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Abstract 
Background: Considering protein mutations in their biological 
context is essential for understanding their functional impact, 
interpretation of high-dimensional datasets and development of 
effective targeted therapies in personalized medicine. 
Methods: We combined the curated knowledge of biochemical 
reactions from Reactome with the analysis of interaction-mediating 
3D interfaces from Mechismo. In addition, we provided a software tool 
for users to explore and browse the analysis results in a multi-scale 
perspective starting from pathways and reactions to protein-protein 
interactions and protein 3D structures. 
Results: We analyzed somatic mutations from TCGA, revealing several 
significantly impacted reactions and pathways in specific cancer types. 
We found examples of genes not yet listed as oncodrivers, whose rare 
mutations were predicted to affect cancer processes similarly to 
known oncodrivers. Some identified processes lack any known 
oncodrivers, which suggests potentially new cancer-related processes 
(e.g. complement cascade reactions). Furthermore, we found that 
mutations perturbing certain processes are significantly associated 
with distinct phenotypes (i.e. survival time) in specific cancer types 
(e.g. PIK3CA centered pathways in LGG and UCEC cancer types), 
suggesting the translational potential of our approach for patient 
stratification. Our analysis also uncovered several druggable 
processes (e.g. GPCR signalling pathways) containing enriched 
reactions, providing support for new off-label therapeutic options. 
Conclusions: In summary, we have established a multi-scale approach 
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to study genetic variants based on protein-protein interaction 3D 
structures. Our approach is different from previously published 
studies in its focus on biochemical reactions and can be applied to 
other data types (e.g. post-translational modifications) collected for 
many types of disease.
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Introduction
Somatic mutations in cancer driving genes are a primary cause of oncogenesis. Large-scale cancer sequencing projects,
including TCGA and ICGC, have uncovered many somatic mutations in cancer related genes.1,2 Though a plethora of
studies have been published investigating the molecular mechanisms of mutations in these genes and how they cause
cancer, detailed and comprehensive biochemical mechanisms remain undiscovered. While recent efforts have been
devoted to development of integrated bioinformatics pipelines for the reliable prediction of cancer driver mutation,3 the
mechanistic details from such predictions are usually not available, therefore hampering deeper biological interpretation
and clinical translation.4 The majority of current approaches for these studies are at the gene or protein, protein-protein
interaction or pathway levels. The gene-level analysis tells us what changes (e.g. structural variants) occur in genes or
proteins, but not the functional impact (e.g. biological processes), while the pathway-level analysis may reveal potential
overall impact ofmutations in cancer drivers, but not how. The protein-protein interaction level analysis may help us infer
possible impact on the interactions of mutated proteins, but such analysis does not extend to the pathway context because
a protein-protein interaction may be involved in multiple pathways. For example, an interaction between GAB1 and
EGFR has been annotated by BioGrid (https://thebiogrid.org/108824/summary/homo-sapiens/gab1.html) and involved
in both Signaling by EGFR (https://reactome.org/PathwayBrowser/#/R-HSA-177929) and Signaling by ERBB2 (https://
reactome.org/PathwayBrowser/#/R-HSA-1227986) as annotated in Reactome via different reactions.

Several studies have been published to survey cancer somatic variants using protein-protein interaction 3D structures
(e.g. 5–10). However, these studies were all based on experimentally determined protein-protein 3D structures, which
covers only 6% of currently known human protein-protein interactions based on the latest release of interactome3d
(https://interactome3d.irbbarcelona.org/results.php?queryid=human11). To increase the coverage of 3D structures for
protein-protein interactions, several groups (e.g.11–15) have employed homology modeling approaches using 3D
structures of homologous proteins as templates. Even using homology modeling, the structural coverage of the human
interactome remains quite low (12% in interactome3d). The Mechismo approach16 was developed to predict the
functional consequences of variants and post-translational modifications (PTMs), such as phosphorylations and acety-
lations, at biomolecular 3D interfaces. The method extends predictions to proteins with no 3D structures as a function of
sequence similarity to 3D templates assessed through BLAST alignments.17 This tool allows for inspecting positional
effects of mutations and modifications for protein-protein, protein-nucleic acids and a subset of protein-chemical
interactions which we previously demonstrated to be as effective as comparative modeling in identifying residues at
interaction interfaces without intensive computation.

Pathway and network-based approaches are routinely used in cancer data analysis. Projecting perturbed genes in the
contexts of pathways and networks provides a knowledge framework for researchers to understand the potential roles of
genetic aberrations that cause cancer. Pathway and network knowledgebases provide the foundation to perform pathway
and network-based analysis. Reactome18 is the most comprehensive open source biological pathway knowledgebase,
covering nearly 60% of total human protein coding genes with annotation of over 13,200 complexes and 13,500 reactions
that are organized into approximately 2,500 manually curated pathways (Release 75, December 2020). Pathways in
Reactome are annotated as linked biochemical reactions, covering all types of biological processes, including metab-
olism, signal transduction, cell cycle, DNA replication and repair, programming cell death, immune system, development
biology and cell-cell interaction.

Leveraging the protein-protein 3D structural information generated from Mechismo and the rich set of biochemical
reactions in Reactome pathways, we conducted a systematic analysis of protein structural variants in cancers using the
somatic mutation data from TCGA. Our analysis is focused on functional impact of variants at 3D interfaces mediating
biochemical reactions, striking a balance between the gene or protein level and pathway level analyses and unraveling
novel biochemical insights of oncogenesis. In addition, we have developed a new set of features for Reactome’s
Cytoscape app, ReactomeFIViz,19 enabling researchers to browse and explore results from this study.
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Results
A multi-scale analysis approach for protein structural variants caused by cancer somatic mutations
We developed a robust analysis approach to analyze cancer somatic mutations in the context of protein-protein
interactions, biological reactions, and pathways (Figure 1). We applied this approach to the TCGA dataset by first
mapping somatic mutations to UniProt canonical protein sequences and then onto 3D structures of protein-protein
interactions as we have done previously through Mechismo.20 The mapped protein-protein interactions are then traced
back to reactions annotated in Reactome, which are tested for statistical significance. Significant pathways can be
detected through similar statistical analysis (Methods) or may be found bymapping significant reactions to pathways that
contain them. By combining the analysis results from protein-protein interactions, reactions and pathways, we draw
biological insights.

Mapping somatic mutations from genes to interaction interfaces using 3D structures unravels cancer
driving mutations
Weconsidered a total of 1.79Mnon-synonymous somaticmutations fromTCGAacross 32 cancer types and 7120 unique
samples carrying somatic mutations. These were mapped onto canonical UniProt sequences, yielding 1.16 M unique
protein variants (Methods). We considered high confidence predictions for protein-protein interactions including known
structures or close (≥70% sequence identity) homologs and representing only very confident, physical protein-protein
interactions. For chemical and DNA/RNA we also considered predictions with low/medium confidence (as low as 30%
sequence identity). Mechismo analysis revealed that 405 K mutations (22%) mapped to known 3D structures, including
single structural matches (i.e. with blast E-value threshold of 0.0001). A total of 103 K (25%) of them were found at
interaction interfaces, for a total of 6668 (59%) samples carrying at least one interface perturbing mutation (Figure 2A).
The majority of mutations were found at protein-protein and protein-chemical interfaces (60 K and 48 K, respectively)
while 14 K were predicted at protein-nucleic acid interfaces.

