of gate G allows us to take
advantage of the access rights in domain d3. In the evaluation of password W , at the
first step we have W0 = BWC . Primary selector r0 is 0101 (5 in decimal notation), thus
we have W1 = g5(W0). In the second step, primary selector r1 is 0010, thus we have
W2 = g2(W1). Primary selector r2 is null; this terminates the iterations, and W = W2.

2.2 Gate validation

Let S be a subject that possesses gate G = (W, R). The gate is valid and it references
cluster C if password W is derived from base password BWC of C, as has been illustrated
in Section 2.1. Subject S can take advantage of G to execute operation op on object b if
the domains of C specified by G (as indicated by domain selector R) collectively include
the access rights required by op.

In more detail, let R = (rn−2, rn−3, . . . , r0), where each r denotes a primary selector.
If W = BWC and R = 0 (that is, all primary selectors are null), then G = BGC , and
it specifies all the domains of cluster C. If R 6= 0, validation of G proceeds as follows.
Parametric generation function g and the values of the primary selectors are used to
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evaluate password W . We have W0 = BWC and Wj+1 = grj
(Wj), j = 0, 1, . . . etc. The

sequence terminates at the primary selector, say rk, that precedes the first null primary
selector. We define W ′ = Wk+1 = grk

(Wk). If no primary selector is null, the sequence
terminates at the last primary selector rn−2, and in this case W ′ = Wn−1. Gate G is valid
if W = W ′. If G is valid, we evaluate quantity rn−2 ∨ rn−3 ∨ . . .∨ r0. The bits of the result
that are cleared specify the domains of cluster C that are actually referenced by G.

Let ACLb denote the access control list of object b. Let arop denote the set of access
rights which is required to execute operation op, as is specified by the type of object b, and
let arG denote the union of the access rights specified by the entries of ACLb corresponding
to the domains referenced by gate G. Operation op can be executed successfully on b if
arop ⊆ arG. If this is not the case, execution raises an exception of violated protection,
and op terminates with failure.

We wish to remark that our protection system is an extension of the classical access
control list paradigm. Suppose that subject S possesses a gate G referencing cluster C.
When S presents G, if G specifies a single domain, then the subject enters this domain,
as is the case in a traditional access control list environment. If G specifies two or more
domains, then the subject enters a virtual domain whose access rights are the union of
the access rights in the component domains. The gate mechanism allows a subject to
change the cluster (and consequently, the virtual domain) dynamically in the course of
execution. A subject that holds gates for different clusters can determine the present
virtual domain by simply presenting a gate for the corresponding cluster. This is an
efficient implementation of the concept of a domain switch in direct subject control.

2.3 Gate reduction

A subject S1 that holds a gate G referencing domains in a given cluster can transfer a copy
of this gate to another subject S2. Consequently, S2 acquires all access permissions granted
by G. Subject S1 can also transform G into a new gate G′ for the same cluster and a subset
of the domains. This process is called gate reduction, and can be especially important to
limit the access permissions of the recipient subject S2. In fact, gate reduction can be
useful even within the boundaries of the same subject, to access a cluster with restricted
privileges. This can be convenient to minimize the consequences of misbehaviors due to
errors or faults, according to the principle of least privilege [21], [25].

Let G = (W, R) be a gate defined in terms of password W and domain selector R, let
R = (rn−2, rn−3, . . . , r0) be the composition of R in terms of its primary selectors, and
let D denote the set of the domains referenced by G, as is specified by the bits that are
cleared in quantity rn−2 ∨ rn−3 ∨ . . . ∨ r0. Subject S that holds G can reduce this gate
into a gate G′ = (W ′, R′) referencing only part of the domains in D. To this aim, let rk
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Figure 3: Reduction of gate G = (W, R). In this example, the cluster defines four domains, and
gate G references two domains, d2 and d3. After reduction, G references a single domain, d3.

be the first primary selector that is null in R. We transform R into R′ by setting the bits
of rk that correspond to the domains to be eliminated. Afterwards, we generate the new
password W ′ by using parametric generation function g. We have W ′ = grk

(W ).
Figure 3 shows the reduction of gate G = (W, R) in a specific configuration of domain

selector R. In this example, n = 4, that is, cluster C referenced by G includes four domains.
Consequently, R is formed by three primary selectors, R = (r2, r1, r0), and the size of each
primary selector is four bits. If R = (0000 0000 0011), bits 2 and 3 are cleared in all
primary selectors. This means that gate G references domains d2 and d3. Gate G can be
reduced to reference a single domain, say domain d3. To this aim, we modify the least
significant null primary selector, r1, by setting bit 2 to indicate that domain d2 is no longer
referenced by the gate; the resulting configuration will be R′ = (0000 0100 0011). The
new password W ′ will be obtained by applying parametric generation function g using
primary selector r1 as a parameter. In decimal notation, the value of this primary selector
is 4, so we have W ′ = g4(W ).

