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1. Introduction 
 
Random utility models are often characterised by descriptions such as 
‘homoskedastic’ or ‘independent’ in the utilities of the alternatives.  However these 
descriptions do not have meaning in any absolute sense and must therefore be used 
with care.  It is the main aim of this paper to demonstrate this point and discuss the 
issues it raises.  In particular, the discussion leads into a consideration of the 
circumstances under which the models can be said to exist. 
 
The paper gives a definition of random utility models and goes on the define a large 
sub-class of those models, the additive stimulus models, on which the main discussion 
of the paper is focussed.  The area of discussion is further specified by relating the 
probability statement, which is the main form in which the model is estimated and 
used, to the utility and utility difference distributions.  New concepts are introduced 
of indistinguishability and almost-indistinguishability, which can be used in assessing 
discrete choice models.  The paper then shows how a reasonable notion of model 
structure can be interpreted in terms of utility difference distributions for a class of 
indistinguishable models. 
 
The discussion of the independence of the utility distributions of the alternatives is 
based on the concepts introduced in the early parts of the paper.  This discussion 
shows that many indistinguishable models exist for which the correlation of the utility 
functions is radically different.  A following discussion goes on to show that the 
notion of heteroskedasticity is similarly incapable of clear definition, even within 
classes of indistinguishable models. 
 
The final main section discusses the issue of existence, finding that it is quite difficult 
to ensure that models actually represent a ‘real’ situation, although it is seen as 
important that the models actually ‘exist’ in some sense..  An error components 
approach, whether using purely probit models or substituting a logit kernel appears a 
useful approach to maintaining the ‘reality’ of the model. 
 
2. ‘Random utility’ models 
 
Random utility models (RUM) are a method of predicting discrete choice behaviour, 
i.e. choice by a traveller or consumer from a mutually exclusive and finite set of 
alternatives.  The method sets out a clear and consistent set of criteria by which 
choices in a wide range of situations may be analysed. 
 
Random utility models are said to date back to the work of Thurstone in 1927 and 
were further developed by others including McFadden, who first introduced them into 
transportation analysis (Domencich and McFadden, 1975, but describing work done 
somewhat earlier).  They appear first to have been used in this field in Britain by 
Harris and Tanner (1974), Daly and Zachary (1975) and Williams (1976).  Over the 
succeeding 25 years these models have proved extremely successful as tools for the 
analysis of traveller behaviour and the forecasting of travel demand (McFadden, 
2000). 
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RUM places the modelling of discrete choice consumer behaviour within the 
framework of consumer utility maximisation.  The exact assumptions required to 
establish this framework are difficult to state concisely.  Certainly they include 
consistency and transitivity of preference.  The difficulties in accepting these 
assumptions lie in their simple validity, i.e. whether preference is always transitive, 
rather than in the technical details.  However, without assumptions very like these it is 
difficult to imagine any constructive forecasting of human behaviour.  It is also 
necessary to assume the existence of a cardinal measure of utility. 
 
However, for the purposes of the present paper, it is not necessary to make any 
assumption of continuity of utility with respect to attributes of the alternatives, 
although this will usually be necessary in practical applications.  Thus the utility 
functions considered here do not necessarily imply compensatory forms of behaviour.  
Nor is it necessary here to consider the implications of a budget constraint. 
 
Specifically RUM implies the prediction of discrete choice by a model in which the 
consumer’s probability of choice of alternative a from the choice set C is given by 
 
 pi  =  Pr { Ui ≥ Uj, ∀ j ∈ C }        (1) 
 
where U gives the (indirect) utility of each alternative and can always be written as1

 
 Ui  =  Vi  +  εi         (2) 
 
where V is the best available approximation to U; and 

ε  is the error in that approximation. 
 
It is generally reasonable to take the mean of ε to be zero or some other standard 
value (for example, it is possible to include the mean (or base) value of the 
distribution of ε within V).   
 
