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Ultra-wideband (UWB) impulse radios have shown great potential in wireless local area networks for localization, coexistence with
other services, and low probability of interception and detection. However, low transmission power and highmultipath effect make
the detection of UWB signals challenging. Recently, multi-symbol based detection has caught attention for UWB communications
because it provides good performance and does not require explicit channel estimation. Most of the existing multi-symbol based
methods incur a higher computational cost than can be afforded in the envisioned UWB systems. In this paper, we propose an
iterative multi-symbol based method that has low complexity and provides near optimal performance. Our method uses only
one initial symbol to start and applies a decision directed approach to iteratively update a filter template and information symbols.
Simulations show that our method converges in only a few iterations (less than 5), and that when the number of symbols increases,
the performance of our method approaches that of the ideal Rake receiver.

1. Introduction

Ultra-wideband (UWB) impulse radio (IR) transmits ultra-
short pulses at low power spectral density where the informa-
tion is encoded via pulse-amplitude modulation (PAM) or
via pulse-position modulation (PPM). The IR-UWB systems
show some important merits including: coexistence with
current narrowband signals, high multiple-access capacity
and fine timing resolution [1–3]. Fine timing resolution
property helps the receiver to resolve distinct dense mul-
tipath components and provides high degrees of diversity
whilst the low power spectral density enables sharing of the
RF spectrum with limited mutual interference.

One of the major challenges in UWB system is to deal
with the dense multipath channel. Indeed, each transmitted
UWB pulse arrives at the receiver as hundreds of replicas
with different delays, amplitudes and phases [4–6]. To collect
the available diversity, Rake receivers [7, 8] employ a large
number of fingers to capture the multipath energy [9].
However, channel estimation error can degrade the Rake’s
performance and the accurate estimation of the gains and

delays of channel paths incurs considerable computational
cost [10].

As an alternative to the Rake receiver, the transmitted
reference (TR) method [8, 11–14] sends a reference signal
along with the data-modulated signal. The receiver can
simply be an autocorrelation receiver which demodulates
the data by correlating the delayed reference signal and the
data-modulated signal. The advantage of the TR method
compared to the Rakemethod is that it is easier to implement
because it does not require explicit channel estimation.
However, the main drawback of TR-based methods is that
the noise induced in the reference signal severely degrades
the error performance.

In [15], decision-directed autocorrelation (DDA)
receivers are proposed to detect the current symbol by
correlating the current information waveform with a
waveform template generated by all previously decoded
symbols. However, the DDA receivers detect the information
symbols successively and the current detected symbol
has no contribution to the preceding symbol detection.
To relieve the noise effect of the reference signal in TR
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system, further enhancement techniques exploit the multi-
symbol differential detection [16, 17] to jointly detect M
consecutive symbols. The generalized likelihood ratio test
(GLRT) approach for the multi-symbol case is derived and
exhaustive search is performed on all 2M symbol possibilities
to find the optimal one [16]. The practical implementation
of the method suffers from the exponential computational
complexity in terms of block size M. A reduced complexity
algorithm is devised in [17] by introducing the sphere
decoding algorithm (SDA). An approximate algorithm based
on the Viterbi algorithm (VA) is also presented in [17].
Although SDA and VA reduce the complexity relative to
exhaustive search, and are effective for smallM, they require
considerable computational effort whenM is large.

In this paper, we propose a fast multi-symbol iterative
detection method. The method harvests the benefits from
the concept of the multiple symbols detection and outputs
a better bit error rate (BER) performance than the single
symbol TR system whilst exhibiting a low computational
complexity (O(NM2), where M is block size and N is the
maximum number of iterations). Following the description
of general iterative method, two particular low-complexity
detectors are designed and evaluated in the simulation exper-
iments. Although the proposed method cannot guarantee to
achieve the same performance as the GLRT-based detector
in the general case, experimental results show that the BER
performance of the method is very close to that of the GLRT
when M ≥ 10 (the signal-to-noise ratio (SNR) gap is less
than 0.5 dB). Further experiments demonstrate that a few
iterations (N < 5 iterations) are sufficient for the detectors
to converge.

