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1. Introduction

Random utility models are often characterised by descriptions such as
‘homoskedastic’ or ‘independent’ in théilities of the alternatives. However these
descriptions do not have meaning in angdiite sense and must therefore be used
with care. It is the main aim of thismer to demonstrate this point and discuss the
issues it raises. In particular, the discussion leads into a consideration of the
circumstances under which the models can be said to exist.

The paper gives a definition of random utilityodels and goes on the define a large
sub-class of those models, thdditive stimulusnodels, on which the main discussion
of the paper is focussed. The area of uBson is further specified by relating the
probability statement, which is the mainrfoin which the model is estimated and
used, to the utility and utility differencestiiibutions. New concepts are introduced
of indistinguishability and almost-indistingniability, which can be used in assessing
discrete choice models. The paper then shows how a reasonable natioaedf
structurecan be interpreted in terms of utilitlffference distributions for a class of
indistinguishable models.

The discussion of the independence of the utility distributions of the alternatives is
based on the concepts introduced in the early parts of the paper. This discussion
shows that many indistinguishable modelsefor which the correlation of the utility
functions is radically different. A folleing discussion goes on to show that the
notion of heteroskedasticity is similarlycapable of clear definition, even within
classes of indistinguishable models.

The final main section discusses the issue of existence, finding that it is quite difficult
to ensure that models actually represent a ‘real’ situation, although it is seen as
important that the models actually ‘exist’ in some sense.. e&ar components
approach, whether using purely probit models or substituting aklegielappears a
useful approach to maintaining the ‘reality’ of the model.

2. ‘Random utility’ models

Random utility models (RUM) are a method of predicting discrete choice behaviour,
i.e. choice by a traveller or consumer franmutually exclusive and finite set of
alternatives. The method sets out a clead consistent set of criteria by which
choices in a wide range of situations may be analysed.

Random utility models are said to dateck to the work of Thurstone in 1927 and
were further developed by others includiMgFadden, who first introduced them into
transportation analysis (DomencichdaMcFadden, 1975, but describing work done
somewhat earlier). They appear first tovdvdbeen used in this field in Britain by
Harris and Tanner (1974), Daly and Zaghér975) and Williams (1976). Over the
succeeding 25 years these models have drexé&remely successful as tools for the
analysis of traveller behaviour and the forecasting of travel demand (McFadden,
2000).



RUM places the modelling of discretehace consumer behaviour within the
framework of consumer utility maximisation. The exact assumptions required to
establish this framework are difficult tstate concisely. Certainly they include
consistency and transitivity of prefemen The difficulties in accepting these
assumptions lie in their simple validity, i.e. whether preference is always transitive,
rather than in the technical details. Howewathout assumptions very like these it is
difficult to imagine any constructive fored¢esg of human behaviour. It is also
necessary to assume the existence of a cardinal measure of utility.

However, for the purposes of the prespaper, it is not necessary to make any
assumption of continuity of utility with spect to attributes of the alternatives,
although this will usually be necessary practical applications. Thus the utility
functions considered here do not necessarily imply compensatory forms of behaviour.
Nor is it necessary here to consider the implications of a budget constraint.

Specifically RUM implies the prediction afiscrete choice by a model in which the
consumer’s probability of choice of alternative a from the choice set C is given by

p=Pr{U>U;,VjeC} @
where U gives the (indirect) utility of each alternative and can always be written as
U = Vi + g @

where V is the best available approximation to U; and
e is the error in that approximation.

It is generally reasonable to take the mear td be zero or some other standard
value (for example, it is possible toclode the mean (or base) value of the
distribution ofe within V).

Thus behaviour is represented as balatermined exclusively by the maximisation

of utility, but that the utility is not known exagtl It is perhaps useful to note that the
model does not necessarily represent random behaviour. More plausible is to think of
the individual’'s behaviour as being deterministic, but that the analyst does not have
full information on the variables motivatitgghaviour, or even accurate measurement
of those that are known, nor are the undiual’'s preferences over the motivating
variables known. For this reason an error terns introduced into the model.
Equivalently, and perhaps even moreauysibly, an individual consumer can be
considered as representing a random safnphe a population, each of whom has his

or her own value o¢. Then, even if the analyst dhgerfect information about the
distribution of preferences in the poputetj we would still not know the preferences

of a randomly sampled individual. Eghway, when we speak of random utility
models, it's the model that’'s random, not necessarily the utility.

