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Adipose tissue is a crucial regulator in maintaining cardiovascular homeostasis

by secreting various bioactive products to mediate the physiological function

of the cardiovascular system. Accumulating evidence shows that adipose tissue

disorders contribute to several kinds of cardiovascular disease (CVD).

Furthermore, the adipose tissue would present various biological effects

depending on its tissue localization and metabolic statuses, deciding the

individual cardiometabolic risk. Crosstalk between adipose and myocardial

tissue is involved in the pathophysiological process of arrhythmogenic right

ventricular cardiomyopathy (ARVC), cardiac fibrosis, heart failure, and

myocardial infarction/atherosclerosis. The abnormal distribution of adipose

tissue in the heart might yield direct and/or indirect effects on cardiac function.

Moreover, mechanical transduction is critical for adipocytes in differentiation,

proliferation, functional maturity, and homeostasis maintenance. Therefore,

understanding the features of mechanotransduction pathways in the cellular

ontogeny of adipose tissue is vital for underlining the development of

adipocytes involved in cardiovascular disorders, which would preliminarily

contribute positive implications on a novel therapeutic invention for

cardiovascular diseases. In this review, we aim to clarify the role of

mechanical stress in cardiac adipocyte homeostasis and its interplay with

maintaining cardiac function.
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1 Introduction

Adipose tissue is recognized as a crucial regulator to

maintain cardiovascular homeostasis, and the adipose secretes

various bioactive products to mediate the physiological function

of the cardiovascular system, including adipocytokines,

microvesicles, and gaseous messengers, serving as a wide range

of endocrine and paracrine effects (1, 2). Recently, accumulating

evidence demonstrated that adipose tissue disorders are involved

in the pathogenesis of several kinds of cardiovascular disease

(CVD), demonstrating a more complex landscape than the

previous opinion. Moreover, adipose tissue would present

various biological effects depending on tissue localization and

metabolic statuses, deciding the individual cardiometabolic risk

(3–5). It is known that cardiac adipose tissue is composed of the

paracardial fat outside the visceral pericardium and the

epicardial adipose tissue (EAT) adjacent to the epicardium (6).

In addition to its role in energetic and lipid metabolism, EAT

produces amounts of adipokines that freely enter the adjacent

myocardium (6). Crosstalk between adipose and myocardial

tissue is involved in the pathophysiological process of rapid

atrial pacing or atrial fibrillation (AF), which results in

regulating adipose tissue accumulation in feedback. It lent

itself to that; therefore, abnormal adipose tissue distribution in

the heart might yield direct and/or indirect effects on

cardiac function.

Additionally, adipose tissue can infiltrate the myocardium and

lead to myocardial dysfunction, especially in the right ventricle,

which is the dominant phenomenon of arrhythmogenic right

ventricular cardiomyopathy (ARVC). Patients with ARVC

present the replacement of part of the myocardium by fibrous

and fatty tissue with either localized or diffuse myocardial atrophy

due to cumulative cardiomyocyte loss. The fibro-fatty scar tissue

might progress from the subepicardial muscle layer towards the

endocardium, ultimately resulting in transmural lesions with focal

or diffuse wall thinning, subsequently leading to cardiac electrical

instability (7–9).

Moreover, mechanical transduction is critical for almost all

tissues in differentiation, proliferation, functional maturity, and

homeostasis maintenance. Generally, a soft extracellular matrix

(ECM) or environment is optimal for developing adipose tissue

and is seldom applied to high mechanical stress loading. Much

evidence demonstrated that soft ECM would ensure adipose

differentiation from mesenchymal stem cells (MSCs). Otherwise,

the MSCs would present differential features to bone tissue.