The rest of the paper is organized as follows. Section 2
introduces the UWB signal model. Section 3 describes
the multi-symbol transmitted reference system with GLRT
detection. Section 4 develops two fast multi-symbol trans-
mitted reference-based detectors. Section 5 shows the
numerical results for a constant channel and random
channels, respectively. Section 6 concludes the paper.

2. Signal Model

The transmitted signal in IR-UWB systems using the pulse
amplitude modulation (PAM) for the ith transmitted symbol
is

si(t) = bi

Nf −1∑

j=0
p
(
t − jT f − cjTc

)
, (1)

where p(t) is a transmitted monocycle waveform with
support set [0,Tp], the bi’s are the modulated symbols, the
cj ’s are the user-specific pseudorandom time-hopping (TH)
codes and Tf is its frame duration. Because the energy of one
single pulse is limited in UWB communication systems, each
symbol is transmitted using Nf frames so that the receiver
can collect enough energy to recover the signal. Thus, the
symbol duration is Ts = Nf T f . The TH codes cj are integers
chosen from 0 ≤ cj ≤ Nc − 1 so that multiple users can
access the channel concurrently and the transmission time of
jth monocycle waveform is delayed with cjTc seconds. Due

to the highly-frequency selective feature of UWB channel,
the frame duration is chosen such that Tf > Tm + Tp +
NcTc, where Tm is the maximum excess delay of the channel.
This condition eliminates intersymbol interference (ISI). The
energy of one pulse is Ep =

∫ Tp

0 p2(t)dt.
The channel impulse response (CIR) of the UWB system

is assumed to be slow fading with multipath propagation

h(t) =
K∑

k=1
αkδ(t − τk), (2)

where K is the total number of specular propagation paths
with amplitude αk and delay τk. Hence, the signal obtained
from the receiver side for the ith symbol is modeled as

ri(t) = si(t)∗ h(t) + n(t)

=
K∑

k=1
αksi(t − τk) + n(t)

= bi

Nf −1∑

j=0
g
(
t − jT f − cjTc

)
+ n(t),

(3)

where g(t) = p(t) ∗ h(t) is the channel template, ∗
denotes the convolution operation and n(t) denotes the noise
including multiple access interference (MAI) and an additive
white Gaussian noise (AWGN) with zero mean and two-
sided power spectral density N0/2. The noiseless received

signal energy in each frame is defined as Ef =
∫ Tf

0 g2(t)dt
and is proportional to the pulse energy Ep.

A key element to determine the receiver demodulation
structure is the way to encode the information symbols ak ∈
{+1,−1} to the transmitted symbols bj ∈ {+1,−1}. In the
following, we list three kinds of encoders:

(i) Transmitted Reference (TR) [12] with bm = 1 if m is
even, otherwise bm = a(m−1)/2.

(ii) Multi-Symbol Differential Encoder (MSDE) [17]
with bi(M+1) = 1 and bi(M+1)+m = bi(M+1)+m−1aiM+m

where i is a multi-symbol block index and 1 ≤ m ≤
M.

(iii) Multi-Symbol Transmitted Reference (MSTR) with
bi(M+1) = 1 and bi(M+1)+m = aiM+m where i is a multi-
symbol block index and 1 ≤ m ≤M.

In this paper, our focus is on the MSTR encoder in this
paper. All these encoders employ the first modulated symbol
as the reference signal in each block and the TR scheme
[12] can be viewed as a special case of MSTR scheme where
M = 1. For MSDE case, the current transmitted symbols
are encoded differentially with the previous encoded symbols
and the first symbol is used as an initial symbol, while in
MSTR case, the current transmitted symbol is the same as
the information symbol except the first one, which is used to
generate the reference template.

3. GLRT-BasedMulti-Symbol Detection

In the case of multi-symbol detection, each block contains
M + 1 symbols including one reference symbol and M
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information symbols. To simplify the equations in multi-
symbol detection cases, we consider only the encoding and
detecting scheme in one block ofM + 1 symbols. Hence, the
received signal can be rewritten as

x(t) =
M∑

m=0
rm(t −mTs)

=
M∑

m=0
bm

Nf −1∑

j=0
g
(
t −mTs − jT f − cjTc

)
+ n(t),

(4)

by assuming that the channel is quasi-static over the interval
[0, (M + 1)Ts].