! This additive form isnot an assumption, as is sometimes stated; all that is implied by the

following equation is that is the difference between the true value of cardinal utility and the analyst’s
approximation of that value.



For the present discussion, the best approximation V to the utility function is assumed
to be known. Generally V will involve aumber of measured data items and a
number of parameters which have to bénested statistically from observations.
This important aspect of the model is howewer of interest in the present note. The
approximation V is taken to include a specifica of the set of alternatives available

to each consumer, i.e. we can say which alternatives havexV/ = —

Given V and the distribution of, the probability of making each choice can in
principle be calculated by integration

p = [wisu, v fO.dt = eieovivi, vy f(D).dt (3)

where fis the multivariate frequency function for The probability of choosing i is
simply the probability that the individual's value ©fies within the region where the
utility of i has a value higher than that of all the other alternatives.

Of course this integration presents mrous practical and theoretical problems,
which are also not covered here. The aim is rather to discuss the ways in which the
distribution ofe can be represented and how this affects the forecasts of behaviour
derived from the models.

3. ‘Additive stimulus’ models

The objective of the model is usually to predict consumers’ responses to changes in
the function V, or perhaps their valuatiowgth respect to potential changes in V.
One aspect of their responsiness is the distribution of, to which detailed
consideration is given below. The otheped is the specification of V, which must

in any case contain all the variables for which responsiveness has to be predicted.
Often, V will contain other background variables that are not of interest for
forecasting but are important for expleig behaviour: socio-economic variables
commonly appear, for example.

Separating these two classes of variables, U can be expressed as
U=X+Y +¢ ()

where X represents the ‘stimulus’, the valésbof interest for forecasting, potentially
interacted with background variables;
Y represents the other (background) &hhes, independent of the stimulus
variables.

The class oadditive stimulugAS) models is then those for which the distribution of

¢ does not depend on X, although it may depen Y. That is, changes to the
stimulus variables add to the utility equally for all consumers, they do not change the
distribution ofe which would imply different chages for some consumers than for
others.

It is also possible that the distribution ©fis also conditioned by a third group of
variables, say Z, which do not affect thelity directly. In the same way that the



assumption is made that the best spediboaof V is known, it will also be assumed
that the best parametrisation of the distribution iof terms of Y and Z is known.

This formulation of the model represerdsgeneralisation for a population of the
‘location parameter’ models covered by Zachary’s theorem (Daly and Zachary, 1978),
in that the AS formulation effectively tiees a separate model (depending on Y and
Z) for each individual or for each subsettloé population with the same values of Y
and Z. The calculated probabilities are lefichanged by an equal change to all the
X’s (i.e. these are location parametels)t may change when Y or Z changes
uniformly because of changes in théistribution. Zachary’s theorem applies to AS
models with respect to changes within 2, it applies separately to each class of the
population defined by a given value of (Y, Z).

The AS models appear to fall within Madden’s (1981) Additive Income RUM class

if (i) the costs of the alternatives appemly in the X component and (ii) the costs
appear linearly with the same coefficient for each alternative and (iii) income appears
in the model only as a fixed personal characteristic, i.e. in Y or Z, in which case its
role is as an index of social clast., not as a measure of spending pdwérthese
conditions are satisfied, McFadden’s (19&jalysis applies in full, when these
conditions are not satisfied the model will still meet the original Zachary
specificatiorl, i.e. be consistent with someotions of rationality, but it will not
necessarily permit the development of consistent social surplus measures.

The need to restrict the discussion to thditive stimulus class of models arises in
the following section.

4. Probability statements and utility differences

It is important to remember that utilitis a latent variable, introduced into the
discussion only to help explain behaviourlt is not possible to make direct

observations of utility; to be able to do so wouttply the existence of a cardinal

utility. While considerable progress canrhade by careful questioning of consumers
in interview contexts, the ultimate test thfeories developed in these contexts is
always ‘revealed preference’ observatiasfsactual behaviour and in that context
utility is latent.