To define the biological processes affected by interface mutations, we mapped 3D interaction interfaces to Reactome’s
Functional Interaction Network (FIN),21 involving both protein-protein and protein-chemicals interactions (Methods).
We matched 6559 of 17225 (38%) FIN Protein-chemical interactions and 24363 of 183672 (13%) FIN PPIs to 3D
interaction interfaces. We assessed the statistical significance of mutation enrichment at interaction interfaces through a
random background model obtained by shuffling the same substitutions between equivalent positions in the same
proteins (Extended data:Table S138;Methods). Of the 2974 (26%) samples affected by significantly perturbed interfaces,
82% of them (2437 samples) carried mutations at significant FIN interfaces and 32% (3694 samples) carried mutations
mapping either to non-significant interfaces or structural, non-interface regions. A total of 41% of samples (4705) carried
mutations that couldn’t be mapped to any available 3D interaction interface (Figure 2A).

The analysis revealed wide differences among cancer types in terms of fraction of samples affected by interface
mutations. Five cancer types displayedmore than 50%of samples carrying significantly impacted Functional Interactions
(FIs): UVM (91%), PAAD (75%), SKCM (61%), UCS (57%) and THCA (56%) (Figure 2A). Other cancer types
displayed a higher portion of samples affected by mutations at significantly perturbed interfaces which cannot yet be
mapped to Reactome processes (e.g. ACC). Finally, cancer types like KIRP, KICH, DLBC and CHOL displayed no
samples significantly affected by mutations perturbing any known protein interaction interfaces (Figure 2A).

More than half of cancer types with significantly affected interaction interfaces (15 out of 28) display only mutations
at Cancer Genes Census (CGC) genes22 at FI interfaces (Figure 2B). After loosening the thresholds for enrichment

Figure 1. An overview of a multi-scale analysis approach for protein structural variants caused by cancer
somatic mutations collected in the TCGA dataset.
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significance, i.e. no False Discovery Rate (FDR) cutoff, we found a total of 3638 (32%) samples carried CGC gene
mutations at FI interfaces (Figure 2C). Cancer types with higher proportions of significantly affected FI interfaces also
display greater contributions of CGC gene mutations at FI interfaces (e.g. UVM = 92%, UCS = 82%, PAAD = 77% and
SKCM= 66%). Interestingly, we were able to detect patterns of CGC genemutations at FI interfaces even in those cancer
types with no significantly affected interaction interfaces (e.g. KIRP = 11%, CHOL = 39%, KICH = 17%, DLBC = 43%)
(Figure 2C).

Placing mutations in the context of biochemical reactions and pathways reveals molecular
mechanisms of cancer
We also assessed whether biological processes, via either individual reactions or whole pathways, were significantly
affected by somatic mutations in terms of mediating interaction interfaces. Defining biological processes significantly
affected by edgetic mutations,23 instead of individual genes, allowed us to provide a mechanistic interpretation
framework for low frequencymutations participating in common biological processes, thus facilitating the understanding
of the oncogenetic mechanisms of cancer driver mutations in the long tail distribution.24 A total of 25 cancer types
displayed 556 significantly mutated reactions (corresponding to 460 interfaces and 150 genes) and 375 pathways
(corresponding to 2397 interfaces and 759 genes) (see Extended data: Tables S2 and S338). A total of 303 reactions
displayed at least two genes affected by interface mutations and 20 reactions were found to be affected in at least five
genes (Table S2). The reaction “MAP 2Ks and MAPKs bind to the activated RAF complex” in SKCM is the single
reaction carrying the largest number of interface mutations (from 179 unique samples; Table S2) affecting participating
members (i.e. SRC, MAPK3, NRAS, RAP1A, MAP 2K2, ARAF, BRAF, KSR1, KSR2, RAF1).

We obtained a landscape of cancer type specific patterns of perturbed processes by mapping each reaction or pathway to
its top level biological pathway (Figure 3;Extended data: Figure S138). Signal transduction is the single most affected top
level pathway, showing significantly perturbed reactions and pathways in 92% of cancer types (23 out of 25 and 26 out of
28 total cancer types displaying respectively significant reactions and pathways). Signal transduction processes also
display high variability in terms of samples mutated and interfaces involved with melanoma (SKCM) involving the
highest number of perturbed interfaces when considering either reactions or pathways (Figure 3; Figure S1; firebrick).
Given the high number of reactions affected in signaling events, it is easier to visualize significantly affected pathways
(Figure 4). As expected, receptor and non-receptor tyrosine kinase pathways are the most widely perturbed signaling
pathways. In total, 10 out of 12 pathways from the “Signaling by Receptor Tyrosine Kinases” super-pathway (https://
reactome.org/PathwayBrowser/#/R-HSA-9006934&PATH=R-HSA-162582) are affected through cancer-type specific
mutation signatures. Signaling by EGFR is the most recurrently perturbed pathway, being affected in 65% (17 out of 26)
cancer types. Several other signaling pathways are related to GPCR signaling either through canonical pathways
(i.e. GPCR downstream signaling, Gastrin-CREB signaling pathway via PKC and MAPK, GPCR ligand, Signaling

Figure 2. Statistics of the Mechismo analysis related to A) Significantly enriched interfaces; B) CGC gene
fractions at significant interfaces from A); C) Structural mapping of CGC variants with no significance
enrichment threshold applied. Cancers shown in rows were sorted based on total number of samples.
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by Rho GTPases or PIP3 activates AKT signaling) or through WNT signaling (i.e. Beta-catenin independent WNT
signaling, Degradation of beta-catenin by the destruction complex, TCF dependent signaling in response to WNT).

Other top level processes that are widely perturbed are Immune System and Gene Expression (Transcription) (Extended
data: Figure S238). Perturbed reactions linking to Gene expression (Transcription) are dominated exclusively by TP53
reactions, which are affected in all the 14 cancer types, with the sole exception of UCS where an additional reaction is
affected by PPP2R1Amutations (Figure S2). We found at least one reaction contributing to the Immune System process
significantly affected in 84% (21 out of 25) of cancer types, for a total of 19 unique reactions. Themajority of significantly
perturbed reactions in Immune System (12 out of 19) appear selectively mutated in only one cancer type, suggesting
shared steps of dysregulation of a key cancer process (Extended data: Figure S338).

Intriguingly, we also found that a total of 15 significant reactions and 29 significant pathways in 8 and 14 cancer types,
respectively, displayed no known CGC cancer drivers among the affected genes and were mutated in 10 or more unique
samples in some cases (see Table S2 and S3). For example, we found complement cascade reactions, e.g. “C5b:C6:C7
translocates to the plasma membrane” (Figure 5A), significantly perturbed in 12 HNSCC samples (FDR = 2.8�10�3)
through mutations affecting five genes (i.e. C8A, C9, C6, C8B, C8G), which are predicted to disable the interaction with
binding partners (Figure 5B). Another reaction of the terminal pathway of complement, “C5b binds C6” (Figure 5A), was
found mutated in 11 SKCM samples (FDR = 1.2�10�2) at C5 mediated interfaces, likewise predicted to perturb the
interaction with binding partners (Figure 5B). The complement cascade pathway is also overall significantly affected in
HNSCC in 15 samples (FDR = 0.01) with no CGC gene mutations reported (Table S3). Additionally, a few other
pathways are also affected in multiple cancer types with no mutations in CGC genes, including: Asparagine N-linked
glycosylation (STAD FDR = 0.01, KIRC FDR = 0.02), ER to Golgi Anterograde Transport (STAD FDR = 0.02,
KIRC FDR = 0.02), GPCR ligand binding (LIHC FDR = 0.003, BLCA FDR = 0.001) and Cilium Assembly (SKCM
FDR = 0.03, LUAD FDR = 0.04) (Table S3).

