
253 
 
 
 
 
 
 

 
The Different Role of Cavitation on Rotordynamic Whirl Forces 

in Axial Inducers and Centrifugal Impellers 

Luca d’Agostino1  

1   Dipartimento di Ingegneria Aerospaziale, Università di Pisa, Pisa, Italy 
 
 

Abstract. The linearized dynamics of the flow in cavitating axial helical inducers and cen-
trifugal turbopomp impellers is investigated with the purpose of illustrating the impact of 
the dynamic response of cavitation on the rotordynamic forces exerted by the fluid on the 
rotors of whirling turbopumps. The flow in the impellers is modeled as a fully-guided, in-
compressible and inviscid liquid. Cavitation is included through the boundary conditions 
on the suction sides of the blades, where it is assumed to occur uniformly in a small layer 
of given thickness and complex acoustic admittance, whose value depends on the void frac-
tion of the vapor phase and the phase-shift damping coefficient used to account for the 
energy dissipation. Constant boundary conditions for the total pressure are imposed at the 
inlet and outlet sections of the impeller blade channels. The unsteady governing equations 
are written in rotating “body fitted” orthogonal coordinates, linearized for small-amplitude 
whirl perturbations of the mean steady flow, and solved by modal decomposition. In helical 
turbopump inducers the whirl excitation and the boundary conditions generate internal flow 
resonances in the blade channels, leading to a complex dependence of the lateral rotordy-
namic fluid forces on the whirl speed, the dynamic properties of the cavitation region and 
the flow coefficient of the machine. Multiple subsynchronous and supersynchronous reso-
nances are predicted. At higher levels of cavitation the amplitudes of these resonances 
decrease and their frequencies approach the rotational speed (synchronous conditions). On 
the other hand, application of the same approach indicates that no such resonances occur in 
whirling and cavitating centrifugal impellers and that the rotordynamic fluid forces are al-
most insensitive to cavitation, consistently with the available experimental evidence. 
Comparison with the scant data from the literature indicates that the present theory cor-
rectly captures the observed features and parametric trends of rotordynamic forces on 
whirling and cavitating turbopump impellers. Hence there are reasons to believe that it can 
usefully contribute to shed some light on the main physical phenomena involved and pro-
vide practical indications on their dependence on the relevant flow conditions and 
parameters. 

1 Introduction 

Local flow phenomena, like tip leakage, capable of interfering with the blade loading are known 
to be the dominant source of rotordynamic whirl forces in compressible flow machines (Thomas, 
1958; Alford, 1958; Martinez-Sanchez et al., 1995; Martinez-Sanchez and Song, 1997a, 1997b). 
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Previous research efforts in turbopumps mainly focused on the origin and analysis of rotordy-
namic impeller forces under noncavitating conditions (Chamieh et al., 1985; Jery, 1985; Jery et 
al., 1987; Shoji and Ohashi, 1987; Ohashi & Shoji 1987; Adkins and Brennen, 1988; Arndt et al., 
1989, 1990; Tsujimoto et al., 1997; Uy and Brennen, 1999; Baskharone, 1999; Hiwata and Tsu-
jimoto, 2002). However, it is widely recognized that cavitation in turbopumps can promote the 
onset of dangerous self-sustained whirl instabilities (Rosenmann, 1965) and substantially modify 
the behavior of fluid-induced rotordynamic forces on helical inducers (Arndt and Franz, 1986; 
Brennen, 1994; Bhattacharyya, 1994), where the large-scale dynamic response of the entire flow 
to the impeller whirl motion seems to play a significant role (d'Auria, d’Agostino and Brennen, 
1995; d’Agostino and d’Auria, 1997; d’Agostino, d’Auria and Brennen, 1998; d’Agostino and 
Venturini, 2002, 2003). Because of their greater complexity, rotordynamic fluid forces in whirl-
ing and cavitating turbopump impellers have so far received comparatively less attention in the 
open literature and a satisfactory understanding of their behavior is still lacking.   

The available experimental evidence indicates that cavitation affects the added mass of the ro-
tor and significantly reduces the magnitude of the rotordynamic fluid forces on helical inducers. It 
is worth noting that the consequent increase of the critical speeds is especially dangerous in su-
percritical machines, commonly used in liquid propellant rocket feed systems. A second major 
effect of cavitation in helical inducers is the introduction of a complex oscillatory dependence of 
the rotordynamic fluid forces on the whirl frequency. This finding seems to indicate the possible 
occurrence of resonance phenomena in the compressible cavitating flow inside the inducer blade 
channels under the excitation imposed by the eccentric motion of the rotor. Earlier theoretical 
analyses aimed at investigating this hypothesis have addressed the case of infinitely-long whirling 
helical inducers with uniformly distributed traveling bubble cavitation (d'Auria et al., 1995; 
d’Agostino and d’Auria, 1997; d’Agostino, d’Auria and Brennen 1998). The results confirmed 
the presence of internal flow resonances and indicate that bubble dynamic effects do not play a 
major role, except, perhaps, at extremely high whirl speeds. They also suggest that the assump-
tions of uniformly-distributed bubbly cavitation and infinitely long inducers may contribute to 
explain the discrepancies between theoretical predictions and experimental data. On the other 
hand, no resonant phenomena seem to occur in radial impellers, where the limited available evi-
dence indicates that cavitation only has a marginal effect on the rotordynamic whirl forces (Franz 
et al., 1989).  

Following up on this work, we now investigate the dynamics of the unsteady flow in whirling 
helical inducers and radial impellers with attached blade cavitation, in order to gain some better 
understanding of the fundamental reasons for the different behavior of rotordynamic fluid forces 
in this two kinds of turbomachines. Upon introduction of suitable simplifying approximations, the 
flow is linearized for small-amplitude whirl motions of the rotor and solved by modal expansion. 
In spite of the simplifications introduced in order to obtain an efficient closed form solution, 
comparison with the available experimental data indicates that the proposed analyses correctly 
predict the main observed features and differences of the rotordynamic fluid forces in whirling 
and cavitating inducers and radial impellers, thus providing useful practical indications and fun-
damental understanding of their dependence on the relevant flow conditions and parameters. 
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2 Linearized Dynamics of the Cavitating Flow in a Whirling Inducer 

 We first examine the dynamics of an incompressible, inviscid liquid of velocity u , pressure 
 
p , 

and density 
 
!

L
 in a helical inducer rotating with velocity !  and whirling on a circular orbit of 

small eccentricity !  at angular speed ! . A number of simplifications are introduced in order to 
reduce the problem to a form admitting an analytical solution. As illustrated in Figure 1, a simple 
helical inducer is considered, with 
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B
 radial blades, zero blade thickness, axial length  L , hub 
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Figure 1. Schematic of the flow configuration and inducer geometry. 

