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Abstract — With reference to a distributed architecture consisting of sensor nodes connected in a 
wireless network, we present a model of a protection system based on segments and applications. An 
application is the result of the joint activities of a set of cooperating nodes. A given node can access 
a segment stored in the primary memory of a different node only by presenting a gate for that segment. 
A gate is a form of pointer protected cryptographically, which references a segment and specifies a 
set of access rights for this segment. Gates can be freely transmitted between nodes, thereby granting 
the corresponding access permissions. Two special node functionalities are considered, segment 
servers and application servers. Segment servers are used for inter-application communication and 
information gathering. An application server is used in each application to support key management 
and rekeying. The rekey mechanism takes advantage of key naming to cope with losses of rekey 
messages. The total memory requirements for key and gate storage result to be a negligible fraction 
of the overall memory resources of the generic network node.  
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1. INTRODUCTION 

We shall refer to a distributed architecture consisting of sensor nodes connected in a wireless 

network. In an architecture of this type, stringent limitations exist in terms of the hardware resources 

available in each node [15]. These limitations include the lack of hardware support for the two usual 

processor modes, a kernel (privileged) mode and a user (non-privileged) mode with restricted 

memory access, a limited memory space, and the absence of a memory management device for virtual 

to physical address translation [12], [20], [21]. It follows that, within the node boundaries, no sepa-

ration exists between the kernel space and the user space, for instance.  

In an environment of this type, we shall refer to a protection system featuring applications and 

segments. A segment is a contiguous memory area entirely contained within the boundaries of the 

primary memory of a single node. Segments are the basic unit of information gathering and transmis-

sion between the nodes. An application is the result of the joint activities of a set of cooperating nodes 

(the application members). We make no hypothesis on the activity model of each member, which can 

be a scheduled computation [3] or, in an event driven environment, a routine activated by a hardware 

interrupt [10], [24]. 

A classical approach to access right representation in memory is based on the concept of a pass-

word capability [1], [5], [16], [27]. In a segment-oriented, password-capability architecture, the pro-

tection system associates a set of passwords with each memory segment. Each password corresponds 
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to an access permission. A password capability is a pair (S, w) where S is a segment identifier and w 

is a password. If a match exists between w and one of the passwords associated with segment S, then 

the password capability grants its holder the corresponding access permission on S. If passwords are 

large and sparse, password capabilities can be freely mixed in memory with ordinary data items; an 

illegal attempt to modify an existing password capability (e.g. in view of an undue amplification of 

access permissions), or even to forge a password capability from scratch, is destined to fail, as the 

probability of guessing a valid password is vanishingly low. 

A salient feature of password capability protection is simplicity in access right distribution. A 

process that holds a valid password capability can grant the corresponding access rights to another 

process by a simple action of password capability copy, from its own address space to the address 

space of the recipient process. In turn, the recipient process may well transmit the password capability 

to a third process. In a situation of this type, it is hard, if not impossible, to keep track of all copies of 

a given password capability that exist in the system at the same given time. This exacerbates the 

problem of access right revocation: the original owner of a given password capability should be in a 

position to retract the password capability from each subsequent recipient, selectively. Of course, if 

we modify the passwords of a given segment, we revoke all the password capabilities referencing that 

segment. This revocation mechanism cannot be used for selective revocation of a subset of all the 

password capabilities for the same given segment. 

In this paper, we shall refer to a variant of the password capability model that has been designed 

to comply with the resource limitations, outlined above, which characterize the sensor nodes in a 

wireless sensor networks. In our approach, within a node, every software routine has unlimited access 

to the whole primary memory of that node, irrespective of segment boundaries; whereas a routine 

running in a given node can access a remote segment stored in the primary memory of a different 

node only by presenting a gate for that segment. A gate is a form of password capability protected 

cryptographically, which references a segment and specifies a set of access rights for this segment. 

Possible access rights are read, write, or both read and write. Gates are protected from tampering by 

a form of symmetric-key cryptography [13], [33], superior to public key cryptography in both terms 

of low computation requirements and low energy costs [4], [17].  

In a sensor node, the high memory cost of a set of passwords for each memory segment is not 

acceptable. Our gate implementation uses a single set of password for each node. We have obtained 

this result by taking advantage of cryptography to incorporate the name of the segment referenced by 

a given gate into the protection field of this gate. A small set of system primitives, the protection 

primitives, makes it possible to define segments, to generate gates for existing segments, and to use 

gates in remote segment accesses. A node that generates a gate is free to transmit this gate to another 
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node, thereby granting the corresponding access permissions to the recipient node. Two or more seg-

ments can be defined for the same memory area. By deleting one of these segments, we revoke the 

gates referencing this segment; revocation does not affect validity of the gates for the remaining seg-

ments. 

The rest of this paper is organized as follows. Section 2 introduces our protection environment 

with special reference to segments and gates. The protection primitives are presented, and the actions 

involved in the execution of each primitive are illustrated with special reference to interactions be-

tween nodes. Section 3 presents our application model. Two special node functionalities are intro-

duced, the application server, used within the application boundaries to support information gather-

ing, key management and rekeying, and the segment server, used for inter-application 

communication. Section 4 discusses the motivations for the proposed organization from a number of 

salient viewpoints, including the hardware limitations existing in sensor nodes, gate manipulation and 

revocation, security, and the memory requirements for key and gate storage. We consider two differ-

ent network topologies in special depth, a configuration featuring a form of full pairwise connectivity 

at the application level, and a hierarchical topology featuring a general server that gathers data from 

all the application servers. Relations of our work to previous works are outlined. Section 5 gives 

concluding remarks. 

2. THE PROTECTION MODEL 

2.1. Segments 

In the previous section, we have defined a segment as a contiguous memory area that is entirely 

contained within the boundaries of the primary memory a single node. A segment S is identified by 

pair S = (M, C) where M is the node storing S, and C is the local identifier of S in M. In node M, a 

table, the segment table STM, contains the associations of local segment identifiers with the corre-

sponding areas in the primary memory of that node. The table entry for local segment C, i.e. segment 

S = (M, C), contains the starting address B of this segment in the primary memory of M (the segment 

base) and the segment length L. 

2.2. Gates 

A set PM of three passwords, PM = {pR, pW, pRW}, is associated with each given node M and is 

stored in the primary memory of this node. Each password corresponds to an access right for the 

segments in M. Password pR corresponds to access right R, which makes it possible to access the 

segments for read. This is similar to password pW for access right W, which makes it possible to 

access the segments for write, and to password pRW for access right RW, which makes it possible to 
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access the segments for both read and write. 

