
Suffix Tree Characterization of Maximal Motifs
in Biological Sequences

Maria Federico1,3 and Nadia Pisanti2,3

1 Dip. di Ingegneria dell’Informazione, Univ.di Modena e Reggio Emilia, Italy
2 Dip. di Informatica, Univ. di Pisa, Italy

3 Supported by the MIUR project MAIN STREAM

Abstract. Finding motifs in biological sequences is one of the most in-
triguing problems for string algorithms designers as it is necessary to
deal with approximations and this complicates the problem. Existing al-
gorithms run in time linear with the input size. Nevertheless, the output
size can be very large due to the approximation. This makes the output
often unreadable, next to slowing down the inference itself. Since only a
subset of the motifs, i.e. the maximal motifs, could be enough to give the
information of all of them, in this paper, we aim at removing such redun-
dancy. We define notions of maximality that we characterize in the suffix
tree data structure. Given that this is used by a whole class of motifs
extraction tools, we show how these tools can be modified to include the
maximality requirement on the fly without changing the asymptotical
complexity.

Keywords: Suffix trees, Maximal Motifs, Biological Sequences.

1 Introduction

Finding frequent patterns (motifs) in biological sequences has myriads of appli-
cations in molecular biology. Following the hypothesis that sequence similarity
is often a necessary condition for function correlations, there have been sug-
gested in literature many versions, for as many various biological applications,
of the problem of finding motifs as particularly frequent patterns in a biological
sequence, or as patterns surprisingly shared by several distinct sequences. The
motifs search is approximated, that is, distinct occurrences of the same motif are
not necessarily identical, but just similar, according to a given similarity notion.
From the computational complexity point of view, this makes the task of find-
ing over-represented patterns harder, whatever is the type of approximation one
uses. The Hamming distance is defined between patterns of the same length and
it simply consists of the number of differences that occur between them. One
usually sets a maximum allowed distance and then requires that the motifs differ
by at most that number of letters substitutions.

Finding approximate motifs is a computationally challenging task because
the output itself can be very big, especially with the approximation: its size can
be exponential with respect to a parameter that measures the approximation

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 456–465, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Suffix Tree Characterization of Maximal Motifs 457

(the maximum distance, the degeneracy degree of the degenerated alphabet, the
number of don’t care symbols used, etc.). This is a big drawback that, next to
make the inference task possibly too slow, often also leads to a poor usability
of the results as they are too large to be investigated with a naked eye. The
difficulty to make use of the results of some motifs finding tools is often due to
the fact that there are many motifs that satisfy the requirements, while only
some of them are significant or, more in general, only some of them contain
enough information to actually represent all the others. In this paper, we aim at
eliminating most of the redundancy that make unreadable the output of existing
methods that find approximate motifs. We define some notions of maximality for
exact and approximate motifs and give for all of them a characterization on the
suffix tree data structure. This allows us to show how to adapt a whole class of
algorithms based on suffix tree for which available tools exist, to infer maximal
motifs only, without additional complexity. We thank Esko Ukkonen for sending
us a copy of [11].

2 Preliminary Definitions

We consider strings that are finite sequences of characters drawn from an al-
phabet Σ. In particular we will focus out attention on the DNA alphabet
Σ = {A, C, G, T }. We denote by s[i] the character at position i in a string s
and by |s| the length of s. Consecutive characters of s form a substring of s. The
substring of s that starts from position i and ends at position j is denoted by
s[i..j], where 1 ≤ i ≤ j ≤ |s|. Given a string x drawn from the same alphabet as
s (or from one of its subsets), we say that s[i..j] exactly occurs at position i in
s if and only if x = s[i, i + |x| − 1]. In this case, we also say that s[i, i + |x| − 1]
is an occurrence of x in s. The Hamming distance between two strings x and y,
denoted as dH(x, y), is the smallest number of letter substitutions that transform
x into y (or vice versa as the distance is symmetric). Given an integer e ≥ 0, we
say that a substring y of a string s is an e-occurrence of a string x, if and only
if dH(x, y) ≤ e. In this case we will also talk about an approximate occurrence,
or simply an occurrence, of x in s. The list of all occurences of a pattern x in s
is denoted by L(e,x) and is called positions set.

