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~ Abstract— In this paper we show that for an observer moving ~ parameter identification problem. In fact, UIO is one of the
in the plane with no other information than the measurement main topics in control theory and was introduced by Basile
of relative bearing to three known landmarks, it is possibleto and Marro in [11] and Guidorzi and Marro in [12]. While

completely reconstruct its position and velocity. In particular it i I d the i i letelv k .
this applies to the case where no model of the vehicle, noroge 't 1S USually assumed the inputs are compietely known, in

etry or acceleration measurements are available. Furtherrare, ~ Ppractice, under many situations, some of the input varsable
in the same hypotheses, the position of any further landmark may not be completely available and, for this reason, it
can be reconstructed from its bearing only. These results @& s appropriate to distinguish inputs between control isput
more general than what is currently known on nonlinear 5,4 gisturbances. UIO is known to be a difficult task and
observability of the SLAM problem, which relies on known . - .
observer velocities. Our results are also more general than is commonly asso_uated with the pmblems of robust model
the 2D version of known structure—from—motion observabilty ~ Pased fault detection, a problem that was introduced in [13]
results, which assume unknown but constant velocities. The and further extended to the detection of both sensor and
proposed method is used to build a nonlinear observer direty  actuator faults in [14]. Disturbance rejection can play a
applicable to a range of problems from computer vision t0  ¢rycia| role concerning performance and convergence of
autonomous visual navigation. .

systems under feedback control, what is usually the case of

. INTRODUCTION autonomous vehicles.

For over twenty years, research in Simultaneous Local- Here we investigate the solvability of the planar bearing
ization and Mapping (SLAM) has been progressing. It waSLAM problem whenever input disturbances or unknown
first introduced by R Smith and P Cheeseman in [1] anthputs are present. This article contribution is to showt tha
has been an active research field ever since. However, it whs3 landmark positions are known, not only the SLAM
only recently that the observability analysis of the begrinProblem is solvable (as already discussed in literatug, e.
only problem has been completely presented and discussedfn[2]), but it is also possible to completely reconstruct
literature ([2], [3], [4], and [5]). More specifically, a igous 2Ny kind of input Qisturbance, even thqse that do not act
disturbance observability analysis, a problem also knowiirectly on system inputs (e.g. vehicle drift). Our resuits
as Unknown Input Observability (UIO) (or as Disturbanceénore general than the 2D version of known structure—from—
Observability (DO)), is still lacking in the current litazae. Motion observability results reported in [15] where inputs

The classic observability problem, called Unknown Stat@re assumed constant. Here, the only assumption made is
Observability (USO), regards the possibility of retrieyin that input disturbances are analytic, an assumption that is
information on the state of a system given that input angoherent with possible applications. In particular, we lapp
output functions are completely known [6]. When appliedhe observability rank condition ([6]) to investigate stat
to the SLAM problem, it identifies the conditions of prob-observability and left—invertibility concurrently cousiring
lem solvability using a unified framework with the control@ Polynomial expansion of input disturbances, and then, we
problem [2]. apply logical induction to extend results for any analytic

Different characterizations of the observability problenflisturbance. Moreover, we investigate configuration singu
represent a field of active research, e.g. bearing only sbsefarities that may render the problem non observable.
ability analysis in the context of on-orbit space applicat Using an unified framework with the control problem, re-
can be seen in [7]. A preliminary analysis that consider th8ults presented permit the construction of nonlinear ofessr
motion of targets can be seen in [8], and the investigatiofith direct application in many problems from computer
of the multi—robot localization problem can be seen in [9]Vision to autonomous navigation, such as feature tracking,
Other recent studies focus on robust (or adaptive) contrgisual odometry, input reconstruction, fault tolerantuss
topics, like in [10], where the observability rank conditiis ~ Servoing, active perception, optimal control, model inefep
applied in order to investigate on-line parameter idertific dent control and others.
tion problgms concerning _self. callbrqtlon of the odometry. ll. PROBLEM DEEINITION