In dealing with models explaining humanhlagiour, it is unreasonable to expect that
a complete explanation of every individual’'sians can be given; the best that can be
hoped for is that probability statements de@nset up which will explain and predict
the behaviour of most people, while allowgifor the fact that unusual behaviour will
often be encountered (Daly, 1982). The formhaf model that can be directly tested
on revealed preference data is then the gntibastatement. This is the form in
which the scientific notion of falsifiability can be applied.

2 Income may also appear in X, providing it epps linearly and with a efficient that is the

negative of the cost coefficient, batthis case it has no impact on choice as it is effectively a constant
added to each of the alternatives.

3 The Zachary theorem is expressederms of the utility of each alteative, i.e. (X + Y) in the
present notation, and does not refer to the cost of an alternative at all.



Quite a few behavioural paradigms canskéup which can yield testable probability
statements (e.g. Daly, 1982). For this note discussion has been limited to the utility
maximisation paradigm, but even withinathparadigm it has long been known that
many different conceptual formulations can lead to identical probability statements.

To give precision to this point the concept of indistinguishability can be defined:

models arendistinguishabldf they predict the same choice probabilities
over the full range of the stimulus and background variables.

No test using observed choices can be usedjéat a model in favour of one that is
indistinguishable, i.e. a discussion asmaich model is better can be conducted only

on theoretical grounds. For practical purposes the models are exactly the same, both
in terms of explaining observed behaviour and in predicting future choices.

Indistinguishability relates closely to theemtifiability of the models on choice data.
Models that are indistinguishable cannot be separately identifieshyohoice data
and will give identical forecasts. That isdistinguishability is a slightly stronger

property.

Because of the utility maximisation basis of these models, it is clear that only the
utility differences are relevant to genengtidistinguishable models. Subtracting one
utility value from all the utilities does noehange the choice probabilities. Referring

to the integration oves to calculate the probabilities (equation 3), it can be seen that
the integration isdefined in terms of utility differeces. Thus once the utility
differences are specified, in terms of their distribution as well as mean values, the
model is defined up to the level of indistinguishability.

Note that if the models were not definedbesng within the AS class, then a change

in stimulus variables might also chantee utility variances, which could induce
further changes in the probabilities. The model could not then be specified
exclusively by the utility differences and their distributions; it would also have the
property that the addition of a constantthe utility of each alternative might well
change the choice probabilities.

5. Second-momenproperties

For the remainder of the note, attentiwill be focussed on the distribution ©find
the differences of.

It has already been noted that the first moment (meangah reasonably be taken as

zero. Further, the distribution afwill often be symmetrical or near-symmetrical,

implying that its third moment is zerondeed all the odd-numbered moments are
zero); even more often, the distributioneoélifferences will be symmetrical Thus

4 A symmetrical distribution of differences will occur whenever )is distributed

symmetrically (e.g. normally) or (k)is distributed identically (i.e. with the same functional form and
equal variance, but not necessarily independentlpsadhe alternatives. There may be other cases.



the second moment (variance-covacematrix) of the distributions af across the
alternatives becomes the main topic of interest.

The discussion will be set out for modddased on the normal distribution (probit
models). However, the findings will also apply to models based on other distributions
of ¢, such as models of the GEV family bybrid models, with inaccuracies that
depend on the differences of those distrimsi from normal in the fourth and higher
moments. For a probit model, of courieg utilities and their covariance define the
model entirely.

The concept of almost-indistinguishability can be defined:
models aralmost indistinguishablé the differences between the choice

probabilities they predict are due to differences in the fourth and higher-
numbered moments of the distributions of utility differences.

The simple probit model is almost indistingluable from the simple logit model. In
fact, all GEV models are almost indistingiable from a suitable AS probit model.
In practice, experience indicates thaticeable differences can be found between
models that are ‘almost indistinguishabl®/ the definition above; care is needed.
Nevertheless, almost indistinguishabledals can be taken as having a general
similarity in structure.