3 THE PROTECTION PRIMITIVES

The protection system defines a set of primitives, the protection primitives, aimed at the
management of objects and access control lists (Table 1). This section illustrates the
effects of the execution of each of these primitives from the point of view of the subject
that issues the primitive. We shall hypothesize that all object types include access rights
own and copy. Access right own for a given object makes it possible to delete the object;
this access right may also grant other type-specific prerogatives. Access right copy makes
it possible to create an object copy. Let ACLb denote the access control list of object b.
To simplify the presentation, we shall say that a given gate G includes access right ar for b

if at least one element of ACLb includes ar, and G specifies the domain d of this element.

3.1 Allocating and deleting objects

A cluster is itself an object. In every given cluster, domain d0 is called the owner domain and
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Table 1: The protection primitives.

b← newObject(G, d)
Allocates a new object in the cluster referenced by gate G, and returns the name b of this object. The
access control list ACLb of b contains a single element, which includes full access rights for b in domain
d. Requires that G references both d and the owner domain d0.
deleteObject(G, b)
Deletes object b from the cluster referenced by gate G. Requires that G includes access right own for b.
res← operation(G, b, op)
In the cluster referenced by gate G, executes operation op on object b, and returns the result of this
operation. Requires that G includes the access rights for b that are required by op.
b′ ← copyObject(G, b)
In the cluster referenced by gate G, creates a copy of object b and returns the name b′ of the copy.
Requires that G includes access right copy for b.
addAr(G, d, b, ar)
In the cluster referenced by gate G, adds access right ar to the element reserved for domain d in the
access control list ACLb of object b. Requires that G includes access right ar for b.
removeAr(G, d, b, ar)
In the cluster referenced by gate G, removes access right ar from the element reserved for domain d in
the access control list ACLb of object b. Requires that G includes access right own for b.

includes the own access right for this cluster. A subject that possesses a gate encompassing
domain d0 is called the cluster owner ; it can take advantage of the own access right to
allocate new objects in the cluster, and to delete the cluster. (The cluster owner is also
allowed to change the base password; this issue will be considered in subsequent Section 4.)

Object allocation is made possible by the b← newObject(G, d) protection primitive.
Let C be the cluster referenced by gate G. Execution of this primitive allocates a new
object b in C. An access control list ACLb is created for b. ACLb contains a single element
having the form (d, arTb

), where arTb
denotes full access rights for object b, as stated by

the type Tb of b. Execution terminates successfully only if gate G references both domain
d and the owner domain d0 (that is, the subject that executes this primitive must be the
owner of cluster C).

Object deletion is supported by the deleteObject(G, b) primitive. Execution of this
primitive deletes object b from the cluster referenced by gate G. Execution terminates
successfully only if G includes access right own for b (that is, at least one element of ACLb

includes access right own, and G specifies the domain d of this element).

3.2 Accessing an object, and creating an object copy

Let Tb be the type of object b of cluster C, and let op be the generic operation de-
fined by Tb. Execution of op on object b is made possible by protection primitive
res← operation(G, b, op). Argument G is a gate referencing C. Execution of this prim-
itive returns the result res of op. Let ar denote the set of access rights required by op.
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Execution terminates successfully only if G includes access rights ar for b.
Creation of a copy of a given object in cluster C is made possible by protection primitive

b′ ← copyObject(G, b). Argument G is a gate referencing C. Execution of this primitive
allocates a new object b′ in C; the value of b′ will be equal to the value of b. Execution
terminates successfully only if G includes access right copy for b.

3.3 Adding and revoking access rights

Access control list modifications are made possible by two protection primitives called
addAr and removeAr. Let G be a gate referencing cluster C, let b be an object in this
cluster, and let ACLb be its access control list. Primitive addAr(G, d, b, ar) accesses the
element of ACLb reserved for domain d to add the access right specified by argument ar.
Execution of this primitive terminates successfully only if gate G includes access right ar

for b. This means that a subject can grant an access right for a given object only if it
possesses a gate including this access right.