Depending on the application, being able to reconstruct
unknown input disturbances can be as important as the onlineConsider a vehicle moving on a plane where some arbi-

trary fixed right-handed reference frare@WV > with origin

A_uthors are _With the' Interdepar_t. 'Res_earch Center ‘_‘Enrid(—) Pin WO and axesWX, W7 is defined. The configruration of
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the vehicle andd; is the robot heading with respect to the W7 A
WX axis (see figure 1). The vehicle moves in an unknown
environment with the aim of localizing itself and the enviro Zi x
ment object features (or landmarks) represented as pdints o
the motion plane. Following the convention presented in [2]
these landmarks are distinguished between those belonging
to objects with unknown position, naméargets and those
belonging to objects whose absolute position wa.¥V > is
known, which are nhametharkers Wherever necessary, we
may use the notatioR to specify the position of a target
and R, to specify that of a marker.

Zp-

A. System definition

In this paper we will consider vehicles whose dynamics WO
are slow enough to be neglected, and kinematics can be
described by

: Fig. 1. Fixed frame<W >, vehicle statéx,, z, 6;), generalized velocities
& = G(Er) Ur + B(Er)drv (1) (vt,Vvh,w), input disturbancegds,dn,d,) andiy, landmark positionR =
. . . . (%6, z).
where u, are input controlsd, is a generalized input dis-
turbance,G(é;) contains the velocity fields that describe

vehicle kinematics an®(¢) is a known disturbance input whereR, = (x;,z) describe the absolute position of landmark
matrix. Generic movements on the plane can be describethnd g = N+ M is the total number of landmarks (see

by Ur = [v¢ Vh @], dr = [df dn de]" and figure 1). From theselN correspond to target observations
cos  —sing 0 and M correspond to measurements relating to markers.
G(&)=B(&) = | ] = sinGr COSQr 0 (2) Wherever necessary, we may use the notaoto specify
r r 9t Oh Yo r r . L )
0 0 1 the position of a target anBy, to specify that of a marker.

, , Note that equation (3) is not defined whenever vehicle and
While generic movements could be represented by &3 landmark positions coincide

identity matrix I, such choice introduces the knowledge of
the world reference frames andds are assumed to be in the
direction of axisV X, while v;, andd;, are in direction ofVZ.

This leads to inconsistencies in the observability analysi

In this paper we study the solvability of the planar bearing
SLAM problem whenever input disturbances (or unknown
inputs) are present. In particular we will show that if 3
i : . 0> marker positions are known, not only the SLAM problem is
To illustrate the problem, con§|der an USQ analysis WItIgolvable, but it is possible to completely reconstruct aing k

one marker only ands = 1. This problem is completely oyt or disturbance, even those that do not act direatly o

02bs_ervabli\whereas th? fsameh analyts)|s us'glg G def'r_]edl’i%ﬁem inputs. SLAM consists in reconstructing the vehicle
(2) is not. As a matter of fact, the unobservable space in t onfiguration and the state of targets = R concurrently.

Secof‘d pror?lehrr? IS characéenssd kby the r(i(fs.regce fr%mg or this purpose, we introduce a systefn which state
entation, which is assumed to be known witgis describe & = (&, &1, &2, ..., &) describes the SLAM problem.

using the identity matrix. Therefore, in order to aCh'eVWoreover, as in this paper we deal with a wider problem, the

generic results and do not introduce any knowledge apgflo of reconstructing the disturbangealong with SLAM,
from the position of 3 markers, all disturbance observabili .\ il consider an augmented stafe= (&, d;) when
analysis performed here will consider generic movements ﬁ%cessary o

described in (2).
Specific vehicle kinematics and disturbance models can 8 Concurrent Observability and Invertibility
described by choosin@ andB composed of subspaces of - ynsider a generic driftless control-affine system aftécte

(2) and the proper choice of andd,. For example, a boat by the external disturbance vector
can be modeled as a unicycle vehicle with disturbance along

the nonholonomic direction to represent the undesireddate &= G(&)u+B(&)d,&é eR" ueR™ de R,
tion definingG(&) = , B(&) =[on], ur = T _ . . .
?nodlgrnig IningG(ér) = (01 gw], B(&r) = [onl, ur = Vi, &) whereB(x) is a known disturbance input matrix.