Definition 1. Given a sequence s, a quorum q ≥ 2, and e ≥ 0, a pattern m is
a motif iff |L(e,m)| ≥ q.

If e = 0 we speak about exact motifs, because no differences between motifs and
their occurrences are allowed; otherwise, when e > 0, we call them approximate
motifs. The traditional motifs extraction problem gives as input: (i) the string
in which one wants to find the repeated motif (or the set of strings in which one
wants to find the common motif); (ii) the quorum; (iii) the (minimal) length
� required for the motif; (iv) optionally, an approximation measure (e.g. the
Hamming distance), and the value of e for the approximation measure. The
requested output is simply the set of all patterns of length (at least) � that have
at least q (possibly approximated) occurrences in s, that is, the complete set



458 M. Federico and N. Pisanti

of motifs. Within this traditional framework, the output can be very noisy as
it contains redundant data. In this paper, we suggest a way to overcome this
drawback by introducing a notion of maximality for motifs, thus identifying a
subset of interesting representatives, and an efficient way to detect directly only
those. To this purpose, we first introduce the notion of length extension of a
motif. With left extension (resp. right extension) of m, we mean a pattern m′

obtained by the concatenation of m with characters at its left (resp. right), and
so such that m is a substring of m′. If there exists a right or left extension m′

of a motif m which is also a motif, then we will say that m is included in m′.

Definition 2. Let m and α be patterns of s. The pattern m′ = mα (resp. m′ =
αm) is a mandatory right (resp. mandatory left) extension of m iff all the
occurrences of m in s are followed (resp. preceded) by α. In this case, we call
k = |α| the degree of the extension.

Definition 2 above is the same for both exact and approximate motifs. In the
latter case, if m′ is a mandatory right/left extension of m, then the two motifs m
and m′ have the same number of occurrences and also the total number of letters
mismatches is the same because the right/left extension of m does not introduce
further substitutions between the motif and its occurrences. It follows that if
m is a motif, then also m′ is a motif and vice versa. We will name mandatory
extension (without specifying whether it is left or right) an extension on possibly
both sides. We can observe that for a motif there exists at most one left and
one right mandatory extension with a certain degree d. It is intuitive to observe
that if the occurrences of a motif m are not all followed (resp. preceded) by the
same character, then there can not be a mandatory right (resp. left) extension
of degree 1 of m, and hence neither a mandatory right (resp. left) extension of
higher degree can exist.

Notions of motif maximality have been defined in [3] for exact motifs. Fur-
thermore, there have been notions of maximality defined for approximate mo-
tifs when the approximation is achieved using a degenerate alphabet, the edit
distance, and don’t care symbols. We give here a notion of maximality for ap-
proximate motifs with Hamming distance. Other (different) maximality notions
for this type of approximate motifs exist in literature but are not meant for the
general case as ours. In [4] the notion is restricted to the case of tandem repeats.
The notion of maximality for motifs approximated with Hamming distance given
in [5] does not apply to the whole occurrences set of the motif, but rather only
for the special case of repeats, that are pairs of occurrences.

Definition 3. A motif m is right (resp. left) maximal iff it has no mandatory
right (resp. left) extension of degree 1. A motif m is maximal iff it is both right
maximal and left maximal.

For the particular case of exact motifs and q = 2, this notion of maximality
coincides with that already introduced in [3]. This maximality property may not
be enough to significantly bound the number of motifs. It can thus be useful to
use an even more strict notion of maximality in extension of a motif (also already
introduced in [3] for the special case of q = 2 and exact motifs). Moreover, in



Suffix Tree Characterization of Maximal Motifs 459

some applications long patterns with few occurrences can be more interesting
of short patterns with a lot of occurrences. For these reasons, we formulate the
notion of supermaximality1.