Primitive removeAr(G, d, b, ar) accesses the element of ACLb reserved for domain d to
eliminate the access right specified by argument ar. Execution of this primitive terminates
successfully only if gate G includes access right own for b. This means that the owner of a
given object is the only subject allowed to remove access rights for this object.

4 GATE REVOCATION

As seen in Section 2.3, a subject that holds a gate for a given cluster can transfer this
gate, possibly in reduced form, to a second subject, which is consequently authorized to
access the cluster to take advantage of the domains referenced by the gate. In turn, the
second subject can transmit the gate further. It follows that access permissions tend to
spread throughout the system. The gate revocation problem consists of giving the owner
of a given cluster the ability to review and revoke the gates referencing this cluster. A
requirement is that the effects of revocation should extend system-wide.

Our system supports gate revocation through the base password and domain naming.
We take advantage of the fact that a cluster is itself an object. As seen in Section 3.1, in
each cluster, domain d0 includes the own access right for the cluster. The cluster owner,
which possesses a gate encompassing domain d0, can take advantage of the own access
right to change the base password of that cluster.

Let G = (W, R) be a gate referencing cluster C, let R = (rn−2, rn−3, . . . , r0) be the
composition of the domain selector in terms of its primary selectors, and let BWC be
the base password of C. As seen in Section 2.2, when a subject presents G to access C,
the validity of the gate is verified by an iterative procedure, which starts from BWC to
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determine a value W ′. The iterations use parametric generation function g and involve
the primary selectors. Gate G is valid if W ′ matches password W specified by G. Now
suppose that the cluster owner changes base password BWC , and let BW ′

C be the new base
password. So doing, the cluster owner revokes the validity of base gate BGC = (BWC , 0)
and of all the gates derived from BGC by reduction. This means that it will no longer
possible to use these gates to reference the domains of C. The cluster owner possesses the
new base gate, BG′C = (BW ′

C , 0), and can carry out a new distribution of access rights in
the form of gates derived from BG′C by reduction.

It is even possible to associate multiple base passwords with the same given cluster. Let
BWC,0 and BWC,1 be two base passwords for cluster C, for instance. The corresponding
base gates are BGC,0 = (BWC,0, 0) and BGC,1 = (BWC,1, 0). The cluster owner is in the
position to use these base gates to generate new gates by reduction. Let G be a gate
generated in this way. When G is validated, the result W ′ of the iterative validation
procedure of Section 2.2 is compared with both BWC,0 and BWC,1. If a match is found, G

is valid. In a situation of this type, the cluster owner can revoke the gates for the cluster
selectively, simply by eliminating a base password. For instance, by eliminating BWC,1,
the cluster owner revokes the validity of base gate BGC,1 and of all the gates derived
from this base gate by reduction. Of course, validity of BGC,0 and its derived gates is not
affected by the revocation. These considerations can be extended to an arbitrary number
of base gates.

The gate revocation procedure, illustrated above, is valid at gate level and applies to
all domains. It is even possible to restrict revocation to a single domain, as follows. In
cluster C, we associate two different names, say d′ and d′′, with a given domain d. By
doing so, we can have different gates referencing d, which use different domain names.
The cluster owner can eliminate a domain name, e.g. d′′. An action of this type produces
a selective gate revocation involving all the gates for cluster C that reference domain d

using name d′′.

5 DISCUSSION

5.1 Forging gates

Let us suppose that subject S is fraudulently aimed at forging the base gate of cluster
C from scratch. This base gate has the form BGC = (BWC , 0), where BWC is the base
password of C, and the domain selector is set to 0 to reference all domains. Subject S

does not hold BWC , and consequently, it will use a password chosen at random. If base
passwords are large and sparse, the probability of a casual match is vanishingly low, and
the gate-forging attempt is destined to fail. Similar considerations can be made for a gate
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that is not the base gate.
Let us now consider a subject S that possesses a gate G = (W, R) referencing a set of

domains in cluster C. Suppose that S is aimed at transforming G into a new, stronger
gate G′ = (W ′, R′). To this aim, S modifies domain selector R to form the new domain
selector R′ referencing more domains. A result of this type can be simply obtained by
clearing the most significant primary selector that is non-null in R. The next step is to
derive password W ′ from password W . In fact, W ′ precedes W in the iterative generation
procedure, illustrated in Section 2.1, which starts from base password BWC of cluster C

to produce W . But parametric generation function g, used to generate W from W ′, is
one-way. This means that it is computationally unfeasible to invert g to obtain W ′ from
W . In this case, too, subject S will have to use a random W ′, and the probability of
success is virtually null.