A gate G referencing segment S = (M, C) in node M is a pair G = (M, T), where T is a protection 

field that includes the specification of the segment local identifier C and a password p. If a match 

exists between p and one of the passwords in PM, then the gate grants the corresponding access right 

for segment S. Quantity M is in plaintext, whereas quantity T is encrypted by using a symmetric-key 

cipher and a cryptographic key, called the local key lkM, which is associated with node M. lkM is stored 

in node M; it is never transmitted or revealed by M to any other node, and it is exclusively aimed at 

encrypting the gates for the segments in M. 

Figure 1 shows the generation of gate G = (M, T) granting access right AR for segment S = (M, 

C), AR being one of R, W or RW. Let pAR denote the password in PM that corresponds to this access 

right. Quantity T is the result of encrypting pair (C, pAR) by using a symmetric key cipher and local 

key lkM. Thus, a gate referencing a segment in node M can only be assembled in this node, as gate 

generation requires knowledge of local key lkM. Throughout this paper, we assume that ciphers com-

ply with an encryption mode supporting both authentication and confidentiality, e.g. the Counter with 

CBC-MAC (CCM) mode [11].1  

Figure 2 shows the reverse transformation of gate G into plaintext. Local key lkM is used to de-

crypt the protection field T and obtain quantities C and p. Quantity p is compared with the passwords 

in PM to validate the result of the transformation. If a match is found and pAR is the matching pass-

word, validation is successful, gate G references segment S = (M, C) and specifies the access right 

corresponding to pAR. Thus, a gate referencing a segment in node M can only be disassembled in M, 

as the decryption process uses the local key lkM of this node. 

                                                 
1  Intuitively, a single encryption key can be used for both authentication and confidentiality. The sender authenticates 

the header and the payload, it appends the resulting Message Identification Code (MIC) to the payload and, finally, it 
encrypts the bundle. The receiver decrypts the ciphertext into a payload and a MIC, and verifies the MIC against the 
received header and payload. 
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Figure 1. Generation of gate G = (M, T) that specifies access right AR for segment S = (M, C). pAR is the 
password that corresponds to AR in the password set PM associated with node M.  
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2.3. Protection primitives 

Table I shows the set of the protection primitives that form the interface of the protection system 

to applications. Execution of a protection primitive is entirely confined within the boundaries of the 

node where this primitive has been issued (the current node), or, for a few primitives, it produces 

node interactions across the network. Interactions take the form of message exchanges. A message 

consists of a header and a body. The header is in plaintext, and the body is encrypted using a sym-

metric-key cipher. Besides the control information, necessary, for instance, for message routing, the 

header contains the name of the key that was used to encrypt the body. A message can be successfully 

sent from node M to node N encrypted by a given key only if both nodes holds the value of this key. 

Node N will use the key name, as specified in the message header, to identify the correct key and 

decrypt the message body. 

In the following, the actions caused by execution of each protection primitive will be described 

in detail. We shall use the term local segment to denote a segment allocated in the primary memory 

of the current node, whereas a remote segment is a segment allocated in the primary memory of a 

different node (a remote node).  

2.3.1. Allocating and deleting segments 

The processor of a given node can freely access the whole primary memory of that node for both 

read and write, irrespective of segment boundaries. No form of protection is enforced on these local 

memory accesses; in particular, a gate is not required to access a local segment. On the other hand, 

an access to a remote segment can be successfully accomplished only if a gate for that segment is 

presented to the remote node where the segment is allocated. Two actions are defined on a remote 

segment: to read the segment contents and to replace these contents. These actions are made possible 

by a gate specifying permission to read (i.e. either the R or the RW access right) or permission to 

M C

M T
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PM G 

Figure 2. Validation of gate G = (M, T) and subsequent transformation into segment identifier S = (M, C). Gate 
G specifies the access right corresponding to password pAR. 

match 

pAR S 
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write (i.e. either the W or the RW access right), respectively.  

Suppose that node N should be allowed to access an area in the primary memory of a different 

node M. To this aim, node M allocates a local segment corresponding to that area, it generates a gate 

for this segment and transmits a copy of this gate to node N. Segment allocation and gate generation 

are made possible by protection primitives newSegment() and newGate(). 

In detail, execution of the C newSegment(B, L) primitive in node M allocates a new segment 

S = (M, C) in the primary memory of this node and returns the local identifier C of this segment. 

Argument B specifies the base of the new segment, and argument L specifies the segment length. 

Execution of this primitive generates local segment identifier C, first. Then, an entry of segment table 

STM of node M is reserved for the new segment; the base and length fields of this entry are filled with 

quantities B and L. A simple strategy for the generation of local segment identifiers is a sequential 

generation, which can be implemented as follows: in each node, a segment counter contains the local 

identifier of the segment to be allocated next in that node; after segment allocation, the contents of 

the segment counter are incremented by 1. It should be noted that newSegment() does not prevent 

segments to overlap. This means that the same storage area may be part of two or more segments.  

If executed in node M, the G newGate(C, AR) protection primitive returns a new gate G grant-

ing access right AR for segment S = (M, C), AR being one of R, W or RW. Let PM be the set of 

passwords associated with node M, and let pAR be the password in PM that corresponds to access right 

AR. Execution of this primitive uses local key lkM of node M to encrypt pair (C, pAR) and form quan-

tity T (see Figure 1). Then, node name M is paired with quantity T to form gate G = (M, T). It should 

be noted that the aim of newGate() is restricted to the generation of gates for segments allocated in 

Table I. Protection primitives.1

C newSegment(B, L) 
Allocates a new segment of length L that starts at address B of the primary memory of the current node. Returns 
the local identifier C of this segment. 

G newGate(C, AR) 
Returns a gate G specifying access right AR for the segment whose local identifier is C. AR is one of R, W or 
RW. Gate G is generated by using the local key of the current node. 

deleteSegment(C) 
In the current node, deletes the segment whose local identifier is C.  

readSegment(k, G, addr) 
Copies the contents of the remote segment referenced by gate G into a memory area starting at address addr of 
the primary memory of the current node. Uses key k to communicate with the node where the remote segment is 
stored. G should specify permission to read (access right R or RW).  

writeSegment(k, G, addr) 
Replaces the contents of the remote segment referenced by gate G with quantities taken from a memory area 
starting at address addr of the primary memory of the current node. Uses key k to communicate with the node 
where the remote segment is stored. G should specify permission to write (access right W or RW). 
1 The current node is the node where the given protection primitive is issued. 
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the primary memory of the current node, as it requires the local key. Thus, a node cannot generate a 

gate for a segment in a different node. 