Definition 4. A motif m is supermaximal iff it is not a substring of another
motif.

In other words, a motif is supermaximal if, as one tries to extend it in any way,
then the quorum property does not hold anymore. Note that the supermaximal
motifs are a subset of the maximal ones.

3 Characterization of Motif Maximality on Suffix Tree

In this section we will give a characterization of maximal and supermaximal
motifs of a string s on the suffix tree of the string itself. We will do this both
for exact and for approximate motifs. For a formal definition of the suffix tree
and its properties, we remind to [3]. We just recall here that it is a tree data
structure that indexes a text such that there is a root-leaf path per each suffix of
the text, and thus each root-node path for a node u corresponds to a substring
of the text, to which we will refer to the word spelled by u, or path-label of u.
Given that for some substrings the path does not end at a node but rather inside
an edge, we will also talk about the word spelled by a path.

For exact motifs, in [3] there is already a characterization of maximal and
supermaximal motifs on suffix trees for the special case in which q = 2, that is,
when any pattern occurring two times or more is a motif. For the purpose of the
suffix tree characterization, setting the quorum equal to two simplifies the task
because every internal node corresponds to a pattern that satisfies the quorum
and thus it is a motif. In this section, we first describe Gusfiled’s result and then
show the trivial generalization to the case of q ≥ 2 that involves a search in a
specific area of the suffix tree of the input string. Let s be a sequence and T its
suffix tree. It is known that T can be built in linear time and space ([7,10]). Let
us start with observing that an exact motif m, not necessarily maximal, labels
a single path on suffix tree from the root that can end at an internal node or
inside an edge having an internal node as destination. Using the mildest possible
repetitiveness constraint (quorum = 2) Gusfield in [3] showed that there exists
linear time algorithm based on suffix tree to find all maximal and supermaximal
motifs. We now briefly describe Gusfield’s result for maximal exact motifs. Each
internal node of T , has at least two children and the edges out of an internal node
are labeled with nonempty substrings of s that start with different characters.
Therefore, if m labels an internal node it means that there are at least two
occurrences of m in s followed by different characters, and hence m is right
maximal. On the contrary, if m labels a path which ends inside an edge, then all
its occurrences are followed by the character at depth (|m| + 1) along that edge
in T , and hence m has a mandatory right extension and thus it is not maximal.
1 Being our definition the natural extension of that in [3] to the case of approximate

motifs, we keep the same name.



460 M. Federico and N. Pisanti

The left character of a leaf of T is the character preceding the suffix of s at the
position (where starts the suffix) represented by that leaf. A node v is left diverse
if at least two leaves in the subtree rooted at v have different left characters, so
if m labels a left diverse node it means that there are at least two occurrences of
m in s preceded by different characters. Recall that, by definition, a leaf cannot
be left diverse ([3]). Gusfield indeed proves that maximal motifs label exactly
paths on the suffix tree that start from the root and lead to left diverse nodes of
T . Let us now show how to extend the idea to the case of maximal exact motifs
m occurring at least q ≥ 2 of times in the input sequence. In the suffix tree T ,
for any internal node v that spells the pattern m, the positions of occurrences of
m in the input sequence are represented by the (starting positions of the suffixes
that label the) leaves in the subtree rooted at v. For each internal node v, let
Lv[v] denote the number of leaves in the subtree rooted at v. If v is a leaf, then
we set Lv[v] = 1. It is possible to annotate all the internal nodes of T with the
value of Lv[v] within the linear time complexity by a simple traversal of the
suffix tree (as shown in [9]). A pattern is a motif if it labels a path on the suffix
tree that ends to an internal node v such that Lv[v] ≥ q, or inside an edge that
ends at an internal node for which this is the case. A motif is right maximal if it
labels a path on T that ends at an internal node, and it is left maximal if such
node is left diverse. Summing up, an exact motif is maximal if and only if it
labels an internal node v of T such that Lv[v] ≥ q and v is left diverse, because
right and left mandatory extensions of degree 1 can not exist for m. Gusfield
also provides a characterization on suffix tree of supermaximal exact motifs, for
the special case in which q = 2. If an exact motif m labels a path ending inside
an edge, then it is not supermaximal either, because it has a right extension
of degree 1 which is a motif preserving the same occurrences of m. Gusfield
furthermore proves that supermaximal exact motifs label internal nodes v of T
such that all the children of v are leaves and each has a distinct left character.
In such case, indeed, a motif can not be furtherly extended without breaking
the quorum constraint, because none of its extensions has two occurrences. This
idea can be extended to the case of supermaximal exact motifs occurring at least
q ≥ 2 times in the input sequence. For this purpose, we introduce the notion of
right and left q-limited node.