>1 Nr of affected samples>250

Nr of affected FIs
0 90

Figure 3. Significantly affected reactions in individual TCGA cancer types mapped to top level Reactome
pathways. Diameters are proportional to the numbers of unique samples having mutations in top level pathways
and color shades are proportional to the numbers of FI interfaces.
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A cancer reaction network highlights cancer specific patterns and supports crosstalk among
high level processes
Significantly affected reactions can be visualized on a reaction network, where nodes represent reactions and edges
represent temporal or preceding/following relationships between reactions. Certain network modules are affected in
specific cancer types such as STAD (e.g. Figure 6A, lower blue module; Extended data: Figure_6_Networks.cys and
Figure S5) while others are widely perturbed in multiple tumor contexts. The network view also allows for enhanced
visualization of reaction interdependencies. For example, we identified a major cluster suggesting crosstalk between
Signal Transduction and Immune System reactions in multiple cancer types (the zoomed in region in Figure 6A). The
majority of reactions in this cluster are significant in THYM. However, eight of them are significant in multiple cancer
types. Reactions within the cluster are largely annotated for signaling transduction but five of them are annotated for
immune system. In addition, reactions involving PIK3CA and NRAS (or KRAS), which are recurrently mutated in a
mutually exclusive fashion in multiple cancer types, also support a major crosstalk between Signal Transduction and
Immune Systems (Extended data: Figures S3 and S438).

The analysis pipeline we developed was used to survey the protein variants in cancer with a multi-scale perspective,
allowing us to uncover cancer driver mutations significantly related to protein interactions or biochemical reactions and
providing complementary results to help us draw biological insights. A reaction may be expanded into a set of functional
interactions while a functional interaction may be involved in multiple reactions. Using STAD as an example (Figure 6B;
Extended data: Figure_6_Networks.cys and Figure S5), Reaction 679977 (TP53 family members bind PPP1R13B or
TP53BP2, https://reactome.org/PathwayBrowser/#/R-HSA-6799777) can be expanded into four functional interactions
(PPP1R13B-TP63, PPP1R13B-TP73, PPP1R13B-TP53 and TP53-TP53BP2), two of which (PPP1R13B-TP53 and
TP53-TP53BP2) are statistically significant after FDR correction. Conversely, the interaction between CASP8 and
CFLAR is extracted from nine significant reactions that are annotated for programmed cell death (https://reactome.org/
PathwayBrowser/#/R-HSA-5357801). Interestingly, this interaction itself is not significant, presumably caused by FDR

Nr of affected samples>250

Nr of affected FIs
0 140

Figure 4. Significantly affected pathways belonging to the Signal Transduction domain. Diameters are pro-
portional to the numbers of unique samples and color shades are proportional to the numbers of FI interfaces.
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correction because there were many more protein interactions subject to analysis than reactions. Other interesting
examples can be found for STAD in Figure 6B too. For example, Reaction 200421 (activation of cytosolic AMPK by
phosphorylation, https://reactome.org/PathwayBrowser/#/R-HSA-200421), which is significant, is mapped to nine FIs
that are not significant. The functional interaction between PIK3CA and PIK3R1 is involved in 10 reactions and both the
FI and all 10 reactions are significant.

Linking mutations to phenotypes through biochemical mechanisms
To explore the translational potential of our approach, we checked whether patients carrying mutations perturbing either
individual interfaces, reactions or pathways were found to be statistically associated with patient overall survival. When
considering interfaces, we found only one instance and no significant interfaces involving PIK3CA (Extended data:
Table S438). Grouping interface perturbing mutations through reactions or pathways increases the statistical power of
survival analysis (Extended data: Tables S5 and S638). Indeed, we found six and ten significant pathways in LGG (Brain
Lower Grade Glioma) and UCEC (Uterine Corpus Endometrial Carcinoma) (adj P (Cox) < 0.05) respectively, invariably
involving PIK3CA along with different combinations of other oncogenes (e.g. NRAS, KRAS) interfaces. Intriguingly, in
both LGG andUCEC Signaling by Interleukins pathway has the largest numbers of affected patients (respectively 27 and
105 samples; Table S6). LGG patients with mutations in this pathway exhibit shorter survival (hazard ratio = 2.08,
adjusted p-value = 0.05) while UCEC patients show longer survival (hazard ratio = 0.35, adjusted p-value = 0.02),
suggesting that patients carrying mutations of genes involved in the same pathways of recurrently mutated oncodrivers
might cause different phenotypes (e.g. survival time) in different cancer contexts.

Visualizing cancer somatic mutations via a multi-scale perspective using ReactomeFIViz
ReactomeFIViz19 is Reactome’s Cytoscape app, implementing a suite of features for users to conduct pathway- and
network-based data analysis and visualization based on Reactome pathways and its functional interaction network.
To assist users to explore and browse the analysis results from this study, we implemented a set of new features in
ReactomeFIViz. Figure 7 illustrates three views, allowing users to visualize variants in a multi-scale perspective ranging

Figure 5. A) Reaction view of the complement cascade pathway; B) non-synonymousmutations (red spheres)
at interfaces forming C5C6 complex (PDB:4a5w), participating to the “C5b binds C6” reaction and the C8
complex (PDB: 3ojy), participating to the “C7 binds C5b:C6”, “C8 binds C5b:C6:C7”, “C5b:C6:C7 translocates to
the plasma membrane” and “C9 binds C5b:C6:C7:C8” reactions.
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from pathways and reactions to protein-protein interactions and protein 3D structures. Users can load analysis results in
the pathway diagram view to highlight reactions based on adjusted p-values (Figure 7A) and select a specific reaction to
inspect functional interactions impacted by mutations and highlighted according to adjusted p-values (Figure 7B).
Furthermore, users can also select a specific interaction and visualize mutation locations in the protein 3D structures
pulled directly from PDB (Figure 7C). ReactomeFIViz provides results from all TCGA cancers as well as pancancer,
from which users can choose one to explore (Figure 7D). For more information on how to use ReactomeFIViz to
explore the analysis results, see the user guide at https://reactome.org/userguide/reactome-fiviz#Structural_Variants_
Visualization.

Discussion
In this study, we conduct a systematic analysis of protein variants in cancer bymapping non-synonymous cancer somatic
mutations from TCGA to protein interaction interfaces using Mechismo and the Reactome functional interaction
network first, and then mapping those interfaces back into biochemical reactions and pathways to search for statistically
significant interactions, reactions and pathways.Mechismo offers the possibility to predict positional effects of mutations
and PTMs at biomolecular interfaces without the need to homology model 3D complexes. Reactome is unique
in providing a comprehensive set of manually annotated biochemical reactions which can be leveraged to interpret
cancer somatic variants in the context of biochemical reactions and biological pathways. Our analysis is focused on
biochemical reactions carried out by protein-protein and protein-chemical interactions and it differs from previous
published studies, which were focused either on protein-protein interactions or biological pathways, e.g.25 By focusing
on biochemical reactions, we identified and providedmechanistic explanations for rare mutations impinging on reactions
participating in established onco-pathways involving recurrently mutated oncodrivers (e.g. Receptor Tyrosine Kinase