Thus behaviour is represented as being determined exclusively by the maximisation 
of utility, but that the utility is not known exactly.  It is perhaps useful to note that the 
model does not necessarily represent random behaviour.  More plausible is to think of 
the individual’s behaviour as being deterministic, but that the analyst does not have 
full information on the variables motivating behaviour, or even accurate measurement 
of those that are known, nor are the individual’s preferences over the motivating 
variables known.  For this reason an error term ε is introduced into the model.  
Equivalently, and perhaps even more plausibly, an individual consumer can be 
considered as representing a random sample from a population, each of whom has his 
or her own value of ε.  Then, even if the analyst had perfect information about the 
distribution of preferences in the population, we would still not know the preferences 
of a randomly sampled individual.  Either way, when we speak of random utility 
models, it’s the model that’s random, not necessarily the utility. 
 

                                                 
1 This additive form is not an assumption, as is sometimes stated; all that is implied by the 
following equation is that ε is the difference between the true value of cardinal utility and the analyst’s 
approximation of that value. 
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For the present discussion, the best approximation V to the utility function is assumed 
to be known.  Generally V will involve a number of measured data items and a 
number of parameters which have to be estimated statistically from observations.  
This important aspect of the model is however not of interest in the present note.  The 
approximation V is taken to include a specification of the set of alternatives available 
to each consumer, i.e. we can say which alternatives have V = –∞. 
 
Given V and the distribution of ε, the probability of making each choice can in 
principle be calculated by integration 
 
 pi  =  ∫ {Ui ≥Uj, ∀j}  f(t).dt  =  ∫ {εi–εj≥Vj–Vi, ∀j}  f(t).dt    (3) 
 
where f is the multivariate frequency function for ε.  The probability of choosing i is 
simply the probability that the individual’s value of ε lies within the region where the 
utility of i has a value higher than that of all the other alternatives. 
 
Of course this integration presents numerous practical and theoretical problems, 
which are also not covered here.  The aim is rather to discuss the ways in which the 
distribution of ε can be represented and how this affects the forecasts of behaviour 
derived from the models. 
 
3. ‘Additive stimulus’ models 
 
The objective of the model is usually to predict consumers’ responses to changes in 
the function V, or perhaps their valuations with respect to potential changes in V.  
One aspect of their responsiveness is the distribution of ε, to which detailed 
consideration is given below.  The other aspect is the specification of V, which must 
in any case contain all the variables for which responsiveness has to be predicted.  
Often, V will contain other background variables that are not of interest for 
forecasting but are important for explaining behaviour: socio-economic variables 
commonly appear, for example.   
 
Separating these two classes of variables, U can be expressed as  
 
 U  =  X  +  Y  +  ε        (4) 
 
where X represents the ‘stimulus’, the variables of interest for forecasting, potentially 

interacted with background variables; 
Y represents the other (background) variables, independent of the stimulus 
variables. 

 
The class of additive stimulus (AS) models is then those for which the distribution of 
ε does not depend on X, although it may depend on Y.  That is, changes to the 
stimulus variables add to the utility equally for all consumers, they do not change the 
distribution of ε which would imply different changes for some consumers than for 
others. 
 
It is also possible that the distribution of ε is also conditioned by a third group of 
variables, say Z, which do not affect the utility directly.  In the same way that the 
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assumption is made that the best specification of V is known, it will also be assumed 
that the best parametrisation of the distribution of ε in terms of Y and Z is known. 
 
This formulation of the model represents a generalisation for a population of the 
‘location parameter’ models covered by Zachary’s theorem (Daly and Zachary, 1978), 
in that the AS formulation effectively defines a separate model (depending on Y and 
Z) for each individual or for each subset of the population with the same values of Y 
and Z.  The calculated probabilities are left unchanged by an equal change to all the 
X’s (i.e. these are location parameters) but may change when Y or Z changes 
uniformly because of changes in the ε distribution.  Zachary’s theorem applies to AS 
models with respect to changes within X, i.e. it applies separately to each class of the 
population defined by a given value of (Y, Z). 
 