Now, our task is to determine the information symbols
a = [a0, a1, . . . , aM]

T , a0 = 1 without knowing the channel
template g(t). The relationship between information sym-
bols am and transmitted symbols bm for MSDE is

bm =
m∏

i=0
ai, for m = 0, . . . ,M, (5)

and for MSTR is

bm = am, for m = 0, . . . ,M. (6)

Here, we resort to the generalized likelihood ratio test
(GLRT) approach to detect the information symbols. The
log-likelihood metric is given as

L
(
x(t) | ã, g̃(t)

)
= −

∫ (M+1)Ts

0
(x(t)− x̃(t))2dt, (7)

where x̃(t) is the candidate waveform constructed by ã, g̃(t)

x̃(t) =
M∑

m=0

(
H(m) ⊗ ã

)Nf −1∑

j=0
g̃
(
t −mTs − jT f − cjTc

)
,

b̃m = H(m) ⊗ ã,

(8)

where H(m) is the (m + 1)st row of an (M + 1) × (M + 1)
matrix which comes from the encoding schemes (MSDE or
MSTR) described in Section 2. All entries of H(m) are 0 or
1 and [h0,h1,h2, . . . ,hM] ⊗ [a0, a1, a2, . . . , aM]

T is defined as∏M
i=0,hi /= 0 ai. TheHmatrices for the MSDE and MSTR are

HMSDE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0
1 1 1 1 · · · 0 0
...

...
...

...
. . .

...
...

1 1 1 1 · · · 1 0
1 1 1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

HMSTR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
1 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

1 0 0 0 · · · 1 0
1 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

The decision rule of GLRT algorithm is of the form

â = argmax
ã,g̃(t)

{
L
(
x(t) | ã, g̃(t)

)}
. (10)

In (10), although g(t) is unknown, it is treated as a
nuisance parameter. The optimum reference template given
a symbol candidate ã can be obtained using the variational
technique (see [17])

ĝ(t) = argmax
g̃(t)

{
L
(
x(t) | ã, g̃(t)

)}

= 1
M + 1

M∑

m=0

(
H(m) ⊗ ã

)
ym(t),

(11)

where ym(t) is the averaged waveform for the mth received
symbol signal over Nf frames

ym(t) =
1
Nf

Nf −1∑

j=0
x
(
t +mTs + jT f + cjTc

)
, 0 ≤ t ≤ Tf

= 1
Nf

Nf −1∑

j=0
rm
(
t + jT f + cjTc

)
, 0 ≤ t ≤ Tf .

(12)

Incorporating the log-likelihood formula in (10) and
(11), finally we have

â = argmax
ã

M−1∑

m=0

M∑

l=m+1

(
H(m) ⊗ ã

)(
H(l) ⊗ ã

)
Zm,l, (13)

where

Zi, j =
∫ Tr

0
yi(t)yj(t)dt, (14)

where Tr is the integration interval of the correlator, and
Tr ≤ Tm + Tp.

Some remarks are now of interest.
(i) For the single user or multiple-orthogonal users case

withM = 1, (13) reduces to

â1 = argmax
ã1

ã1Z0,1, (15)

which is equivalent to averaged transmitted reference (ATR)
detection for single symbol detection [12]

â1 = sgn(z) = sgn
(
Z0,1

)
, (16)

where z = Z0,1 is the decision variable for ATR.
Simple mathematical manipulations yield the following

expressions for the mean and variance of the decision
variable z as

µ = E{z} = aiE f , (17)

σ2 = Var{z} =
Ef N0

Nf
+
N2

0TrW
2N2

f
, (18)
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where W is the one-sided noise bandwidth of the receiver,
E{·} is the statistical expectation, and Var{·} is the variance
of the random variable. The BER of the detector in this case
is [12]

