Prim-based Support-Graph preconditioners for
Min-Cost Flow Problems

A. Frangioni® C. Gentile*

Abstract

Support-graph preconditioners have been shown to be a valuable tool
for the iterative solution, via a Preconditioned Conjugate Gradient method,
of the KKT systems that must be solved at each iteration of an Interior
Point algorithm for the solution of Min Cost Flow problems. These pre-
conditioners extract a proper triangulated subgraph, with “large” weight,
of the original graph: in practice, trees and Brother-Connected Trees
(BCTs) of depth two have been shown to be the most computationally ef-
ficient families of subgraphs. In the literature, approximate versions of the
Kruskal algorithm for maximum-weight spanning trees have most often
been used for choosing the subgraphs; Prim-based approaches have been
used for trees, but no comparison have ever been reported. We propose
Prim-based heuristics for BCTs, which require nontrivial modifications
w.r.t. the previously proposed Kruskal-based approaches, and present a
computational comparison of the different approaches, which shows that
Prim-based heuristics are most often preferable to Kruskal-based ones.

Keywords: Min Cost Flow problems, Interior Point algorithms, Precon-
ditioned Conjugated Gradient method, Prim algorithm.

1 Introduction

We present new heuristics, based on the Prim algorithm for the Maximum-
weight Spanning Tree (MST) problem, for finding “large-weight” triangulated
subgraphs of a given weighted graph. These heuristics have application to the
problem of finding efficient support-graph preconditioners for the iterative solu-
tion, via a Preconditioned Conjugate Gradient (PCG) method, of the (core part
of the) KKT systems that must be solved at each iteration of an Interior Point
(IP) algorithm for the solution of linear Min Cost Flow (MCF) problems. Pre-
vious theoretical [9, 10] and/or experimental [14, 7] analyses have shown that
support-graph preconditioners, which rely on the idea of extracting a large-
weight triangulated subgraph of the original graph, are effective provided that
care is taken in properly balancing the effort required for finding the subgraph

and factoring the preconditioner and the corresponding decrease in iterations
count of the PCG approach. In the literature, the large-weight subgraph has
most often been chosen by heuristics based on (approximate versions of) the
Kruskal algorithm for MST; Prim-based heuristics have been proposed only for
the case of trees, but no comparison between the two approaches have ever
been reported. We present such a comparison, which shows that Prim-based
approaches are most often preferable to Kruskal-based ones on large instances,
except possibly on dense ones. While Prim- and Kruskal-based approaches are
almost identical if the subgraph is restricted to be a tree, nontrivial modifi-
cations are needed when Brother-Connected Trees (BCT) of level two [7] are
used instead; we present different heuristics based on the Prim algorithm and
computationally analyze their performances within the IP application.

The structure of the paper is the following: in Section 2 we briefly review the
previous work done in this area and introduce support-graph preconditioners. In
Section 3 we discuss the new Prim-based heuristics for finding large-weight BCT's
of level two; then, Section 4 presents the results of a computational experience
aimed at assessing the effectiveness of the new heuristics within the framework
of IP approaches to MCF. Finally, conclusions are drawn in Section 5.

2 Support-graph preconditioners

2.1 Interior Point approaches to Min-Cost Flow problems

Let G = (N, A) be a directed graph, with m = |A| and n = |N|; the Min-Cost
Flow (MCF) problem is the following linear program

min{cx : Ex=b,0<z<u}, (1)

where E is the node-arc incidence matrix of G, ¢ is the vector of arc costs, u
is the vector of arc upper capacities, b is the vector of node deficits, and x is
the vector of flows. This problem has a huge set of applications, either in itself
or—more often—as a submodel of more complex and demanding problems (e.g.,
[2, 5, 3, 4] among many others).

Specialized TP methods have been shown [17, 14] to be computationally
competitive for the solution of large-scale MCF problems. At each iteration of
these methods, linear systems of the form

(EOET)Ay =d (2)

have to be solved, where © and d are respectively a m x m diagonal matrix with
positive entries (that is, a weight 6;; > 0 is assigned to each arc (i,j) € A)
and a vector of R™, which depend on the current solution and on the IP algo-
rithm chosen. Actually, since the system is rank-deficient, at least one of the
rows/columns may be eliminated; this is not always the best option, as discussed
in Section 2.5.

The solution of (2) typically represents by far the main computational burden
of IP algorithms. As M = EOFET is symmetric and positive (semi)definite, in

general-purpose Linear Programming IP solvers (2) would typically be solved
through a Cholesky factorization, preceded by a heuristic re-ordering of the
rows of E (nodes of G) in order to diminish as much as possible the fill-in of the
resulting Cholesky factor. However, for structured problems such as MCF the
Cholesky factorization is too slow to make the IP algorithm competitive with
the many available efficient “combinatorial” approaches to MCF (e.g., see [8]),
and alternatives have to be devised. The Preconditioned Conjugate Gradient
(PCG) method offers one such alternative. A proper choice of the preconditioner
must balance the cost of forming and factoring it and the corresponding savings
due to the decrease of the number of CG iterations required to (approximately)
solve the system.

2.2 Support-graph preconditioners

Theoretical analysis [9, 10] and experimental studies [15, 14, 7] have shown that
support-graph preconditioners are effective in this setting. These are matrices
of the form

Ms = EsO5EYL | (3)

where S is a subgraph of G, Eg is the node-arc incidence matrix of S and Og
is the restriction of © to the arcs in S. This can also be “extended” to

Mg = Ms + p diag(M — M) (4)

where diag(X) is the diagonal matrix having as the diagonal elements those
of X, and p is a parameter that can be chosen according to the structure of
the MCF problem at hand; clearly, M is not substantially more costly to
invert than Mg, while incorporating information about all arcs, rather than
only about those in S. Indeed M turns out to be more effective than Mg on
some [7]—but not all [10]—classes of instances; since adding the diagonal (or
not) changes basically nothing in the theory of support-graph preconditioners,
in the following we will always refer to (3), intending that (4) can be used instead
if it turns out to be computationally convenient.