The AS models appear to fall within McFadden’s (1981) Additive Income RUM class 
if (i) the costs of the alternatives appear only in the X component and (ii) the costs 
appear linearly with the same coefficient for each alternative and (iii) income appears 
in the model only as a fixed personal characteristic, i.e. in Y or Z, in which case its 
role is as an index of social class etc., not as a measure of spending power.2  If these 
conditions are satisfied, McFadden’s (1981) analysis applies in full; when these 
conditions are not satisfied the model will still meet the original Zachary 
specification3, i.e. be consistent with some notions of rationality, but it will not 
necessarily permit the development of consistent social surplus measures.  
 
The need to restrict the discussion to the additive stimulus class of models arises in 
the following section.  
 
4. Probability statements and utility differences 
 
It is important to remember that utility is a latent variable, introduced into the 
discussion only to help explain behaviour.  It is not possible to make direct 
observations of utility; to be able to do so would imply the existence of a cardinal 
utility.  While considerable progress can be made by careful questioning of consumers 
in interview contexts, the ultimate test of theories developed in these contexts is 
always ‘revealed preference’ observations of actual behaviour and in that context 
utility is latent. 
 
In dealing with models explaining human behaviour, it is unreasonable to expect that 
a complete explanation of every individual’s actions can be given; the best that can be 
hoped for is that probability statements can be set up which will explain and predict 
the behaviour of most people, while allowing for the fact that unusual behaviour will 
often be encountered (Daly, 1982).  The form of the model that can be directly tested 
on revealed preference data is then the probability statement.  This is the form in 
which the scientific notion of falsifiability can be applied. 
 

                                                 
2 Income may also appear in X, providing it appears linearly and with a coefficient that is the 
negative of the cost coefficient, but in this case it has no impact on choice as it is effectively a constant 
added to each of the alternatives. 
3 The Zachary theorem is expressed in terms of the utility of each alternative, i.e. (X + Y) in the 
present notation, and does not refer to the cost of an alternative at all. 
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Quite a few behavioural paradigms can be set up which can yield testable probability 
statements (e.g. Daly, 1982).  For this note discussion has been limited to the utility 
maximisation paradigm, but even within that paradigm it has long been known that 
many different conceptual formulations can lead to identical probability statements.   
 
To give precision to this point the concept of indistinguishability can be defined: 
 

models are indistinguishable if they predict the same choice probabilities 
over the full range of the stimulus and background variables. 

 
No test using observed choices can be used to reject a model in favour of one that is 
indistinguishable, i.e. a discussion as to which model is better can be conducted only 
on theoretical grounds.  For practical purposes the models are exactly the same, both 
in terms of explaining observed behaviour and in predicting future choices.   
 
Indistinguishability relates closely to the identifiability of the models on choice data.  
Models that are indistinguishable cannot be separately identified on any choice data 
and will give identical forecasts.  That is, indistinguishability is a slightly stronger 
property. 
 
Because of the utility maximisation basis of these models, it is clear that only the 
utility differences are relevant to generating distinguishable models.  Subtracting one 
utility value from all the utilities does not change the choice probabilities.  Referring 
to the integration over ε to calculate the probabilities (equation 3), it can be seen that 
the integration is defined in terms of utility differences.  Thus once the utility 
differences are specified, in terms of their distribution as well as mean values, the 
model is defined up to the level of indistinguishability. 
 
Note that if the models were not defined as being within the AS class, then a change 
in stimulus variables might also change the utility variances, which could induce 
further changes in the probabilities.  The model could not then be specified 
exclusively by the utility differences and their distributions; it would also have the 
property that the addition of a constant to the utility of each alternative might well 
change the choice probabilities.   
 
5. Second-moment properties 
 
For the remainder of the note, attention will be focussed on the distribution of ε and 
the differences of ε.   
 