= d.

The vehicle is equipped with a sensor head such that its Sysjtem Ieft-invertibillity regard.s the possibility of reco
measurements are angles in the horizontal plane betwedh cting an unknown input (or d|sturbance)_ from _the kr_10y_v|-
the line joining the obstacle features (landmarks) with th dge of the outputs_ _[16]' One can pose input |nver_t|b|I|_ty
head position, and the forward direction of the vehicle. Th nd state observability problems concurrently consiggrin

measurement process is modeled by equations of the for asef;rog\’,\r/g?med statg = ({5, dr). The problem is defined

Problem 1: Unknown disturbance and unknown state re-
construction:Given known output functiory(-), determine

4 —Z

yihi(Er)arctan2< >9r+7T, i=1...,q9, (3)

Xr_



the initial stateE_o (or the set of initial states), and disturbance « °& is observable: investigate the observability problem

d(t) for all t € [0,T] (or the set of inputs), such thgft) = for O¢;
y(&,d(-),t),vt € [0,T]; « KZobservable+ “*1&observable: investigate Y€ being
Let the Lie derivative of ordek of a scalar functiom (x) observable implies in the observability Hf1&.
along the vector-field (x) be denoted byt A (x). Consid- If the above conditions are demonstrated, one may con-
ering the generic dynamics = f(&,d,u), the observability clude thaté = (&5,d(t)) is observable for any analytit).
space associated with is given by It is important to note that the logical induction presentks s
) ficient conditions for system observability, but not neeegs

o= {h.LihL®h...}i~1:q onos. y Y P
whereq is the number of system outputs. The corresponding,, p5TURBANCE OBSERVABILITY OF PLANAR
observability codistribution is d& spanOs), whereOs is BEARING ONLY PROBLEMS

called observability matrix and is defined as ) ) )
In this section we apply the procedure proposed in sec-

Os = {dfhi,dEthi,def(z)hi,...} ,di=1:q. tion Il to the disturbance observability analysis of begri
only localization and mapping problems.

In [6] it is demonstrqted that a nonlinear systenj_is locally |y order to simplify the following demonstrations we
weakly observable ifOs attends the observability rank define the subspacd, , = {afo()\)hii,i —1:q, the dis-

condition rank(Os) = dim(&). Here, we will consider the | Ax — and Az — - and th .
observability definitions as presented in [6]. p_acement Xi =X — % andAz =z —3z, and the cartesian
distancep; = \/(Ax;) 2+ (Az) 2.

IIl. DISTURBANCE OBSERVABILITY ANALYSIS N _
USING THE RANK CONDITION A. Observability analysis

In this section we show how the observability rank con- Considering a vehicle for which inputs are completely
dition can be used to study state observability and leHnknown, inputs are treated as a disturbance itself. We
invertibility concurrently. In order to apply the rank cdtion ~ €an represent any possible disturbance by considering the
UIO problems (see section 1I-B), assumptions regardinfp!lowing dynamics:
input disturbance dynamics must be made. .