Definition 5. Let T be the suffix tree for the sequence s. A node v of T that
spells a pattern m is right q-limited (resp. left q-limited) iff m has no right
(resp. left) extension of degree 1 which occurs at least q times in s. We say that
a node is q-limited if it is right q-limited and left q-limited.

Note that not being right q-limited (or left q-limited) is a property that propa-
gates upward: if an internal node v is not right (resp. left) q-limited, then neither
is any of its ancestors in the tree. Clearly, if Lv[v] < q then v is q-limited. A
right extension of degree 1 of m can label a child of v or a path ending inside an
edge with a child of v as destination. It follows that v is right q-limited if and
only if its children are nodes v′ such that Lv[v′] < q.

The characterization on the suffix tree of the left q-limited property is a bit
less immediate and it involves the so-called suffix link [3], that is a pointer that



Suffix Tree Characterization of Maximal Motifs 461

connects a node v spelling ax (with a ∈ Σ and x ∈ Σ∗) to the node u that spells
x. In other words, this pointer provides a link from node v to node u such that v
spells a left extension of degree 1 of the path-label of u. Note that each pattern
x has at most |Σ| left extensions of degree 1 and thus a node u that spells x
is reached by at most as many suffix links. Moreover, the left extensions of x
do not always label nodes, but they can also label paths ending inside edges.
Node u is reached by as many suffix links as the number of left extensions of
degree 1 of x which label a node. If there exists a left extension which labels a
path ending inside an edge that leads to node v′, then there exists a suffix link
from v′ to a descendant of u whose left extension of degree 1 is the path-label
of v′. It follows that if all the left extensions of degree 1 of the pattern spelled
by a node label paths ending inside edges, then this node is not reached by any
suffix link. In particular, we can observe that an internal node u, labeled by x,
is reached by a suffix link only if at least two of its children are such that both
their path-labels are preceded by the same character α at some (possibly all) of
their occurrence positions in the input sequence. Moreover, there exists only one
suffix link directed to the leaf node representing the suffix at position i in the
input sequence s and it starts from the leaf representing the suffix at position
i − 1 in s.

Due to what we just showed about suffix links and to the fact that not being
left q-limited is a property that propagates upward in the tree, we observe that
a node v is left q-limited only if Lv[u] < q holds for each node u from which a
suffix link to v originates and its children are left q-limited nodes.

Theorem 1. Given a quorum q, a sequence s and its suffix tree T , the pattern
m labeling the path to a node v of T is a supermaximal exact motif iff Lv[v] ≥ q
and v is q-limited.

Considering that the distinct occurrences of an approximate motif label different
paths on suffix tree, the characterization on suffix tree provided for maximal
exact motifs can be simply extended to approximate motifs.

Theorem 2. Let T be the suffix tree for string s. An approximate motif m is
right maximal iff:

1. at least an occurrence-path of m labels a node of T , or
2. all the occurrence-paths of m end inside edges of T and at least two of

them have different characters at depth (|m| + 1).

Reminding that if a node of T is not left diverse then all the leaves in its sub-
tree have the same left character, we give a characterization also for the left
maximality of approximate motifs.