It has already been noted that the first moment (mean) of ε can reasonably be taken as 
zero.  Further, the distribution of ε will often be symmetrical or near-symmetrical, 
implying that its third moment is zero (indeed all the odd-numbered moments are 
zero); even more often, the distribution of ε differences will be symmetrical4.  Thus 

                                                 
4 A symmetrical distribution of differences will occur whenever (a) ε is distributed 
symmetrically (e.g. normally) or (b) ε is distributed identically (i.e. with the same functional form and 
equal variance, but not necessarily independently) across the alternatives.  There may be other cases. 

 5



the second moment (variance-covariance matrix) of the distributions of ε across the 
alternatives becomes the main topic of interest. 
 
The discussion will be set out for models based on the normal distribution (probit 
models).  However, the findings will also apply to models based on other distributions 
of ε, such as models of the GEV family or hybrid models, with inaccuracies that 
depend on the differences of those distributions from normal in the fourth and higher 
moments.  For a probit model, of course, the utilities and their covariance define the 
model entirely. 
 
The concept of almost-indistinguishability can be defined: 
 

models are almost indistinguishable if the differences between the choice 
probabilities they predict are due to differences in the fourth and higher-

numbered moments of the distributions of utility differences. 
 
The simple probit model is almost indistinguishable from the simple logit model.  In 
fact, all GEV models are almost indistinguishable from a suitable AS probit model.  
In practice, experience indicates that noticeable differences can be found between 
models that are ‘almost indistinguishable’ by the definition above; care is needed.  
Nevertheless, almost indistinguishable models can be taken as having a general 
similarity in structure. 
 
In a probit model, if the covariance matrix of the utilities is defined, it is easy enough 
to calculate the covariance matrix of the utility differences and hence the probability 
statement.  However, there will in general be many utility covariance matrices that 
will lead to indistinguishable models.  To be clear, for n alternatives the covariance 
matrix of the utilities, which will be denoted by Σ, has n.(n+1)/2 components, while 
the covariance matrix of utility differences, which will be denoted by ∆, has n.(n–1)/2 
components, n fewer, so that there are n degrees of freedom in defining the utility 
covariances that will all lead to indistinguishable models.5

 
The above finding with respect to the number of degrees of freedom in probit models 
was presented by Bunch (1991), who also indicated that it was known to previous 
authors.  Bunch further showed an additional range of degrees of freedom of variance 
which are (effectively) parametrised by characteristics of individuals and alternatives.  
In the present context, variance parametrised by variables appearing in Y or Z is 
handled by specifying effectively different models for each individual, while the 
possibility of variance being parametrised by variables appearing X is excluded in the 
additive stimulus form. 
 
6. Model structure 
 
In consequence of the preceding sections, the discussion is restricted to probit models 
of the AS class, with the covariance matrix of the utility functions effectively constant 
if we consider one individual at a time. 
                                                 
5 A further excess degree of freedom may arise because the model may be indistinguishable 
from one in which utility means and standard deviations, and utility difference means and standard 
deviations, are all scaled by a common factor.  This point is discussed in more detail subsequently. 
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In additive stimulus models, the probabilities of choice respond to changes in the 
stimulus variables through changes in the utility functions.  Thus, a change in one of 
the stimulus variables for an alternative – e.g. its cost – will have an impact on the 
choice probability of that alternative, and consequently the choice probabilities of 
other alternatives, through its impact on the utility function of that alternative.  
However, the connection between the stimulus variable and the utility is more 
properly described as the specification of the utility function than the structure of the 
model.6

 
Rather, by ‘model structure’ is meant the impact that a change in the utility function 
of a specified alternative has on the choice probabilities.  Do all the other choice 
probabilities change proportionately, as in a multinomial logit model?  If not, how do 
the relative changes in the probabilities of the other alternatives differ?  Which 
alternatives are close substitutes and which serve relatively separate markets? 
 
For AS probit models, the notion of ‘structure’ relates to the specification of the 
utility covariance matrix.  Alternatives that are close substitutes will be characterised 
by having high correlation of their utilities, while alternatives serving differing 
markets will have low correlation of their utilities. 
 