Figure 6. A) A Reactome reaction sub-network constructed based on significant reactions collected from
cancer specific analysis. Reactions in light blue that are not significant are used as linker nodes to link
significant reactions together. Cancer types where reactions are significant are shown as pie charts inside
reaction nodes with different colors; B) The mapping between the significant reactions and functional
interactions of STAD in both the reaction network and the FIN highlighting the advantage of surveying
protein variants in cancer with multi-scale perspectives.
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signaling). Our multiscale representation of biomolecular processes was instrumental in highlighting interactions or
reactions playing roles in crosstalk between higher level pathways belonging to distinct domains of biological function
(e.g. Signal Transduction and Immune Systems). We also identified significantly affected processes not involving
any CGC, thereby representing potentially new cancer-associated processes. For example, we identified several interface
mutations affecting the complement cascade pathway, which is emerging as a key regulator of the tumor microenvi-
ronment fostering tumor growth and metastasis.26 Several of the identified pathways also represent new therapeutic
opportunities readily targetable by off-label drugs. For instance, we identified several GPCR signaling pathways
characterized by rare mutations on either the receptors or downstream signaling nodes, confirming our previous findings
that sparseGPCRmutationsmight converge in dysregulating signaling cascades similar to recurrentmutations of coupled
G-proteins.27,28

On top of this study, we have implemented a set of new features in ReactomeFIViz for the community to browse and
explore the results of our analysis, facilitating the understanding of potential cancer driver mechanisms in a unique,multi-
scale perspective that is built upon the Reactome pathway knowledgebase and extends from gene and protein to protein
interactions, reactions and pathways. Together with ReactomeFIViz’s previously existing features for visualizing drug-
target interactions in the same context of pathways and interaction networks and fuzzy logic simulation to model
perturbation of drugs and somaticmutations on pathway activities,29 users are able to conduct in-silico drug screening and
modeling in search of potential therapies by targeting significantly impacted reactions and related functional interactions.
We will explore the utility of leveraging ReactomeFIViz in this way.

The study reported in this paper was based on protein-protein and protein-chemical interaction 3D structures. The limited
coverage of protein-protein interaction 3D structures still constrains our survey to a small portion of protein-protein
interactions extracted from biochemical reactions and pathways annotated in Reactome. In the future, when results and
tools from ongoing large-scale protein structure determination30 or prediction projects (e.g. CASP community31) become
available, we expect to obtain more insightful results by applying our approach.

Figure 7. Visualization of structural variants in the context of Reactome pathways, reactions and functional
interactions. A. Pathway diagram with reactions highlighted according to p-values from the structural analysis;
B. Functional interactions for the selected reaction in A (in blue) with interactions highlighted according to p-values;
C. Protein-protein interaction 3D viewwithmutation locations displayed in balls; D. Table control for users to choose
a specific cancer to visualize its analysis results.
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In summary, we have developed amulti-scale approach to investigate protein structure variants in cancer in the context of
protein interactions, reactions and pathways annotated in Reactome. This approach is generic and can be applied to study
other types of abnormal protein omics features collected from cancer or other complex diseases. For example, abnormal
up or down protein or gene expression data or post-translational modifications can be mapped to protein interactions,
reactions, and pathways to investigate their potential impact. Our approach can also be easily extended to integrate other
types of interactions, such as protein-DNA, protein-RNA and protein-membrane interactions, for which Reactome has
annotatedmany complexes and reactions.We plan to conduct amore complete analysis by including all these interactions
as well as integrated mutations and PTMs sets (e.g. from CPTAC proteogenomics studies) in the future.

Methods
TCGA dataset
We downloaded the latest MAF files of 32 TCGA Cancer types from http://firebrowse.org/ (2016 release), for a total of
1.8M somatic mutations from 7120 patients. A total of 1.79M non-synonymous somatic mutations were mapped on
canonical UniProt sequences, yielding 1.16M unique protein variants. Only Ensembl transcripts matching in length to
corresponding UniProt sequences were retained using Oncotator32 “UniProt Exact Match” function and only predicted
variants whose reference amino acids matched those at corresponding positions in SwissProt sequences were retained for
further inspection. We employed standard TCGA study abbreviations (defined here: https://gdc.cancer.gov/resources-
tcga-users/tcga-code-tables/tcga-study-abbreviations) for cancer type names.

Constructing the Reactome FI network and the reaction network
We adapted the algorithm we developed to build the Reactome FI network21 to extract functional interactions between
proteins and proteins or proteins and chemicals from Reactome annotated reactions. The FI network used in this study is
different from our previously constructed FI network. Here we limited our analyses to FIs extracted from annotated
Reactome reactions only. To construct the Reactome reaction network, we connect two reactions (e.g. reaction1 and
reaction2) together if the output from reaction1 is an input, catalyst, or regulator of reaction2. To control spurious
connections among reactions, a set of small molecules, including ATP, ADP, Pi, H2O, GTP, GDP, CO2 and H+, is
excluded for this reaction connection checking. The version of the Reactome knowledgebase used in this study is release
59, released in December 2016, which may have some annotations that don’t exist in the current Reactome release.

Mapping Reactome FIs to Mechismo interfaces
Wemapped protein-protein and protein-chemical functional interactions fromReactome FIN to 3D interaction interfaces
from Mechismo (mechismo.russelllab.org).16 We used UniProt accessions to map protein entities and employed a
chemoinformatics similarity search to map chemical entities. In more detail, we retrieved InChI identifiers for both
ChEBI33 (cross-referenced to Reactome) and PDB34 (cross-referenced to Mechismo) chemical components. We then
generated topological fingerprints for both sets through the RDKit package (https://www.rdkit.org/) using the Tanimoto
score as a similarity metric. We considered only interactions with matching UniProt accessions and with chemical
similarity greater than 0.5 as corresponding protein-chemicals interactions.

Using Mechismo to define perturbed FI interfaces
Wepredicted functional consequences of TCGAnon-synonymous somatic mutations usingMechismo,16 whichmatches
protein positions to positions within structures and identifies sites affecting interactions with other proteins, DNA/RNA
or small-molecules. UniProt sequences were aligned to PDB sequences via BLAST17 considering matches with E-value
threshold of 0.0001 and storing the best match for each position in the UniProt sequence. We considered high confidence
predictions for protein-protein interactions including known structures or close (≥70% sequence identity) homologs and
representing only very confident, physical protein-protein interactions. For chemical and DNA/RNAwe also considered
predictions with low/medium confidence (as low as 30% sequence identity).

We identified the most perturbed interactions in cancer by ranking each interacting pair based on the number of unique
samples where a missense mutation was predicted to affect the interface. We tested the significance of the most perturbed
interactions in TCGA by using an interactome perturbation random background model (BM). We defined it by first
collecting the missense variants found in each sample and randomly shuffling the same substitutions between equivalent
positions in the same protein. We obtained equivalent Mechismo data for BM and calculated the probability of obtaining
the same number of observed perturbing events for each interaction by chance using a binomial test:

P c,Nð Þ¼ N

c

� �
Prð Þc 1�Prð ÞN�c

where N is the total number of samples, c is the number of unique samples in which a given interaction has been found
perturbed and P is the probability of getting the same interface perturbed from the random background distribution.

Page 11 of 21

F1000Research 2022, 10:1111 Last updated: 16 DEC 2022

http://firebrowse.org/
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
http://mechismo.russelllab.org
https://www.rdkit.org/


The obtained P-values were adjusted using the FDR/Benjamini-Hochberg procedure.35 We considered instances with
adjusted P-values below 0.05 as significant.

We similarly applied the sameBMand statistical test to define reactions and pathwayswhosemediating FIs' interfaces are
significantly affected.

Survival analysis
We downloaded clinical records of TCGA patients using TCGAbiolinks Bioconductor package36 and considered “vital_
status” , “gender”,”days_to_death”, “days_to_last_follow_up”, “age_at_diagnosis”. Cox’s proportional hazard model
was employed to predict hazard ratios and survival probability of patients affected by interface-, reaction- and pathway-
perturbingmutations, employing age and sex as covariates. Samples withmissing values (i.e. “nan”) in any of these fields
were not considered for this analysis.