FI)_et’s define the pglynomial disturbante(t) as the partial & = (&, dv) = [9r 0n 9o . @)
Taylor expansion ofi(t) arounddy askd(t) = ¥ ydo()};  that corresponds to a disturbance input maBi¥;) chosen
andd®+1) = 0. The augmented systefiX that is composed to describe omnidire(%tional kinematics and a disturb_ance
of original state&s and polynomial disturbanckd(t) is vectord: = [d,dn,d,] that comprehends all the possible

described by the augmented state planar generalized velocities.
The augmented system composed of vehicle state and
&1 32 input disturbances is
% d T qTIT
Ke=| & |=| dY | Kgepmikinm ¢=[&".d". (5)
: : and system output is described by measurements of 3 mark-
k+2 d®) ers (see equation 3) as
with corresponding system dynamics y=[y1Y2 y3]T_ (6)
33 Proposition 1: Consider the problem described by equa-
. é3 tions (4), (5) and (6). Apart from singularities, both vebic
Ke = a |, state and analytic input disturbances are locally weakly
: observable if 3 landmark positions are known.
0 Proof: The problem is first studied assuming constant

inputs, and then, results are extended assuming analytic

The observability analysis ¢fé can be accomplished by inputs. The constant input augmented state that comprshend
applying the rank condition to its corresponding obsetlitgtbi both vehicle configuration and unknown inputs is defined as
matrix KOs. However, the following question arises: §§ 0& = (&,ds,dn,dw) with corresponding system dynamics
and d observable under the assumption of a constét, :
does it implies tha€s andd are observable for any analytic §=1f(&,d)=[fT000".

d(t)?

To investigate the extension of an observability analysifs.O |
carried out forks, it is possible to apply the mathematical
induction method starting from the basis cd&eand study-
ing the inductive step fronk& to ¥*1&. The procedure can 0o, | Cog O
be summarized as follows: = [ ¥ Opg ] ’

If 3 landmark bearings are being measureg3), the
lowing subspace®Os is sufficient for studying system
observability:

()



whereQy ¢, is composed of the following derivatives:
dfrhi = [ fAZi/piZ AXi/piZ -1 ],

andOy 4, is composed of the following derivatives:

0dr|-f(l)hi _ [ DX sin(er)l;izAzicos(er) Axicos(e,;;msm(e,) 1 }

Apart from configuration singularitiesank(Qg ¢, ) = 3 and
rank(Oy ¢, ) = 3, matrix rank of’Os is 6 and the system is
locally weakly observable.

Now, we investigate if this result can be extended to an
analyticds, dn andd,. As °¢ is observable, we must verify
if K&observable— k*1&observable. Therefore, let's analyze i
what happens witfOs when we apply the inductive step 2

from K& to kt1&: - -\M/

0 x 0 0
“Os = [ . 0 ] 1 0s=| x Opg O
1dr * * Ol,dr

Notice thatrank(**105) = rank(¥Os) +rank(Oy 4. ). If KO is
observable, then:

rank(kJrloz) — dim <k5) 1 3—=dim (k+15) , Fig. 2. Observability singularities

and we can conclude th&€ observable implies iff+1& ) N .
being also observable. Hence, for analytic unknown inputdLt'?hi andd: respects condition (8)¢' is represented by
vt, v, and w, both vehicle state and velocities are locallythe thick like and thin lines describe some solutiond/pt=

. » . : : 0
weakly observable if 3 landmark positions are knownm 0, whereM; denote théi, 3 3 minor of “Os. It can be seen
that solutions intersect at two poinf§6;) andZ'(6;) € %,

B. Observability singularities that are symmetric w.r.t. the center @f. Z(6;) and Z'(6;)
Proposition 1 is valid apart from vehicle and disturbancare the points o’ for which instantaneous motion direction

configurations that render matrfOs singular. First we will (that is a function ofd¢, dy and &) is tangent to the circle.

analyse the singurities 805 only, then we will investigate Arrows indicate the instantaneous motion direction.

the configurations that render the compl€&g singular for Note that when vehicle and landmark position are coinci-

any analytic disturbance. dent, as the output representation is undefined, the observ-
Given the block triangular form ofOs, its singularity ability problem is also undefined.

analysis can be decoupled into the investigation of subma- .