Finally, execution in node M of the deleteSegment(C) protection primitive deletes segment S = 

(M, C). Execution accesses the segment table STM of this node and deletes the entry reserved for this 

segment. deleteSegment() does not modify the contents of the primary memory area reserved for the 

segment to be deleted. This means that if we define two or more segments for the same memory area, 

and then we delete one of these segments, deletion has no impact on the other segments. 

2.3.2. Accessing remote segments 

Let G = (N, T) be a gate that references segment S = (N, C) stored in node N, and let L be the 

length of this segment. Furthermore, let p be the password specified by the protection field T of G, 

and let PN be the set of the passwords associated with N. If executed in node M, protection primitive 

readSegment(k, G, addr) copies the contents of segment S from N into a memory area that starts at 

address addr of the primary memory of M. Argument k is a cryptographic key that is used for com-

munication between M and N. Execution terminates successfully only if password p matches one of 

the passwords in PN, and the matching password grants permission to read (i.e. it is either the pR or 

the pRW password). Execution of this primitive is as follows: 

 Node M sends a message to node N asking for a “number used once” (nonce) [33]. 

 Node N generates a random number EN to be used as a nonce, and sends it back to node M. 

  Node M generates a nonce EM and assembles a message m containing gate G, nonce EN and nonce 

EM. The message is sent to node N in ciphertext, and the encryption key is k. 

 Node N uses key k to decrypt message m into triple (G, E’,E”), and validates nonce E’ by 

verifying that E’ = EN. Then, node N uses its own local key lkN to decrypt the protection field T 

of gate G into pair (C, p) (see Figure 2). Quantity p is compared with passwords pR and pRW; if a 

match is found, gate G is valid (it specifies permission to read).  

 If nonce validation fails, or gate validation fails, node N returns a message including nonce E” 

and a negative reply to node M, and execution of readSegment() terminates with failure; 

otherwise 

 Node N assembles a message containing nonce E”, the contents of segment S = (N, C) and a 

positive reply. This message is sent to node M in ciphertext, and the encryption key is k. 

 Node M uses key k to decrypt the message into pair (E”, S), and validates nonce E” by verifying 

that E” = EM. Then, M stores the contents of segment S into a memory area of length L starting 

at address addr of its own primary memory. 
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Nonces EN and EM are aimed at preventing forms of replay attacks [33]. They allow the corre-

sponding node to distinguish a new request/reply from an illicit replay of a previous request/reply. In 

step 3, in the message to node N, the gate should be indissolubly linked to the nonces, and similarly, 

in steps 5 and 6, in the message to node M, the operation results should be indissolubly linked to the 

nonce. In steps 3 and 6, the name of the key used to encrypt the message is specified in the message 

header; if the recipient node does not hold the value of this key, execution terminates with failure. 

Let G = (N, T) be a gate that references segment S = (N, C) stored in node N, let L be the length 

of this segment, and let p be the password specified by the protection field T of G. Furthermore, let 

PN be the set of passwords associated with N. If executed in node M, protection primitive writeSeg-

ment(k, G, addr) copies the contents of a memory area of length L that starts at address addr of the 

primary memory of M into segment S. Argument k is a cryptographic key that is used for communi-

cation between M and N. Execution terminates successfully only if password p matches one of the 

passwords in PN and the matching password grants permission to write (i.e. it is either the pW or the 

pRW password). The actions caused by execution of writeSegment() are as follows: 

 Node M sends a message to node N asking for a nonce.  

 Node N generates a nonce EN and sends it back to node M. 

 Node M generates a nonce EM and assembles a message m including gate G, nonce EN, nonce EM 

and the contents a of a memory area of length L that starts at address addr of the primary memory 

of M. The message is sent to node N in ciphertext, and the encryption key is k. 

 Node N uses key k to decrypt message m into quadruple (G, E’, E”, a), and validates nonce E’ 

by verifying that E’ = EN. Then, N uses its own local key lkN to decrypt the protection field T of 

gate G into pair (C, p). Quantity p is compared with passwords pW and pRW; if a match is found, 

gate G is valid (it specifies permission to write).  

 If nonce validation fails, or gate validation fails, node N returns a message including nonce E” 

and a negative reply to node M, and execution of writeSegment() terminates with failure; 

otherwise 

 Node N replaces the contents of segment S = (N, C) with quantity a. Then, N assembles a message 

containing nonce E” and a positive reply; this message is sent to node M in ciphertext, and the 

encryption key is k. 

 Node M uses key k to decrypt the message into pair (E”, S), and validates nonce E” by verifying 

that E” = EM. 

3. APPLICATIONS 

As anticipated in Section 1, an application is the result of the joint activities of a set of nodes, the 
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application members, which cooperate in the same task. All the members share a cryptographic key, 

which is called the application key. This key is used in the communications between the members, 

which are carried out by taking advantage of protection primitives readSegment() and writeSegment().  

Let us refer, for instance, to nodes M and N, and suppose that both of them are members of 

application A. Let kA be the key of this application. In a symmetric communication paradigm, node 

M reserves a segment S1 for the information transfers from M to N. A gate G1 = (M, T1) specifying 

access right R for S1 is granted to N; the protection field T1 of this gate is encrypted by using the local 

key lkM of node M. Symmetrically, node N reserves a segment S2 for information transfers from N to 

M. A gate G2 = (N, T2) specifying access right R for S2 is granted to M; the protection field T2 of this 

gate is encrypted by using the local key lkN of node N. Let addrM be the address of a memory area in 

node M, and similarly for addrN in node N. M transmits an information item to N by writing this 

information item into S1; this action is not mediated by the protection system, as S1 is part of the 

primary memory of M. In turn, N copies the contents of S1 into its own primary memory by executing 

primitive readSegment(kA, G1, addrN). Symmetrically, N transmits an information item to M by writ-

ing this information item into S2; in turn, M reads the contents of S2 by issuing primitive readSeg-

ment(kA, G2, addrM).  

In a different, asymmetrical communication approach, node M allocates a segment S in its own 

primary memory and reserves this segment for communication with node N. Node N is granted a gate 

G = (M, T) specifying access right RW for S; the protection field T of this gate is encrypted by using 

local key lkM of node M. Node M accesses S directly, whereas node N reads and modifies the contents 

of S by executing readSegment(kA, G, addrN) and writeSegment(kA, G, addrN).  