However, the cardiovascular system bears high pressure with

repeated contractile movements, involving amounts of

mechanotransduction pathways, namely, focal adhesion kinase

(YAP)/transcriptional coactivator with PDZ‐binding motif

(TAZ), Mitogen-activated protein kinases (MAPK)/extracellular

signal-regulated kinases (ERK), Ras Homolog Family Member A/

Rho-Associated Protein Kinase (RhoA/ROCK), and transforming
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growth factor b1 (TGF-b1)/Smad signaling pathway. And

mechanotransduction signaling plays a significant role in the

cooperated cells, including cardiomyocytes, endothelial cells, and

even adipocytes. Usually, 15–30 kPa stiffness ECM is optimal for

cardiomyocytes, while adipocytes require 1–2.5 kPa

circumstances. Thus the molecular regulation mechanisms in

EAT would be much different from adipose tissue in other

locations, which makes mechanotransduction critical to

maintaining the homeostasis of EAT.

Therefore, understanding the features of mechanotransduction

pathways in the cellular ontogeny of adipose tissue is vital for

underlining the development of adipocytes involved in

cardiovascular disorders, which would preliminarily contribute

positive implications on novel therapeutic interventions for

cardiovascular diseases. This review mainly clarifies the role of

mechanical stress in cardiac adipocyte homeostasis and its

interplays with cardiac function maintenance.
2 The cellular origins of
cardiac adipocytes

An understanding of the development of cardiac adipocytes

(CAs) is essential to demonstrate its involvement in

cardiovascular diseases. In adult mouse hearts, adipocytes can

be divided into three distinct types according to their anatomical

locations. Pericardial cardiac adipocytes (PAT) is situated

between the visceral and parietal pericardium, which may be

derived from the primitive thoracic mesenchyme and is

vascularized by blood from the thoracic vasculature (10).

However, the lineage origin and determinative mechanisms of

PAT during heart development and disease pathogenesis

remains unclear. Most adipocytes are underneath the

epicardium, considered as EAT, and most of these

subepicardial adipocytes are located in the atrioventricular

groove (11). Adipocytes are located in the myocardium, close

to the endocardium, and are considered intramyocardial

adipocytes. Between approximately postnatal 3 and 4 weeks in

mouse hearts, subepicardial and intramyocardial adipocytes

could be observed (11). However, these two types of

adipocytes originate from different progenitor cells.

Recently, lineage trancing has helped to reveal some

fundamental issues on the cellular origins of cardiac

adipocytes. Taking advantage of the inducible Wt1CreERT2

mouse strain, it demonstrated a large proportion of EAT

derives from Wt1-expressing mesothelial cells between

embryonic day (E) 14.5 and 16.5 (12, 13). Previous studies

showed consistent evidence that subepicardial adipocytes

originated from the epicardium (12, 14). Moreover, the mature

epicardial cells still reserve the capability to differentiate into

adipocytes post-myocardial infarction (13). However, the origins

of intramyocardial adipocytes are heterogeneous, and both the
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endocardium and epicardium contribute to the development of

intramyocardial adipocytes during embryonic stages (11). It was

identified that the embryonic endocardium first underwent an

endothelial-to-mesenchymal transition (EndMT) to form

mesenchymal progenitor cells in the endocardial cushion.

Then a part of endocardial-derived mesenchymal progenitor

cells also migrates into ventricular free walls and septum.

Afterward, the mesenchymal progenitor cells could

differentiate into intramyocardial adipocytes at the migrated

destination (15). Before the appearance of intramyocardial

adipocytes at postnatal 3–4 weeks, both endocardial and

epicardial derived mesenchymal progenitor cells present the

potential ability to differentiate into three essential types of

mesenchymal cells (MCs), including fibroblasts, pericytes, and

smooth muscle cells (SMCs) during the embryonic stage.

Furthermore, the lineage tracing studies showed cardiac MCs

contribute to CAs in postnatal development and adult homeostasis.