L!s
P!n

"

w

#r

$u

u

$v

v

% 2 & '

z

P

2%r

(CaC
2

'

 

Figure 2. Schematic of the thin layer of attached cavitation pockets on the suction sides of the inducer 
blades. 
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radius 
 
r

H
, tip radius 

 
r
T

, tip blade angle 
 
!

T
, and constant pitch: 

  
P = 2!r

T
tan"

T
= 2!r

#
tan"  

 The flow is fully wetted everywhere except on the suction sides of the blades, where attached 
cavitation occurs. The mean flow velocity  u  in the blade channels is specified by the flow coef-
ficient 

 
! = w "r

T
, assuming fully-guided forced-vortex flow with zero radial velocity  u , 

uniform axial velocity  w , and angular velocity 
  
!

F
= v r = ! 1"# cot $

T
( ) . With reference to 

Figure 2, cavitation is thought to occur on the suction sides of the blades in the form of slowly-
moving attached pockets uniformly distributed in a thin layer of given thickness  ! << P  and 
damped acoustic admittance 

  
!

C
a

C

2
1+ i"( ) , where !  is a nondimensional damping coefficient. 

The static pressure 
 
p

C
 in the cavitating layer is taken equal to the total pressure 

 
p

t
 of the sur-

rounding liquid, assuming that the flow slows down without losses in the low velocity region 
between the cavities.  

We define stationary cylindrical coordinates 
  
r,! , z  with center in  O  on the axis of the stator, 

rotating cylindrical coordinates 
  !
r , !" , !z  spinning at the rotor speed with center in the same point 

 O , and rotating and whirling cylindrical coordinates 
  
r
!
,"

!
, z

!  fixed in the inducer and with 
center in  O!  on its geometric axis, as shown in Figure 3. Then the equations of the blade surfaces 
are: 

  
B = !

"
+

2#

P
z
"
$ !

j
= 0  

where 
  
!

j
= 2" j #1( ) N

B
 is the angular location of the 

 
j -th blade, with

  
j = 1,2,..., N

B
. The 

flow velocities in the stationary and rotating frames are related by  u = !u +" # r  and, to the first 
order in the eccentricity: 

  
r
!
= r " # cos $ "%t( ) = &r " # cos &$ " &% t( )  

  

!
"
= ! #$t +

%

r
sin ! #&t( ) = '! +

%

r
sin '! # '& t( )  

 z
!
= "z = z  

 

Figure 3. Schematic of whirl motion, coordinates and rotordynamic forces. 
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where !" = " #$ .  
Neglecting Coriolis forces, the perturbation velocity   !u  in the frame moving with the mean 

flow at axial velocity  w  and angular speed 
 
!

F
 is irrotational (

  
!u = ! !" ) because it originates 

from a resting flow with conservative centrifugal forces. Therefore, in the rotating frame the flow 
velocity is 

   
!u = "

F
# "( ) $ r + w +% !&  and the Bernoulli’s equation writes: 

   

!" !u

"t
# dx$ +

1

2
!u # !u %

1

2
& 2

r # r +
p

'
L

= !u ( ) ( !u( ) # dx$  

where 
   
! " #u = 2 $

F
% $( ) . Evaluating this equation between the generic point and the corre-

sponding unperturbed conditions on a vorticity line parallel to the inducer axis, the linearized 
governing equations for the flow perturbations (tildes) in the rotating frame are: 

  
!2
!" = 0       and      

    

!" !#

"t
+ !u $% !# +

!p

&
L

= 0  

These equations must be complemented with the appropriate boundary conditions. Here, the 
flow velocity must satisfy the kinematic conditions 

  
DB Dt = 0  on the hub, blade and casing 

surfaces of equations 
   
B x, t( ) = 0  in the relevant coordinates. In addition, the total pressure is 

assumed constant on the inlet and outlet sections of the inducer.  
 In order to simplify the boundary conditions, let introduce orthogonal helical coordinates 

  
r, n, s  of unit vectors 

  
e

r
, 
  
e

n
, 
  
e

s
 as shown in Figure 4 with: 

  
n = ! "!

j( )
N

B

2#
+ z

N
B

P
 

  
s = z

sin
2 !

P
" # "#

j( )
cos

2 !

2$
 

Here, for convenience,  n  is normalized with the channel width 
  
P

!
= P N

B
( )cos"  and  s  with 

the blade length 
  
L
!
= P sin"  at the radius corresponding to the angle ! . The rotating and body-

fixed orthogonal helical coordinates 
  !
r , !n , !s  and 

  
r
!
, n

!
, s

!  are similarly defined in terms of 
  !
r , !" , !z  and 

  
r
!
,"

!
, z

! . Then, the equations of the hub, blade pressure sides, blade suction sides 
and casing surfaces are: 

 

Figure 4. Schematic of the transformation from the cylindrical coordinates 
  
r,! , z  to the orthogonal 

helical coordinates 
  
r, n, s . 
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B = r

!
" r

H
= 0  

  B = n
!
= 0  

  
B = n

!
"1+ # P

!
= 0  

  
B = r ! r

T
= 0  

where 
 
! = ! t( ) . From the continuity equation for the layer 

  
!

C
" # constant , the definition of 

  
a

C

2
= dp

t
d!

C
 and the Bernoulli’s equation 

  
!p

t
!

L
= "# !$ #t  it follows that: 

   

d!

dt
=

"
L
!

"
C
a

C

2

# 2
!$

#t
2

 

With these results, expressing 
  
!2
!" = 0  and 

   
!B !t + "u #$B = 0  in the rotating helical coordi-

nates 
  !
r , !n , !s : 

   

! 2
!"

! #r
2
+

1

#r

! !"

! #r
+

N
B

2

P
2

cos
2 $

! 2
!"

! #n
2
+

cos
2 $

4% 2 #r
2

! 2
!"

! #s 2
= 0  

and the linearized boundary conditions are found to be:  

   

! !"

! #r
= 0    on   

 
!r = r

T
 

   

! !"

! #r
= $ % & '

F
( )sin H    on   

 
!r = r

H
 

   

! !"

! #n
=
$ % & '

F
( )P

2
cos

2 (

2) #r N
B

cos H    on     !n = 0  

   

! !"

! #n
+ K

C

! 2
!"

!t
2
=
$ % & '

F
( )P

2
cos

2 (

2) #r N
B

cos H    on     !n = 1  

   

! !"

!t
= 0    on   

  

!s = !s
i
= "

cos
2 #

2N
B

, !s
i
+ N

R
 

where: 

  

H =
2!