3.1. Inter-application communications  

A sensor network may host several applications. Point-to-point communication and information 

sharing between two members of different applications take advantage of a cryptographic key, called 

a nonlocal key, shared by these applications. Let M1 be a node of application A1, and let M2 be a node 

of application A2. M1 and M2 share a nonlocal key that we shall denote by nk. Let addr1 be the address 

of a memory area in M1, and similarly for addr2 in M2. In a symmetric communication paradigm, M1 

reserves a segment S1 for the information transfers from M1 to M2. Node M2 holds a gate G1 specifying 

access right R for S1. M1 accesses S1 for write directly, and M2 accesses this segment for read by 

issuing primitive readSegment(nk, G1, addr2). Symmetrically, M2 reserves a segment S2 for the infor-

mation transfers from M2 to M1. M2 accesses S2 for write directly; M1 holds a gate G2 specifying 

access right R for S2 and issues readSegment(nk, G2, addr1) to access S2 for read. Thus, the messages 

transmitted between M1 and M2 are encrypted by using nonlocal key nk, which is only held by these 
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two nodes. It follows that any other node, e.g. an intermediate node in the routing path between M1 

and M2, will not be able to decrypt these messages, as it does not possess the key. 

Of course, the inter-application communication paradigm, illustrated above, can be extended to 

an arbitrary number of applications, by reserving a nonlocal key for communication between each 

application pair. If the nodes of each application are structured hierarchically, only the node at the 

highest level in the hierarchy will be deputed to inter-application communication, for instance. 

3.1.1 Segment servers 

A different, centralized paradigm of communication and information sharing between different 

applications takes advantage of a node, called the segment server, which is not part of these applica-

tions. Let V be a node acting as a segment server for applications A0, A1,..., and let Mi be a node of 

application Ai. Node Mi shares a nonlocal key nki with server V. Let addri be the address of a memory 

area in Mi. Server V reserves a segment Si for the information transfers with Mi, and Mi holds a gate 

Gi specifying access right RW for Si. Mi accesses Si for read by issuing primitive readSegment(nki, 

Gi, addri), and it accesses Si for write by issuing primitive writeSegment(nki, Gi, addri). 

In this inter-application communication paradigm, only those nodes that are actually involved in 

information sharing need to have access to a server. If the nodes of each given application are struc-

tured hierarchically, only the node at the highest level in the hierarchy needs to interact with the 

server, for instance. 

3.2. Key management 

Application keys are subject to be replaced. This is a peculiar aspect of wireless sensor networks 

[34], [38]. In the periodic rekeying approach [19], [29], [31], keys are renewed at regular intervals to 

maintain resilience to attacks and failures, and safeguard secrecy. In a given application A, a rekey 

will be necessary when a node leaves A, to prevent that node from taking advantage of the old key 

any longer (forward secrecy [6], [7], [9]). Furthermore, consider a node N in the routing path between 

two nodes of A and suppose that this node is not part of A. Of course, N can gather the messages 

exchanged between these two nodes, but it cannot access the contents of these messages (they are 

encrypted by using application key kA, and N does not possess this key). Now suppose that N is added 

to application A: a rekey will be necessary to prevent N from deciphering the old messages (backward 

secrecy [6], [7], [9]).  

Our approach to application key management is as follows. In each application, a node, called 

the application server, is responsible for the distribution of a new application key to all the nodes that 

are members of that application, when a rekey takes place. As anticipated in Section 2.3, each appli-

cation key has a numeric name and a value. The application server generates the names of the keys 
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of its own application in sequence, so that, numerically, the name of a given key is always greater 

than the name of a previous key. A simple strategy for key name generation takes advantage of a 

counter, which we call the key counter, maintained in the primary memory of the application server. 

The key counter is initialized to 0 and is incremented by 1 after generation of a new application key. 

The name of the new application key is a bit string featuring the binary representation of the name of 

the application server in the most significant positions, and the contents of the key counter in the least 

significant positions.2 

Key replacement takes advantage of a segment that the application server reserves in its own 

primary memory for each node that is a member of that application. This segment is called the key 

repository. Each member holds a gate granting access right R for its own key repository. When the 

application key should be replaced, the application server inserts the name and the value of the new 

application key into the repository of each member, and then sends a rekey message to all the mem-

bers. Consequently, each member uses the gate for its own repository to read the new application key. 

Message transmission between the member and the application server takes advantage of a nonlocal 

key. 

In more detail, suppose that node M is a member of application A, let AV be the application server 

of this application, let RPM be the key repository that AV has reserved for M in its own primary 

memory, and let nkM be the nonlocal key shared by M and AV. Node M holds a gate G = (AV, T) 

specifying access right R for segment RPM (the protection field T of gate G is encrypted by using 

local key lkAV of AV). Now suppose that the current key of application A should be replaced by a new 

key. Application server AV inserts both the name and the value of the new key into the repository of 

each member, and then it sends a rekey message to all the members. On receipt of the rekey message, 

node M issues protection primitive readSegment(nkM, G, addr), where addr is the address of a primary 

memory area in M. Execution of this primitive uses nonlocal key nkM to communicate with AV; the 

name and the value of the new key are copied from RPM into the memory area at address addr. Node 

M will use these information items to update its own copy of the application key, so that from now 

on M will use the new key. 

As seen previously, when a node M leaves its own application A, it is necessary to change the 

application key; the new key will be distributed to all the nodes in A except M. A result of this type 

                                                 
2 This key naming approach can be easily extended to local and nonlocal keys, as follows. The name of the local key of 

a given node is a bit string featuring the binary representation of the name of this node in the most significant positions, 

and all 1s in the least significant positions. Decreasing key names starting from the local key name will be reserved to 

the nonlocal keys. 
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will be obtained by taking advantage of our rekeying mechanism, as follows. The server AV of appli-

cation A writes the new key into the key repository of all the members of A except M. Then, AV sends 

a rekey message; consequently, each member executes primitive readSegment() to read the new key 

from its own key repository, and then it update the key. It should be noted that, if the key replacement 

message reaches node M and this node executes readSegment(), this action produces no other effect, 

as the key repository RPM of this node still contains the old, discarded key. 