tricesOp g, and Oy y. The set of vehicle configurations thatC' Extension of results

render these & 3 square matrices singular are coincident 1) Any type of vehicle with partially known inputs:

and describes a circumference (denoted by syr@diothat Proposition 1 can be extended for problems of partially

passes through all three landmark positions. Indeed, frokmown inputs on the state form

a geometrical point of view, for any poiR € ¢, angles .

between couple of chords sharing endpdinare constant. &r = fr (&, dr) + G(&r)ur, ©)

While this set of configurations present a problem fofyhere vehicle kinematics is described 6¢&,) and known
observers which construction is based in the minimal Sufnputs byur_ As a matter of fact’ given ageneric Observabi”ty
ficient subspac€O; only, it does not render the completematrix O that describes the original problem (equation (4)),
Observab”ity matrix Singular. |ndeed, it can be verifiedtth the Correspondemz that describes the par“a"y known input
the problem becomes not observable (singular) for the set Sfoblem (equation (9)) is composed 6& and new lines
vehicle and input disturbance configuratiogs &ndd;) for  jogcribed by covectorlsék)hi, g. € G. Hence,rank(Os) >
which vehicle trajectory is described . More precisely, rank(0%) and we can coaclude that @ is full rank, then

the problem is singular wheR € @, Instantaneous motion o, i aiso full rank and hence observable, independently of
is tangent td¢” and the following relation is true: vehicle kinematic$s and known inputs) considered.

s + de<1)+dh(1)H 2) Mapping tgrgets:Proposition 1 can be extended for
- - = (8) Problems involving any number of targets. Problems that
w wl) are observable when 3 marker positions are known are also
wherer is the radius of¢. observable even when targets (unknown landmarks) are being

Figure 2 illustrates system configurations that render thmapped. The extension of results can be done in a similar
problem non observable. In this figure we consit®g till  manner to the observability analysis proposed in [2]. Given



a generic observability matri©s that describes a problem J_(E)Jr is the pseudoinverse di(é) = dzH (&) evaluated at
with M markers and no targets, the correspondentthat &, andK is a positive definite constant gain matrix. Vectors
consider the same problem with markers andN targets Y andH are built using the minimum number of derivatives
can be written as required for the system to be observable when singularities
Oos, Oug Oog, are not consi.dered. If the system is locally Weakly.o_bsdala.b

K K ] and we consider the observer as a local problem, it is p@ssibl
: : : to rewritev as _

where anyO, ¢ has the following form: v=K(e+e(,<)),

wheree(&,&) (or simply €) is the error between the pseu-

05 =

)

0 0 0 doinverse approximation af and the real erroe.
: : : M markers Choosing as Lyapunov candidate= %eTe, we have
0 0 0
Oig = o_ 6 (—) ; V=e (f(.)+zg(.)uiK(e+£)> (10)
.61 T
. ) . N targets , -
. ' : If g —%P ,Vi, f and g are boundedK can be chosen
L O - Oigy based on (10) in order to guarantee stability. One may note

whereO; ;, andO, ¢, are similar to0;, andOj, , with the ~ that if at any given moment, the combined state, makes
only difference that there are new lines corresponding ¢o tHhe terme(&, &)/e smaller than the worst case admissible,

targets. Given that convergence would not be guaranteed anymore. However,
the choice of an worst guarantees convergence in a locally
Oogy, = { % % } admissible neighbourhood of the real stgte

Remark 1:In presence of unknown input disturbances,
has rank 2 (apart from when output is undefined, i.ewe would expect nonlinear observers that do not take in
P — R ), we can conclude thaaink(Os) > rank(Os) +2¢:.  consideration the disturbance to converge to wrong salstio
Hence, ifO; is full rank (observable), the@s is also full  or not to converge at all. While this is the case for constant
rank, and, observable. This result does not depend on thgin observers, this may not be true if one uses adaptive
number of targets considered. gain techniques (such as the well known Kalman gain, for