PATR = Q

⎛
⎜⎝

⎡
⎣ N0

Nf E f
+
N2

0TrW
2N2

f E
2
f

⎤
⎦
−1/2⎞

⎟⎠, (19)

where Q(x) is the Q-function Q(x) = (2π)−1/2
∫∞
x exp(−t2/

2)dt.
(ii) Unlike the ideal Rake receiver, which correlates the

receive signal with noiseless template, the TR scheme uses
the noisy reference signal as a template in one symbol
case and the best estimated reference signal using (11) in
the multi-symbol case. However, the TR system does not
explicitly estimate the channel parameters and only requires
the correlation coefficients Zm,l, Zm,l = Zl,m, 0 ≤ m ≤ M,
0 ≤ l ≤M evaluated in (14).

(iii) As seen in (11), the variance of the reference signal
ĝ(t) decays asM increases when ã = a. In turn, the accuracy
of the multi-symbol detection is improved and converges to
the performance of ideal Rake receiver asM → ∞.

(iv) The global optimal value of â can be obtained
by using exhaustive search [16] or sphere decoding [17].
However, the computational cost of the exhaustive search
method grows exponentially with the number of symbols
M. Sphere decoding method searches all the lattice points
inside a given radius and reduces the complexity of the
exhaustive search method on average. However, the expected
complexity of SDA is still exponential for fixed SNR and
increases significantly when SNR is low [18].

4. A Fast MSTRDetectionMethod

In this section, we develop an iterative MSTR detection
algorithm by avoiding the high computational complexity
of GLRT-based detectors (e.g., exhaustive search [16] and
SDA [17]). Similar to the TR detection scheme, the proposed
method first generates a reference template by using the
initial symbol only, and then estimates the information sym-
bols by correlating the reference template with the symbol
waveforms. Furthermore, with the help of the information
from multiple transmitted symbols, our method manages to
suppress the reference template noise. However, our method
also generates additional noise-cross-signal and noise-cross-
noise terms which do not appear in the case of an ideal Rake
receiver with perfect channel knowledge.

For the initialization, since the only known symbol is
b0 = 1, the best template at this stage is

g̃(1)(t) = b0y0(t) = y0(t), (20)

where y0(t) can be found in (12).

The decision variables for theM information symbols are

z(1)m =
∫ Tr

0
g̃(1)(t)ym(t)dt

=
∫ Tr

0
y0(t)ym(t)dt

= Z0,m, for m = 1, . . . ,M.

(21)

The estimated information symbols in this iteration are

b̃(1)m = sgn
(
Z0,m

)
, for m = 1, . . . ,M. (22)

This means that at the first step the estimated symbols
are obtained by correlating the waveform corresponding
to b0 with the mth symbol waveform. Hence, the BER
performance is the same as that of the ATR in (19).

For the nth iteration, the method firstly constructs a new
reference template by weighting the product of each symbol’s
waveform yi(t) and its corresponding detected symbol b̃(n−1)i
obtained from the previous iteration

g̃(n)(t) = w(n−1)
0 y0(t) +

M∑

i=1
w(n−1)
i b̃(n−1)i yi(t). (23)

Then, the decision variable for the mth symbol is
evaluated in the same way as the one in (21)

z(n)m =
∫ Tr

0
g̃(n)m (t)ym(t)dt

= w(n−1)
0 Z0,m +

M∑

i=1, i /=m

w(n−1)
i b̃(n−1)i Zi,m,

(24)

where g̃(n)m (t) is the reference template for themth symbol by
removing themth waveform ym(t) from g̃(n)(t)

g̃(n)m (t) = w(n−1)
0 y0(t) +

M∑

i=1, i /=m

w(n−1)
i b̃(n−1)i yi(t). (25)

At last, the iteration outputs the estimated symbols as

b̃(n)m = sgn
(
z(n)m

)
. (26)

4.1. Weight Selections. A key factor that affects the method’s
performance and convergence is how to update the weights
in each iteration. The ultimate goal of selecting the weights
is to reduce BER while maintaining low computational
complexity and requiring little extra knowledge (such as
channel information). Here, we propose two types of rule for
the choice of the weights in each iteration.