3.2.1. Rekey messages 

Let us refer to nodes M and N, and suppose that they are both members of application A. Suppose 

that M sends a message to N. As seen in Section 2.3, a message consists of a header in plaintext and 

a body in ciphertext; the header contains the name of the key that was used to encrypt the body. On 

receipt of the message from M, node N compares the name of the application key k’A used to encrypt 

the message, as specified by the message header, with the name of its own application key kA. If kA = 

k’A, then message transmission and delivery are successful (N can decrypt the message). If this is not 

the case, we will take advantage of the fact that, numerically, the name of a key of a given application 

is always greater than the name of a previous key of that application. Thus, if kA > k’A, key k’A is 

outdated. This means that either M encrypted the message before updating the key, or a rekey message 

was lost, due to a network fault [19], for instance, or M is no longer part of application A, so it does 

not participate in the rekey. Node N cannot discriminate between situations of this type, so it discards 

the message and sends a negative reply to M. Consequently, M updates the key by reading the new 

key from its own key repository, and then sends the message again (of course, if M is no longer part 

of application A, the repository still contains the old key, and any attempt to update the key is destined 

to fail). Finally, if kA < k’A, node N holds a key older than that used by M to encrypt the message. N 

will update the key by reading the new key from its own repository. Afterwards, N will be in a position 

to decrypt the message. 

We may conclude that our rekey mechanism is able to cope with losses of rekey messages, which 

produce no negative consequence for the communication ability of the nodes involved. This feature 

is especially important for reliable application rekeying in an unreliable network environment [19], 

[22]. 

4. DISCUSSION 

4.1. Hardware limitations 

As seen in Section 1, in a sensor node the absence of a memory management device for virtual 

to physical address translation, and the lack of hardware support for the two processor modes, the 
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kernel (privileged) mode and the user (non-privileged) mode, implies that no address space separation 

exists between a system routine, e.g. a protection primitive, and an application routine. Any piece of 

software running in a given node has unlimited access to the whole primary memory of that node. It 

is not viable to confine cryptographic keys and passwords to protected memory areas, for instance; 

instead, every software routine can read (and possibly modify) all these critical information items. It 

follows that each node can host a single application. Indeed, in a node that contains two applications, 

a routine is in a position to use the keys of both these applications for message decryption; this is a 

security hole we are aimed at avoiding (the routine may reveal the messages exchanged by the mem-

bers of one application to the members of the other application, thereby breaking the application 

boundaries). 

Furthermore, it is virtually impossible to enforce gate protection on local segment accesses; in-

stead, gates are only effective across node boundaries. Consider, for instance, a segment S defined in 

the primary memory of node M. Any software routine in M will be able to access the primary memory 

area corresponding to this segment, and this access is not subject to any form of access right control. 

On the other hand, a different node N will have to ask M for cooperation to access S, by executing 

protection primitives readSegment() and writeSegment(), and presenting a gate for S. Indeed, access 

control and gate-based protection is enforced by the physical separation of the address spaces of the 

two nodes. 

4.2. Cryptographic keys 

4.2.1. Local keys 

Our protection system takes advantage of three types of cryptographic keys: local keys, nonlocal 

keys and application keys (Table II). A local key is used in each node to encrypt the gates for the 

segments in the primary memory of that node, as occurs in the execution of the newGate() protection 

primitive (see Section 2.3.1). The local key is never transmitted across the network, and it is never 

revealed to a node different from the original owner. It follows that, if a node generates a gate G and 

grants this gate to a different node, the recipient node will not be able to decipher G and alter its 

contents, e.g. to replace the password and amplify the access rights. 

4.2.2. Nonlocal keys 

Nonlocal keys are used for communication between a node and its servers. Our system defines 

two types of servers, segment servers and application servers. As seen in Section 3.1.1, communica-

tion between a segment server and each of its clients takes advantage of a nonlocal key. This key 

allows secure message exchange, so that a node in the routing path between the server and that client 
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cannot decipher the messages. A nonlocal key is used instead of an application key, as we cannot 

allow a single node, the segment server, to possess more than a single application key. 

As seen in Section 3.2, application servers are deputed to key distribution as part of the key 

replacement activities. In the given application, the application server reserves a key segment for each 

member of that application. Communication between the application server and the member takes 

advantage of a nonlocal key. The member uses this nonlocal key to execute readSegment() and read 

the new application key from the key segment when a rekey takes place. The application server is 

itself part of the application; utilization of a nonlocal key instead of the application key is motivated 

as follows. Consider a node that has been evicted from the application; a rekey should take place to 

prevent that node from taking advantage of the old key any longer. If the new application key is 

transmitted in a message encrypted by using the old key, and the evicted node is in a position to 

capture the message, it will be able to decrypt the message and obtain the new key.  

Finally, as seen in Section 3.1, a nonlocal key is also used for point-to-point communication 

between two nodes of different applications. In this case, too, it is not viable to take advantage of the 

application key of one of the two nodes, as this would imply that the other node holds two application 

keys. 

4.2.3. Application keys 

An application key is reserved in each application for communication between the application 

members. Let M and N be two members of application A. When a message is exchanged between M 

and N, any member of application A in the routing path between M and N is in a position to decrypt 

the message; this is not a security hole, as the members of the same application are considered mutu-

ally trustworthy. On the other hand, a member of a different application will not be able to read the 

message contents, as it does not possess the encryption key.  

4.3. Memory requirements 

Owing to the stringent limitations concerning the memory resources available in a sensor node 

Table II. Cryptographic keys. 

Local key 
A local key is used in each node to encrypt the gates for the segments in that node. 

Nonlocal key 
A nonlocal key is used in each node to communicate with the application server. If the node is connected 
with a segment server, a further nonlocal key is reserved for communication with this server. Nonlocal keys 
are also used for point-to-point communication between the members of different applications. 

Application key 
An application key is reserved in each application for communication between the members of that applica-
tion. 
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[30], [35], the memory requirements for key and gate storage are significant factors. As seen in Sec-

tion 3.2, a key has a name and a value. For an application key, the key name consists of a node name 

(that of the application server) followed by the value of a key counter; local and nonlocal keys present 

a similar structure and identical memory requirements. In a large network featuring up to 216 nodes, 

the size of a node name is 16 bits, and a 32-bit key name will allow a substantial number of rekeying 

actions. If the size of a key value is 128 bits, we have a key size of 20 bytes.  

As seen in Section 2.2, a gate consists of a node name, in plaintext, and a protection field, in 

ciphertext. The protection field includes a local segment identifier and a password. If the size of a 

node name is 16 bits, and the primary memory of a node is up to 64 Kbytes, for 128-bit passwords 

we have a protection field of 18 bytes, and the size of a gate is 20 bytes.  

We wish to point out that, in a given gate, the node name is not involved in the transformation of 

the gate from plaintext into ciphertext. Indeed, knowledge of the node name is only necessary in the 

execution of the readSegment() and writeSegment() protection primitives to identify the network po-

sition of the referenced segment. It follows that the location of the node name field in memory is 

irrelevant. A node holding a collection of gates referencing segments in the same remote node may 

well maintain a single copy of the node name, for instance; the node will reconstruct the association 

of the name of the remote node with the protection field when needed, just before issuing readSeg-

ment() or writeSegment().  