Theorem 3. Let T be the suffix tree for a string s. An approximate motif m is
left maximal iff:

1. at least an occurrence-path of m labels a left diverse node or ends inside
an edge ending at a left diverse node, or



462 M. Federico and N. Pisanti

2. there are at least two distinct occurrence-paths of m ending (inside an
edge ending) at a node that is not left diverse, and such that the leaves
reached following these paths have not the same left character.

Let us now show the characterization on suffix tree of supermaximal approximate
motifs. In the case of exact motifs we used the notion of right and left q-limited
node to verify supermaximality of a motif. When we consider approximate mo-
tifs, this notion does not suffice because they could have multiple occurrence-
paths. Nevertheless, we can observe that if there exists an occurrence-path of
an approximate motif m ending at an internal node which is not q-limited or
inside an edge with a destination node that is not q-limited, then m is not su-
permaximal. In order to check whether an approximate motif can be extended
keeping on satisfying the quorum constraint, one must take into account, per
each occurrence, the number of mismatches with the motif. In details, given
the mismatches threshold e, let x be an occurrence of a motif m with positions
set L(e,x) = {px1 , . . . , pxh

} and such that dH(m, x) = d. The positions set of
the right (resp. left) extension mα (resp. αm) of m with any character α ∈ Σ
includes positions pxi (resp. pxi − 1) where x is followed (resp. preceded) by:

- α, if d = e; the other occurrences are lost because the mismatches threshold e
is exceeded, or
- any β ∈ Σ, if d < e; if β �= α, an extra mismatch between the extension
m′ = mα (resp. αm) and its occurrences xβ (resp. βx) is introduced.

If x labels a path ending inside an edge (u, v), or at an internal node u and let
v be any child of u, then m′ = mα has an occurrence-path ending inside (u, v)
or at v, only if the character at string-depth (|m| + 1) along (u, v) in T is α,
or if it is β �= α and d < e. Concerning left extensions, we have to follow suffix
links directed to u and to its descendants. Actually, not all these suffix links
are interesting but only those whose source node is not a child of a node from
which a suffix link directed to u, or to a descendant closest to u, comes. Denoted
by sln[u] the set of these nodes, m′ = αm has an occurrence-path ending at
string-depth (|m| + 1) along the edge ending at any node v ∈ sln[u], only if the
label of v starts with α, or if it starts with β �= α and d < e.

Theorem 4. An approximate motif m is supermaximal iff, for every α ∈ Σ,
m′ = αm (resp. m′ = αm) has occurrence-paths ending at nodes, or inside edges
with destination nodes, u1

′, . . . , uh
′ such that

∑h
i=1 Lv[ui

′] < q.

4 Inferring Maximal Motifs with Suffix Tree

The first (exact) algorithm working on suffix trees was introduced for the extrac-
tion of motifs with mismatches in [9]. Motifs are considered in lexicographical
order starting from the empty word, and they are extended on the right as long
as the quorum is satisfied until either a valid motif of maximal length is found (if
the required length is reached), or the quorum is no longer satisfied. At each mo-
ment, all paths spelling approximated occurrences of the current motif are taken



Suffix Tree Characterization of Maximal Motifs 463

into account. The number of the motif’s occurrences is then computed as the sum
of Lv[v] for all nodes or destination nodes v of edges at which such occurrence-
paths end. The algorithm exploits the property that these occurrence-paths on
the suffix tree are such that those of the motif mα (where m ∈ Σ∗ and α ∈ Σ)
are found just going along the occurrence-paths of m and checking whether there
is a character α following or a new mismatch can be introduced. Assuming that
the required length of the motif is �, and that at most e mismatches are al-
lowed, the algorithm has worst case time complexity in O(t�ν(e, �)), where t�
is the number of tree nodes at depth �, and ν(e, �) is the number of words of
length � that differ in at most e letters from a word m of length �. Finally,
the space complexity is O(t�). The algorithm above was extended in [6] to the
case of structured motifs, that is motifs composed of two or more parts lying
at a certain given distance. The resulting tool, named SMILE, was applied to
promoter signals detection in [12]. Moreover, using a data structure which is an
enriched version of the suffix tree, basically the same framework has been used
in [1]. Finally, the tool presented in [8], which resulted [2] to have very good
performances, uses an algorithm that is basically an heuristic version of [9]. The
definitions of maximality introduced in this paper and the characterizations on
the suffix tree can be used by all the algorithms and tools mentioned above to
output directly only (super)maximal motifs, with the consequent obvious im-
provement in readability and significance. Moreover, our results also apply to
the versions of the problem that require motifs common to a set of input strings
(rather than repeated within the same unique input string).