N
B

"n sin
2 # $ 2! "s +%

j
$ "& t  

  

K
C
=

!
L
"P

#

!
C
a

C

2
1+ i$( )

 

is a parameter describing the behavior of the cavitating layer, and 
 
N

R
 is the number of revolu-

tions of the blade channels about the inducer axis. 
 With the above boundary conditions the Laplace equation for 

  
!! = Re !̂{ }  yields a well-

posed boundary value problem for the complex velocity potential 
 
!̂ . If the variable blade angle 

!  is approximated by a constant value 
 
!

M
 at some suitable mean radius 

 
r

M
, the separable solu-

tion (Lebedev, 1965) in the blade channels   0 ! "n ! 1  is: 

  
!̂ = !̂

H
+ !̂

B
 

where: 
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!̂
H
= R

km
"r( )N

k
"n( )S

m
"s( )e

# i "$ t

m=1

+%

&
k=1

+%

&  

  

!̂
B
= R

lm
"r( )N

lm
"n( )S

m
"s( )e

# i "$ t

m=1

+%

&
l=1

+%

&  

are the solutions corresponding to the hub and blade excitation. In the expression of 
  
!̂

H
: 

 

R
km

!r( ) = I
km

!K
q

m

"
k

#r
T( ) I

q
m

"
k

#
!r( ) $ !I

q
m

"
k

#r
T( )K

q
m

"
k

#
!r( )

!I
q

m

"
k

#r
H( ) !K

q
m

"
k

#r
T( ) $ !K

q
m

"
k

#r
H( ) !I

q
m

"
k

#r
T( )

 

  

N
k

!n( ) = cos !n "#
k

2( )  

are the coupled modal solutions corresponding to the hub excitation, where: 

  

!
k

"
=

N
B

P cos#
M

$%
k

2  

and 
  
!"

k

2  are the (complex) principal roots of the equation: 

  
!"

2
sin !"

2
= !K

C
#$

2
cos !"

2  
Similarly, in the expression of 

  
!̂

B
: 

 
R

lm
!r( ) = !Y

q
m

"
lm

r
H( ) J

q
m

"
lm

!r( ) # !J
q

m

"
lm

r
H( )Yq

m

"
lm

!r( )  

  

N
lm

!n( ) =
I 1( )cosh "

lm
!n( ) # I 0( )cosh "

lm
!n #1( )$

%
&
'

"
lm

sinh"
lm
# K

C
!( 2

cosh"
lm

+  

  

!
I 0( )K

C
"# 2

$
lm

sinh$
lm
! K

C
"# 2

cosh$
lm

sinh $
lm

"n !1( )%
&

'
(

$
lm

 

are the coupled modal solutions corresponding to the blade excitation, where 
 
!

lm
 are the (posi-

tive) roots of the equation: 

  
!J
q

m

"r
H( ) !Y

q
m

"r
T( ) # !Y

q
m

"r
H( ) !J

q
m

"r
T( ) = 0  

  

!
lm
= "

lm

P cos#
M

N
B

 

and: 

  

I !n( ) =
" # $ %

F( )P
2

cos
2 &

M

'N
B
N

R

e
i 2' N

B( ) !n sin
2 &

M
+(

j
)
*

+
, -  

  

!
R

lm
"r( )d "r

r
H

r
T

#

R
lm

2 "r( ) "r d "r
r
H

r
T

#
e
$ i2% "s

S
m

"s( )d "s
"s
i

"s
i
+N

R

#  

Finally, in the both of the expressions of 
  
!̂

H
 and 

  
!̂

B
: 
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q
m
=

m

2N
R

cos!
M

      and      
  

S
m

!s( ) = sin
m" !s # !s

i
( )
N

R

 

 The instantaneous fluid force on the inducer is: 

    

!F = ! p "x
#$0

, t( )dS
S

H
%S

B
"&  

where the pressure: 

   

p = p ! "
L

# !$
#t

!
%

F
! %

2&
# !$
# 's

(

)*
+

,-
 

is evaluated for  ! " 0  at the perturbed position of the hub and blade surfaces 
 
S

H
 and 

 
S

B
. Thus, 

expanding to the first order in the eccentricity and noting that the mean pressure 
  
p !r

"=0
, t( )  

makes no net contribution to the force on the inducer in its centered position, the following ex-
pression for the fluid force on the inducer is obtained: 

    

!F ! "
# p

# $r
%=0

$r
%&0

" $r
%=0

( ) + !p $x
%=0

, t( )
'

(
)
)

*

+
,
,

dS
S

H
-S

B
".  

Here the first term is the buoyancy force on the displaced inducer due to the radial gradient of the 
mean pressure: 

  

dp

d !r
= "

L
# 2 !r 1$% 2

cot
2 &

T( )  

and the second term is the force due to the pressure perturbations generated by the eccentric mo-
tion. The components of the instantaneous rotordynamic force are therefore obtained by 
integrating the projections of the elementary pressure forces along the axes of the whirling frame 
of center in  O!  and unit vectors 

  
e

R
, 

  
e

T
, 

  
e

z
, as shown in Figure 5. Finally, further integration 

over a period 
 
2! "#  yields the time-averaged rotordynamic force  F  on the inducer.  

The entire flow has therefore been determined in terms of the material properties of the two 
phases, the geometry of the inducer, the nature of the excitation, and the assigned quantities ! , 
! , 

 
!

C
, 
 
a

C
 and ! . 

 

Figure 5. Schematic of the transformation form the rotating frame 
   
O,e

!r
,e

!"
,e

!z
 to the whirling frame 

   
O

!
,e

R
,e

T
,e

z
. 
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3 Rotordynamic Forces on Whirling and Cavitating Axial Inducers 

The rotordynamic fluid forces predicted by the present model will be compared with the data 
measured by Bhattacharyya (1994) on a three-bladed helical inducer with 

  
r
T
= 5.06 cm , 

  
r

H
r
T
= 0.4 , 

  
!

T
= 9° ,   L = 2.43 cm ,  ! = 0.254 mm . The data refer to operation in water at 

room temperature, rotational speed 
 
! = 3,000 rpm , variable whirl speed, and several values of 

the inlet flow coefficient 
   
!

1
= !Q A

1
"r

T
 (not corrected for hub blockage) and cavitation number 

  
!

1
= p

1
" p

V( ) 1

2
#

L
$ 2

r
T

2 .  
 Figures 6 shows some typical experimental results for the nondimensional rotordynamic 

force 
    
!f = F !" 2

P#
L
$ 2

r
T

 on the sample inducer tested under developed cavitation at 

 
!

1
= 0.049  and 

 
!