This notion of model structure is consistent with the concept of indistinguishability 
that has been introduced.  Models that are indistinguishable have the same choice 
probabilities for all values of the stimuli, so they respond in the same way to utility 
changes.  That is, they have the same structure.  In the same way, the results shown 
here can be extended to other models that are almost indistinguishable from probit 
models, subject to the practical reservation mentioned above. 
 
Also, because of the way in which AS models calculate probabilities from utility 
differences, models with the same distributions of utility differences are 
indistinguishable, i.e. they have the same structure.  However, there are very many 
ways of specifying the distribution of utilities to derive the same distribution of utility 
differences.  Specifically, as noted above, there are n degrees of freedom to define 
models indistinguishable from a specified model over n alternatives. 
 
7. Independence 
 
Given a model with structure defined by a matrix of utility difference covariance, 
there exist many indistinguishable models of utility covariance which can underlie 
that structure.  These models, indistinguishable in practice, may however have 
different interpretations in theory. 
 

                                                 
6 There is no reason, within the framework discussed in this paper, that the connection between 
stimulus variable and utility should be continuous.  The continuity of the connection between utility 
and probability depends on the specification of the distribution of ε.  Zachary’s theorem requires 
infinite differentiability of this connection.  In any case, we can claim, whatever the distribution of ε, 
providing differences of ε’s are distributed symmetrically, that the model is almost indistinguishable 
from a probit model, i.e. almost indistinguishable from a model with a continuous utility–probability 
connection. 
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For example, consider the four-alternative model with utility covariance matrix Σ 
given by 
 
 σ2 ρσ2 0 0 

 σ2 0 0 
   σ2 ρσ2

 σ2

 
For this model we can calculate ∆ 
 
 var(U1 – U2)  =  var(U3 – U4)  =  2σ2.(1 – ρ) 
 var(U1 – U3)  =  var(U1 – U4)  =  var(U2 – U3)  =  var(U2 – U4)  =  2σ2

 
When ρ ≥ 0, this model is almost indistinguishable from a tree logit model with two 
nests (each of two alternatives) with the structural parameters both equal to √(1 – ρ).  
It would usually be considered that the utilities in this structure are homoskedastic7 
and that alternatives 1 and 2 were independent of alternatives 3 and 4. 
 
The model can be transformed by subtracting the utility of the first alternative from 
the others, obtaining the covariance matrix 
 
 0 0 0 0 

 σ2
1 ρ1σ1σ ρ1σ1σ

   σ2 ρσ2

 σ2

and this gives exactly the same utility difference variances as in the previous case – 
i.e. the model is indistinguishable – if 
 
 σ1

2  =  2σ2.(1 – ρ)  and  ρ1 = (σ2 – 2σ1
2) / 2σσ1 

 
Note that in this indistinguishable model, both independence and homoskedasticity 
have vanished.  The matrix of utility covariance is also no longer positive definite but 
only semi-definite. 
 
An alternative transformation gives the matrix 
 
 σ2

1 0 0 0 
 σ2

1 0 0
   σ2 ρσ2

 σ2

 
which again gives the same difference covariances ∆ if σ1

2  =  σ2.(1 – ρ). 
 
Here there is another variant on the independence interpretation, with alternatives 1 
and 2 being independent of each other as well as from 3 and 4.   This matrix shows 
the ‘maximum independence’ that can be achieved in this model, i.e. it is not possible 

                                                 
7 Homoskedastic is used to mean ‘of equal variance’. 
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to eliminate the off-diagonal elements entirely without losing indistinguishability.  
Bunch (1991) gives another example with three alternatives. 
 
Thus statements such as ‘independence’ of utility distributions must be treated with 
care, since models with apparently different structures of independence – i.e. with a 
different pattern of zeroes in the utility correlations – can in fact be indistinguishable, 
because the choice probabilities are identical.  Similarly, notions of symmetry in the 
model can be misleading.  
 
However, it is the case that not all models can be expressed with independent utility 
functions, as the last example illustrates.8  On the other hand, homoskedasticity is a 
more general property. 
 