All the statistical analysis has been done in Python 3.8.11 (www.python.org) through scipy 1.6.2 (www.scipy.org),
statsmodels 0.12.2 (statsmodels.sourceforge.net) and lifelines 0.25.9 (lifelines.readthedocs.org/en/latest) libraries.

Implementing new features in ReactomeFIViz
We developed a MySQL database to store the analysis results via a Hibernate API (https://hibernate.org) and a RESTful
API to serve the analysis results from theMySQL database to ReactomeFIViz using the SpringMVC framework (version
4.3.10, https://spring.io/projects/spring-framework). New user interfaces were added to ReactomeFIViz using Java
Swing (Java 8, https://docs.oracle.com/javase/tutorial/uiswing/) by following the standard practice to develop apps for
Cytoscape.37We used Java (JDK 1.8) for software programming and host the source code at GitHub: https://github.com/
reactome-fi/mechismows for the RESTful API and https://github.com/reactome-fi/CytoscapePlugIn for the front-end
user interfaces in ReactomeFIViz.

Data availability
Underlying data
MAF files of the 32 TCGA cancer types available from http://firebrowse.org/ (2016 release)

The outcome of the analysis is available through the Reactome FIViz Cytoscape app: https://reactome.org/tools/
reactome-fiviz

The mysql database dump used for the server-side application: https://doi.org/10.5281/zenodo.5590953.

Extended data
Zenodo: Leveraging biochemical reactions to unravel functional impacts of cancer somatic variants affecting protein
interaction interfaces, https://doi.org/10.5281/zenodo.7401670.38

This project contains the following extended data:

• Figure S1: Significantly affected pathways in individual TCGA cancer types mapped to top level Reactome
pathways. Diameters are proportional to the numbers of unique samples having mutations in top level pathways
and color shades are proportional to the numbers of FI interfaces.

• Figure S2: Significantly affected reactions belonging to the Gene expression top level pathway. Diameters are
proportional to the numbers of unique samples and colors are proportional to the numbers of FI interfaces.

• Figure S3: Significantly affected reactions belonging to the Immune System top level pathway. Diameters are
proportional to the numbers of unique samples and colors are proportional to the numbers of FI interfaces.

• Figure S4: Significantly affected reactions belonging to the Signal Transduction top level pathway. Diameters are
proportional to the numbers of unique samples and colors are proportional to the numbers of FI interfaces.

• Figure S5: Higher resolution of Figure 6 in PDF.

• Figure_6_Networks.cys: The original Cytoscape session file containing networks shown in Figure 6. The filewas
generated using Cytoscape 3.8.2. The visual style of the functional interaction network in Figure 6B is different

Page 12 of 21

F1000Research 2022, 10:1111 Last updated: 16 DEC 2022

http://www.python.org
http://www.scipy.org
http://statsmodels.sourceforge.net
http://lifelines.readthedocs.org/en/latest
https://hibernate.org
https://spring.io/projects/spring-framework
https://docs.oracle.com/javase/tutorial/uiswing/
https://github.com/reactome-fi/mechismows
https://github.com/reactome-fi/mechismows
https://github.com/reactome-fi/CytoscapePlugIn
http://firebrowse.org/
https://reactome.org/tools/reactome-fiviz
https://reactome.org/tools/reactome-fiviz
https://doi.org/10.5281/zenodo.5590953
https://doi.org/10.5281/zenodo.7401670


from the network labeled “Figure_6B_FIN” in this session file to better distinguish protein nodes from reaction
nodes.

• Table S1: Mutation enrichment at protein interaction interfaces.

• Table S2: Mutation enrichment at Reactome Reactions interfaces.

• Table S3: Mutation enrichment at Reactome Pathway interfaces.

• Table S4: Survival analysis of significantly affected interactions.

• Table S5: Survival analysis of significantly affected reactions.

• Table S6: Survival analysis of significantly affected pathways.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Home page for user guide describing procedures on how to use ReactomeFIViz features for visualizing cancer somatic
mutations via a multi-scale perspective: https://reactome.org/userguide/reactome-fiviz#Structural_Variants_Visualization

Cytoscape app store: http://apps.cytoscape.org/apps/reactomefiplugin

Latest source code: https://github.com/reactome-fi/CytoscapePlugIn (ReactomeFIViz app code) and https://github.com/
reactome-fi/mechismows (Server-side code)

Source code as at the time of publication: https://github.com/reactome-fi/CytoscapePlugIn/releases/tag/f1000_cancer_
2021 and https://github.com/reactome-fi/mechismows/releases/tag/F1000_Cancer_2021

Archived source code as at the time of publication: https://doi.org/10.5281/zenodo.559094539 (ReactomeFIViz app
code) and https://doi.org/10.5281/zenodo.559094940 (Server-side code)

License: Creative Commons Attribution 4.0 International (CC BY 4.0) License (https://reactome.org/license).

References

1. Bailey MH, et al. : Comprehensive Characterization of Cancer
Driver Genes and Mutations. Cell. 2018; 173: 371–385.e18.
PubMed Abstract|Publisher Full Text|Free Full Text

2. Hudson TJ, Anderson W, Aretz A, et al. : International network of
cancer genome projects. Nature. 2010; 464: 993–998.
PubMed Abstract|Publisher Full Text|Free Full Text

3. Chen H, et al. : Comprehensive assessment of computational
algorithms in predicting cancer driver mutations. Genome Biol.
2020; 21: 43.
PubMed Abstract|Publisher Full Text|Free Full Text

4. Gonzalez-Sanchez JC, Raimondi F, Russell RB: Cancer genetics
meets biomolecularmechanism: bridging and age old gulf. FEBS
Lett. 2018; 592: 463–474.
PubMed Abstract|Publisher Full Text

5. Porta-Pardo E, Garcia-Alonso L, Hrabe T, et al. : A Pan-Cancer
Catalogue of Cancer Driver Protein Interaction Interfaces. PLoS
Comput. Biol. 2015; 11: e1004518.
PubMed Abstract|Publisher Full Text|Free Full Text

6. Kamburov A, et al. : Comprehensive assessment of cancer
missense mutation clustering in protein structures. 2015; 1–10.
Publisher Full Text

7. Wang Y, Sahni N, Vidal M: Global Edgetic Rewiring in Cancer
Networks. Cell Systems. 2015; 1: 251–253.
PubMed Abstract|Publisher Full Text

8. Creixell P, et al. : Kinome-wide Decoding of Network-Attacking
Mutations Rewiring Cancer Signaling Resource Kinome-wide
Decoding of Network-Attacking Mutations Rewiring Cancer
Signaling. Cell. 2015; 163: 202–217.
PubMed Abstract|Publisher Full Text|Free Full Text

9. Vázquez M, Valencia A, Pons T: Structure-PPi: A module for the
annotation of cancer-related single-nucleotide variants at
protein-protein interfaces. Bioinformatics. 2015; 31: 2397–2399.
PubMed Abstract|Publisher Full Text|Free Full Text

10. Porta-Pardo E, Hrabe T, Godzik A: Cancer3D: Understanding
cancer mutations through protein structures. Nucleic Acids Res.
2015; 43: D968–D973.
PubMed Abstract|Publisher Full Text|Free Full Text

11. Mosca R, Céol A, Aloy P: Interactome3D: adding structural details
to protein networks. 2013; 10.

12. Szilagyi A, Zhang Y: Template-based structure modeling of
protein-protein interactions. Curr. Opin. Struct. Biol. 2014; 24:
10–23.
PubMed Abstract|Publisher Full Text|Free Full Text

13. Zhang QC, et al. : Structure-based prediction of protein-protein
interactions on a genome-wide scale. Nature. 2012; 490: 556–560.
PubMed Abstract|Publisher Full Text|Free Full Text