1
= 0.106 . Notice that the radial and tangential force components do not vary 

quadratically with the normalized whirl speed ! " , and that their behavior is characterized by 
multiple zero crossings. The radial force (left) is essentially positive (destabilizing) for 

 
! " < #0.2 , oscillates above and below zero for 

 
!0.2 <" # < 0.3 , and remains essentially 

negative (stabilizing) for 
 
! " > 0.3 . Similar behavior was observed for other cavitation num-

bers (Bhattacharyya, 1994). The tangential force (right) is positive over most of the sampled 
frequencies, but also exhibits rapid oscillations near the origin. In all of the experiments of Bhat-
tacharyya a peculiar feature of the tangential force is the occurrence of a sharp positive 
(destabilizing) peak at 

 
! " # 0.2 , whose intensity increases at higher cavitation numbers and 

lower flow coefficients.  

f R

! "   

Figure 6. Nondimensional radial rotordynamic force 
 
f

R
 (left) and tangential rotordynamic force 

 
f

T
(right) 

on the test inducer as functions of the ratio ! "  of the whirl and rotational speeds. The experimental 
values (circles) obtained by Bhattacharyya, 1994, under developed cavitation conditions at 

 
!

1
= 0.049  and 

 
!

1
= 0.106  are compared with the model predictions (solid line) for 

  
! = !

1
1" r

H

2
r
T

2( ) = 0.0583 , 

  
Re K

C
!

2{ } = 2.5 , 
 
! = 0.045  and 

  
N

R
= 0.285 . 
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 Figures 6 also shows the rotordynamic forces predicted by the present model (continuous 
line) assuming 

  
Re K

C
!

2{ } = 2.5  for the real part of the cavitation parameter and 
 
! = 0.045  for 

the nondimensional damping coefficient. An effective value of the nondimensional blade channel 
length, 

  
N

R
= 0.285 , intermediate between the geometric length of the blades and their actual 

overlap, has been used in the computations in order to empirically compensate for the errors 
introduced by the formulation in orthogonal helical coordinates. In addition, the pressure gradient 
of the mean flow has been evaluated for a decreased value of the swirl speed 

 
!

F
 in order to 

account for the gradual rotational acceleration of the flow entering the inducer. Comparison with 
the experimental data shows that, in spite of its approximate nature, the present theory correctly 
captures the observed magnitude of the rotordynamic forces and the typical features of their whirl 
frequency spectrum, including their stabilizing or destabilizing effects on the eccentric motion of 
the inducer.  

 The complex dependence of the lateral rotordynamic fluid forces on the whirl speed is due to 
the occurrence of internal resonances of the cavitating flow in the blade channels under the exci-
tation generated by the whirl motion of the inducer. Given the functional dependence of the 
solution, it appears that the system has an infinite set of (generally complex) critical whirl speeds: 

  

!"
lm
= "

lm
# $ = ±

%
lm

tanh%
lm

K
C

 

symmetrically located above and below the rotational speed !  (synchronous conditions). The 
critical speeds are seen to depend on the mode numbers of the flow perturbations and the parame-
ter 

 
K

C
 used to characterize the occurrence of cavitation on the suction sides of the blades. The 

KCΩ
2

α

T L = 20 °C

T L =100 °C

 

Figure 7. Nondimensional cavitation parameter 
  
K

C
!

2  as a function of the void fraction in the cavitat-
ing layer for undamped operation in water at 

  
T

L
= 20 °C  (

  
!

T
R = 0.3 , 

  
! P

"
= 3% ) and 

  
T

L
= 100 °C  

(
  
!

T
R = 1 , 

  
! P

"
= 10% ). 
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extent of cavitation increases when the value of this parameter is varied from zero, corresponding 
to fully-wetted flow conditions, to larger and larger values. In the special case of vanishing cavi-
tation damping (

 
! " 0 ), 

 
K

C
 tends to a real value and the boundary value problem for 

 
!̂  to 

become self-adjoint, with real eigenvalues  !
2  and  !

2 . In the presence of damping, the series for 

 
!̂  converge rapidly even for low subcritical values of 

 
! << 1 , and only the first few modes are 

needed in the computations. For these modes the eigenvalues are of order unity or slightly larger. 
Since cavitating flows are inherently dissipative, it follows that the critical whirl speeds of practi-
cal importance tend to concentrate in two small ranges just above and below synchronous 
conditions as soon as the intensity of cavitation is sufficient for raising the real part of 

  
K

C
!

2  
well above unity.  

 The relation of 
 
K

C
 to the extent of cavitation can be investigated with the help of a suitable 

flow model. Here we make use of the classical quasi-homogeneous isenthalpic cavitation model 
with thermal effects described by Brennen (1995) and modified by Rapposelli and d’Agostino 
(2001) to account for the concentration of active nuclei. The behavior of the real part of 

  
K

C
!

2  
with the local void fraction !  is illustrated in Figure 7 for water at room and boiling temperature. 
The results depend parametrically on the blade channel blockage 

 
! P

"  and the ratio 
 
!

T
R  

between the thermal boundary layer thickness surrounding a spherical cavity and the radius of the 
cavity itself. The parameter 

 
!

T
R  is nearly constant during the thermally controlled growth of 

cavitating bubbles and its value can be estimated as a function of the flow conditions, the thermo-
physical properties of the two phases, and the concentration of active cavitation nuclei 
(Rapposelli and d’Agostino, 2001). Here the choice of a higher blockage 

 
! P

"  at the boiling 
temperature reflects the greater penetration of cavitation in the liquid at elevated temperatures. 
From Figure 8 it appears that the value 

  
Re K

C
!

2{ } = 2.5  previously used for the prediction of 
the rotordynamic forces would correspond to void fractions ranging from  4 !10

"2  at room tem-
perature to  10

!1  at boiling conditions. The average separation between bubbles would then be on 
the order of 2 to 3 diameters, not unrealistic mean values for typical cavitation on inducer blades. 

f R

! "

Re KC"
2{ }

 

f T

! "

Re KC"
2{ }

 

Figure 8. Waterfall plots of the nondimensional radial rotordynamic force 
 
f

R
 (left) and tangential 

rotordynamic force 
 
f

T
 (right) on the test inducer functions of the ratio ! "  of the whirl and rota-

tional speeds and the real part of the nondimensional cavitation parameter, 
  
K

C
!

2 . The flow coefficient 
is 

 
! = 0.0583 , the nondimensional damping coefficient is 

 
! = 0.045  and the effective length of the 

blade channels is NR = 0.285 . 
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The influence of the cavitation parameter on the solution is illustrated by the waterfall plots of 
Figure 8. The figure clearly shows that the degree of cavitation has a major impact in locating the 
critical speeds and determining the magnitude of the rotordynamic forces as functions of the 
whirl speed. Two sets of subsynchronous and supersynchronous resonances are predicted. At 
higher values of the cavitation parameter the amplitudes of the resonances decrease, as their fre-
quencies approach synchronous conditions. At low values of 

  
Re K

C
!