(i) Hard Decision for MSTR (HD-MSTR). The rule con-
structs the reference template as

g̃(n)(t) = y0(t) +
M∑

i=1
b̃(n−1)i yi(t), (27)
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which indicates that w(n−1) = [1, 1, . . . , 1] in (23). Also note
that, the template is a scaled version of the GLRT template
estimate given the detected symbols b̃(n−1) as shown in (11).

An interesting observation on the reference template
of HD-MSTR in (27) is that the variance of the reference
template is constant given the detected symbols b̃(n−1)m

Var
{
g̃(n)(t)

}
= Var

{
y0(t)

}
+

M∑

i=1
Var
{
b̃(n−1)i yi(t)

}

= (M + 1)Var
{
y0(t)

}
.

(28)

The conditional mean of the template is

E
{
g̃(n)(t) | b

}
= g(t) +

M∑

m=1

{
b̂(n−1)m bm

}
g(t)

=
(
1 + 2N (n−1)

c −M
)
g(t),

(29)

where N (n−1)
c is the number of correct symbols for the (n −

1)st iteration. Hence, the mean and standard deviation ratio
is

E
{
g̃(n)(t) | b

}

Std
{
g̃(n)(t)

} =

(
1 + 2N (n−1)

c −M
)
g(t)

√
(M + 1)Std

{
y0(t)

} , (30)

where Std{·} is the standard deviation of the random
variable. In general, the larger the mean-standard deviation
ratio, the better the BER performance. Thus, in the case
of HD-MSTR, if more correct symbols are detected for the
current iteration, during the next iteration, the reference
template is improved and then the method potentially results
in better BER performance. The iterative procedure runs
back and forth until no symbol is changed or the maximum
number of iterations is reached.

(ii) Soft Decision for MSTR (SD-MSTR). An intuitive idea
of the SD-MSTR detector is that the decision variable z(n)m

obtained in each iteration reflects the reliability of the
detected symbol b̃(n)m . The larger the value of z(n)m , the more
we can trust the accuracy of the detected symbol b̃(n)m . Hence,
the corresponding symbol deserves higher weight in the
representation of the reference template for next iteration.

By facilitating the additional information from decision
variables z(n)m , the SD-MSTR determines the weight values as

w(n)
m = P

(
bm = b̃(n)m | z(n)m

)
− P

(
bm /= b̃(n)m | z(n)m

)
(31)

= 2P
(
bm = b̃(n)m | z(n)m

)
− 1, for m = 0, . . . ,M, (32)

where the two terms in (31) are the posterior probabilities
of correct and erroneous detection of the symbol b̃(n)m , con-
ditioned on the decision variable z(n)m . If these probabilities
are the same, that means it does not matter which decision
we make. This represents the most unreliable case and the

weight should be set to zero. The larger the probability of
correct detection, the higher weight we should put on this
decision. Note that the weight w(n)

0 of the known reference
symbol b0 is set to 1,w

(n)
m should be 0 ≤ w(n)

m ≤ 1 andw(n)
m b̃(n)m

ranges from [−1, +1] indicating how much the averaged
signal ym(t) contributes to the final template depending on
accuracy of the estimated symbol b̃(n)m .

By applying Bayes’ rule, (31) becomes

w(n)
m =

P
(
z(n)m | bm = b̃(n)m

)
− P

(
z(n)m | bm /= b̃(n)m

)

P
(
z(n)m | bm = b̃(n)m

)
+ P
(
z(n)m | bm /= b̃(n)m

) ,

for m = 0, . . . ,M,

(33)

where the probabilities rely on the distribution of z(n)m

which is approximately Gaussian distributed with mean
bmµ

(n)
m (µ(n)m > 0), and variance (σ (n)m )2 given bm [13]