14. Murray D, Petrey D, Honig B: Integrating 3D structural
information into systems biology. J. Biol. Chem. 2021; 296: 100562.
PubMed Abstract|Publisher Full Text|Free Full Text

Page 13 of 21

F1000Research 2022, 10:1111 Last updated: 16 DEC 2022

https://creativecommons.org/licenses/by/4.0/
https://reactome.org/userguide/reactome-fiviz#Structural_Variants_Visualization
http://apps.cytoscape.org/apps/reactomefiplugin
https://github.com/reactome-fi/CytoscapePlugIn
https://github.com/reactome-fi/mechismows
https://github.com/reactome-fi/mechismows
https://github.com/reactome-fi/CytoscapePlugIn/releases/tag/f1000_cancer_2021
https://github.com/reactome-fi/CytoscapePlugIn/releases/tag/f1000_cancer_2021
https://github.com/reactome-fi/mechismows/releases/tag/F1000_Cancer_2021
https://doi.org/10.5281/zenodo.5590945
https://doi.org/10.5281/zenodo.5590949
https://reactome.org/license
http://www.ncbi.nlm.nih.gov/pubmed/29625053
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1016/j.cell.2018.02.060
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029450
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029450
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029450
http://www.ncbi.nlm.nih.gov/pubmed/20393554
https://doi.org/10.1038/nature08987
https://doi.org/10.1038/nature08987
https://doi.org/10.1038/nature08987
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902243
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902243
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902243
http://www.ncbi.nlm.nih.gov/pubmed/32079540
https://doi.org/10.1186/s13059-020-01954-z
https://doi.org/10.1186/s13059-020-01954-z
https://doi.org/10.1186/s13059-020-01954-z
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033911
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033911
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033911
http://www.ncbi.nlm.nih.gov/pubmed/29364530
https://doi.org/10.1002/1873-3468.12988
https://doi.org/10.1002/1873-3468.12988
https://doi.org/10.1002/1873-3468.12988
http://www.ncbi.nlm.nih.gov/pubmed/26485003
https://doi.org/10.1371/journal.pcbi.1004518
https://doi.org/10.1371/journal.pcbi.1004518
https://doi.org/10.1371/journal.pcbi.1004518
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4616621
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4616621
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4616621
https://doi.org/10.1073/pnas.1516373112
http://www.ncbi.nlm.nih.gov/pubmed/27136053
https://doi.org/10.1016/j.cels.2015.10.006
https://doi.org/10.1016/j.cels.2015.10.006
https://doi.org/10.1016/j.cels.2015.10.006
http://www.ncbi.nlm.nih.gov/pubmed/26388441
https://doi.org/10.1016/j.cell.2015.08.056
https://doi.org/10.1016/j.cell.2015.08.056
https://doi.org/10.1016/j.cell.2015.08.056
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644236
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644236
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644236
http://www.ncbi.nlm.nih.gov/pubmed/25765346
https://doi.org/10.1093/bioinformatics/btv142
https://doi.org/10.1093/bioinformatics/btv142
https://doi.org/10.1093/bioinformatics/btv142
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495296
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495296
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495296
http://www.ncbi.nlm.nih.gov/pubmed/25392415
https://doi.org/10.1093/nar/gku1140
https://doi.org/10.1093/nar/gku1140
https://doi.org/10.1093/nar/gku1140
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383948
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383948
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383948
http://www.ncbi.nlm.nih.gov/pubmed/24721449
https://doi.org/10.1016/j.sbi.2013.11.005
https://doi.org/10.1016/j.sbi.2013.11.005
https://doi.org/10.1016/j.sbi.2013.11.005
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984454
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984454
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984454
http://www.ncbi.nlm.nih.gov/pubmed/23023127
https://doi.org/10.1038/nature11503
https://doi.org/10.1038/nature11503
https://doi.org/10.1038/nature11503
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482288
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482288
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482288
http://www.ncbi.nlm.nih.gov/pubmed/33744294
https://doi.org/10.1016/j.jbc.2021.100562
https://doi.org/10.1016/j.jbc.2021.100562
https://doi.org/10.1016/j.jbc.2021.100562
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095114
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095114
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095114


15. Meyer MJ, et al. : Interactome INSIDER: a structural interactome
browser for genomic studies. Nat. Methods. 2018; 15: 107–114.
PubMed Abstract|Publisher Full Text|Free Full Text

16. Betts MJ, et al. : Mechismo: Predicting the mechanistic impact of
mutations andmodifications onmolecular interactions. Nucleic
Acids Res. 2015; 43: e10.
PubMed Abstract|Publisher Full Text|Free Full Text

17. Altschul SF, et al.:GappedBLAST andPSI-BLAST: a newgeneration
of protein database search programs. Nucleic Acids Res. 1997; 25:
3389–3402.
PubMed Abstract|Publisher Full Text|Free Full Text

18. Jassal B, et al. : The reactome pathway knowledgebase. Nucleic
Acids Res. 2020; 48: D498–D503.
PubMed Abstract|Publisher Full Text|Free Full Text

19. Wu G, Dawson E, Duong A, et al.: ReactomeFIViz: a Cytoscape app
for pathway and network-based data analysis. F1000Res. 2014; 3:
146–114.
PubMed Abstract|Publisher Full Text|Free Full Text

20. Raimondi F, et al. : Insights into cancer severity from
biomolecular interaction mechanisms. Sci. Rep. 2016; 6:
34490.
PubMed Abstract|Publisher Full Text|Free Full Text

21. Wu G, Feng X, Stein L: A human functional protein interaction
network and its application to cancer data analysis.Genome Biol.
2010; 11: R53.
PubMed Abstract|Publisher Full Text|Free Full Text

22. Sondka Z, et al. : The COSMIC Cancer Gene Census: describing
genetic dysfunction across all human cancers. Nat. Rev. Cancer.
2018; 18: 696–705.
PubMed Abstract|Publisher Full Text|Free Full Text

23. Barabási AL, Gulbahce N, Loscalzo J: Network medicine:
A network-based approach to human disease. Nat. Rev. Genet.
2011; 12: 56–68.
PubMed Abstract|Publisher Full Text|Free Full Text

24. Garraway LA, Lander ES: Lessons from the cancer genome. Cell.
2013; 153: 17–37.
PubMed Abstract|Publisher Full Text

25. Reyna MA, et al. : Pathway and network analysis of more than
2500 whole cancer genomes. Nat. Commun. 2020; 11: 729.
PubMed Abstract|Publisher Full Text|Free Full Text

26. Afshar-Kharghan V: The role of the complement system in
cancer. J. Clin. Investig. 2017; 127: 780–789.
Publisher Full Text

27. Raimondi F, et al. : Rare, functional, somatic variants in gene
families linked to cancer genes: GPCR signaling as a paradigm.
Oncogene. 2019; 38: 6491–6506.
Publisher Full Text|Free Full Text

28. Wu V, et al. : Illuminating the Onco-GPCRome: Novel G protein-
coupled receptor-driven oncocrine networks and targets for
cancer immunotherapy. J. Biol. Chem. 2019; 294: 11062–11086.
PubMed Abstract|Publisher Full Text|Free Full Text

29. Blucher AS, McWeeney SK, Stein L, et al. : Visualization of drug
target interactions in the contexts of pathways and networks
with reactomefiviz. F1000Res. 2019; 8: 8.
Publisher Full Text

30. Jones MM, et al. : The Structural Genomics Consortium: A
Knowledge Platform for Drug Discovery: A Summary. Rand
Heal. Q. 2014; 4: 19.