2{ } << 1  the void fraction 
is likely to violate the condition: 

  
!"( )

min
# $ sin%

M
 

for the survival of the cavitating layer during a complete oscillation cycle of the whirl motion. 
With typical choices of the relevant quantities, the minimum void fraction is estimated to be 

 
!

min
" 10

#2
÷10

#1 . Hence, using the results of Figure 7, the physically significant solutions of the 
present theory are restricted to minimum values of the cavitation parameter: 

  
Re K

C
!

2{ }
min

" 1  to  10  

corresponding to room temperature and boiling conditions, respectively. In this range Figure 8 
indicates the presence of two relatively weak subsynchronous critical speeds near 

 
! " # 0.5 , 

and a second couple of considerably more intense supersynchronous critical speeds in the vicinity 
of 

 
! " # 1.5 . The spectral locations of these critical speeds evocatively overlap with the re-

ported ranges of free-whirl instabilities in cavitating turbopumps.  
 As a final comment, comparison of the data reported in Figure 6  with the results of Figure 8 

indicates that the scant experimental information currently available on the behavior of rotordy-
namic forces in cavitating turbopumps only covers a limited portion of the frequency spectrum, 
and probably not the most significant one in connection with the onset of cavitation-induced 
whirl instabilities.  

4 Linearized Dynamics of the Cavitating Flow in a Whirling Centrifugal Impeller 

With a similar approach, we next examine the dynamics of an incompressible, inviscid liquid of 
velocity  u , pressure 

 
p , and density 

 
!

L
 in a centrifugal pump impeller rotating with velocity !  

and whirling on a circular orbit of small eccentricity !  at angular speed ! . A number of ideali-
zations are introduced in order to obtain an analytical solution. Figure 9 (left) illustrates the 
simple centrifugal pump considered, with 

 
N

B
 logarithmic-spiral blades of equation 

  
r d! r = " tan# , zero blade thickness, axial length  b , hub radius 

 
r

H
, tip radius 

 
r
T

, blade angle 
! .  

Also in this case the flow is fully wetted everywhere except on the suction sides of the blades, 
where attached cavitation occurs. The mean flow velocity  u  in the blade channels (on the right 
in Fig. 9) is specified by the flow coefficient 

 
! = u

T
"r

T
, assuming fully-guided forced-vortex 

flow with zero axial velocity  w , radial velocity 
 
u = r

T
u

T
r , and tangential velocity: 

  
v

2
= ! 2" 2

r
T

4
r

2( ) tan
2 # +! 2

r
2 $ 2! 2

r
T

2" tan#  

Also in this case cavitation is thought to occur on the suction sides of the blades in a thin layer 
of given variable thickness !  (constant coordinate  n , see below) and acoustic admittance 

  
!

C
a

C

2 . 
For simplicity, it is also assumed that the static pressure 

 
p

C
 in the cavitating layer is nearly equal 

to the total pressure 
 
p

t
 of the surrounding liquid. 
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We define again stationary cylindrical coordinates 
  
r,! , z  with center in  O  on the axis of the 

stator, rotating cylindrical coordinates 
  !
r , !" , !z  spinning at the rotor speed with center in the 

same point  O , and rotating and whirling cylindrical coordinates 
  
r
!
,"

!
, z

!  fixed in the inducer 
and with center in  O!  on its geometric axis.  Then the equations of the blade surfaces are: 

  

B = ln
r

r
H

+ ! "!
j( )cot # = 0  

where 
  
!

j
= 2" j #1( ) N

B
 is the angular location of the 

 
j -th blade, with

  
j = 1,2,..., N

B
. Once 

more the flow velocities in the stationary and rotating frames are related by  u = !u +" # r  and, 
to the first order in the eccentricity (Fig. 3): 

  
r
!
= r " # cos $ "%t( ) = &r " # cos &$ " &% t( )  

  

!
"
= ! #$t +

%

r
sin ! #&t( ) = '! +

%

r
sin '! # '& t( )  

 z
!
= "z = z . 

where !" = " #$ . 
The perturbation velocity   !u  generated by the blade motion is irrotational (

  
!u = !" ) because 

the flow originates from a uniform stream. Therefore, in the rotating frame the flow velocity is 
 !u = u " # $ r  and the Bernoulli's equation writes: 

   

!" !u

"t
# dx$ +

1

2
!u # !u %

1

2
& 2

r # r +
p

'
L

= C t( )  

where 
 
C t( )  is the unsteady Bernoulli’s constant. Hence the linearized governing equations for 

the flow perturbations (tildes) at any given point in the rotating frame are: 

  
!2
!" = 0       and      

    

!" !#

"t
+ !u $% !# +

!p

&
L

= 0  

             

Figure 9. Schematic of the radial impeller geometry (left) and flow velocity triangle (right). 
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Here the flow velocity must satisfy the kinematic conditions 
  
Db Dt = 0  on the hub, blade and 

casing surfaces of equations 
   
b x, t( ) = 0  in the relevant coordinates. In addition, the total pressure 

is assumed constant on the inlet and outlet sections of the inducer. 
In order to simplify the derivation of the solution, let us introduce orthogonal spiral coordi-

nates 
  
n, s  (Campos and Gil, 1995; Visser, 1999) as shown in Figure 10, with: 

  

n =
N

B

2!
" #"

j( ) +
N

B

2!
ln

r

r
H

$

%&
'

()
tan*  

  

n = !
sin" cos"

ln r
T

r
H( )

# !#
j( ) +

ln r r
H( )

ln r
T

r
H( )

cos
2 "  

For convenience,  n  and  s  are normalized to map a channel into a rectangle
 

0,1( ) ! 0,1( ) . Rotat-
ing and body-fixed orthogonal spiral coordinates 

  
!n , !s  and 

  
n
!
, s

!  are similarly defined in terms 
of 

  
!r , !"  and 

  
r
!
,"

! . The third dimension  z  is easily added. Then, the equations of the inlet, 
blade pressure side, blade suction side and outlet surfaces are: 

  B = s
!
= 0 . 

  B = n
!
= 0 . 

  B = n
!
"1+ # = 0 . 

  B = s
!
"1= 0 . 

where 
 
! = ! t( ) .  

From the continuity equation for the layer 
  
!

C
" # constant , the definition of 

  
a

C

2
= dp d!

C
 

and the Bernoulli's equation 
  
!p !

L
" #$ !% $t  it follows that: 

   

d!

dt
=

"
L
!

"
C
a

C

2

# 2
!$

#t
2

 

 

Figure 10. Schematic of the logarithmic-spiral coordinates. 
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With these results, and expressing 
  
!2
!" = 0  and 

   
!B !t + "u #$B = 0  in the rotating helical coor-

dinates 
  
!r , !n !, !s : 

   

!" 2
!# =

cos
2 $

ln
2

r
T

r
H

( )
% 2
!#

% !s 2
+

N
B

2

4& 2
cos

2 $

% 2
!#

% !n
2
= 0  

and the linearized boundary conditions are found to be: 

   

! !"