5.2 Gate revocation

As seen in Section 1, gates are forms of capabilities. The access right revocation problem
is common in capability environments [15]. Several solutions have been proposed to this
problem. A propagation graph can be constructed for each capability, which keeps track
of all copies of this capability existing throughout the system [7]. This solution tends
to subvert one of the main advantages of the capability model, i.e. simplicity in the
transmission of access permissions between subjects. We can limit the capability lifetime,
and in this case the validity of capabilities must be renewed at regular intervals [12]. This
solution tends to overburden the protection system with explicit requests to extend the
capability lifetime.

In a different approach, as seen in Section 4, our system supports gate revocation
through the base passwords. In a given cluster, if we delete a base password, we revoke the
base gate defined in terms of this base password, and also all the gates derived from this
base gate by reduction. In spite of its simplicity, this gate revocation mechanism possesses
a number of interesting properties. Revocation is [7]:

• selective, that is, it can be limited to a subset of the subjects that possess a gate for
the given cluster, if this subset has been associated with a specific base password
and we eliminate this base password;

• independent, that is, gates for the same set of domains can be revoked independently
of each other, if these gates derive from base gates defined in terms of different base
passwords;

• transitive, that is, if a gate is revoked, the effects of the revocation propagates to
all the subjects that received a copy of this gate, independently of the distribution
path followed by the gate copy to reach the corresponding recipient (and in fact, a
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copy of a gate is indistinguishable from the original, and gates have no memory of
subsequent copy actions);

• temporal, and in fact, a revocation obtained by changing a given base password
can be reversed through the same mechanism used for revocation, by restoring the
original value of that base password.

5.3 Equivalent gates

Let C be a cluster, let G = (W, R) be a gate, and let R = (rn−2, rn−3, . . . , r0) be the
composition of the domain selector of this gate in terms of its primary selectors. As seen
in Section 2, the set of domains in C that are referenced by G is specified by the bits that
are cleared in quantity rn−2 ∨ rn−3 ∨ . . .∨ r0. It follows that different configurations of the
primary selectors may well correspond to the same set of domains. The corresponding
gates are said to be equivalent. For instance, let us consider gates G1 = (W1, R1) and
G2 = (W2, R2), where R2 is obtained by changing the order of the non-null primary
selectors in R1. In this case, G1 and G2 are equivalent, but the iterative password
generation procedure will produce different results, so W1 6= W2.

It is important to note that no additional cost follows from the point of view of the
memory requirements for password storage. In fact, a single password needs to be stored
for each given cluster, the base password. Password validation is not based on comparison
with a pre-existing set of passwords, as is the case in password capability environments [8],
[15], [19]. Instead, as seen in Section 2.2, password validation is the result of a dynamic
evaluation procedure, which starts at the base password and terminates at the password
to be validated.

5.4 Considerations concerning performance

5.4.1 Storage requirements

The memory requirements for storage of a gate are the result of two components, the size
of the password and the size of the domain selector. The size of the password is determined
by the overall security requirements, e.g. 128 bits. The size of the domain selector is a
function of the number of the domains in the corresponding cluster. In fact, as seen in
Section 2, for n domains we have n− 1 primary selectors, and the size of each primary
selector is n bits.

In a possible, effective implementation of a protection system using gates, we shall
define a limited number of gate formats. We may have a short gate supporting up to four
domains (n = 4). In this case, the domain selector consists of three primary selectors of
four bits each, which fit into two bytes. Then we have a standard gate for up to eight
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domains (n = 8). Here, the domain selector consists of seven primary selectors of eight
bits each, for a total of seven bytes. Finally, a long gate can support up to 16 domains
(n = 16). In this case, we have 15 primary selectors of size 16 bits, for a total of 30 bytes.
If the size of a password is 128 bits, the memory requirements for storage of a gate are
18 bytes for a short gate, 23 bytes for a standard gate, and 46 bytes for a long gate. (In
contrast, for 64-bit object identifiers and 128-bit passwords, the size of a classical password
capability is 24 bytes.)