V. SIMULATION RESULTS examplg). It can be seen that_ tor— 00 such obseryer degen-
erates into a filtered approximate inverse solutiory ef &

Here we first describe the nonlinear observer used duringithout considering system dynamics. Consequently, tiee us
simulations and then provide results that validate theudist of adaptive gain techniques would mask the disturbance
bance observability analysis for the different cases prtese  effect in the observer estimated state evolution. The use of
adaptive gains may guarantee convergence in cases where
constant gains wouldn't, even if at the expense of renowgncin

In this section we discuss the construction of a nonlineare knowledge of system dynamics. Hence, while nothing
observer (or filter) to estimate the augmented séateom  excludes the possibility of using adaptive gain techniques
knowledge of system dynamics and outputs. Considering tiigiring practical applications, here we chose to use constan
estimated staté, the observer is described by the auxiliarygains in order make the differences between the different

A. Observer Design

system L _ B problems presented evident from the results of the predente
{ E=f (5) +3i0i (5) Ui +Vv simulations.
y=h(&). B. Simulations

We will also use the notatiof to represent the symbolic  During simulations an unicycle-like vehicle performs an
operationx — ¥, e.g.d(.) = g(é) —g(&). Consider the ob- arbitrary trajectory and receives external disturbanaad

server erroe = & — &. Error dynamics are given by terized by a constant input acting along its nonholonomic
. . direction. In order to localize the robot while reconstigt
e="1()+>da()u-v, input disturbances we present a comparison of different
|

cases that illustrate different observability problenat there
wherev is the observer compensator term. Let's we chose presented or discussed here:

as — _ o« Case 1 - USO using unicycle kinematics: Observer
v=—KJ(&)" (Y -H(&)), reconstruction of vehicle sta® considering unicycle-
where like vehicle kinem_atics. System input is _completely
' y h(ci) known and no disturbance reconstruction is not an
y = h(E) output of the observer;
Y= , H(E) = J « Case 2 - UIO considering unicycle kinematics for

disturbance: Observer reconstruction of vehicle state



Triangulation uso

and vehicle input, i.e§ = {&,d;}. System input is
completely unknown and is considered a disturbance
itself. However, here we consider thBté,) describe
the kinematics of an unicycle—like vehicle;

« Case 3 - UIO with partially known inputs (using
unicycle kinematics) and omnidirectional kinematics
for disturbance: Observer reconstruction of state and
disturbance with partially known inputs. Here consider
the generic disturbance input matr®(§) = | and
d € R3, permitting us to reconstruct disturbances in s os
all directions of the input space. Partially known input s 05
ur = (vi,w)" and velocity vectors irG corresponding
to the unicycle-like vehicle kinematics. -2 -2

2(m)
z(m)

\ ,
A

1 15 2
X(m)

b)

UDUSO

Z(m)
\
.
2(m)
\
&

For completeness, we also report the use of the trian- ~ °
gulation method for direct computation of the state—output L S xm
inversey — & using 3 measurements. In this case only c) d)
vehicle localization is performed as direct disturban@®re  rig. 3. Estimated trajectories: (a) triangulation; (b)ecds () case 2; and
struction is not a direct output of the method. An approxenat(d) case 3;
reconstruction of inputs can be roughly obtained consideri s -
the derivative of the vehicle configuration. os e o

All observers are realized as described in section V-A¢ m M‘w\i“ W i M :
and simulations are performed using the following system$ | “‘Lf‘”“"‘“\‘]‘\“"N‘l“"‘v““‘“r\\‘“

1 iy
il M‘w u"‘\\“\; i ‘\ ‘hw“"““"“ |

08}
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S 0.4

parameters:

0.2} |

State reconstruction errors

» Observers initial estimated state isE_r(O) =
(0Om,0m,0m)" .
« During simulations we consider a triangul&t. To