!t
= 0       on        !s = 1    and     !s = 0  

   

! !"
! #n

= $
2%
N

B

#& r
H

r
T

r
H

'

()
*

+,

#s

cos
2 - sin-

cos #.
sin-

+
sin #.
cos-

'
()

*
+,
+

/

0

1
1

 

  

+
r
T

r
H

!

"#
$

%&

1' (s

u
T

sin ()       on        !n = 0  

   

N
B

2!
K

E

" 2
!#

"t
2
+

N
B

2!r
H

2
r
T

r
H

( )
2 $s

cos2 %
exp &

4!
N

B

sin% cos%
'

()
*

+,
" !#
" $n

=  

  

= ! "#
sin$

r
H

r
T

r
H

( )
"s
exp %

2&
N

B

sin$ cos$
'

()
*

+,
cos "-
sin$

+
sin "-
cos$

'
()

*
+,
+  

  

+!
u

T

r
H

2

r
T

r
H

"

#$
%

&'

1(3 )s

exp (
6*
N

B

sin+ cos+
"

#$
%

&'
sin ),
cos2 +

       on     !n = 1  

Here: 

  

!" = !# $ !% t = #
j
+

2&
N

B

!n cos
2 ' $ !s ln

r
T

r
H

(

)*
+

,-
tan' $ !% t  

and: 

  

K
E
=

4! 2"
L
#

N
B

2"
C
a

C

2
cos

2 $  

is a parameter describing the dynamic behavior of the cavitating layer and the extent of cavita-
tion. 

With the above boundary conditions the Laplace equation for 
  
!! = Re !̂{ }  yields a well-

posed boundary value problem for the complex velocity potential 
 
!̂ . The separable solution in 

the blade channels is: 

  

!̂ = c
1
cosh "n #

m

2( ) + c
2

sinh "n #
m

2( )$
%&

'
()

sin m* "s( ){ }e
+ i ", t

m=1

+-

.  

with eigenvalues: 

  

!
m

2
= i

2m" 2
cos

2 #

N
B

ln r
T

r
H

( )
 

The instantaneous fluid force on the inducer is then: 
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!F = !p !r

"#0
, t( ) dS

blades$  

where, with second order error in the perturbations, the pressure: 

   
!p = !"

L

# !$

#t
! "

L
%u &' !$  

is evaluated for at the unperturbed position of the impeller ( ! = 0 ). Because no hub is present, no 
buoyancy force acts on the displaced inducer due to the radial gradient of the mean pressure. The 
components of the instantaneous rotordynamic force are therefore obtained by integrating the 
projections of the elementary pressure forces along the axes of the whirling frame of center in  O!  
and unit vectors 

   
e

R
, e

T
, oriented as the eccentricity and its normal in the direction of the whirl 

motion. Finally, further integration over a period 
 
2! "#  yields the time-averaged rotordynamic 

force  F  on the inducer.  
The flow has then been determined in terms of the material properties of the two phases, the 

geometry of the inducer, the nature of the excitation, and the assigned quantities ! , ! , 
 
!

C
, 
 
a

C
. 

5 Rotordynamic Forces on Whirling and Cavitating Radial Impellers 

In centrifugal pumps, the measured rotordynamic fluid forces in the presence of cavitation are 
nearly equal to those for fully-wetted flows (Jery, 1987; Franz et al., 1989). Here the rotordy-
namic fluid forces predicted by the present model are compared with the data measured by Jery 
(1987) at Caltech on a five-bladed centrifugal pump with 

  
r
T
= 81 mm , 

  
r

H
= 40 mm , 

 
! = 23° , 

  b = 16 mm ,  ! = 0.126 mm , without cavitation. The data refer to operation in water at room 
temperature, flow coefficient 

 
! = 0.092 , rotational speed 

 
! = 1000 rpm , and variable whirl 

speed. The results obtained by Franz (1989) for a cavitating radial impeller with a volute are also 
very similar.  

 

Figure 11. Comparison of the normalized radial (left) and tangential (right) rotordynamic forces, 
 
f

R
 

and 
 
f

T
, obtained from the present theory (continuous line) and the experimental results of Jery, 1987 

(divided by six, circles) for a centrifugal impeller with 
 ! = 1000 rpm , 

  
N

B
= 5 , 

 
! = 0.060 , 

 
! = 23° , 

  
r
T
= 81 mm ,   b = 16 mm , 

  
r

H
r
T
= 0.5  and 

  
!

2
K

E
= 2 . 
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The calculated rotordynamic forces shown in the figures have been nondimensionalized by 

  
!"#

L
r
T

2$ 2
b . Comparison with the experimental results by Jery (1987) in Figure 11 shows that 

the calculated forces are about six times smaller than experimentally measured, but their familiar 
quadratic behavior with the whirl speed is well captured by the theoretical results and the vertex 
of the parabola is correctly located. The reasons for the observed discrepancy have not been iden-
tified with certainty, but they are likely to be mostly related to the approximate nature of the 
boundary conditions at the inlet and outlet sections of the impeller. In their present form these 
boundary conditions do not realistically account for the dynamic response of the flow in the im-
peller eye and diffuser (or volute). The inclusion of these effects would introduce significant 
additional contributions to the inertial reaction of the flow on the impeller, increasing the magni-
tude of the rotordynamic forces.  

Clearly with present notations rotordynamic forces are destabilizing when the radial compo-
nent is positive and, for the onset of asynchronous whirl, when the tangential component has the 
same sign as the whirl speed ! . Hence, with reference to Figure 11, the predicted radial force is 
generally destabilizing except near synchronous conditions (! " # ), while the tangential force 
would promote subsynchronous shaft motions in the range of whirl speeds  0 <! < 0.7 . Also 
notice that both components of the rotordynamic force are relatively small in the vicinity of 

 
! " = 0.5 , corresponding to the familiar “whip conditions” of journal bearings (Newkirk and 
Taylor, 1925; Hori, 1959).  