Most intramyocardial adipocytes were derived from the

fibroblastic/epicardial marker PDGFRa+ (Platelet-derived Growth

Factor Receptors a) and the vascular mural cell marker PDGFRb+

(Platelet-derived Growth Factor Receptors b) MCs. In contrast,

hematopoietic or postnatal endothelial cells did not contribute to

cardiac adipocytes. PDGFRa+ and PDGFRb+ indeed gave rise to

adipocytes in adult hearts, while the PDGFRb+ MCs contributed to

most adipocytes in adult hearts. Moreover, PDGFRa+ PDGFRb+

periblasts also contribute to adipocytes in adult hearts. Although

PDGFRb is expressed in coronary vascular smooth muscle cells

(SMCs) (smooth muscle 22 alpha, SM22a+ andMyosin heavy chain

11, Myh11+) and pericytes (neural-glial antigen 2+, NG2+), either
Frontiers in Endocrinology 03
could develop into cardiac adipocytes. Therefore, it is considered

that PDGFRb+ NG2– cells are the major source of cardiac

intramyocardial adipocytes (16) (Figure 1).
3 The interplay between the adipose
tissue and cardiomyocytes

Adipose tissue is a crucial regulator for myocardial

functional maintenance, demonstrating a wide range of

endocrine and paracrine effects on the cardiovascular system

(1, 2). In the human heart, adipose tissue is mainly located

within the atrioventricular and interventricular grooves,

surrounding the aortic root and along the coronary arteries’

main branches of the coronary arteries (17). The EAT is close to

the myocardium within the right ventricular sidewall and the left

ventricular anterior wall (18). EAT shares an unobstructed

microcirculation with the myocardium and presents many

unique and complex physiological functions, including several

metabolic, secretory, thermogenic, and mechanical properties (6,

19, 20). In addition, research has demonstrated that the

infiltration and dysfunction of the adipose tissue can, directly

and indirectly, impair cardiovascular systems. The cytokines

released by adipose tissue by systemic and localized secretion

would induce insulin resistance (21), renin-angiotensin-

aldosterone system (RAAS) activation (22), lipotoxicity (23),

and myocardial interstitial fibrosis (24), which was tightly

related to several types of cardiovascular diseases. The adipose

tissue-derived cytokines participate in the process of myocardial
FIGURE 1

The cellular origins of cardiac adipocytes. PAT is situated between the visceral and parietal pericardium, which derived from the primitive
thoracic mesenchyme and is vascularized by blood from the thoracic vasculature. EAT is located between the myocardium and the epicardium,
mainly deriving from Wt1-expressing mesothelial cells. IAT is observed in the subendocardium in postnatal mouse hearts; both PDGFRa+ and
PDGFRb+ cells, but not NG2+ pericytes, contribute to intramyocardial adipocytes during postnatal heart development and homeostasis.
PDGFRa+, platelet-derived Growth Factor Receptors a+; PDGFRb+, platelet-derived growth Factor Receptors b +; neural-glial antigen 2+, NG2+;
PAT, pericardial cardiac adipocytes; EAT, epicardial cardiac adipocytes; IAT, intramyocardial adipose tissues; TGF-b, transforming growth factor-
beta; FGFs, fibroblast growth factors; PPARg, peroxisome proliferator-activated receptor gamma; Wt1, Wilms tumor gene 1.
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hypertrophy (25), redox accumulation (26), contractile

impairment (27), inflammation invasion, cardiac fibrosis (28),

arrhythmogenesis (29), and heart failure (30). Besides, the

adipose tissue also directly interacts with the cardiovascular

system by releasing amounts of adipocytokines, including

adiponectin, leptin, resistin, nitric oxide, interleukins, tumor

necrosis factor-a (TNF-a), and other inflammatory factors (1,

31). These bioactive products are crucial for developing CVD

with autocrine, paracrine, or endocrine mechanisms (32). It has

been proved that the crosstalks between adipose tissue and the

heart involve both the coronary artery and myocardium.