4.3.1. Hierachical configuration 

As seen in Section 3.2, the members of the generic application are structured hierarchically. A 

member assumes the role of the application server; it reserves a key repository for each of the other 

application members. Key repositories are used when a rekey takes place, for distribution of the new 

key. We shall now extend this model to cope with application data gathering. Besides a key reposi-

tory, the application server reserves a data repository for each member. Each member holds a gate 

allowing write access to its own data repository. The member uses the writeSegment() protection 

primitive to deposit the results of its own computations into the data repository. Execution of 

writeSegment() takes advantage of the same nonlocal key that is used for rekeying. 

The hierarchical member structure existing within the application boundaries can be extended at 

the network level by introducing a general server to which all application servers are connected. The 

general server reserves a segment in its own primary memory for each application server. This seg-

ment is called the application repository. Each application server holds a gate allowing write access 

to its own application repository. The application server uses the writeSegment() primitive to deposit 

the results of the computations of the corresponding application, as follow from the activity of the 
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members, into its own application repository. A nonlocal key is reserved for point-to-point commu-

nication between the application server and the general server.  

In this hierarchical model, with reference to the generic application, each member holds three 

keys: (i) a local key, used for gate encryption; (ii) a nonlocal key, used to access both the key repos-

itory and the data repository in the application server; and (iii) an application key, used to communi-

cate with the other application members. Let n denote the number of nodes that form the sensor net-

work, let a denote the number of applications in which these nodes are partitioned, and let v = n / a 

denote the average number of nodes in each application. An application server holds the following 

keys: (i) a local key, used for gate encryption; (ii) an average of v - 1 nonlocal keys, one key for each 

of the other application members, used to communicate with that member; and (iii) a nonlocal key, 

used to communicate with the general server. Thus, the application server holds a total of v + 1 keys. 

For n = 1024 nodes and a = 16 applications, we have v = 64, for instance. In this network configura-

tion, an application server holds 65 keys on average, with a total memory requirement of 1300 bytes.  

Furthermore, each application member holds one gate for the key repository, used to support the 

rekey process, and one gate for the data repository, used to deposit the computation results. The ap-

plication server holds a single gate referencing the application repository in the general server.  

4.3.2. Full pairwise connectivity at the application level 

In a different approach, we support a form of full pairwise connectivity [32] at the level of the 

application servers, as follows: each application server reserves an application repository for each of 

the other application servers; a nonlocal key is shared by the two application servers for data ex-

change, which occurs via writeSegment(). 

In this network configuration, the generic member of each application holds three keys: (i) a local 

key, used for gate encryption; (ii) a nonlocal key, used to communicate with the application server; 

and (iii) an application key, used to communicate with the other application members. The application 

server holds the following keys: (i) a local key, used for gate encryption; (ii) an average of v - 1 

nonlocal keys, one key for each of the other application members, used to communicate with that 

application member; and (iii) a - 1 nonlocal keys, one key for each of the other application servers, 

used to communicate with that application server. Thus, in each application server, we have a total of 

v + a - 1 keys. For instance, if n = 1024 nodes and a = 16 applications, the average number of nodes 

for each application is v = 64, and an application server holds 79 keys on average, with a total memory 

requirement of 1580 bytes.  

Furthermore, each application member holds one gate for the key repository, and one gate for 

the data repository. The generic application server holds a - 1 gates for the application repositories of 



– 17 – 

the other application servers; if a = 16, we have a total memory requirement for gate storage of 300 

bytes. 

We may conclude that the total memory requirements for key and gate storage in both a hierar-

chical network configuration and even in a configuration featuring a form of full pairwise application 

connectivity are low, and they are a negligible fraction of the overall memory resources of the network 

nodes. This is especially true for the generic application members, whose interactions with the appli-

cation server and the other members of the same application can be fully supported by a total of three 

keys and two gates, with a total memory requirement of 100 bytes. 

4.4. Gate manipulation 

Gates are stored in memory together with ordinary information, in undifferentiated form. It fol-

lows that a node may well forge a gate referencing a segment in a different node from scratch, and 

then try to use this gate to access the contents of that segment. In fact, any illegitimate access attempt 

of this type is destined to fail. 

Let M and N be two nodes, and k be a key shared by these nodes (k will be an application key, if 

M and N are both members of the same application, or a nonlocal key, if N is a server and M one of 

its clients, for instance). Let PN be the set of the passwords associated with node N, and let us suppose 

that node M forges gate G = (N, T) referencing a segment in the primary memory of N. To this aim, 

M will have to use an arbitrary value for validation field T, as it does not possess the local key lkN of 

node N. Let us now suppose that M tries to take advantage of G, for instance, by executing protection 

primitive readSegment(k, G, addr), where addr is the address of an area in the primary memory of 

M. In the execution of this primitive, node N uses its own local key lkN to decrypt the protection field 

T of gate G into pair (C, p) (see Section 2.3.2). Then, quantity p is compared with passwords pR and 

pRW in the set of passwords PN to validate G. If passwords are large and sparse, the probability of a 

casual match is vanishingly low, and validation is destined to fail. 

We wish to remark that password validation guarantees that any illegitimate attempt to use a gate 

in the wrong node is destined to fail. For instance, suppose that node M holds gate G = (N, T) refer-

encing a segment in the primary memory of node N. Suppose also that M forges a new gate G’ = (N’, 

T) by associating the name of a different node N’ with validation field T. When M tries to take ad-

vantage of G’, by executing protection primitive readSegment(), for instance, the recipient node N’ 

will decrypt T and validate the password contained in T by comparing it with its own password. Of 

course, validation is destined to fail.  

4.5. Gate revocation 

Gates can be freely moved and copied in memory, and a node that receives a gate is free to 
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distribute this gate to other nodes. This means that gates, once granted, tend to propagate throughout 

the network. A relevant problem is that of gate revocation. A node N that creates a gate for a segment 

S and grants this gate to a recipient node M should be in the position to retract the gate from M as 

well as from all the nodes that received a copy of the gate from M, recursively.  