31. Kryshtafovych A, Schwede T, Topf M, et al. : Critical assessment of
methods of protein structure prediction (CASP)—Round XIII.
ProteinsStruct, Funct, Genet. 2019; 87: 1011–1020.
PubMed Abstract|Publisher Full Text|Free Full Text

32. RamosAH, et al.:Oncotator: Cancer variant annotation tool.Hum.
Mutat. 2015; 36: E2423–E2429.
PubMed Abstract|Publisher Full Text|Free Full Text

33. Hastings J, et al. : ChEBI in 2016: Improved services and an
expanding collection of metabolites. Nucleic Acids Res. 2016; 44:
D1214–D1219.
PubMed Abstract|Publisher Full Text|Free Full Text

34. Burley SK, et al.: Protein Data Bank: The single global archive for
3D macromolecular structure data. Nucleic Acids Res. 2019; 47:
D520–D528.

35. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. Journal of
the Royal Statistical Society. Series B (Methodological). 1995; 57:
289–300.
Publisher Full Text

36. Colaprico A, et al. : TCGAbiolinks: An R/Bioconductor package for
integrative analysis of TCGA data. Nucleic Acids Res. 2016; 44: e71.
PubMed Abstract|Publisher Full Text|Free Full Text

37. Lotia S, Montojo J, Dong Y, et al. : Cytoscape app store.
Bioinformatics. 2013; 29: 1350–1351.
PubMed Abstract|Publisher Full Text|Free Full Text

38. Raimondi F, Burkhart JG, Betts MJ, et al. : Leveraging biochemical
reactions to unravel functional impacts of cancer somatic
variants affecting protein interaction interfaces. 2022.
Publisher Full Text

39. Guanmingwu, Dawson ETreactome-fi: reactome-fi/
CytoscapePlugIn: F1000Research_Cancer_Somatic_Mutation_
Paper_2021 (f1000_cancer_2021). Zenodo. 2021.
Publisher Full Text

40. reactome-fi: reactome-fi/mechismows: F1000Research_Cancer_
Paper_2021 (F1000_Cancer_2021). Zenodo. 2021.
Publisher Full Text

Page 14 of 21

F1000Research 2022, 10:1111 Last updated: 16 DEC 2022

http://www.ncbi.nlm.nih.gov/pubmed/29355848
https://doi.org/10.1038/nmeth.4540
https://doi.org/10.1038/nmeth.4540
https://doi.org/10.1038/nmeth.4540
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026581
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026581
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026581
http://www.ncbi.nlm.nih.gov/pubmed/25392414
https://doi.org/10.1093/nar/gku1094
https://doi.org/10.1093/nar/gku1094
https://doi.org/10.1093/nar/gku1094
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333368
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333368
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333368
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146917
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146917
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146917
http://www.ncbi.nlm.nih.gov/pubmed/31691815
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1093/nar/gkz1031
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145712
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145712
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145712
http://www.ncbi.nlm.nih.gov/pubmed/25309732
https://doi.org/10.12688/f1000research.4431.2
https://doi.org/10.12688/f1000research.4431.2
https://doi.org/10.12688/f1000research.4431.2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184317
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184317
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184317
http://www.ncbi.nlm.nih.gov/pubmed/27698488
https://doi.org/10.1038/srep34490
https://doi.org/10.1038/srep34490
https://doi.org/10.1038/srep34490
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048291
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048291
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048291
http://www.ncbi.nlm.nih.gov/pubmed/20482850
https://doi.org/10.1186/gb-2010-11-5-r53
https://doi.org/10.1186/gb-2010-11-5-r53
https://doi.org/10.1186/gb-2010-11-5-r53
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898064
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898064
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898064
http://www.ncbi.nlm.nih.gov/pubmed/30293088
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1038/s41568-018-0060-1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450507
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450507
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450507
http://www.ncbi.nlm.nih.gov/pubmed/21164525
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg2918
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140052
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140052
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140052
http://www.ncbi.nlm.nih.gov/pubmed/23540688
https://doi.org/10.1016/j.cell.2013.03.002
https://doi.org/10.1016/j.cell.2013.03.002
https://doi.org/10.1016/j.cell.2013.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32024854
https://doi.org/10.1038/s41467-020-14367-0
https://doi.org/10.1038/s41467-020-14367-0
https://doi.org/10.1038/s41467-020-14367-0
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002574
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002574
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002574
https://doi.org/10.1172/JCI90962
https://doi.org/10.1038/s41388-019-0895-2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756116
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756116
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756116
http://www.ncbi.nlm.nih.gov/pubmed/31171722
https://doi.org/10.1074/jbc. REV119.005601
https://doi.org/10.1074/jbc. REV119.005601
https://doi.org/10.1074/jbc. REV119.005601
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643028
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643028
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643028
https://doi.org/10.12688/f1000research.19592.1
http://www.ncbi.nlm.nih.gov/pubmed/31589781
https://doi.org/10.1002/prot.25823
https://doi.org/10.1002/prot.25823
https://doi.org/10.1002/prot.25823
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927249
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927249
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927249
http://www.ncbi.nlm.nih.gov/pubmed/25703262
https://doi.org/10.1002/humu.22771
https://doi.org/10.1002/humu.22771
https://doi.org/10.1002/humu.22771
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350419
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350419
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350419
http://www.ncbi.nlm.nih.gov/pubmed/26467479
https://doi.org/10.1093/nar/gkv1031
https://doi.org/10.1093/nar/gkv1031
https://doi.org/10.1093/nar/gkv1031
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702775
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702775
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702775
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://www.ncbi.nlm.nih.gov/pubmed/26704973
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/nar/gkv1507
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856967
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856967
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856967
http://www.ncbi.nlm.nih.gov/pubmed/23595664
https://doi.org/10.1093/bioinformatics/btt138
https://doi.org/10.1093/bioinformatics/btt138
https://doi.org/10.1093/bioinformatics/btt138
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654709
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654709
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654709
https://doi.org/10.5281/zenodo.7401670
https://doi.org/10.5281/zenodo.5590945
https://doi.org/10.5281/zenodo.5590949


Open Peer Review
Current Peer Review Status:   

Version 3

Reviewer Report 15 December 2022

https://doi.org/10.5256/f1000research.141738.r157982

© 2022 Szilagyi A. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Andras Szilagyi   
Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary 

No new comments.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Structural bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 2

Reviewer Report 30 November 2022

https://doi.org/10.5256/f1000research.141560.r156974

© 2022 Martelli P. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Pier Luigi Martelli   
Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 
Bologna, Italy 

The present version addresses my concerns.
 
Competing Interests: No competing interests were disclosed.

 
Page 15 of 21

F1000Research 2022, 10:1111 Last updated: 16 DEC 2022

https://doi.org/10.5256/f1000research.141738.r157982
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1773-6861
https://doi.org/10.5256/f1000research.141560.r156974
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0274-5669


Reviewer Expertise: Computational biology; Bioinformatics; Structural and functional 
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The paper by Raimondi et al. presents an analysis aiming at elucidating the effect of somatic, 
cancer-related variants on interaction interfaces of complexes involved in biochemical reactions. 
Data from 7120 patients of 32 cancer types are downloaded from TGCA and analysed with 
Mechismo for determining the possible functional effect of variations at protein-protein interfaces. 
Functional interfaces are then mapped on Reactome reactions and pathway and an enrichment 
procedure is adopted to highlight the most relevant biochemical processes involved in each 
cancer type. 
 