In a probit model, if the covariance matokthe utilities is defined, it is easy enough
to calculate the covariance matrix of tindity differences and hence the probability
statement. However, there will in gerieba many utility covariance matrices that
will lead to indistinguishable models. T clear, for n alternatives the covariance
matrix of the utilities, which will be denoted &y has n.(n+1)/2 components, while
the covariance matrix of utility differences, which will be denoted plyas n.(n—1)/2
components, n fewer, so that there ardegrees of freedom in defining the utility
covariances that will all lead to indistinguishable models.

The above finding with respect to the numbtdegrees of freedom in probit models
was presented by Bunch (1991), who alsdidated that it was known to previous
authors. Bunch further showed an additlamage of degrees of freedom of variance
which are (effectively) parametrised by chaesistics of individuals and alternatives.

In the present context, variance parametrised by variables appearing in Y or Z is
handled by specifying effectively differembodels for each individual, while the
possibility of variance being parametrised by variables appearing X is excluded in the
additive stimulus form.

6. Model structure
In consequence of the preceding sectionsdibeussion is restricted to probit models

of the AS class, with theowariance matrix of the utility functions effectively constant
if we consider one individual at a time.

° A further excess degree of freedom may abieeause the model may be indistinguishable

from one in which utility means and standard deviations, and utility difference means and standard
deviations, are all scaled by a common factor. Phist is discussed in more detail subsequently.



In additive stimulus models, the probabilities of choice respond to changes in the
stimulus variables through changes in thiéty functions. Thus, a change in one of
the stimulus variables for an alternativeeg. its cost — will have an impact on the
choice probability of that alternativené consequently the choice probabilities of
other alternatives, through its impact ore thtility function of that alternative.
However, the connection between the stius variable and the utility is more
propere!y described as the specification of the utility function than the structure of the
model.

Rather, by ‘model structure’ is meant thepawt that a change in the utility function

of a specified alternative has on the cdeoprobabilities. Do all the other choice
probabilities change proportionately, as imaltinomial logit model? If not, how do

the relative changes in the probabilities of the other alternatives differ? Which
alternatives are close substitutes and which serve relatively separate markets?

For AS probit models, the notion of ‘sttuce’ relates to the specification of the
utility covariance matrix. Alternatives that are close substitutes will be characterised
by having high correlation of their utilitiesyhile alternatives serving differing
markets will have low correlation of their utilities.

This notion of model structure is consistent with the concept of indistinguishability
that has been introduced. Models that mrdistinguishable have the same choice
probabilities for all values of the stimuip they respond in the same way to utility
changes. That is, they have the samectira. In the same way, the results shown
here can be extended to other models #matalmost indistinguishable from probit
models, subject to the practical reservation mentioned above.

Also, because of the way in which AS models calculate probabilities from utility
differences, models with the same stdbutions of utility differences are
indistinguishable, i.e. they have the same structure. However, there are very many
ways of specifying the distribution of utilitiés derive the same distribution of utility
differences. Specifically, as noted abovesréhare n degrees of freedom to define
models indistinguishable from a specified model over n alternatives.

7. Independence

Given a model with structardefined by a matrix ofitility differencecovariance,
there exist many indistinguishable modelsutifity covariance which can underlie
that structure. These models, indigtiishable in practice, may however have
different interpretations in theory.

6 There is no reason, within the framework discussed in this paper, that the connection between

stimulus variable and utility shalilbe continuous. The continuitf the connection between utility
and probability depends on the specification of the distribution. oZachary’s theorem requires
infinite differentiability of this onnection. In any case, we caaiol, whatever the distribution ef
providing differences of’s are distributed symmetrically, that the model is almost indistinguishable
from a probit model, i.e. almost indistinguiskafrom a model with a continuous utility—probability
connection.



For example, consider the four-altetima model with utility covariance matriX
given by

s> 0 0
o? pcs2
62

For this model we can calculate

2°%.(1-p)
var(lh— Us) = var(b—Uy) = 2

var(U - W)
var(U — Uy)

var(ls — Uy)
var(U — Uy)

Whenp > 0, this model is almost indistingbeble from a tree logit model with two
nests (each of two alternatives) witte structural parameters both equal il — p).