In order for Mg to be inexpensive to invert (or factor), it must have very
low fill-in: a way to ensure this is to ask that no fill-in is incurred, i.e., that S
is a triangulated graph [18] (such that every cycle of length at least four has
an edge joining two nonconsecutive vertices in the cycle). In particular, trees
are obviously triangulated graphs; tree-based preconditioners [15, 14, 13, 10]
choose S as a(n approximate) MST of G, the weight of each arc (4, j) being the
corresponding 6;;. The linear systems involving Mg can then be solved in O(n),
at each step of the PCG method, by considering the three linear systems with
coefficient matrix Eg, ©g and EL, respectively; it is well-known [1] that these
systems can be solved by visiting the tree S.

The approximate MST can be constructed in roughly O(m) with a variant of
the classical Kruskal algorithm where arcs are only approximately sorted using
a “bucket” data structure with m buckets; this is the strategy adopted in all
papers except [14], where a Prim algorithm based on a Fibonacci heap data

structure is used instead. However, no rationale for the specific choice is given
in any of the papers.

Tree-based preconditioners can be expected to be spectrally effective, es-
pecially in the final iterations of an IP algorithm. In fact, the analysis of IP
methods shows that, if the optimal solution of the underlying MCF is unique, the
weights 6;; tend to zero on all arcs but those corresponding to the basic optimal
solution, that form a spanning tree; hence Mg ~ FEOFET in the last iterations
of the IP method. This is true also in the degenerate case [10]. However, these
preconditioners are less effective in the first iterations of the IP approach, where
the weights are “more evenly” distributed on a larger subset of the arcs of G (in
the very first iteration it can even be 6;; =1 V (4,j) € A). This has suggested
to use, at least in the first IP iterations, support-graph preconditioners with
“larger” (strictly containing a spanning tree) triangulated subgraphs.

In [7] we have shown that the latter approach can improve the overall per-
formances provided that due care is taken in seeking the right balance between
the increased cost of finding S (and factorizing Mg) and the savings due to the
decrease of the PCG iterations, with respect to a tree-based preconditioner. At
first, one may think that the immediate extension of the approach would be to
use as S the maximum-weight triangulated subgraph of G; however, this turns
out to be impossible, since:

e the maximum-weight triangulated subgraph problem is A/P-hard [11], and
it clearly makes no sense to employ an exact solution approach (such as
Branch&Bound) in this application;

e even if it were computationally feasible to exactly (or approximately, with
some tight a-priori ratio) find a maximum-weight triangulated subgraph
of GG, using it as S would not necessarily result in an efficient approach,
due to the above-mentioned delicate balance between the extra cost of
finding and factoring a “larger” preconditioner Mg and the decrease in
PCG iterations [7];

e once S has been determined, some work still has to be done to find the
“good” ordering of the nodes, i.e., a n X n permutation matrix P, such
that the reordered matrix P,, M. SP;{ has a Cholesky factorization without
fill-in. For the case of trees, P,, corresponds to any permutation P (such
as that given by a reverse Breadth-First Search) of the nodes such that if
(i,7) is an arc of S with ¢ father of j, then row j precedes row ¢ in P, and
therefore is already implicitly given by, e.g., the description of the tree
in terms of the predecessor function Pred|-]; conversely, for the general
case P, has to be explicitly computed [19].

This suggests the use of appropriate sub-families of triangulated graphs where
the computation of S and of P can be organized as to be very eflicient in practice.
For this purpose, the family of brother-connected trees has been defined in [7].

2.3 Brother-connected trees

A subgraph S = (N, Ag) of G is a brother-connected tree (BCT) if either it is a
spanning tree T' = (N, A7) of G, or it contains a spanning tree T of G such that
the subgraph S’ = (N, Ag \ Ar) obtained by removing all the arcs of T’ from S
is formed of a certain number k£ > 1 of node-disjoint connected components
Si = (N1, A1),...,8), = (Ng, Ax) such that all the nodes in N; are “brothers”
(sons of the same node) in T, and each S/ is a brother-connected tree.

This definition is inherently recursive and operational in nature; a BCT can
be constructed by iteratively taking a family of BCTs (which may be ordinary
trees) and joining all their nodes in a tree, where all the nodes of anyone of
the original BCTs are sons of the same node. Note that, conversely, it is not
required that all the sons of the same node in T" belong to the same connected
component. In other words, the arc set Ag of a BCT S is the union of the arc
sets of a family 7 = {T1,...,T,} of arc-disjoint subtrees T; of G. The family 7
itself has a tree structure, where a tree T; is the son of a tree T} in 7T if all the
nodes in T; are brothers in Tj.

The depth of a BCT S is the depth of the associated tree T, i.e., the number
of times that the composition operation has to be applied, starting from an
empty graph, in order to construct S. A BCT of depth 1 is an ordinary tree,
a BCT of depth 2 contains a spanning tree 7" such that the removal of all
the arcs in T leaves a forest, and so on. It is easy to show that BCTs are
triangulated graphs; furthermore, one can show [7, Theorem 2.3] that for any
brother-connected tree S in G, its representation as a tree T allows one to
compute a “good” ordering P (such that Mg has a Cholesky factor with no
fill-in). For a BCT of depth two, for instance, one just has to “merge” the
natural (sons before fathers) ordering of the sub-trees of level 2 with that of the
tree of level 1, in which brothers may appear in any order. The result can also
be generalized to any positive definite matrix M with a BCT support, thereby
allowing modifications to the preconditioner such as that of (4).