8. Homoskedasticity 
 
The main result of this section is the following somewhat chimeral lemma. 
 
Homoskedasticity Lemma: Any multinomial probit AS model is indistinguishable 

from a homoskedastic model; the homoskedastic model 
may however be imaginary. 

 
Proof
 
Represent the model by its utility differences and their covariance matrix ∆ = {δij}, 
which can be derived from the utility covariance matrix Σ by  
 

δij  =  σii  +  σjj  –  2σij,  i.e. δij ≥ 0, since Σ must be positive semi-
definite 

 
This matrix is also the matrix of utility differences of the homoskedastic model whose 
utility covariance matrix is k.A, where A is derived from ∆ by the transformation h: 
 
i) αij = hk(δij)  =  1 – δij / (2.k),  

 
i.e. αii = 1 ∀ i, since δii = 0;  and αij ≤ 1 since δij ≥ 0; 

 
ii)  k is chosen so that k  ≥  ¼.maxij δij. 
 
The definition of k ensures that –1 ≤ αij, while the presence of 1’s on the diagonal 
implies that A is a matrix of correlations.  kA is obviously what one would normally 
describe as a homoskedastic matrix. 
 
The utility difference variances implied by the model k.A are  

var(Ui – Uj) =  k . (αii  +  αjj  –  2.αij) 
=  (–  δii   –  δjj  +  2.δij) / 2 

                                                 
8 Of course there are n.(n–1) distinguishable degrees of freedom for a model over n 
alternatives, while only n degrees of freedom for the diagonal elements.  For this reason it is obviously 
not possible for a model with independent heteroskedastic utilities to give a complete representation of 
all models over n alternatives. 
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=  δij, 
thus proving the Lemma. 
 
The problem is that there is no guarantee that kA is positive semi-definite, which is 
necessary (and sufficient) for it to be described as a covariance matrix.  The limit on 
the correlations implies that, if there is a problem, it involves more than two variables.   
 
But the lemma applies in reality in some important cases.  For example, consider the 
‘independent heteroskedastic’ model defined by the utility covariance matrix 
 
 σ1 0 0 

 σ2 0 
   σ3

 
with σ1 ≥ σ2 ≥ σ3 > 09.  This model has the covariance matrix of utility differences ∆ 
with  
 
 δij  =  σi  +  σj ,  if i ≠ j;  δii = 0 
 
which can be converted to an indistinguishable homoskedastic form A by the 
transformation above.  The determinant of the matrix A is 
 
 D   =  1 – α12

2  – α23
2  – α31

2  +  2.α12.α23.α31

 
If we choose k  = ½.maxij δij  =  ½.(σ1 + σ2), we get  
 

α12  =  0; 
α23  =  1 – δ23/δ12  =  (σ1 – σ3) / (σ1 + σ2); 
α31  =  1 – δ31/δ12  =  (σ2 – σ3) / (σ1 + σ2). 

 
 D   =  1 – α23

2 – α31
2

      =  2 . (σ1σ2 + σ2σ3 + σ3σ1  – σ3
2) / (σ1 + σ2)

2 

 
which must be positive under the assumptions made.  Thus in this case the matrix A is 
positive definite10 and is a valid covariance matrix. 
 
However, if k is set to ¼.maxij δij + ι=  ¼.(σ1 + σ2) + ι, for some small ι, we get 
α12 = –1 + ι* (for a corresponding small ι*) and 
 
 D  =  – (α23 + α31)

2 + ε.(2 – α23.α31) – ε2 

 

                                                 
9 That the variances are positive implies non-degeneracy.  Then the alternatives can always be 
permuted to get the conditions required. 
10 A matrix is positive definite if and only if each of its principal submatrices has a positive 
determinant.  The principal submatrices (2 * 2) clearly have positive determinants, because of the limit 
on the α variables, so the demonstration that D is positive is sufficient to show that A is positive 
definite (Noble and Daniel, 1988, p. 413, Theorem 10.19). 
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and unless α23 + α31 = 0 this is negative for small enough ι, so that the matrix A is not 
positive definite and thus not a valid covariance matrix11. 
 