Among all the adipose tissue depots, the EAT is most closely

associated with myocardial biology since there is no anatomic

barrier between the EAT and the myocardium. The mechanisms

of paracrine and vasocrine enable communication between the

two tissues (1, 33). In addition to its unique anatomical location

in the heart, EAT’s metabolic contributions are highly activated

by secreting many products with diverse functions. Besides, the

metabolic interplays between EAT and myocardium are

associated with cardiac metabolic flexibility, energetics, and

contractile function (34). Therefore, the homeostasis of EAT
Frontiers in Endocrinology 04
biological function is quite sensitive, which would be easily

altered (Figure 2).
3.1 EAT mediates localized and
systematic inflammation

Substantial amounts of evidence showed EAT acting as a

transducer can adversely mediate the effects of localized and

systemic inflammation of the myocardium (35–37). The local and

systemic factors of the adipose tissue, such as insulin resistance (IR)

(21), renin-angiotensin-aldosterone system (RAAS) activation (22),

lipotoxicity (23), and interstitial fibrosis (24), may indirectly

contribute to the development of CVD. The adipose tissue can

directly affect the cardiovascular system by releasing amounts of

adipocytokines, including adiponectin, leptin, resistin, nitric oxide,

interleukins, tumor necrosis factor-a (TNF-a), and other

inflammatory parameters (1, 31). These bioactive products are

crucial to CVD development undergoing an autocrine, paracrine

or endocrine mechanism (32). In addition, since the homeostasis

and lipogenesis of EAT are tightly associated with systematic body
FIGURE 2

The molecular signaling interplay between the adipose tissue and cardiomyocytes. The epicardial adipose tissue (EAT) lies on the surface of the
human heart inside the visceral pericardium, and interacts with adjacent cardiomyocytes and extracellular matrix in a paracrine manner. EAT
interacts with the cardiovascular system by releasing amounts of cytokines, including leptin, adiponectin, resistin, apelin, nitric oxide,
interleukins, tumor necrosis factor-a (TNF-a), and other inflammatory factors. These EAT-derived molecules are involved in several biological
processes in the myocardium, such as oxidative stress, cardiac inflammation, fibrosis, and cardiac metabolism. In addition to these outside-to-
inside signals, vascular inflammation and oxidative stress can also affect adipose tissue biology in an inside-to-outside manner. PAT, Pericardial
Adipose Tissue; ERK1/2, extracellular signal-regulated kinases 1/2; Jak2/STAT3, Janus kinase 2/signal transducer and activator of transcription 3;
Rho/ROCK, Ras homolog gene family member; PI3K/Akt, phosphoinositide 3-kinase/protein kinase B; PKC, protein kinase C; NO, nitric oxide;
TNF, tumor necrosis factor; eNOS, endothelial nitric oxide synthase; COX-2, cyclo-oxygenase-2; NF-kB, nuclear factor-kB; AKT, RACa serine/
threonine-protein kinase; AMPK, 5′-AMP-activated protein kinase.
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conditions, obesity would change EAT’s biological function and

molecular regulation. The epicardial fat thickness might be

attributed to systemic inflammation in patients with obese and

cardiac fibrosis in patients with chronic heart failure (38, 39).

Inflammation can drive adipogenesis, presumably acting as an

adaptive mechanism that prevents the deposition of

proinflammatory fatty acids in cells other than adipocytes (40).