Present results for radial turbopumps are also radically different from those obtained for cavi-
tating inducers. In this case both the experiments of Bhattacharyya et al. (1997) and our previous 
theoretical investigations based on the same approach used herein (d’Agostino, d’Auria and 
Brennen (1998), d’Agostino and Venturini (2002, 2003) showed a more complex dependence of 
the rotordynamic forces on the whirl speed. The spectral response of these forces as functions of 
the whirl frequency displayed a number of multiple peaks, which the theory indicated to be re-
lated with the occurrence of internal resonances of the cavitating flow in the blade channels under 
the excitation provided by the eccentric motion of the inducer. From the mathematical standpoint, 

    

Figure 12. Comparison of the normalized radial rotordynamic force, 
 
f

R
, obtained from the present 

theory (left) for 
  
K

E
= 2 !10

"5
 sec

2  and several rotational speeds !  with the experimental results 
(right) of Jery, 1987, for a centrifugal impeller with 

  
N

B
= 5 , 

 
! = 0.060 , 

 
! = 23° , 

  
r
T
= 81 mm , 

  b = 16 mm  and 
  
r

H
r
T
= 0.5 . 
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these resonances are the consequence of the (nearly) real nature of the flow eigenvalues, which 
leads to an infinite set of lowly-damped critical whirl speeds, symmetrically located above and 
below the rotational speed !  (synchronous conditions). Physically, the peaks of the rotordy-
namic forces are due to the occurrence of standing pressure waves with frequency-dependent 
wavelength in the blade channels. Hence, at some specific excitation frequencies the wavelength 
of the resonant flow perturbations is an odd multiple of the blade channel revolution around the 
hub. In this case the pressure distribution acts in a strong and spatially coherent fashion on the 
inducer, leading to the intensification of the resulting forces.  

Rotordynamic forces on radial impellers, on the other hand, do not peak at any whirl fre-
quency. Mathematically, in this case the critical whirl speeds are (nearly) imaginary: 

  

!"
m
= ±i#e

$
2#

N
B

sin% cos% 2m

K
E
N

B
r

H
r
T

ln r
T

r
H

( )
tan

2m# 2
cos

2 %

N
B

ln r
T

r
H

( )
 

Physically, in radial impellers the presence of the blades prevents the formation of synchronous 
pressure waves with significant extension in the azimuthal direction, capable of reacting in a 
coherent fashion on the impeller.  

Notice that the flow solution depends on the parameter 
 
K

E
, whose relationship with the ex-

tent of cavitation has already been investigated in our earlier work (d’Agostino and Venturini, 
2002) with the help of a quasi-homogeneous isenthalpic cavitation model with thermal effects 
(Rapposelli and d’Agostino, 2001). However, as mentioned earlier, rotordynamic forces are only 
weakly dependent on the extent of cavitation and the value of 

 
K

E
. 

The capability of the model of qualitatively capturing the main phenomena controlling the 
development of rotordynamic fluid forces in whirling centrifugal impellers is confirmed by Fig-
ures 12 and 13, which illustrate the sensitivity of the solution to changes of the rotational speed 
!  and flow coefficient ! . In both cases the predicted impact of these parameters is small, con-
sistently with typical experimental results from Jery (1987) shown in the right diagram of the 
figure.  The forces in Figure 12 have been calculated with fixed 

 
K

E
 and therefore variable 

  
E = !

2
K

E
. With variable !  and constant 

 
K

E
 the computed curves overlap, showing that 

 
K

E
 

      

Figure 13. Comparison of the normalized tangential rotordynamic force, 
 
f

T
, obtained from the present 

theory (left) for 
  
!

2
K

E
= 2  and several rotational speeds !  with the experimental results (right) of 

Jery, 1987, for a centrifugal impeller with 
  
N

B
= 5 , 

 
! = 0.060 , 

 
! = 23° , 

  
r
T
= 81 mm ,   b = 16 mm  and 

  
r

H
r
T
= 0.5 . 
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is a well-suited similarity parameter for cavitation effects. Besides, the curves computed for con-
stant !  and variable 

 
K

E
 (not shown here) almost overlap, confirming that in radial impellers 

the rotordynamic forces are practically insensitive to cavitation, in accordance with the experi-
mental data by Franz et al. 1989.   

Figure 13 shows the negligible influence of the flow coefficient !  on the rotordynamic 
forces. Also this finding agrees well with the experimental data. However, it should be empha-
sized that different values of !  and !  correspond to very different rotordynamic forces in axial 
inducers, and that our approach to cavitation modeling correctly reflect this aspect (d’Agostino 
and Venturini, 2002; Venturini, 2003). 

The present theory can also be used to investigate the dependence of rotordynamic whirl 
forces on the impeller geometry. Specifically, Figures 14, 15 and 16 illustrate the predicted ef-
fects of the number of blades, 

 
N

B
, the blade angle, ! , and the hub-to-tip radius ratio, 

 
r

H
r
T

. As 
expected, the magnitude of rotordynamic forces decreases as the number of blades increases, but 
their stabilizing/destabilizing nature is not significantly affected (Figure 14). In this respect it is 
worth noting that the accuracy of the model increases with 

 
N

B
 because the spiral coordinate 

system more closely approximates the actual geometry of the impeller when the blade channels 
are narrower.  
Figure 15 shows that both the radial and tangential components of the rotordynamic force de-
crease at lower blade angles. At higher values of 

 
! = 40°  the radial force is destabilizing only for 

negative whirl, and the tangential force undergoes two zero crossings, being potentially destabi-
lizing only for supersynchronous whirl (

 
! " > 1), where, however, the radial force is not 

capable of sustaining the eccentricity of the impeller.  
Finally, Figure 16 shows that rotordynamic forces and their stabilizing/destabilizing properties 
are relatively insensitive to the hub-to-tip radius ratio, at least in the range of values meaningful 
for radial impellers. 

    

Figure 14. Normalized radial (left) and tangential (right) rotordynamic forces, 
 
f

R
 and 

 
f

T
, predicted 

by the present theory as functions of the whirl ratio ! "  for a centrifugal impeller with variable num-
ber of blades 

  
N

B
= 5  (dotted line), 6 (solid line) and 8 (dash-dotted line), 

 ! = 1000 rpm , 
 
! = 0.092 , 

 
! = 23° , 

  
r
T
= 81 mm , 

  
r

H
= 40 mm ,   b = 16 mm  and 

  
!

2
K

E
= 1 . 
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6 Limitations 

We now briefly examine the restrictions imposed to the present theory by the various simplifying 
approximations that have been made. Specifically we shall discuss the limitations due to the as-
sumption of thin-layer cavitation, to the neglect of Coriolis forces, to the applicability of the 
formulation in orthogonal helical coordinates to the analysis of cavitating impellers, and to the 
use of the linear perturbation approach in deriving the solution. 

 The assumption of thin-layer cavitation implies that the thickness of the cavitating region is 
significantly smaller than the blade channel width and that its properties can be approximated as 
constant over the entire length of the blades for the purpose of evaluating the rotordynamic 
forces. Although clearly none of these conditions is rigorously met in cavitating impellers, com-
parison with earlier results obtained by d’Agostino and his collaborators (1997, 1998) for 
uniformly distributed bubbly cavitation shows that the predicted values of the rotordynamic 
forces are remarkably independent on the precise geometry of flow cavitation.  