0

present a fair comparison between problems, all ob- b)so
servers use the same gaing = K, = 1.5 andK; = 1:
0.5,i #1,2. :
« We consider a choice dfL + £) ~1 and max||d|)=1. &
. Real vehicle trajectory is described by inputs ;
(v,w)"=(0.1m/s,—0.1rad/s)T and input disturbance & 5\
B(x)d = (0Om/s,—0.1m/s,0m/s)T. o _
« Outputy,, Vi is affected by a measurement noise that is R T
described by a random Gaussian variable with standard d)
deviationg = 0.005ad. Fig. 4. Estimation errors: (a) triangulation; (b) case J;dase 2; and (d)

« No pre-filtering is used. case 3;

In these simulations the number of landmarks usegl=s
3. For the sake of simplicity, the number of targetfis- 0.

Please note that different scales are used in each figure for
Results are presented as follows:

each case studied. E.g. in figure 5, the order of errors for the
« figure 3 shows time history of real and estimated vehicl&iangulation case is ZQwhile for cases 1,2 and 3 it is 1.
positionsP;; Real trajectory is represented with a red It can be observed that triangulation results are the ones

line and estimated trajectory with a blue line. most affected by measurement noise. This is a consequence
« figure 4 shows time history of estimation errors forfrom the fact that no filter is applied to measurements or
variablesx (red),z (green) and; (blue). results. The use of an observer constitute a filter itselfatwh

- figure 5 shows time history of velocity reconstructionexplains the results obtained in the cases where an observer
estimation errorsi; (red),Z (green) andio. Given that is applied.
velocity reconstruction is not a direct output of the In case 2, vehicle drift is not considered as a disturbance
triangulation method, figure 5-a shows the derivative ofind, as expected, errors do not converge to zero. However, it
vehicle estimated state with the method. Similarly, foperforms much better than the USO observer (case 1), that
case 1, figure 5-b represent the constant error betwepresents the worst convergence case. As expected, case 3
known velocities and real ones. presents the best results, and is the only observer for which
« figure 6 shows time history of bearing tracking errorserrors converge to zero.
i.e., the difference between estimated measurement andPresented simulations illustrate some advantages of using
real ones. Figure 6-a shows the time history of meaBisturbance Observers (DO): DO can compensate model-
surement noise. ing uncertainties, as a matter of fact, observers can be
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we discuss the extension of results to the partially known
input and unknown landmarks (targets) cases . Finally, we
validate theoretical results under simulation using camist
gain non-linear observers.

Regarding future works, authors are currently investigati
the application of optimal control as a potential solution t
observability problems regarding the presented singylari
cases. The optimization of observability indexes is a fidld o
active research in active perception and vision. Furtheemo
authors are studying the use of disturbance rejection and
point-to-point stability of vehicles using unknown input
observers concurrently with feedback control.
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Fig. 5. \elocity reconstruction errors:
2; and (d) case 3;

(a) triangulatigh) case 1; (c) case
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Fig. 6. Bearing tracking errors: (a) measurement noisesdbg 1; (c) case [9]
2; and (d) case 3;

[10]

constructed without considering any specific model at all;
DO can be used to robustly track measurements (featuié!
tracking) without requiring any previous knowledge of in-
puts or the system; disturbance reconstruction can gueeanii2]
convergence of constant gain observers; DO makes robust
controllers with disturbance rejection a possibility; fipa (13]

disturbance observers can be applied even in cases where no

input knowledge is available, e.g. visual odometry. Howgve
disturbance observers may be used with caution, e.g. duri
transitory behavior the reconstruction of disturbanceomnt [15]
duces oscillations in estimated state and equivalent vbser

may take longer to converge. [16]

VI. CONCLUSIONS AND FUTURE WORKS

Here we present a disturbance observability analysis of
the bearing only SLAM problem for the case of 3 known
landmarks (markers) and demonstrate the conditions and
singularities regarding the problem observability. Moo
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