P
(
z(n)m | bm = +1

)
= 1
√
2πσ (n)m

exp

⎛
⎜⎝−

(
z(n)m − µ(n)m

)2

2
(
σ (n)m

)2

⎞
⎟⎠

= 1

σ (n)m
φ

⎛
⎝z(n)m − µ(n)m

σ (n)m

⎞
⎠,

P
(
z(n)m | bm = −1

)
= 1
√
2πσ (n)m

exp

⎛
⎜⎝−

(
z(n)m + µ(n)m

)2

2
(
σ (n)m

)2

⎞
⎟⎠

= 1

σ (n)m
φ

⎛
⎝z(n)m + µ(n)m

σ (n)m

⎞
⎠,

(34)

where φ(x) = (1/
√
2π) e−(1/2)x

2
is the probability density

function (pdf) of the standard normal distribution.
A practical issue in SD-MSTR is how to evaluate the

statistics of z(n)m in each iteration since we do not have an
explicit formula. An approximate solution of the problem
is to utilize the known ATR statistics to evaluate the
probabilities for each iteration

P
(
z(n)m | bm = +1

)
≈ 1

σ
φ

⎛
⎝z(n)m − µ

σ

⎞
⎠, (35)

P
(
z(n)m | bm = −1

)
≈ 1

σ
φ

⎛
⎝z(n)m + µ

σ

⎞
⎠, (36)

where µ and σ can be found in (17) and (18) which require
the frame energy Ef and the noise power N0 to evaluate µ
and σ , but they are easy to estimate and store at the receiver
side.

Now, we can summarize our method in the following
steps for one block symbol detection.

Input: Correlation matrix Zi, j defined in (14), where 0 ≤
i ≤ M, 0 ≤ j ≤ M, the maximum number of iterations N ,
channel statistics µ and σ for the SD-MSTR case.
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Step 1. Initialize w(0) = [1, 1, . . . , 1], b̃(0) = [1, 0, . . . , 0],
n = 0.

Step 2. n = n + 1.

Step 3. Obtain the decision variables by (24).

Step 4. Obtain the detected symbols by (26).

Step 5. Set w(n) = w(0) for the HD-MSTR case or update the
weights for w(n) based on (31), (35), (36) in the SD-MSTR
case.

Step 6. If n < N and b̃(n) /= b̃(n−1) goto Step 2, otherwise
output b̃(n) and exit.

4.2. Convergence and Discussions. (i) The convergence rate
also affects the practical value of the method (e.g., a system
with a tight constraint on decoding delay) and the number
of iterations affects the performance. These will be verified
by the numerical simulation that the proposed method
converges to the stable performance curve within a few
iterations (usually ≤ 5 iterations).

(ii) Comparing with MSDD, we choose MSTR as the
encoding scheme which allows the algorithm to detect
symbol bm = am directly without any further processing.

(iii) Instead of evaluating each iteration’s reference
template g̃(n)(t) explicitly, the method computes the decision
variables by linear combination of the correlation coefficients
Zi, j which can be computed in the first iteration and reused
later.

(iv) The HD-MSTR only requires the coefficients Zi, j

which is the same as the GLRT approach meanwhile
the SD-MSTR requires some additional channel statistical
information to update the weights for each iteration.

(v) For each iteration, Step 3 requires 2M(M − 1)
multiplications and M2 additions to attain the decision
variables for all M symbols. In Step 4, M sign operations
are performed to obtain detected symbols. No arithmetic
is required for HD-MSTR in Step 5, while the SD-MSTR
performs 2M times Gaussian pdf evaluation and needs 3M
additions andM divisions to normalize weights. We can treat
the computational costs of sign operation and Gaussian pdf
evaluation as being constant, and then the computational
complexity of the both detectors for each iteration is O(M2)
where M is the block size. Note that the complexity of the
proposed method is independent of the channel realizations
whilst the computational complexity of SDA relies on the
specific realization of channels and SNR.

5. Numerical Results

This section compares the BER performance of the proposed
methods (HD-MSTR and SD-MSTR) and the MSTR based
on exhaustive search (ES-MSTR) as benchmark. Two kinds
of channel schemes are evaluated: one is a constant channel
with fixed CIR parameters, and the other is a random
channel based on Saleh and Valenzuela (SV) channel model.
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Figure 1: BER of HD-MSTR for different M, K = 200, Nf = 20,
N = 10.