All this allows one to define an algorithm that constructs a fill-in-free Cholesky
factor of Mg, for S a BCT of depth h, in O(nh?); all the trees at the same level ¢
can be represented with a unique predecessor function Pred[q] defined on the
nodes, such that Pred[q|[u] = v, if v is father of u at depth ¢. Using the same
data structures, an O(nh) algorithm that solves systems of the form Mgr = v—
which is what is actually required if Mg is used as a preconditioner—can be
constructed; any PCG iteration has then a complexity of O(nh + m). In [7],
BCTs of depth two have been shown to yield the best compromise between the
extra cost associated with the increase in the cardinality of S (a BCT of depth
two can have up to 2n — 3 arcs) and the improvement in the convergence rate
of the PCG.

2.4 Kruskal-based heuristics

A crucial component of the overall approach is then the heuristic that is used
to find the large-weight BCT in the first place; it has to be both effective, since

a larger BCT can be assumed to provide a preconditioner with better spectral
properties, and efficient, in order not to overbalance the improvement due to
the better preconditioner. In [6, 7], several different two-stage heuristics have
been proposed based on the following general scheme:

(i) find an initial spanning tree T;
(ii) then, add extra arcs forming trees among brothers in 7.

Choosing the initial tree as a(n approximate) MST appears to be the best choice,
and is backed by some results that can be proven about the worst-case perfor-
mances. Since arcs in phase (ii) are added in a greedy fashion, and therefore it is
beneficial to try adding more promising arcs first, the initial tree in phase (i) is
constructed by a Kruskal algorithm, whose complexity is dominated by that of
the initial sorting of the arcs: the costly sorting is then exploited by both phases.
Also, as in most of the previous literature, arcs are only approximately sorted
in O(m) using a “bucket” data structure with m buckets; as discussed in Sec-
tion 4.1 we have later questioned the choice of the approximate sorting, but the
computational results keep supporting this approach (among the Kruskal-based
ones).

Three different variants of the second phase have been proposed in [7], in
which the heuristic can change more and more the structure of the original
spanning tree: in the first (ii.a) the final ordering of the nodes is arbitrarily
fixed as any “good” ordering for T and the arcs out of T are added if they are
compatible with the fixed ordering and they form paths among brothers, in the
second (ii.b) the restriction that level-two trees must be paths is kept, but the
ordering between brothers can be changed, while in the third (ii.c) trees in the
second level are not restricted to be paths. The growing freedom enjoyed by
heuristics (ii.b) and (ii.c) is paid in terms of more data structures and an increase
of cost; however, it also allows promotion operations to be performed, whereby
a node connected with its grandfather is “promoted” as a brother of its former
father if this helps inserting a promising arc in the BCT. Experience shows that
the two more complex heuristics perform much better than the simpler one in
increasing the size of the BCT, usually resulting in better overall performances of
the approach, at least for those classes of instances where BCT preconditioners
actually help.

2.5 Further improvements

The procedures recalled above can be further improved by applying some general
“tricks” which do not depend from the choice of S:

e using as preconditioner the matrix M} of (4), thereby providing the pre-
conditioner with information about the arcs that are left out of S;

e adding to S all arcs (i,7) which are “parallel” to arcs already belonging
to it: this does not change the nonzero pattern of Mg while increasing its
weight;

e removing from both M and Mg (at least) one row and solving the equiv-
alent full-rank system rather than applying the PCG directly to the rank-
deficient system.

Our previous experience [7] has provided us with guidelines about when each
of these (orthogonal) options should be employed; since the focus of this paper
is on alternative ways for computing .S, in the computational results we use for
both the Prim-based and Kruskal-based the particular combination that has
been found to be the best for each class of instances. The interested reader is
referred to [6, 7] for a through description of these issues.

3 Prim-based heuristics for maximum-weight BCT

The Kruskal-based heuristics for maximum-weight BCT require two separate
phases: in the first phase the (approximated) ordered list of arcs is scanned to
find the (approximated) MST, in the second phase the same list is scanned to
add arcs in the second level of the BCT. This is necessary because the BCT
definition requires a root to be fixed, otherwise the concept of “brother” is
undefined, but the Kruskal algorithm iteratively constructs a maximum-weight
forest of growing cardinality, that only at the very last step becomes a tree. On
the contrary, the Prim algorithm constructs the maximum-weight spanning tree
starting from an arbitrary node chosen as the root of the tree, and therefore
brotherhood is well defined at each point of the algorithm: this allows us to
obtain Prim-based heuristics for the maximum-weight BCT with some slight
modifications of the Prim-algorithm, thereby scanning the node-set of the graph
only once. Furthermore, the Prim algorithm (hence our heuristics) does not
require ordering of the whole arc set.

We recall the Prim algorithm in the following box, where G = (N, A, w) is a
weighted graph, Pred is the predecessor function of the tree that is going to be
constructed, d is the vector of labels, and @ is a priority queue (with operations
“find-max(Q)= argmax{d(u)|u € Q}” and “increase-key(v,Q)”, that either add
node v to @ if not present or update @ according to an improved label for v):

for each u € N\ {r} do d(u) = —o0;
d(r) = 0; Pred(r) = nil; Q = {r};
do
u = find-max(Q): Q = Q \ {u}: d(u) = +o0:
for each (u,v) € A do
if d(v) < wy, then ()
begin
d(v) = wyy; Pred(v) = u; increase-key(v,Q);
end
while Q # 0

In the main step (*) of the Prim algorithm, the arcs connecting the last extracted
node u with previously extracted nodes v (easily recognized by their label d(v),

which has been set to +oo immediately extraction from Q) are discarded; the
basic idea of Prim-based heuristics for the maximum-weight BCT is to consider
these arcs and check if they can be added to the BCT. This simply amounts to
adding the following “else” branch to (x):

else
if d(v) == 400 and
v and u are brothers according to Pred and
(u,v) does not form a cycle with selected second level arcs
then add (u,v) to the second level of the BCT

Checking if a candidate arc for the second level does not form cycles is performed
by using a Union-Find structure, as in the Kruskal algorithm. Candidate arcs
are accepted in their scanning order, thus the ordering in which arcs outgoing
from a node are scanned has an impact upon the obtained BCT.