In our system, gate revocation can be obtained by taking advantage of passwords. Let PN be the 

set of passwords associated with node N, and suppose that N changes the values of these passwords; 

so doing, all the gates that reference the segments in N are revoked (it will be no longer possible to 

use these gates for successful segment access). For instance, suppose that node M possesses gate G = 

(N, T) referencing segment S = (N, C) stored in node N. In order to take advantage of G and read the 

contents of segment S, M will issue protection primitive readSegment(k, G, addr), where k is a key 

shared by M and N, and addr is the address of an area in the primary memory of M. In the execution 

of this primitive, node N uses its own local key lkN to decrypt the protection field T of gate G into pair 

(C, p). Then, quantity p is compared with the passwords in PN to validate G. Of course, if the pass-

words were changed, this validation attempt is destined to fail. Despite its simplicity, this gate revo-

cation mechanism possesses a number of interesting properties. It is [14]: 

 Transitive, that is, if a node grants a gate for a segment in its own primary memory to a recipient 

node that in turn transmits gate copies to other nodes, the effects of the revocation propagate to 

all these copies, recursively, at any transition depth. 

 Temporal, that is, the effects of the revocation can be reversed by taking advantage of the same 

mechanism used for the revocation (i.e. by restoring the original passwords). 

 Immediate, that is, the holder of a given gate cannot use this gate immediately after the revoca-

tion. Indeed, execution of a readSegment() or writeSegment() primitive specifying a given gate 

as an argument is destined to fail as soon as the passwords are changed. 

If we change the passwords of a given node, we revoke the gates for all the segments in that 

node. This gate revocation mechanism cannot be used to revoke the gates for a single segment selec-

tively. A result of this type can be obtained by executing the deleteSegment() primitive and deleting 

the segment. As seen in Section 2.3, this primitive does not alter the contents of the memory area 

corresponding to the deleted segment. This means that it will be possible to allocate a new segment 

in the same memory area and proceed to a new distribution of gates for this new segment; distribution 

will involve only those nodes that should not be affected by the revocation. This form of revocation 

results to be transitive (the effects of the revocation propagate to all the copies of the gates referencing 

the deleted segment) and immediate (the revocation comes into effect as soon as the segment is de-

leted). It is even possible to take advantage of the fact that two or more segments can overlap in 

memory. In a situation of this type, we can have different gates for the same memory area. If we 
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delete one of these segments, we revoke the corresponding gate (and all the copies of this gate); 

revocation does not affect the validity of the gates for the other segments. 

4.6. Considerations concerning security 

4.6.1. The threat model 

In a sensor network, a sensor node is an internal adversary if it is a network member, it is au-

thenticated to the other sensor nodes, and is compromised. When a node is compromised, it is sup-

posed to reveal its local key and any key shared with the other network nodes. The sensor node is an 

external adversary if it is not a network member, and uses different means of attack to reach the 

network [2].  

An external attack carried out by an external adversary is called a passive attack if the external 

adversary eavesdrops packets, whereas the attack is active if the adversary injects or modifies packets. 

In an internal attack, an internal adversary behaves as a legitimate network member but in fact delib-

erately deviates from the specification of the intended application. In contrast with wired networks, 

in a wireless sensor network a simple radio transceiver is sufficient for an adversary to access the 

wireless medium and attempt an external attack. Internal attacks are facilitated by the fact that wire-

less sensor networks are often deployed over large, unattended, and possibly hostile areas, and sensor 

nodes typically lack adequate support to tamper-resistance. 

With reference to this threat model and external attacks, the design of our distributed storage 

protection system has been aimed at fulfilling the following security requirements: 

 Secrecy. It is infeasible for an external adversary to derive any piece of information from the 

messages eavesdropped in the network. 

 Authenticity. It is infeasible for an external adversary to forge a call to a protection primitive or 

its results. 

 No-replay. It is infeasible for an external adversary to replay a call to a protection primitive or 

its results. 

As far as internal attacks are concerned, our protection system is intended to comply with the 

forward security requirement, i.e. a compromised node that generates an attack is logically evicted 

from the application as soon as the attack is detected. In the following, we shall assume the presence 

of an intrusion detection system [2] that monitors the network activities to detect possible compro-

mised nodes. 

4.6.2. Security analysis 

We shall now analyze the security properties of our protection system in detail. More specifically, 
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we shall demonstrate that protection primitives readSegment() and writeSegment() satisfy the above-

mentioned security requirements of secrecy, authenticity, no-replay, and forward security. As stated 

in Section 2.2, ciphers throughout this paper are supposed to comply with the Counter with CBC-

MAC (CCM) encryption mode, which supports both authentication and confidentiality [11]. In the 

following, we shall refer to CCM for use with AES [37]. In fact, AES is generally considered a secure 

cipher [23], and several off-the-shelf sensor nodes, e.g. Tmote Sky [28], provide AES-128 encryption 

at the hardware level, with negligible overhead in terms of delay, storage, and energy consumption 

[8]. We shall assume that the key size is such as to discourage any form of exhaustive search, e.g. 

128 bits, and that CCM encryption is secure if the underlying block cipher is secure. Informally, CCM 

security means that, for an adversary that has no access to the secret key, it is infeasible both to forge 

a valid ciphertext (authenticity property), and to derive any piece of information from a valid cipher-

text (secrecy property) [18]. 

Figure 3 shows the communication protocols of readSegment() and writeSegment(). The proto-

cols are illustrated with reference to the execution steps indicated in Section 2.3.2. EM and EN are the 

nonces generated by nodes M and N, G is a segment gate, a indicates the contents of the segment 

involved in the execution of the primitive, k is the cryptographic key used for communication between 

M and N, and finally, reply specifies whether execution of the primitive was successful, or not. For 

each given message, the figure specifies the execution step at which this message is transmitted. In 

the protocol of readSegment(), quantity a is enclosed in square brackets to denote that this quantity 

is empty if execution fails. 

We are now in a position to demonstrate that readSegment() and writeSegment() are secure with 

respect to an external adversary. In both primitives, encryption of messages M3 and M4 in the CCM 

mode guarantees both message secrecy and authenticity with respect to an external adversary that 

does not know k. Several implications follow: 

 Secrecy. An external adversary cannot derive any piece of information from the ciphertext con-

tained in M3 and M4. In particular, the adversary cannot extract the segment gate G or the seg-

ment contents a. 

 Authenticity. An external adversary cannot forge messages M3 and M4. In particular, the adver-

sary cannot modify the segment contents a that are returned by readSegment() in message M4, 

and written by writeSegment() in message M3. Furthermore, the adversary cannot modify the 

final reply, returned by both primitives in message M4.  

 No-replay. An external adversary cannot replay any operation call or result. This follows from 

the fact that, as seen in Section 2.3.2, the encryption is intended to indissolubly link the nonces 

with the gate and the segment contents. 
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Let us now consider an internal attacker participating in application A and running in node N. 