5.1. Constant Channel. At the transmitter side, the pulse
p(t) is the second derivative of a Gaussian function with
normalized unit energy and pulse width Tp = 1.0ns.
The number of frames per symbols is Nf = 20. For the
UWB channel model, we employ the resolvable multipath
assumption such that τk = kTp as studied in [12, 13, 19]
and thenWTr in (18) can be approximated with the number
of paths K . In this simulation, K is 200 and the energy of

impulse channel response (CIR)
∫ Tf

0 |h(t)|2dt = 1 which
means Ef = Ep in this scheme. As we have shown in
Section 3, if the number of symbols in one block M is equal
to 1 or the maximum number of iterations N is equal to
1, then the system outputs the same performance as ATR
scheme in [12]. Note that there is a 3 dB gap between the
ATR curve in the following figures and the one in [12]. This
is because the definition of frame energy in [12] is twice as
the one of ours. In this subsection, we only consider single
user case with cj = 0, for all j. Multiuser case will be shown
in next subsection.

5.1.1. BER with Different Block Size. Figures 1 and 2 illustrate
the BER results for M = 2, 5, 10, 20, 30, 100, 200 for HD-
MSTR and SD-MSTR, respectively. For HD-MSTR, the
proposed method can obtain about 2 dB gain relative to ATR
in the case of M = 5 and about 3 dB gain if M = 10. With
the increase of the number of symbols in one block, the
performance of the proposed method grows monotonically
but the improvement decelerates (5 dB gain forM = 20 and
5.3dB gain for M = 30). In the same figure, we also depict
the performance of the GLRT algorithm with exhaustive
search (called ES-MSTR) as benchmarks. We also perform
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Figure 2: BER of SD-MSTR for different M, K = 200, Nf = 20,
N = 10.
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Figure 3: BER of HD-MSTR for different iterations M = 5, 30,
K = 200, Nf = 20.

some simulations with very largeM (M = 100, 200) which is
intractable for classical methods. The system provides similar
performance to that of the ideal Rake receiver, especially in
high SNR range, where the difference is less than 1dB.

Comparing the performance of HD-MSTR and SD-
MSTR detectors in Figures 1 and 2, respectively, the differ-
ence is obvious whenM is small. The SD-MSTR outperforms
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Figure 4: BER of SD-MSTR for different iterationsM = 5, 30, K =
200, Nf = 20.

the HD-MSTR, with about 0.5dB of SNR gain when M =
5, 10 and around 0.2dB gain when M = 20, 30. The
difference becomes trivial when M is 100 or larger. This
indicates that the SD-MSTR method can offer additional
advantages for low complexity UWB systems with small M
and but its advantage decreases with increasing M. Bearing
in mind that the SD-MSTR requires some statistical channel
information (µ, σ in (17) and (18)) and the Gaussian pdf
calculation of the system, it is more likely that the simpler
HD-MSTR algorithm would be implemented ifM is large.

Compared with HD-MSTR and SD-MSTR, the ES-
MSTR has an advantage when M is small (if M = 2, about
1.1dB gain for HD-MSTR and 0.6dB for SD-MSTR) and the
performance gap becomes smaller when M is larger. When
M = 10, the gap reduces to around 0.5dB for HD-MSTR
case and about 0.1dB for the SD-MSTR case. This shows
that with the increasing value of M the difference between
the optimal ES-MSTR method and our proposed methods
decreases rapidly and that the gap can be ignored for a
sufficient large M. Furthermore, the ES-MSTR incurs much
higher computational cost than our MSTR method.

5.1.2. BER with Different Iterations. To answer the conver-
gence question in Section 4.2, Figures 3, 4, 5, and 6 depict
the BER values recorded in each iteration for M = 5, 30.
When there is only one iteration, the system reduces to classic
ATR system and the BER result overlaps with that given by
(19) (see Figures 3 and 4). The BER is improved significantly
in the second iteration and just after about 4 iterations, the
algorithm reaches a stable BER performance curve with a
small improvement in the 5th iteration at low SNRs. These
show that our methods converge fast and it is practical for
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UWB systems. It is also noticed that the HD-MSTR and SD-
MSTR show the similar convergence rates in the figures.