It would usually be considered thatethitilities in this structure are homoskedaStic
and that alternatives 1 and 2 were independent of alternatives 3 and 4.

The model can be transformed by subtracting the utility of the first alternative from
the others, obtaining the covariance matrix

0 0 0 0
621 L1010 P1010
o? pcs2
2
(o)
and this gives exactly the same utility difference variances as in the previous case —
i.e. the model is indistinguishable — if

o1’ = 22(1—p) and p1 = (6% - 2.9 / 2001
Note that in this indistinguishableauel, both independence and homoskedasticity
have vanished. The matrix of utility coace is also no longer positive definite but

only semi-definite.

An alternative transformation gives the matrix

s, 0 0
2 2
(6] po
2
(e}

which again gives the same difference covariancés;® = o°.(1 —p).

Here there is another variant on the indadence interpretation, with alternatives 1
and 2 being independent of each other ali agefrom 3 and 4. This matrix shows
the ‘maximum independence’ that can be aeéd in this model, i.e. it is not possible

Homoskedastic is used to mean ‘of equal variance’.



to eliminate the off-diagonal elementstisrly without losing indistinguishability.
Bunch (1991) gives another example with three alternatives.

Thus statements such as ‘independence’ of utility distributions must be treated with
care, since models with apparently differstructures of independence — i.e. with a
different pattern of zeroes in the utility cdagons — can in fact be indistinguishable,
because the choice probabilities are identi&imilarly, notions of symmetry in the
model can be misleading.

However, it is the case that not all modeds be expressed with independent utility
functions, as the last example illustrate©n the other hand, homoskedasticity is a
more general property.

8. Homoskedasticity

The main result of this section is the following somewhat chimeral lemma.
Homoskedasticity Lemma Any multinomial probit AS model is indistinguishable

from a homoskedastic modéhe homoskedastic model
may however be imaginary

Proof

Represent the model by its utility differences and their covariance matrixd;},
which can be derived from the utility covariance mairixy

dj = i + g5 — v, l.e. §; = 0, sinceX must be positive semi-
definite

This matrix is also the matrix of utility differences of the homoskedastic model whose
utility covariance matrix is k.A, where A is derived franby the transformation h:

i) oy = (&) = 1-8;/(2.K),

i.e.oij = 1V i, sinced; = 0; andw; < 1 sinced; > 0;
i) k is chosen so that k Ya.max ;.
The definition of k ensures that <lo;;, while the presence of 1's on the diagonal
implies that A is a matrix of correlations. KA is obviously what one would normally
describe as a homoskedastic matrix.
The utility difference variances implied by the model k.A are

var(U-U) = k. @i + aj — 20)
= (=8 =8 + 25))/2

8 Of course there are n.(n—1) distinguishable degrees of freedom for a model over n

alternatives, while only n degrees of freedom for the diagonal elements. For this reason it is obviously
not possible for a model with independent heteroskedastic utilities to give a complete representation of
all models over n alternatives.



= dij,
thus proving the Lemma.

The problem is that there is no guarantest #A is positive semi-definite, which is
necessary (and sufficient) for it to be désed as a covariance matrix. The limit on
the correlations implies that, if there is a problem, it involves more than two variables.

But the lemma applies in reality in some important cases. For example, consider the
‘independent heteroskedastic’ model defined by the utility covariance matrix

O1 0 O
O2 0
G3

with 61 > 62 > 63 > (°. This model has the covariance matrix of utility differentes
with

Sij = o t gj, ifiij; %i =0

which can be converted to an indistinguishable homoskedastic form A by the
transformation above. The determinant of the matrix A is

— 2 2 2
D = 1-012" —ops” —oz1” + 20020023031
If we choose k =%.maX; = Y2.01+ o2), we get
a2 = 0;

a23 = 1029812 = (61—03) / (01 + 52);
031 1 —831/612 (c2—03) / (o1 + ©2).