We now provide a brief description of the operations needed to extend existing
motif discovery algorithms in order to extract only (super)maximal motifs and
we show that the additional complexity cost due to motif (super)maximality
check is negligible. Let us first consider maximal exact motif extraction. In [3],
Gusfield presents a linear time algorithm to find left diverse nodes of a suffix
tree T . A bottom-up traversal of T is performed, and, for each node v, the
algorithm stores either that v is left diverse, or the common left character of
every leaf in the subtree rooted at v. Hence, assuming that we have a suffix tree
whose nodes are annotated with this information, the additional cost to select
only maximal motifs among all exact motifs is constant: for every motif found,
it is enough to verify whether it labels a left diverse node of T . If we search
for maximal approximate motifs m, the existing extraction algorithms can be
simply extended in order to test out the conditions of Theorems 2 and 3. For
every occurrence-path of m, if it ends at a node v or else if it ends inside an
edge with destination node v and the character at string-depth (|m| + 1) along
that edge is different from the one of already identified occurrence-paths of m
that end inside edges, then m is right maximal. Moreover, if v is a left diverse
node, or else if the left character with which v is annotated is different from the
one of already identified occurrence-paths of m, then m is left maximal. In both
cases, the condition to check consists of two character comparisons, and then
the additional cost to extract only maximal approximate motifs is constant.



464 M. Federico and N. Pisanti

Consider now the extraction of supermaximal exact motifs. All nodes v of T
can be annotated with right and left q-limited property by a simple bottom-up
traversal of T . Therefore, like for maximal motifs, the additional cost to extract
only supermaximal exact motifs is constant. The extension of existing motif
discovery algorithms in order to extract only supermaximal approximate motifs
is a little more complex. It requires that for every node v of T , in addition to
right and left q-limited information, we also have the set sln[v] of nodes from
which suffix links directed to v or to its descendants originate. This set can be
implemented by an array of |Σ| positions. At position i of sln[v] there is the node
from which a suffix link to v (or to one of its descendant) originates, and whose
label starts with the ith character in Σ. Assuming to have at start, for every
node v of T , the array sln[v] storing only nodes from which suffix links directed
to v come (if any), that can be built within the linear time complexity of suffix
tree construction, the complete set sln[v] for all nodes of T can be found with
a bottom-up traversal of T with an additional cost of |Σ|2 per each node. The
existing extraction algorithms can be extended to output only supermaximal
approximate motifs m in the following manner. For every occurrence-path of
m identified on the suffix tree T , if it ends at a node that is not right or left
q-limited or inside an edge with a destination node of this type, then m is not
supermaximal. Moreover, m is not supermaximal if the number of its occurrences
which are at Hamming distance strictly less than e from m exceeds the quorum
q, because in this case all right and left extensions of m preserve such occurrences
and so they are motifs as well. These checks introduce a constant additional cost
to the extraction algorithms. After finding all the occurrence-paths of m, if none
of the described cases is verified, then, if m is a motif, we must also count, for
every character α in Σ, how many occurrences of m at Hamming distance equal
to e from m are preserved by right and left extensions of m with α. This counting
can be made examining occurrence-paths of m labeled by such occurrences as
showed in Section 3. If there exists a right or left extension of degree 1 of m
which occurs more than q times, then m is not supermaximal. Therefore the
operations needed to count the occurrences preserved by every right and left
extension of m with a character α have a cost proportional to the number of
occurrence-paths of m whose label is at Hamming distance e from m. This is due
to the property of the suffix tree such that the edges from a node (at most |Σ|)
are lexicographically sorted and to the implementation of set sln[v] as an array
of |Σ| positions: the cost for each path is constant because, in the worst case, it
simply consists of a comparison between two characters. If � is the motif length,

these occurrence-paths are at most p =
(

�
e

)