5.2. SV Channel Model. The more realistic UWB channel
is random which significantly affects the BER performance
compared with constant channels. The SV channel model
which is generally statistically verified to well describe the
realistic UWB channel with dense multipath is adopted in
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Figure 7: Average BER of HD-MSTR for different M over random
channels, N = 10.

this section. The model formulates the channel impulse
response (CIR) as [20]

h(t) =
∞∑

l=0

∞∑

k=0
βkl pklδ(t − Tl − τkl), (37)

where βkl pkl models the double-sided Rayleigh distributed
amplitudes with exponentially decaying profile.

In our experiments, the SV channel model parameters
are: Γ = 30ns, γ = 5 ns, Λ = 0.5ns−1, λ = 2ns−1 (see [20,
(23), (24), (26)] ). The pulse p(t) is the monocycle which is
the same as the one in Section 5.1. The energy per bit Eb is
defined as

Eb = Nf E f , (38)

where Ef is the average received energy per frame and the
frame repetition factor is Nf = 25 (to compare with [17])
while the integral interval is Tr = 100 ns and the frame
duration is Tf = 200 ns to preclude the IFI.

5.2.1. Single User Scenario. Figures 7 and 8 plot the perfor-
mance curves for both HD-MSTR and SD-MSTR in single
user scenario, respectively. For random channels, SD-MSTR
shows about 0.5dB gain over the HD-MSTR for M =
2, 5, 10, 20, 30 and retains the advantage even for large M
(M = 100). For HD-MSTR case, the algorithm achieves 2 dB
gain ifM = 5 and about 6 dB gain ifM = 30 with respect to
ATR. This means that with a few iterations, the algorithms
efficiently exploit the multi-symbol benefits and yield a
near optimal result. Furthermore, by avoiding searching the
solution space which is computational complex, our iterative
methods are easy to compute by adding up some correlation
terms with different weights in (24).
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Figure 9: BER of HD-MSTR and SD-MSTR for M = 30, N = 10,
and different Nu over random channels.

Furthermore, when M = 100 and BER = 10−5, there
is about 2 dB gap between the ideal Rake receiver and our
algorithm. As we expected, the performance over random
channels is worse than the one with constant channels.

5.2.2. Multiuser Scenario. In this subsection, we consider the
performance of our algorithms in the presence of multiple
access interference (MAI). In the case of MAI, the chip

interval is Tc = 1.0 ns and the TH codes cj are randomly
generated in the range [0,Nc − 1] where Nc = 91. Unlike
the single user scenario, we do not consider the attenuation
of each individual channel and assume ideal power control
among nodes such that the received energy from each
interfering user is the same. Figure 9 displays the BER result
in this MAI scenario. At BER = 10−4, the HD-MSTR
experiences only around 1dB performance degradation for
Nu = 50 comparing with corresponding single user scenario
where Nu is the number of users. In addition, there is less
than 5dB gap between the multiple users HD-MSTR and
single user ideal Rake receiver. For the SD-MSTR case, the
detector outperforms the HD-MSTR detector with more
than 0.2dB gain in both single and multiple users scenario.
In summary, our proposed detectors demonstrate significant
robustness in the present of the MAI effects.

6. Conclusion

In this paper, we propose fast detection methods for MSTR
transmissions. The proposed MSTR detectors obtain the
decision variables by summing up the correlation of different
symbol waveforms, each properly weighted by the reliability
of detected symbols and iteratively updating the weights
and detected symbols. With different updating methods for
the weights, two detectors are proposed: Hard Decision for
MSTR (HD-MSTR) detector and Soft Decision for MSTR
(SD-MSTR) detector, where HD-MSTR obtains the template
based only on the previous detected symbols, while SD-
MSTR constructs the template with additional information
from the decision variables. Enhanced BER performance
relative to the ATR scheme and the fast convergence property
of these detectors are shown by the simulation results. Due
to its simplicity, low computational complexity and near
optimal performance for M ≥ 10, the method is promising
for realistic UWB applications.
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