The paper is generally clearly written. In my opinion, paper readability would benefit from a more 
extended review of the methods at the basis of Mechismo and of the definition of functional 
interfaces. In particular, it is unclear what is the expected number of variations that Mechismo can 
annotate on proteins without 3D structure, as reported in the introduction. For the 1.16 M unique 
variations from TCGA, authors only report the number of those mapped on known 3D structures, 
and it is unclear whether they include those deriving from homology-based analysis. If yes, it 
would be useful to provide some more detail and discuss possible differences of effect predictions 
depending on the similarity between the wildtype sequence and the adopted structure. 
 
Other minor points: 
- Introduction: the sentence "The gene-level analysis tells us what changes occur in genes or 
proteins, but not the functional impact" is a bit misleading, since different approaches have been 
developed for predicting possible impact at different levels (function, stability...) 
 
- Legends of figures could be improved, adding details. In particular it is not clear what "donor" 
means in Figure 2. 
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- Supplementary figures S1-S4 are unreadable in the current version.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational biology; Bioinformatics; Structural and functional 
characterization of proteins and their variants; Machine and deep learning.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 25 Nov 2022
Guanming Wu, Oregon Health & Science University, Portland, USA 

Dear Dr. Pier Luigi Martelli, 
 
Thanks a lot for reviewing our manuscript. We have made some changes according to your 
comments. Please see our reply to your comments below:

In my opinion, paper readability would benefit from a more extended review of the 
methods at the basis of Mechismo and of the definition of functional interfaces. In 
particular, it is unclear what is the expected number of variations that Mechismo can 
annotate on proteins without 3D structure, as reported in the introduction. For the 
1.16 M unique variations from TCGA, authors only report the number of those 
mapped on known 3D structures, and it is unclear whether they include those 
deriving from homology-based analysis. If yes, it would be useful to provide some 
more detail and discuss possible differences of effect predictions depending on the 
similarity between the wildtype sequence and the adopted structure.

○

We mapped mutations to 3D structures, either known or homologous, by considering UniProt 
alignment to PDB fasta sequences via BLAST, considering matches with E-value threshold of 
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0.0001, and storing the best match for each position in the UniProt sequence. 
 
Then we considered high confidence predictions for protein-protein interactions including known 
structures or close (>=70% sequence identity) homologs and representing only very confident, 
physical protein-protein interactions. For chemical and DNA/RNA we also considered predictions 
with low/medium confidence (as low as 30% sequence identity). We have made these points 
clearer both in the Results and Methods sections.

Introduction: the sentence "The gene-level analysis tells us what changes occur in 
genes or proteins, but not the functional impact" is a bit misleading, since different 
approaches have been developed for predicting possible impact at different levels 
(function, stability...)

○

When we said “gene-level analysis”, we meant the analysis is about genes or proteins such as 
somatic mutations or structural variants. Indeed, many approaches have developed to predict 
impacts of mutations on protein stability and functions. But we’d like to argue that “stability” is 
still a protein-level feature. To know the impact of mutation on the protein’s function, extra 
information is needed (e.g. what pathways or biological processes have been annotated for the 
protein, etc.) for higher level analysis (e.g. pathway enrichment analysis). Regardless, we added 
some phrases (as shown below in parentheses) to the original sentence. Now this sentence reads 
as the following: 
 
The gene-level analysis tells us what changes (e.g. structural variants) occur in genes or proteins, 
but not the functional impact (e.g. biological processes)…

Legends of figures could be improved, adding details. In particular it is not clear what 
"donor" means in Figure 2.

○

Thanks for pointing this out. We have changed “donors” to “patients” in Figure 2.
Supplementary figures S1-S4 are unreadable in the current version.○

These figures have been fixed. It is our mistake. 
 
Thanks again for reviewing our manuscript and comments.  

Competing Interests: No competing interests were disclosed.
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Andras Szilagyi   
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In this impressive work, the authors investigated all available data on somatic cancer mutations by 
connecting 3D protein-protein and protein-chemical interface data with data on biochemical 
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reactions and pathways, thereby revealing significantly impacted reactions and pathways. This 
novel approach has yielded numerous important insights. Analysis of patient survival times 
identified mutations perturbing processes affecting patient survival. The authors also created an 
updated visualization tool enabling the users to explore the results of the analyses. 
 
The methodology is sound, and the results support the conclusions. There are only a few technical 
problems which need to be fixed:

The supplementary figures (Extended data) cannot be evaluated because they got cropped, 
probably during some conversion step. 
 

○

The top part of Fig. 5 is not labeled, and the legend does not refer to it. 
 

○

On Page 3, 'ERBB2' is misspelled as 'ERRB2'. 
 

○

The resolution of Fig. 6 is poor and most labels are unreadable. Since this figure is very 
complex, a vector image (preferably SVG) would be better. The legend says some nodes 
contain bar charts, but in fact they are pie charts. Actually, bar charts would be better 
because there are too many similar colors in the pie charts. 
 

○

The supplementary tables are provided in an Excel file which is inconvenient to use as the 
column labels are not fully visible. Please increase the height of the row for the column 
labels and use wrapped text. 
 

○

The cancer types are indicated with acronyms, but they are not expanded anywhere. Please 
provide their expansions, or a link where these can be found.

○

Regarding the survival analysis, the authors used the clinical records from TCGA. Were there any 
missing data? If yes, how were they handled? 
 
This article is a very significant contribution. However, it cannot be fully evaluated until the 
supplementary figures are fixed.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, protein structure, protein-protein interactions, pathway 
analysis

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 25 Nov 2022
Guanming Wu, Oregon Health & Science University, Portland, USA 

Dear Dr. Szilagyi, 
 
Thanks a lot for reviewing our manuscript. We have made the following updates according 
to your comments:

The supplementary figures (Extended data) cannot be evaluated because they got 
cropped, probably during some conversion step.

○

Our mistake. This has been fixed now.
The top part of Fig. 5 is not labeled, and the legend does not refer to it.○

The top part of Fig 5 is deleted.
On Page 3, 'ERBB2' is misspelled as 'ERRB2'.○

Thanks! Fixed.
The resolution of Fig. 6 is poor and most labels are unreadable. Since this figure is 
very complex, a vector image (preferably SVG) would be better. The legend says some 
nodes contain bar charts, but in fact they are pie charts. Actually, bar charts would be 
better because there are too many similar colors in the pie charts.

○

Thanks for pointing this out. We replaced the figure with a PDF version, which is scalable. 
Furthermore, we provided the original Cytoscape file (Figure_6_Networks.cys) in Extended Data 
for readers to investigate the networks using Cytoscape, which can be downloaded from 
https://cytoscape.org/.  
 
We tried to use bar charts in Cytoscape. However, we believe using pie charts is better. Also we 
fixed the name of the charts to “pie charts” from “bar charts”. Thanks a lot for your suggestion!

The supplementary tables are provided in an Excel file which is inconvenient to use as 
the column labels are not fully visible. Please increase the height of the row for the 
column labels and use wrapped text.

○

Thanks for the suggestions. We have increased the height of the row for the column labels and 
use wrapped text.

The cancer types are indicated with acronyms, but they are not expanded anywhere. 
Please provide their expansions, or a link where these can be found.

○

Regarding the cancer types acronyms, these are the standard abbreviations provided by TCGA (
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations). We 
provided a reference in the “TCGA dataset” section of the Methods.
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Regarding the survival analysis, the authors used the clinical records from TCGA. 
Were there any missing data? If yes, how were they handled?

○

Thanks for pointing this out. We didn’t consider in our analysis samples with missing values. We 
have now made this point clear in the “Survival analysis” section of the Methods.  
 
Thanks again for your comments.  

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 21 of 21

F1000Research 2022, 10:1111 Last updated: 16 DEC 2022

mailto:research@f1000.com