The experience reported with Kruskal-based preconditioners [7] shows that
two points are important:

e the predecessor function (i.e., the ordering) for the second level of the
BCT must be computed only when all arcs in the BCT have been se-
lected, for otherwise arcs may be refused only for incompatibility with the
already decided ordering (see remarks on the Kruskal-based heuristic (ii.a)
in Section 2.4);

e a promotion operation modifying the structure of the first level tree T is
often useful to add new arcs.

The promotion is performed when an arc joins the extracted node u with its
grandfather v, as depicted in Figure 1. In (a), solid arrows represent the first
level arcs of the BCT, dotted arrows represent second level arcs, while dashed
arcs are under examination. Ordinarily, arc (u,v) could not be accepted be-
cause u already has a father, ¢, and v is not a brother of u; however, one can
declare u to be a son of v instead while keeping arc (¢, u) in the BCT, just by
moving it from the first level to the second one (since v becomes brother of ¢).
We call this a simple promotion (SP). However, at each step of the algorithm,
the promotion operation is incompatible with the brother-connection operation,
as the former changes the father of the current node u from ¢ to v, while the
brother-connected operations searches for nodes connected to u that are also
sons of ¢ (i.e., brothers of u before the promotion). Therefore, the choice be-
tween the two operations is done by computing the weight contribution of each,
and applying the one giving the best result. However, when promotion is ap-
plied, the resulting BCT can be improved by searching for brothers of node u
after the promotion, i.e., for sons of v connected to u (cf. Figure 1(c)). We
call this improved operation wide promotion (WP); in practice, this consists
of applying first the simple promotion and then the brother-connection on the
modified BCT, hence trying to obtain the advantages of both.
An interesting property of our Prim-based heuristics is the following;:

(b) (©

Figure 1: (a) is the initial situation, (b) is the BCT after SP, (c) is the BCT
after WP

Proposition 3.1 Heuristics Prim-SP and Prim-WP determine a BCT con-
taining the optimal MST computed by the Prim algorithm.

Proof: The Prim label d(-) is not modified by brother-connections or sim-
ple/wide promotions, as they are performed only between the node u just ex-
tracted from @ and nodes already extracted. In particular, brother-connections
do not change any first-level arc, while promotions only moves the predecessor
arc of u from the first level to the second level of the BCT. Hence, the sequences
of node insertions and extractions from @ is not modified, and therefore the op-
timal MST is contained in the final BCT. (|

By [7, Corollary 3.1], all heuristics for costructing BCTs which augment
the maximum-weight spanning tree are 2-approximated; hence, using Propo-
sition 3.1, we can conclude that both heuristics Prim-SP and Prim-WP are
2-approximated algorithms for the maximum-weight BCT problem.

Two elements are important in the practical implementation of the above
approaches:

e how @ is implemented, which may even impact on the worst-case perfor-
mances of the algorithm: for instance, a binary heap results in O(m logn)
complexity while an unordered list results in O(n?) complexity, hence the
former is favored in sparse graphs while the latter is favored in dense
graphs;

e in which order the arcs leaving the current node u are scanned: basically,
one can either accept the ordering of the arcs that is implicit in the descrip-
tion of the instance (that is, one with presumably no specific property)
or order the arcs by nonincreasing weight, so that “more interesting” arcs
are examined first.

The impact of those implementation issues is discussed in the next section.

4 A computational comparison of precondition-
ers

In this section, we present the results of a large-scale computational test aimed
at assessing the effectiveness of Prim-based preconditioners with respect to
Kruskal-based ones. The tests have been performed on a PC with an Athlon
MP 2400+ and 1Gb RAM, running Linux. The code was compiled using the
GNU g++ compiler version 3.3, using optimization option “-03”.

For our tests, we selected three well-known random generators of MCF prob-
lems: goto (GridOnTOrus), gridgen and netgen. For each generator, we gen-
erated a total of 8 classes of instances named genk_d, where gen is the specific
generator, n = 2 (for k comprised between 12 and 16) is the number of nodes
and d (comprised between 8 and 256) is the average density of the graph; we
could not generate netl6_64 instances because of limitations of the generator.
The data set is similar to that of [7], except that some smaller-size instances were
dropped in favor of larger-size—and therefore more significant—ones; hence, for
these instances the “optimal” performances of Kruskal-based BCT precondition-
ers have already been extensively studied. As usual, source code for the gener-
ators can be downloaded, e.g., at http://www.di.unipi.it/optimize/Data/;
parameters for reproducing the instances are also available upon request from
the authors.

For all the instances, we ran an implementation of a Primal-Dual IP method,
using a standard tree preconditioner, in order to collect the (data for reproduc-
ing the) matrices M at the IP iterations. Then, the different preconditioners
were tested on these matrices, and an estimate of the total time that would be
spent by an IP method if using each preconditioner is computed. This way, we
ensure that for every preconditioner we solve exactly the same sequence of lin-
ear systems. We remark that our testing methodology completely disregards the
possible effects that the different iterative solvers, by providing slightly different
solutions to the same system, may have on the overall IP approach; in actual-
ity, the sequences of KKT systems solved by the IP approach using each solver
would be different. However, since the focus of the paper is on the efficiency
of the KKT system solution, we believe that the chosen testing methodology is
the most appropriate one: comparing the actual solution time of the IP algo-
rithm using each solver may incur serious risks of distorting the results, if only
because the number of IP iterations may vary. Furthermore, the KKT solution
time is a very significant part of the total IP time: it is never less than 65%,
most often much higher, and the percentage grows as the size of the instances
does, overcoming 95% on the largest ones.