As seen in Section 2, the primary selectors are aimed at specifying domain reductions.
If each primary selector eliminates a single domain, we need n− 1 primary selectors to
specify all possible reductions. A gate is often reduced before being transmitted to another
subject, to limit the access privileges of the recipient. In fact, it is rarely the case that a
gate traverses a number of transmission steps, with reduction, as high as is made possible,
for instance, by the long gate format. This suggests us to limit the number of possible
reductions to save storage. With a limit of eight reductions, the long gate format features
eight primary selectors of size 16 bits, and overall the size of the domain selector is 16
bytes. A subject that has to apply a further reduction when no null primary selector is
available will ask the cluster owner to shrink the gate, that is, to produce an equivalent
gate with a single non-null primary selector. In this primary selector, the cluster owner
will set each bit that is asserted in at least one primary selector in the original gate. The
password of the equivalent gate will be recalculated starting from the base password, as
usual.

5.4.2 Execution times

As seen in Section 2.2, validation of a given gate is an iterative procedure that implies one
execution of the parametric generation function g for each non-null primary selector in that
gate. Let Tg denote the time necessary for a single iteration, including the execution time
of g, and let m be the number of non-null primary selectors in gate G, where m ≤ n− 1,
n is the number of the domains, and n− 1 is the number of the primary selectors. Let
Tv denotes the total time necessary for validation of a gate; we have Tv = m · Tg. The
maximum time cost corresponds to the case of no null component, when m = n− 1 and
Tv,max = (n − 1) · Tg. The time cost is lower for one or more null components, and the
minimum cost corresponds to the validation of the base gate, when m = 0 and Tv,min = 0.

As seen in Section 5.4.1, it is always possible to shrink a gate featuring two or more
non-null primary selectors into an equivalent gate featuring a single non-null primary
selector. A positive side effect is a reduction of the gate validation time. After shrinking
the gate, we have m = 1 and Tv = Tg.
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6 CONCLUDING REMARKS

We have considered an important problem in the design of a protection system, i.e. the
definition of the mechanisms supporting the distribution, verification, review and revocation
of access permissions. We have proposed the organization of a protection system that
takes advantage of both access control lists, for the protection of ordinary objects, and a
new form of password capability, the gate, for the protection of domains. In our approach:

• Ordinary objects are grouped into clusters. In a cluster, an access control list is
associated with each object. The access control list specifies the access rights for
this object that are included in each protection domain.

• A subject can access the objects in a given cluster only it possesses a gate for this
cluster. The gate is a form of password capability, extended to contain a domain
selector that identifies one or more domains. A relation exists between the password
in a given gate and a base password associated with the cluster when the cluster is
created. This relation is expressed in terms of the domain selector, by application of
a parametric one-way generation function.

• A gate for a given cluster identifies a virtual protection domain in terms of the
domains of that cluster. The access rights in the virtual domain are the union of the
access rights in the component domains.

• A small set of protection primitives allows subjects to manage objects and access
control lists.

We have obtained the following results:

• A subject that holds a gate for a given cluster can generate a new gate for this cluster,
to restrict the gate extent by eliminating domains. The gare reduction procedure
can be iterated to eliminate more domains. Gate reduction is usually aimed at
distributing restricted access privileges to another subject, but can be also used
within the boundaries of the same subject, to access a cluster with less privileges to
minimize the consequences of errors or faults. Subjects can carry out gate reduction
autonomously; no intervention of the protection system is required.

• The duality of gates and access control lists allows us to carry out orthogonal forms
of review and revocation of access privileges. A change of the access privileges in
a given access control list affects only the gates referencing the domains involved
in the change. On the other hand, the owner of a given cluster can replace the
base password of that cluster; as a consequence, validity of all the gates referencing
that cluster is revoked. The cluster owner can subsequently grant gates derived
from the new password, thereby producing a new distribution of access rights. This
gate revocation mechanism results to possess a number of interesting properties;
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revocation is selective, independent, transitive and temporal.
• If base passwords are large and sparse, it is impossible for a malevolent subject
to forge valid gates from scratch. Transformation of a valid gate into a stronger
gate referencing more domains is prevented by the one-way property of the gate
generation function.

• A gate can be shrunk into an equivalent gate featuring a single non-null primary
selector. So doing, we keep the memory requirement for gate storage low, by reserving
less space for the reduction field while not limiting the number of possible reductions.
Furthermore, shorter execution times are required for gate validation.
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