 The neglect of Coriolis forces implies that 
 
!

F
<<! , a condition that is approximately satis-

fied in moderately loaded impellers.  
 For the formulation in orthogonal helical coordinates to be valid the geometric length of the 

blades should be comparable to their actual overlap, which is rarely the case in low blade angle 
inducers. Formally, this is probably one of the most stringent limitations of the present analysis 
and can only be partially circumvented by artificially introducing an empirical “effective length” 
of the blade channels.  

 Finally, the perturbation approach simply requires that 
 
! << r

T
, a condition that can safely be 

assumed in the analysis of whirl instabilities of cavitating turbomachines.  

     

Figure 15. Normalized radial (left) and tangential (right) rotordynamic forces, 
 
f

R
 and 

 
f

T
, predicted 

by the present theory as functions of the whirl ratio ! "  for a centrifugal impeller with variable blade 
angle 

 
! = 20°  (dotted line),  30°  (solid line) and  40°  (dash-dotted line), 

  
N

B
= 7 , 

 ! = 1000 rpm , 

 
! = 0.092 , 

  
r
T
= 81 mm , 

  
r

H
= 40 mm ,   b = 16 mm  and 

  
!

2
K

E
= 1 . 
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7 Summary and Conclusions 

This investigation reveals a number of important flow phenomena occurring in whirling and 
cavitating helical inducers. The results clearly indicate that blade cavitation drastically modifies 
the rotordynamic forces exerted on the inducer by the surrounding fluid. The dynamic response 
of the cavitating flow to the periodic excitation imposed by the whirl motion generates multiple 
subsynchronous and supersynchronous flow resonances in the blade channels, interfering with the 
more regular spectral behavior of the rotordynamic fluid forces, typical of noncavitating opera-
tion. The extent of cavitation has a major impact in locating the critical speeds and determining 
the intensity of flow-induced rotordynamic forces. At higher levels of cavitation the amplitudes 
of the flow resonances decrease, and their frequencies approach the rotational speed of the in-
ducer (synchronous conditions).  

On the other hand, the present theory predicts that blade cavitation does not appreciably mod-
ify the rotordynamic fluid forces on whirling and centrifugal impellers, in accordance with the 
experimental evidence and in striking contrast with the observed behavior of axial inducers. 
Comparison with the results of the analysis of cavitating inducers confirms that the contribution 
of cavitation to the rotordynamic whirl forces is only significant when the standing pressure 
waves excited in the blade channels by the impeller motion are capable of exerting synchronous 
and coherent actions on the rotor. For this to happen: 
• the blade channels must be long enough in the azimuthal direction for the pressure wave to 

become at least partly coherent with the channel rotation around the axis: only in this case the 
resulting forces do not average out and generate appreciable fluid reactions on the rotor; 

• possibly the cavitating flow in the blade channels must become resonant, in order to maxi-
mize the amplitude of the pressure fluctuations. 

     

Figure 16. Normalized radial (left) and tangential (right) rotordynamic forces, 
 
f

R
 and 

 
f

T
, predicted 

by the present theory as functions of the whirl ratio ! "  for a centrifugal impeller with variable hub-
to-tip radius ratio 

  
r

H
r
T
= 0.3  (dotted line), 

 0.5  (solid line) and 
 0.8  (dash-dotted line), 

  
N

B
= 7 , 

 ! = 1000 rpm , 
 
! = 0.092 , 

 
! = 23° , 

  
r
T
= 81 mm ,   b = 16 mm  and 

  
!

2
K

E
= 1 . 
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The first condition can never be satisfied in radial impellers due to the limited azimuthal exten-
sion of the blade channels. This geometric limitation is the essential reason for the different 
behavior rotordynamic whirl forces in cavitating radial and axial impellers. Besides, according to 
the present theory, no resonance phenomena can occur in whirling and cavitating centrifugal 
impellers because the natural frequencies of the flow are essentially imaginary.  

In spite of its approximate nature, the present theory correctly captures the main observed fea-
tures and different behavior of the rotordynamic forces in axial inducers and radial impellers. 
There is therefore reason to believe that it contributes some useful fundamental insight into the 
complex physical phenomena responsible for the onset and sustain of free-whirl instabilities in 
cavitating turbopumps. 
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9 Nomenclature 

 a  sound speed 
 A  cross-sectional flow area 
 b  axial length of the radial impeller 
 B  boundary equation 
 c  specific heats, constant 
 e  unit vector 

 
f  nondimensional force 

 F  force  
 i  imaginary unit 
 I  modified Bessel function of the first kind, integral 

 
j  blade index 

 J  Bessel function of the first kind 
 k  hub excitation mode index 
 K  modified Bessel function of the second kind 

 
K

C
, 

 
K

E
cavitating layer parameters 

 L  axial length of the inducer  
 L

!  blade axial length  
 l  blade excitation mode index 
 m  streamwise mode index 
 n  blade-to-blade helical/spiral coordinate 
 N  blade-to-blade mode function 

 
N

B
 number of blades 

 
N

R
 number of blade revolutions 
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 O ,  O!  origin of coordinate systems 

 
p  pressure 

 
p

t
 total or stagnation pressure 

 P  blade axial pitch 
 P

!  blade-to-blade distance 

  
!Q  volume flow rate 

 r  radial coordinate, radius 
 r  radial vector 
 R  radial mode function, cavity radius 
 s  streamwise helical/spiral coordinate 
 S  surface, streamwise mode function 
 t  time 
 T  temperature, aspect ratio 
 u  radial velocity component 
 u  velocity vector 
 v  azimuthal velocity component 
 w  axial velocity component 
 x  abscissa 

 
y  ordinate 

 Y  Bessel function of the second kind 
 z  axial coordinate 
!  void fraction 
!  blade angle 
!  cavitation layer thickness 

 
!

T
 thermal boundary layer thickness 

!  whirl eccentricity 
!  nondimensional damping coefficient 
!  azimuthal angle 
!  radial eigenvalue 
µ  streamwise eigenvalue 
!  blade-to-blade eigenvalue 
!  density 
!  cavitation number 
!  velocity potential 
!  flow coefficient 
!  whirl angular velocity  
!  inducer rotational speed 

Subscripts and Superscripts 

 B  blade 
 C  cavitation 
 F  mean flow 
 H  hub 
 L  liquid 
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 M  mean 
 R  radial 
 T  tangential, blade tip 
 V  vapor 

 
q  unperturbed value of 

 
q  

  
!q  perturbation value of 

 
q  

  
q̂  complex representation of 

  
!q  

 
!q  derivative, value of 

 
q  in the rotating frame 

 
q
!  value of 

 
q  in the inducer-fixed frame 

 1  inducer inlet 
 2  inducer outlet 
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