·(|Σ|−1)e and hence the additional

cost to verify if a motif is supermaximal is proportional to O(p|Σ|). Moreover,
notice that if a motif is supermaximal, then the extraction algorithm can avoid to
furtherly extend it, because none of its right extensions can be a motif. Thus, the
overhead introduced by the supermaximality check is balanced by a reduction of
the number of intermediate length motifs that have to be extended during the
extraction process. We expect that the approach we suggested could sensibly



Suffix Tree Characterization of Maximal Motifs 465

reduce the number of output motifs without changing their significance and
with a constant or negligible extra time complexity. However, we are aware that
in a worst case scenario the improvement could be none: one can always design a
string in which all motifs are maximal. Nevertheless, biological sequences contain
many more repetitions than randomly generated sequences which, on their turn,
averagely would be far from containing only maximal motifs.

5 Conclusions

In order to remove the redundancy in the output of existing algorithms for find-
ing motifs, we defined notions of (super)maximality for exact and approximate
motifs. For all of them we gave a characterization on the suffix tree data struc-
ture. This allowed us to show how to adapt a whole class of algorithms based on
suffix tree for which available tools exist, to infer (super)maximal motifs only. We
proved that the additional computational cost due to the on the fly check of (su-
per)maximality requirements is negligible. Therefore, our results suggest a way
to improve motifs extraction tools providing outputs which are more readable
and usable by biologists.

References

1. Carvalho, A.M., Freitas, A.T., Oliveira, A.L., Sagot, M.-F.: An efficient algorithm
for the identification of structured motifs in dna promoter sequences. IEEE/ACM
Trans. Comput. Biology Bioinform. 3(2), 126–140 (2006)

2. Tompa, M., et al.: Assessing computational tools for the discovery of transcription
factor binding sites. Nature Biotechnology 23(1), 137–144 (2005)

3. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York (1997)

4. Kolpakov, R.M., Kucherov, G.: Finding approximate repetitions under hamming
distance. In: ESA, pp. 170–181 (2001)

5. Kurtz, S., Ohlebusch, E., Schleiermacher, C., Stoye, J., Giegerich, R.: Computation
and visualization of degenerate repeats in complete genomes. In: ISMB, pp. 228–
238 (2000)

6. Marsan, L., Sagot, M.-F.: Algorithms for extracting structured motifs using a suffix
tree with application to promoter and regulatory consensus identification. J. Comp.
Bio. 7, 345–360 (2001)

7. McCreight, E.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

8. Pavesi, G., Mereghetti, P., Mauri, G., Pesole, G.: Weeder web: discovery of tran-
scription factor binding sites in a set of sequences from co-regulated genes. Nucleic
Acids Research 32, 199–203 (2004)

9. Sagot, M.-F.: Spelling approximate repeated or common motifs using a suffix tree.
In: LATIN, pp. 374–390 (1998)

10. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
11. Ukkonen, E.: Structural analysis of gapped motifs of a string. In: MFCS, pp. 681–

690 (2007)
12. Vanet, A., Marsan, L., Labigne, A., Sagot, M.-F.: Inferring regulatory elements

from a whole genome. an application to the analysis of the genome of helicobacter
pylori sigma 80 family of promoter signals. J. of Mol. Biol. 297, 335–353 (2000)


	Introduction
	Preliminary Definitions
	Characterization of Motif Maximality on Suffix Tree
	Inferring Maximal Motifs with Suffix Tree
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