Thus any heteroskedastic-independent model for three alternatives is 
indistinguishable from a valid homoskedastic-correlated model, by choosing a 
suitable k.  However, k values exist for which the homoskedastic model derived does 
not have a valid covariance matrix. 
 
Thus, the chimeral quality of the lemma means that it not clear in advance whether a 
model derived by applying the transformation for a given value of k will yield a valid 
covariance matrix.  But it is clear that the concept of heteroskedasticity, like that of 
independence treated in the previous section, can be made to disappear from many 
models without affecting the probabilities predicted. 
 
The transformation h of the homoskedasticity lemma has two notable features. 

− The factor k introduced into the matrix kA is a convenient and natural way to deal 
with the excess degree of freedom introduced by common scaling of the 
covariance matrix and the mean utility values.  For example, k can be constrained 
to 1 if it is required to estimate a scale for utilities; alternatively, if the utilities 
themselves are scale-constrained, k may be estimated. 

− The number of degrees of freedom in the homoskedastic form is exactly that 
available, i.e. ½.n.(n–1) – 1, in the covariance matrix.  Moreover, because the 
transformation h is invertible and of ‘full rank’ (in the sense of Bunch, 1991, who 
calls transformations from utility difference variances to utility variances 
normalisations), there is a 1-to-1 correspondence between the original models and 
the transformed homoskedastic models. 

 
Thus the homoskedasticity lemma appears to offer a ‘canonical form’ in which probit 
models can be expressed to permit greater comparability between them.  However, 
unless a proof can be found that these homoskedastic models always exist, the 
application of the canonical form cannot be carried through. 
 
9. Existence and Parametrisation 
 
The fact that indistinguishable models can be set up in a wide range of ways raises the 
issue of how this should be done.  The key step in setting up a model is to estimate the 
unknown parameters from observations.  The ‘fundamental’ way is to conduct the 
estimation based on utility differences.  But how can we be sure that a model that has 
been estimated actually exists, i.e. has a covariance matrix of utilities that is positive 
semi-definite? 
 
A first issue is whether this question is worth answering.  It could be thought that the 
existence or otherwise of a model of utility variation corresponding to the matrix of 
utility differences was not important; after all the predictions of the model depend 
only on the variances of utility differences.  However, the whole thrust of RUM 
theory is to ensure that predictions are made on the basis of a sound underlying theory 

                                                 
11 A has to be positive semi-definite to be a valid covariance matrix.  However, it is clear in this 
context that the zero value – i.e. the points of singularity of A – are not the issue. 

 11



which corresponds to real-valued utility functions.  The introduction of imaginary 
values (i.e. negative variances) departs from this basis and is likely to lead to counter-
intuitive prediction.  It may be concluded that the maintenance of reality in the 
distributions is highly desirable. 
 
When estimating a model it is very difficult to specify in advance the constraints that 
need to be applied to maintain positive definiteness in the utility covariance matrix.  
This issue is discussed extensively by Bunch (1991) who advises working, rather than 
with utility differences, with a matrix CJ in which the utility of one alternative (the 
last, J, in Bunch’s work) is subtracted from the utilities of all the other alternatives.  
To derive a model with a matrix of utility variances Σ, Bunch advises that “the best 
course to follow is to first estimate CJ, then explore the various possible 
normalisations by performing transformations between CJ and Σ”.  However, this 
approach has three drawbacks. 

− As has been shown above, some normalisations lead to valid matrices, some do 
not.  The search for a valid normalisation might be time-consuming. 

− Often, it is not required to estimate a full matrix of covariance of all the utilities.  
A reduced matrix is often required, because the data is insufficient to support 
estimates of the full matrix or because of the nature of the problem being studied.  
Or it may be required that the matrix is determined by a smaller set of parameters 
which have to be estimated.  Restrictions of this type are often difficult to apply in 
estimating the full matrix Σ, and may be even more difficult when estimating CJ. 