As in [7], a typical adaptive stopping rule is employed for the PCG which
terminates the procedure as soon as a vector Ay is found such that

|d; — M;Ay| < ymax(|b; — E;Z|, e max(|b;], 1))
for all i € N, where Z is the current primal solution of the IP algorithm; in our

experiments, 7 = 0.1 and € =1e-4 is also both the relative feasibility tolerance

10

and the relative optimality tolerance of the IP approach. This stopping rule
allows early termination in the initial IP iterations, while ensuring that the
accuracy is always “enough” to guarantee convergence of the IP algorithm; in
our experiments, the |b; — F;Z| values are also saved along with © and d to
ensure that the accuracy requirements are exactly the same for each different
preconditioner. Since the focus of the paper is on the solution of the KKT
system, we have elected not to employ any optimal face detection procedure [16]
to terminate the IP approach early on.

The computational experiments were performed in two phases. In the pre-
liminary phase, a significant subset of the instances were tested with some vari-
ants of the Prim-based preconditioners (and also of the Kruskal-based ones) to
determine which of the possible implementations of the algorithms described
in Section 3 were more promising. The results of these tests are described in
Section 4.1 without actually reporting the tables, in order to improve the clarity
and save on space. Then, in the second phase the most promising Prim-based
preconditioners were tested against the Kruskal-based ones on the full set of
instances; the results are reported and discussed in detail in Section 4.2.

4.1 Preliminary experiments

In the preliminary phase, we tested the influence of some of the main imple-
mentation choices on the efficiency of the preconditioners.

e Choice of the priority queue. We implemented three different priority
queues for being used by the Prim-based approaches: a binary heap, an
unordered list and a bucket list. We also tested the priority_queue data
structure of the Standard Template Library. We find out that our binary
heap is almost always the best choice.

e Choice of the arc ordering. We found out that ordering the arcs in the
star of each node does not provide significantly better preconditioners than
the unsorted case, while being more costly due to the extra ordering time.

e Choice of the BCT heuristic. The two heuristics Prim-SP and Prim-
WP showed very similar results in terms of cardinality and weight of the
obtained BCT. The more complex one was not significantly more costly
than the simpler one, while sometimes showing slightly better improve-
ment of the convergence rate, especially in the first iterations; however,
the converse was also occasionally true.

e Choice of the ordering method. For Kruskal-based approaches we
tested the influence of the sorting algorithms both on time and on quality
of the weight of the initial MST. The results clearly showed that the
approximate bucket sort is the best choice compared against exact sorting
algorithms (quick-sort in STL or an exact bucket sort): the weight of
the obtained spanning tree always matched the optimal weight at least

11

in the first six significant digits, while requiring considerably less time to
compute the ordering.

Hence, at the end of the first phase we decided to stick with the binary
heap. We did not order the star of the nodes, and we used the approximated
bucket-sort for the Kruskal-based approaches; however, since none of Prim-SP
and Prim-WP was clearly dominating the other, we had to keep testing both
even in the second phase of the computational experiments.

4.2 The second phase

The aim of the second phase was to directly compare Prim-based and Kruskal-
based preconditioners. A first set of results is reported in Table 1: columns
“TP”, “SP”, and “WP” report data about the Prim-based approaches (respec-
tively, the Tree preconditioner and the two variants of BCT preconditioner),
while column “TK” reports data about the Kruskal-Tree, preconditioner. For
each approach, columns “time” / “iter” report respectively the ratio between the
computing time/number of PCG iterations of the specific approach and those of
the “best” Kruskal-BCT preconditioner, according to [7], i.e., the variant (ii.b);
thus, a number less than one indicates that the corresponding approach is more
effective (for iterations) or efficient (for time) than the Kruskal-BCT precon-
ditioner. Finally, Column “Chol” reports data (in particular, time ratio mea-
sured as for the other approaches) about solving the KKT system with a direct
method; in particular, we used the efficient Cholesky factorization of the Ng-
Peyton package [12]. For that approach, a number in parenthesis reports the
number of nonzeroes in the Cholesky factor, which was too large to allow solu-
tion of the system; the reported sizes correspond to memory requirements of well
over 1Gb for the core data of the numerical factorization only. A “*” means in-
stead that the package even failed to compute the symbolic factorization (hence,
not even the number of nonzeroes is known).

Table 1 draws a quite complex picture. On the “difficult” (cf. [7, 8]) goto
instances, the Prim-BCT approach is competitive with both the *-Tree ones,
and also with the Kruskal-BCT one on all instances except the densest ones;
furthermore, there looks to be a trend whereby the Prim-BCT approach is more
and more competitive (for fixed density) as the number of nodes increases. On
the “easy” net and grid instances, the new approach is always better (or only
very slightly worse) than Kruskal-BCT except on the smallest instances; it is
not better than Kruskal-Tree, but, as expected from the results in [7], it is then
Prim-Tree that is then competitive with Kruskal-Tree. Also, a general positive
trend with respect to the size of the instance also shows up; for these “easy”
classes, the trend is actually clearer when density grows than when the number
of nodes increases.

As for the direct approach, it is obviously not competitive with the iterative
ones, except in a few cases for the goto instances, even disregarding the fact
that the largest graphs simply cannot be solved.