D =1 —0(232—(1312
2. 6162 + 6203 + G301 —632) / (01 + (52)2

which must be positive under the assumptiondanal hus in this case the matrix A is
positive definité® and is a valid covariance matrix.

However, if k is set to Ya.m@¥; + 1= Ya.lc1 + o2) + 1, for some small, we get
a2 = —1 +1* (for a corresponding smailt) and

D= - (123 + (131)2 + 8.(2 —0Lz3.0(31) —82

o That the variances are positive implies non-degeye Then the alteatives can always be

permuted to get the conditions required.

X A matrix is positive definite if and only if each of its principal submatrices has a positive
determinant. The principal submatrices (2 * Batly have positive deterndnts, because of the limit

on thea variables, so the demonstration that D is positive is sufficient to show that A is positive
definite (Noble and Daniel, 1988, p. 413, Theorem 10.19).

10



and unlessiyz + a1 = 0 this is negative for small enouglso that the matrix A isot
positive definite and thus not a valid covariance matrix

Thus any heteroskedastic-independent model for three alternatives is
indistinguishable from a valid homoslastic-correlated model, by choosing a
suitable k. However, k values exist for which the homoskedastic model derived does
not have a valid covariance matrix.

Thus, the chimeral quality of the lemma mednat it not clear in advance whether a
model derived by applying the transformatfon a given value of k will yield a valid
covariance matrix. But it is clear that tbencept of heteroskedasticity, like that of
independence treated in the previougsieac can be made to disappear from many
models without affecting the probabilities predicted.

The transformation h of the homoskedasticity lemma has two notable features.

— The factor k introduced into the matrix kA is a convenient and natural way to deal
with the excess degree of freedamtroduced by common scaling of the
covariance matrix and the mean utility values. For example, k can be constrained
to 1 if it is required to estimate a sedbr utilities; alternatively, if the utilities
themselves are scale-constrained, k may be estimated.

— The number of degrees of freedom in the homoskedastic form is exactly that
available, i.e. %2.n.(n-1) — 1, in the caaace matrix. Moreover, because the
transformation h is invertible and olff rank’ (in the sense of Bunch, 1991, who
calls transformations from utility diffence variances to utility variances
normalisation$, there is a 1-to-1 correspondetedween the original models and
the transformed homoskedastic models.

Thus the homoskedasticity lemma appearsfiter a ‘canonical form’ in which probit
models can be expressed to permit greatenparability between them. However,
unless a proof can be found that these homoskedastic models always exist, the
application of the canonical form cannot be carried through.

9. Existence and Parametrisation

The fact that indistinguishable models carsbeup in a wide range of ways raises the
issue of how this should be done. The keyp $h setting up a model is to estimate the
unknown parameters from observations. e Tlundamental’ way is to conduct the
estimation based on utility differences. But hcawn we be sure that a model that has
been estimated actually exists, i.e. has a covariance matrix of utilities that is positive
semi-definite?

A first issue is whether this question isnfoanswering. It could be thought that the
existence or otherwise of a model of utilitgriation corresponding to the matrix of
utility differences was not important; after all the predictions of the model depend
only on the variances of utility differencesHowever, the whole thrust of RUM
theory is to ensure that predictions arade on the basis of a sound underlying theory

1 A has to be positiveemidefinite to be a valid covariance matrix. However, it is clear in this

context that the zero value — i.e. the points of singularity of A — are not the issue.

11



which corresponds to real-valued utilityrictions. The introduction of imaginary
values (i.e. negative variances) departs frolthsis and is likely to lead to counter-
intuitive prediction. It may be concludetiat the maintenance of reality in the
distributions is highly desirable.

When estimating a model it is very difficult pecify in advance the constraints that
need to be applied to maintain positivdimiéeness in the utility covariance matrix.
This issue is discussed extensively by Bu(t991) who advises working, rather than
with utility differences, with a matrix On which the utility of one alternative (the
last, J, in Bunch’s work) is subtracted frahe utilities of all the other alternatives.
To derive a model with a matrix of utility variancEsBunch advises that “the best
course to follow is to first estimate ;Cthen explore the various possible
normalisations by performing transformations betwegrai@ ~”. However, this
approach has three drawbacks.