− Bunch does not explain how the matrix CJ should be kept positive semi-definite. 
 
An alternative approach, inspired by Daly and Zachary (1975) is to parametrise CJ by 
an underlying matrix Υ from which CJ is derived by 
 

CJ  =  Υ2

 
which guarantees that CJ is positive definite.  Daly and Zachary show that there is a 
correspondence between Υ and CJ which is 1-to-1, except for possible sign changes 
on the rows or columns of Υ.  Further, CJ can be restricted to be diagonal, or diagonal 
and constrained to fixed values, by imposing parallel restrictions on Υ, allowing at 
least some degree of flexibility in the parametrisation.  However, this approach does 
not solve all the problems of offering suitable parametrisation, nor does it indicate 
how to derive matrices Σ from CJ. 
 
A further approach might be to work with the matrix ∆ of utility differences.  
However, this does not solve many of the problems listed above, while when working 
with the matrix ∆, constraints are also needed to ensure existence.  If i is closely 
correlated with j, and j is closely correlated with k, it cannot be the case that the 
correlation of i and k has a large negative value. A kind of ‘triangle constraint’ 
applies: 
 
 √ δij  ≤  √ δjk  +  √ δki,  for all i, j and k. 
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However this constraint, while necessary, is far from sufficient to ensure positive 
semi-definiteness. 
 
An alternative approach which seems to have several advantages is to specify the 
covariance of the utilities constructively, i.e. by specifying variance components a 
priori , as is done, for example, in the error components approach.  With this 
approach, each component of the covariance is specified and explicitly attached to the 
alternatives to which it applies.  The issues of existence are solved automatically, 
while parametrisation and normalisation also do not arise as problems. 
 
The specification of error components is often connected with the use of a logit 
‘kernel’, in which a component with a limiting value distribution is added to the 
utility of each alternative.  This approach is then often called mixed logit or random 
parameters logit.  However, the use of error components can also be applied within a 
purely probit framework, with advantages for the parametrisation and ensuring that 
the final model will have a positive definite covariance matrix. 
 
The difficulty in the pure-probit error components approach, however, is that existing 
software does not support the approach and further software development may be 
necessary to apply the method.  Software does exist for the logit kernel variant, which 
in the terms of this paper is almost indistinguishable from the pure-probit approach, as 
well as being much quicker and easier to apply. 
 
10. Conclusions 
 
A class of Random Utility models, the Additive Stimulus models, has been defined 
which allows a minor extension of Zachary’s theorem.  The results obtained in the 
paper are based on analysis of this class of models. 
 
The concept of indistinguishability has been defined, grouping models into classes 
that are effectively identical.  These classes can be extended to models with similar 
structure but different detailed functional form by the concept of almost-
indistinguishability.  Any AS model with a symmetrical distribution of utility 
differences is almost indistinguishable from an AS probit model. 
 
The concept of independence of the utility functions is not well defined for probit 
models.  Retaining indistinguishability, it is possible to change the apparent extent of 
independence of the utilities.  Such changes also change the extent to which the 
variances of the utilities are equal, i.e. the homoskedasticity of the model. 
 
The concept of homoskedasticity is also not well defined.  Retaining 
indistinguishability, it is possible to convert any probit model to a homoskedastic 
model.  This change alters the independence characteristics of the utilities also, i.e. 
independence and homoskedasticity must be defined, if at all, together.  Changes to a 
model to make it homoskedastic may also cause it to lose reality, i.e. the covariance 
matrix of the utilities may cease to be positive semi-definite. 
 
Maintaining positive semi-definiteness of the covariance matrix of utilities is not 
easy.  A general estimation procedure, or a ‘normalisation’ from a space of lower 
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dimension may cause the matrix to lose semi-definiteness or at least to make a check 
necessary.  Constructive model specifications, such as those employing error 
components, can be a useful way to maintain a positive semi-definite matrix. 
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