In order to gather a better understanding of the results, in Table 2 we report

12

TP

SP

WP

TK

Chol

iter time

iter time

iter time

iter time

time

goto

12_8
12_64
12256

1.15 1.00
1.11 0.94
1.25 1.08

0.99 0.95
0.99 0.89
1.16 1.13

0.99 0.96
0.99 0.90
1.16 1.15

1.07 0.94
1.14 1.01
1.25 1.08

76.8
30.3
43.7

14.8
14_64
14256

1.08 0.81
1.20 0.99
1.28 1.16

0.97 0.84
0.98 0.85
1.12 1.08

0.94 0.83
0.98 0.87
1.13 1.09

1.12 0.92
1.18 1.02
1.20 1.10

1.0
74.5
(9.5¢7)

16_8
16_64

0.88 0.78
1.15 1.01

0.79 0.77
0.84 0.78

0.78 0.77
0.84 0.78

1.18 1.07
1.26 1.14

2.0
(2.5e8)

grid

12_8
12_64
12_256

1.05 1.13
1.00 0.66
1.02 0.60

1.05 1.15
1.06 0.95
1.00 0.91

1.05 1.19
1.07 0.97
1.00 0.92

1.00 0.89
1.00 0.67
1.02 0.61

360.9
115.8
36.6

148
14_64
14256

0.89 0.83
0.86 0.66
1.00 0.61

0.82 0.95
0.92 0.93
1.00 0.89

0.86 1.01
0.86 0.89
1.00 0.92

1.00 0.85
1.00 0.78
1.00 0.58

2186.5
(9.2e7)
*

168
16_64

0.98 0.90
0.93 0.74

0.93 1.01
0.97 0.95

0.93 1.02
0.97 0.96

1.00 0.91
1.00 0.83

*
*

net

12_8
1264
12_256

0.97 0.94
0.99 0.55
1.00 0.48

1.04 1.04
0.99 0.74
1.00 0.67

1.04 1.04
0.99 0.75
1.00 0.68

1.00 0.94
1.00 0.68
1.00 0.65

162.6
87.9
24.6

148
14 64
14256

0.81 0.81
0.96 0.78
1.00 0.46

0.83 0.87
0.96 0.85
1.00 0.62

0.83 0.85
1.03 0.91
1.00 0.65

1.01 1.00
0.94 0.83
1.00 0.59

147 4
(9.5¢7)

*

168

0.91 0.91

0.93 0.93

0.93 0.94

1.00 0.99

*

Table 1: Comparison of Prim-based and Kruskal-based preconditioners

some detailed data about the behavior of the different preconditioners (aver-
aged) on (the five instances of) class 12_64. For each generator we report seven
rows corresponding to the systems solved at IP iterations 1, 2, k/4, k/2, 3k/4,
k—1 and k, where k is the index of the last iteration; this is a significant sample
of the matrices generated during the IP algorithm. In particular, the systems of
iteration 1 are those solved to find an initial interior solution, for which © = I,,,
hence M = EET. Columns “TP” and “SP” report respectively data about the
Prim-based Tree and BCT preconditioner (in particular, the SP variant), while
columns “TK” and “BK” report respectively data about the Kruskal-based Tree
and BCT preconditioner (in particular, the variant (ii.b)). For each approach,
columns “time” and “iter” reports respectively the computing time (in seconds)
and the number of PCG iterations required for solving the system. For the BCT
approaches, column “cR” contains the “cardinality ratio” |S|/(n — 1) — 1, i.e.,
the percentage of arcs (with respect to those of the spanning tree) added to the
support graph, while column “wR” contains the “weight ratio” w(S)/w(T) -1,
where w(S) is the weight of the support graph while w(7T') is the weight of the

13

MST.

TP SP TK BK
gen IP it. | iter time | cR wR iter time iter time | cR wR iter time
goto 1] 910 833 | .93 21 662 6.25 | 1052 9.65 | .72 le-1 982 9.11
2 94 090 | .95 9e-1 86 0.87 94 096 | .51 Be-1 94 1.03
k/4 82 0.80 | .85 6Ge-1 73 0.76 82 0.86 | .56 3e-1 69 0.85
k/2 64 0.65 | .82 Be-l 57 0.61 64 0.69 | .55 2e-1 52 0.66
3k/4 46 048 | .83 5e-1 45 0.50 46 0.51 | .56 2e-1 40 0.50
k—1 25 029 | .84 el 24 031 25 031 | .56 2e-1 23 0.32
k 25 0.29 | .84 5Be-1 24 0.31 25 031 | .56 2e-1 23 0.32
grid 1 10 0.36 | .06 be-2 10 0.55 10 031 | .03 3e-2 10 0.42
2 10 0.36 | .23 2e-2 10 0.53 10 033 | .21 4e-3 10 0.49
k/4 10 036 | .23 4e-2 10 0.54 10 035 | .22 T7e-2 10 0.58
k/2 15 041 | .05 3e-2 15 0.58 15 045 | .05 2e-2 15 0.69
3k/4 16 042 | .04 3e-2 16 0.59 16 048 | .04 3e-2 16 0.72
k—1 17 043 | .05 3e-2 17 0.60 17 0.36 | .00 1le-3 17 047
k| 101 132 | .06 3e2 136 1.87 101 1.25 | .00 1le-4 101 1.36
net 1 10 0.27 | .68 Te-1 10 0.39 10 0.24 | 43 4de-1 10 0.32
2 10 0.26 | .05 4e-2 10 0.37 10 034 | .05 4e-2 10 0.53
k/4 11 0.28 | .06 4e-2 11 0.38 11 035 | .06 3e-2 11 0.55
k/2 16 0.33 | .05 3e-2 16 0.43 16 046 | .05 2e-2 16 0.66
3k/4 15 0.32 | .05 3e-2 15 0.42 15 0.37 | .05 3e-2 15 0.56
k—1 10 0.26 | .05 3e-2 10 0.36 10 0.25 | .00 2e-3 10 0.30
k 17 034 | .05 3e-2 17 0.44 22 037 | .00 2e4 22 0.43

Table 2: Detailed results for 12_64 instances (time in seconds)