— As has been shown above, some norm@disa lead to valid matrices, some do
not. The search for a valid normalisation might be time-consuming.

— Often, it is not required to estimate a full tnva of covariance of all the utilities.
A reduced matrix is often required, because the data is insufficient to support
estimates of the full matrix or becausetlué nature of the problem being studied.
Or it may be required that the matrix is determined by a smaller set of parameters
which have to be estimated. Restrictionshid type are often difficult to apply in
estimating the full matrix, and may be even more difficult when estimating C

— Bunch does not explain how the matrixgbould be kept positive semi-definite.

An alternative approach, inspired by Daly and Zachary (1975) is to paramethge C
an underlying matriY’ from which G is derived by

CJ :Y2

which guarantees that;& positive definite. Daly and Zachary show that there is a
correspondence betwe&hand G which is 1-to-1, except for possible sign changes
on the rows or columns &f. Further, Gcan be restricted to be diagonal, or diagonal
and constrained to fixed values, by imposing parallel restrictions, ailowing at
least some degree of flexibility in the pametrisation. However, this approach does
not solve all the problems of offeringitble parametrisation, nor does it indicate
how to derive matrices from G;.

A further approach might be to work with the matrx of utility differences.
However, this does not solve many of thheblems listed above, while when working
with the matrixA, constraints are also needed to ensure existence. If i is closely
correlated with j, and j is closely corredd with k, it cannot be the case that the
correlation of i and k has a large negatwadue. A kind of ‘triangle constraint’
applies:

V& < V& + V&, foralli,jandk.

12



However this constraint, while necessaig . far from sufficient to ensure positive
semi-definiteness.

An alternative approach which seems towehaeveral advantages is to specify the
covariance of the utilitiegonstructively i.e. by specifying variance componeuats
priori, as is done, for example, in thera components approach. With this
approach, each component of the covarianspeésified and explicitly attached to the
alternatives to which it applies. The issuof existence are solved automatically,
while parametrisation and normalisation also do not arise as problems.

The specification of error components igeof connected with the use of a logit

‘kernel’, in which a component with a litmg value distribution is added to the

utility of each alternative. This approaishthen often called mixed logit or random

parameters logit. However, the use obe components can also be applied within a
purely probit framework, with advantageg the parametrisation and ensuring that
the final model will have a positive definite covariance matrix.

The difficulty in the pure-probit error components approach, however, is that existing
software does not support the approanod &urther software development may be
necessary to apply the method. Software @xed for the logit kernel variant, which

in the terms of this paper is almost irtoiguishable from the pure-probit approach, as
well as being much quicker and easier to apply.

10. Conclusions

A class of Random Utility models, the Aitlde Stimulus models, has been defined
which allows a minor extension of Zacharytheorem. The results obtained in the
paper are based on analysis of this class of models.

The concept of indistinguishability has been defined, grouping models into classes
that are effectively identical. These classes can be extended to models with similar
structure but different detailed funmtial form by the concept of almost-
indistinguishability. Any AS model witha symmetrical distribution of utility
differences is almost indistinguishable from an AS probit model.

The concept of independence of the utility functions is not well defined for probit
models. Retaining indistinguishability, it isgsible to change the apparent extent of
independence of the utilities. Such changdso change the extent to which the
variances of the utilities are equal, i.e. the homoskedasticity of the model.

The concept of homoskedasticity islso not well defined. Retaining

indistinguishability, it is possible to conveainy probit model to a homoskedastic
model. This change alters the indeperecharacteristics of the utilities also, i.e.
independence and homoskedasticity must beneefiif at all, together. Changes to a
model to make it homoskedastic may alsoseatt to lose reality, i.e. the covariance
matrix of the utilities may cease to be positive semi-definite.

Maintaining positive semi-definiteness of the covariance matrix of utilities is not
easy. A general estimation procedure, or a ‘normalisation’ from a space of lower

13



dimension may cause the matrix to lose sdefiniteness or at least to make a check
necessary. Constructive model spectimas, such as those employing error
components, can be a useful way to maintain a positive semi-definite matrix.
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