The attacker can take advantage of all the gates and the keys stored in N to issue illegitimate calls to 

the primitive operations. However, as soon as the intrusion detection system suspects that node N is 

compromised, the protection system starts up a rekey action to replace the application key and evict 

N from the application. In detail, the application server selects a new application key and distributes 

this key to all the nodes which are members of application A, except node N. To this aim, as seen in 

Section 3.2, the application server writes the new key into the key repositories of all the members of 

A except N. Then, the application server sends a rekey message; consequently, each node executes 

primitive readSegment() to read the new key from its own key repository, and then updates the key. 

For the given node, execution of readSegment() uses the nonlocal key shared between the application 

server and this node. As the compromised node N does not know this key, it cannot eavesdrop the 

new key. 

4.7. Relation to previous work 

A previous paper [25] demonstrates the possibility to take advantage of cryptographically pro-

tected pointers for segment access, with reference to a single-processor architecture featuring ad-hoc 

hardware for protection support. In that architecture, a set of protections registers are reserved inside 

the processor to contain protected pointers in plaintext. The instruction set is designed to comply with 

a memory address format that includes the specification of a protection register and an offset; the 

offset specifies a memory location in the segment referenced by the protected pointer contained in 

the protection register. The protection primitives are designed to be implemented at the hardware 

level as machine instructions; for a few protection primitives, software support is necessary, e.g. for 

memory management. Protection registers are mainly aimed at solving an important performance 

problem, i.e. the high cost, in terms of processor time, of a transformation of a ciphertext pointer to 

plaintext at each memory access. 

M1 M  N : nonce request (step 1) 

M2 N  M : EN (step 2) 

M3 M  N : {readSegment, G, EN, EM}k (step 3) 

M4  N  M : {reply, EM, [a]}k (steps 5, 6) 

(a) 

M1 M  N : nonce request (step 1) 

M2 N  M : EN (step 2) 

M3 M  N : {writeSegment, G, EN, EM, a}k (step 3) 

M4  N  M : {reply, EM}k (steps 5, 6) 

(b) 

Figure 3. Communication protocols of protection primitives (a) readSegment() and (b) writeSegment(). 
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In a subsequent paper [26], the protected pointer paradigm was extended with reference to mul-

tithreaded programs in a single address space environment supporting the notion of segmentation 

with paging. Protection is exercised at the level of a single page. A protected pointer references a 

segment and specifies a set of access rights for the pages that form this segment. The address trans-

lation circuitry performs the necessary validation of access privileges. Implementation is aimed at 

encapsulating the protection system, so that user processes are prevented from altering its intended 

behavior even if the design criteria and underlying algorithms are publicly known. The solution pro-

posed exploits the usual separation between the two processor modes, a kernel, privileged mode and 

a user mode with restricted memory access. 

In this paper, we have taken advantage of cryptographic techniques for the protection of memory 

pointers in a fully distributed, sensor network environment. A careful, thorough redesign of the pro-

tection system has been necessary to cope with the stringent limitations existing at the hardware level, 

and principally, a limited memory space with no provision for a protected memory area of the oper-

ating system kernel, and the lack of hardware support for the two processor modes, kernel and user. 

5. CONCLUDING REMARKS 

With reference to a distributed architecture consisting of sensor nodes connected in a wireless 

network, we have presented a paradigm of a protection system based on applications and segments. 

An application is the result of the joint activities of a set of nodes that cooperate in the same purpose. 

Segments are the basic unit of information gathering and transmission between the nodes. In our 

paradigm: 

 A software routine running in a given node has unlimited access to the whole primary memory 

of that node, whereas access to a remote memory area in a different node can only be accom-

plished on a segment basis, by presenting a gate for the segment involved in the access. A gate 

is protected pointer that references a segment and specifies a set of access rights for this segment. 

The cryptographic form of gates in memory guarantees that any attempt to forge a gate from 

scratch or alter an existing gate (e.g. to amplify the access rights it contains) is destined to fail. 

A node holding a given gate can transmit this gate to another node, thereby granting the access 

rights specified by this gate to the recipient node. 

 Two special node functionalities are supported, application servers and segment servers. An ap-

plication server is used in each application for key management, rekeying, and information gath-

ering. Segment servers are used for inter-application communication. 

 The protection system defines three types of cryptographic keys: local keys, nonlocal keys and 
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application keys. Each node holds a local key to encrypt the gates for the segments in its own 

primary memory, a nonlocal key to communicate with the application server, and an application 

key to communicate with the other nodes of the same application. If a node is connected with a 

segment server, a further nonlocal key is necessary to communicate with this server. Nonlocal 

keys are also used for point-to-point communication between members of different applications. 

 A small set of protection primitives forms the interface between the protection system and appli-

cations. These primitives allow a node to allocate segments locally, to generate gates for the local 

segments, and to use gates in remote segment accesses. 

 The rekey mechanism is based on a segment, the key repository, which the application server 

reserves in its own primary memory for each application member. Key replacement is initiated 

by the application server that inserts the new key into each key repository and then sends a rekey 

message to all the members. Consequently, each member uses a gate for its own key repository 

to read the new key. The rekey mechanism takes advantage of key naming to cope with losses of 

rekey messages. This feature is especially important for reliable application rekeying in an unre-

liable network environment. 

 We have considered two different network topologies in special depth, a configuration featuring 

full pairwise connectivity at the application level, supported by a point-to-point link between 

each pair of application servers, and a hierarchical topology featuring a general server that gathers 

data from all the application servers. In both cases, the total memory requirements for key and 

gate storage result to be a negligible fraction of the overall memory resources of the network 

nodes. 

The idea of using different types of cryptographic keys, appropriate for different types of com-

munication, is certainly not new. For instance, in [39], each node holds a global key shared with all 

the network nodes, a cluster key shared with all the neighboring nodes, an individual key shared with 

the base station, and a pairwise key shared with each of its immediate neighboring nodes. It has been 

reputed that key differentiation may facilitate key management and enhance overall system security 

[7]. In our system, different keys are used for point-to-point communication between different nodes, 

in the interactions between application members, and to compensate for the lack of hardware support 

at the node level for the two processor modes, kernel and user.  

Fine-grained data access control is considered hard to obtain in an environment based on sym-

metric-key cryptography owing to the intrinsic complexity of key management [36]. We have ob-

tained a result of this type by a careful protection system design, even within the stringent limitations 

existing in sensor nodes on hardware complexity and available hardware resources. 
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