Table 2 clearly show that the two approaches build quite different support
graphs; also, the behavior varies significantly with the class of instances. For all
instances, the Prim-based BCT usually contains more arcs than the Kruskal-
based one; the difference is relevant for goto instances, and marginal for the
others, except possibly at the first and last iterations. Also, the cardinality
ratio is much more uniform in the goto, while it varies significantly in the
others. Analogously, except in one case the weight ratio of SP is better than
that of BK; the difference is relevant for goto instances, and marginal for the
others, except at the first and especially at the last iterations, where SP shows
a pretty stable ratio while the ratio of BK sharply decreases. Yet, a “larger”
BCT (both in weight and cardinality) is not always associated with fewer PCG
iterations; for goto instances, it actually is on the first IP iterations but not
in the subsequent ones (albeit, with an automatic switching rule it is the first
iterations that are actually important, since, later on, the Tree is used anyway).
So, SP being faster on goto instances has to be due to the combined effect of less
PCG iterations (sometimes) and more efficient finding of S; this is confirmed by
the fact that—Dbarring the first iteration—TP requires exactly the same number
of PCG iterations than BK, while being faster. The situation is analogous for
grid and net instances, although there (as expected from the results in [7])
the BCT preconditioners almost never improve on the iterations count, and
therefore end up being slower than Tree ones. Among the latters, TP is clearly

14

better than TK on net instances, while the situation is far less clear on grid
ones.

Further elements confirming the complexity of the analysis are reported in
Table 3, which shows the time spent in finding the support graph S (either a
tree or a BCT) as a fraction of the total time required for solving the system.
We remark that the fraction comprises both the time for finding S and that for
factoring the preconditioner; the latter is however negligibile, being most often
less than 1% of the total time, and never above 3%. The table shows that the
time for finding the preconditioner is, in general, much less relevant for goto
instances, because they require much more PCG iterations to be solved, while it
takes a very significant fraction of the total time for the other “simpler” classes,
especially as density of the graph increases. Also, BCTs require significantly
more time than Trees. However, there seems to be a general trend where the
fraction tends to decrease as the number of nodes increase (if the density remains
constant).

goto grid net
TP SP WP TK BK|TP SP WP TK BK|TP SP WP TK BK
12.8(.05 .10 .10 .09 .13|.39 .42 43 .23 .31|.23 .25 .28 .19 .26
12.64/.06 .10 .10 .10 .19|.54 .67 .67 .55 .69|.44 .58 .59 .55 .68
12.256|.14 .23 .24 .13 .24|.59 .73 .73 .59 .75(.45 .61 .62 .60 .74
14.8|.08 .12 .13 .15 .23|.35 .45 .46 .28 .40|.04 .07 .07 .04 .06
14.64/.06 .09 .09 .11 .21{.38 .52 .54 .35 .52|.26 .38 .38 .34 .47
14.256|.05 .10 .11 .07 .14|.54 .68 .68 .44 .71|.43 .58 .59 .57 .74
16_8|.05 .08 .08 .07 .12|.21 .30 .31 .16 .24|.04 .07 .07 .04 .06
16.64/.03 .05 .06 .06 .15|.22 .31 .32 .18 .32

Table 3: Fraction of total time spent in finding S

The final element to be taken into account is the effect the automatic switch-
ing rules. In fact, from [7] (and the previous results) we know that in general
BCT preconditioners are seldom always better than the corresponding Tree ones
across different instance classes, different sizes within the same class, and even
different IP iterations for the same instance. However, it turns out that a reason-
ably simple rule can be used to construct a “hybrid” preconditioner which works
better than either the pure BCT and the pure Tree ones; the rule just computes
the “cardinality ratio” (cf. Table 2) and compares it with a fixed threshold. If
the threshold is exceeded then the preconditioner actually includes those arcs,
otherwise the operation is disabled in that and all the following IP iterations;
this is justified by the fact that the tree preconditioner becomes more and more
efficient as the IP algorithm proceeds, hence, if adding arcs to the support graph
is not helping at a given iteration, it is somewhat unlikely that is it going to
help later. Permanently disabling the rule is simple to implement, and has the
advantage of avoiding the cost for finding a BCT (which may be very significant,

15

cf. Table 3) that is not going to be used.

In [7], it was reported that a threshold of 0.45 was effective for Kruskal-based
preconditioners; however, from the data in Table 2 it can be expected that such
a value does not carry over to Prim-based ones, since they usually find rather
larger subgraphs. In order to avoid any distortion in the comparison due to the
choice of the threshold, we decided to experimentally find, independently for
all classes of instances, and independently for Prim-based and Kruskal-based
approaches, the “best” possible value of the threshold (in increments of 5%).
We also tested whether the “weight ratio” (cf. again Table 2) could be a more
dependable indicator upon which basing the switching rule; again, indepen-
dently for each class of instances and each approach we tested all reasonable
values of the threshold (in increments of half an order of magnitude) and col-
lected the overall best results. We found out that the weight-based switching
rule may indeed provide slightly better results for Prim-based approaches than
the cardinality-based one; however, since the difference was not particularly
relevant, we finally decided to report results only about the latter.

This is done in Table 4; in columns “TP”, “SP” and “TK” we report the ratio
between the best running time obtained by the corresponding preconditioner—
using the switching rule in case of SP—and that of Kruskal-BCT with “optimal”
switching rule.

goto grid net

TP SP TK

TP SP TK

TP SP TK

12_8
12_64
12_256

1.06 1.01 1.00
0.94 0.89 1.01
1.08 1.08 1.08

1.271.271.00
0.99 0.99 1.00
0.98 0.98 1.00

1.00 1.00 1.00
0.810.811.00
0.730.73 1.00

148
14_64
14256

0.88 0.88 1.00
0.99 0.85 1.02
1.16 1.07 1.10

0.97 0.97 1.00
0.850.85 1.00
1.051.05 1.00

0.810.81 1.00
0.94 0.94 1.00
0.78 0.78 1.00

168
16_64

0.78 0.76 1.07
1.010.78 1.14

0.99 0.99 1.00
0.90 0.90 1.00

0.92 0.92 1.00

Table 4: Kruskal- and Prim-based preconditioners with “optimal” threshold

The results show that even class-specific tuning of the threshold does not
change the general picture. On the “easy” grid and net instances, the optimal
preconditioner is almost indistinguishable from the Tree one, both in the Prim
and Kruskal cases. For these instances, Prim-based preconditioners can improve
upon Kruskal-based ones only if the Prim-based MST is more efficient than the
Kruskal-based MST; this actually happens for all net instances and in the vast
majority of grid ones. For goto instances, where the BCT approach instead
consistently improve the quality of the preconditioner, then the Prim-based
approach also provides an extra boost to performances due to the different
characteristics of the support graph (larger, and with larger weight at the initial
iterations); this happens for instance in the 14_64 case, where TP, TK and BK

16

are basically equivalent, while BK consistently improves on them. Overall, the
Prim-BCT approach is competitive on almost all the goto instances, except the
densest ones.

5 Conclusion

We have proposed and experimentally tested a new family of heuristics, based
on modifications to the Prim approach, for finding large-weight subgraph based
preconditioners for the solution of the KKT systems arising in the solution of
Min Cost Flow problems through IP methods. For most test instances, these
heuristics improve on those known in the literature; this is due to a more effi-
cient computation of the Minimal Spanning Tree, and possibly to the different
characteristics of the obtained triangulated subgraph.

Thus, our new heuristics seem to provide a valuable tool for improving the
efficiency of IP algorithms for MCF problems. The obtained results further
underline the importance of finding the right balance between the cost of finding
and factoring a better preconditioner and the savings resulting from the decrease
in PCG iterations; only when all the factors are duly taken into account an
overall efficient procedure is obtained.

Acknowledgements. We thank Claudia Papa for having contributed to the formulation
of a first version of the Prim heuristics. We also thank three anonymous referees for
enabling us to improve the quality of the paper with their remarks.

17

References

[1]

2]

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: theory, algo-
rithms and applications. Prentice Hall, New Jersey, 1993.

A. Borghetti, A. Frangioni, F. Lacalandra, and C.A. Nucci. Lagrangian
Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit
Commitment. IEEE Transactions on Power Systems, 18:313-323, 2003.

J. Castro. A Specialized Interior-Point Algorithm for Multicommodity Net-
work Flows. SIAM Journal on Optimization, 10:852-877, 2000.

T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based Relaxation
Methods for Multicommodity Capacitated Fixed Charge Network Design
Problems. Discrete Applied Mathematics, 112:73-99, 2001.

A. Frangioni and G. Gallo. A Bundle Type Dual-Ascent Approach to
Linear Multicommodity Min Cost Flow Problems. INFORMS Journal on
Computing, 11(4):370-393, 1999.

A. Frangioni and C. Gentile. Interior Point Methods for Network Problems.
Technical Report 539, TASI - CNR, Roma, 2000.

A. Frangioni and C. Gentile. New Preconditioners for KKT Systems of
Network Flow Problems. SIAM Journal on Optimization, 14(3):894-913,
2004.

A. Frangioni and A. Manca. A Computational Study of Cost Reopti-
mization for Min Cost Flow Problems. INFORMS Journal on Computing,
18(1):61-70, 2006.

A. Frangioni and S. Serra Capizzano. Spectral Analysis of (Sequences
of) Graph Matrices. SIAM Journal on Matriz Analysis and Applications,
23(2):339-348, 2001.

J.J. Judice, J. Patricio, L.F. Portugal, M.G.C. Resende, and G. Veiga. A
study of preconditioners for network interior point methods. Computational
Optimization and Applications, 24:5-35, 2003.

A. Natazon, R. Shamir, and R. Sharan. Complexity classiffication of some
edge modification problems. Discrete Applied Mathematics, 113:109-128,
2001.

E. Ng and B.W. Peyton. Block sparse Cholesky algorithms on advanced
uniprocessor computers. SIAM Journal on Scientific Computing, 14:1034—
1056, 1993.

P.M. Pardalos and M.G.C. Resende, editors. Handbook of Applied Opti-
mization. Oxford University Press, 2002.

18

[14]

L.F. Portugal, M.G.C. Resende, G. Veiga, and J.J. Judice. A Truncated
Primal-infeasible Dual-feasible Network Interior Point Method. Networks,
35:91-108, 2000.

M.G.C. Resende and P.M. Pardalos. Interior point algorithms for network
flow problems. In J.E. Beasley, editor, Advances in linear and integer pro-
gramming, pages 147-187. Oxford University Press, 1996.

M.G.C. Resende, T. Tsuchiya, and G. Veiga. Identifying the optimal face of
a network linear program with a globally convergent interior-point method.
In W.W. Hager, D.W. Hearn, and P.M. Pardalos, editors, Large-Scale Op-
timization: State of the Art, pages 362—-387. Kluwer Academic Publishers,
1994.

M.G.C. Resende and G. Veiga. An Implementation of the dual affine scaling
algorithm for minumum cost flow on bipartite uncapacited networks. SIAM
Journal on Optimization, 3/3:516-537, 1993.

D.J. Rose. Triangulated Graphs and the Elimination Process. Journal of
Mathematical Analysis and Applications, 32:597-609, 1970.

R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. STAM Journal on Computing, 13(3):567-579, 1984.

19

Footnote List Page

§Department of Computer Science, University of Pisa, Corso Italia 40, 56125 Pisa, (ITALY),
e-mail: frangio@di.unipi.it

*Istituto di Analisi dei Sistemi ed Informatica del C.N.R., Viale Manzoni 30, 00185 Rome
(ITALY), e-mail: gentile@iasi.cnr.it; this author has been partially supported by the UE Marie
Curie Research Training Network no. 504438 ADONET

20