Systemic inflammation also adversely influences the biology of

epicardial fat (particularly the perivascular adipose tissue that

surrounds the coronary arteries), promoting the expression of a

proinflammatory phenotype. Moreover, EAT secretes

proinflammatory adipocytokines into the general circulation,

which may worsen the systemic inflammatory state. In turn, a

positive feedback loop develops as systemic inflammation leads to

epicardial adipose tissue accumulation and results in local and

systemic inflammation and end-organ dysfunction (35). While the

accumulation of EAT is closely associated with impaired

myocardial microcirculation, cardiac diastolic filling

abnormalities, increased vascular stiffness, and left atrial dilatation

in obese people.
3.2 EAT influences fatty acid oxidation
in cardiomyocytes

Translational mechanistic studies have shown that factors

secreted from EAT disrupt fatty acid beta-oxidation in

cardiomyocytes, which is their normal major source of energy,

accounting for 60–70% of the ATP produced. Chronic

systematic inflammation induces more lipid accumulation

both in EAT and cardiomyocytes (41), and the overload of FA

alters posttranslational modifications of the mitochondrial

fission and fusion proteins, including increased ubiquitination

of A-kinase anchor protein 121 (AKAP121), dynamin-related

protein 1 (DRP1), and proteolytic processing of optic atrophy 1

(OPA1), which are considered as a key part of related molecular

mechanisms (42). Analyses of human heart samples showed that

mitochondria utilize fatty acid oxidation (FAO) instead of

glucose in obese hearts, contributing to metabolic inflexibility

(43). EAT Glucagon-like peptide (GLP)-1R was directly

associated with fatty oxidation-related genes, while GLP-2R

was inversely related to fatty oxidation-related genes (44).

Moreover, the concentration of adiponectin decreasing in the

EAT could impair mitochondrial OXPHOS capacity (45); and

the oxycholesterols closely increases epicardial fat thickness (46).
3.3 EAT participates in the regulation of
oxidative stress and arrhythmias

Excessive production of mitochondrial reactive oxygen

species (ROS) in adipose tissue is known to be an early

instigator of adipose tissue inflammation. Increased lipid levels
Frontiers in Endocrinology 05
and hyperglycemia can lead to adipocyte mitochondrial

dysfunction and ROS production, and this phenomenon has

been associated with insulin resistance. At the same time, the

abnormal accumulation of localized ROS would transduce

mitochondrial dysfunction from EAT to cardiomyocytes. In

patients with cardiovascular diseases, there is increased ROS

production in EAT compared to SAT and lower catalase levels

(47). Subsequently, the increased ROS level may contribute to

Ca2+ mishandling (48). Intracellular Ca2+ level was elevated,

accompanied by the effect of apigenin on adipocyte browning in

IL-1ß-treated adipocytes, which might be partly associated with

the cAMP/PKA pathway regulated by the activation of transient

receptor potential vanilloid 1/4 (TRPV1/4) receptors (49).

Moreover, intracellular Ca2+ levels increased as TRPV1 was

activated by capsaicin, which enhanced the activity of sirtuin 1

(SIRT1) by activating cytosolic AMPK in adipose (50). In

addition, EAT infiltrating the atrium has increased the

expression of SERCA1 gene encoding for a Ca2+/ATP-

dependent intracellular pump involved in oxidative

phosphorylation (51). Intracellular and mitochondrial Ca2+ is

tightly regulated in a narrow range to preserve the overall

cellular Ca2+ homeostasis and cardiomyocyte contractility.

Therefore, it is supposed that Ca2+ mishandling might

contribute to prolonged diastolic relaxation, decreased

fractional shortening, and compromised ejection fraction (52).
3.4 EAT regulates myocardial fibrosis

The pro-fibrotic effects of EAT have been identified, which

are suggested to be harmful to the cardiovascular system.

Research has demonstrated that adipocytokines should be

blamed for this pathological process. Activin A, a kind of

dominant adipocytokines, would promote atrial fibrosis, which

is a member of the transforming growth factor-b (TGF-b)
superfamily. Additionally, rat cardiomyocytes demonstrate

reductions in contractile dysfunction after prior treated with

conditioned media from cultured diabetic human EAT. The

decreased insulin-mediated Ser473-phosphorylation AKT

signaling and elevated SMAD2 activation (a TGF-b pathway

protein implicated in cardiomyocyte fibrosis) have been

confirmed, revealing that EAT can affect cardiomyocyte

function and remodeling. Moreover, cardiovascular fibrosis

could also be developed due to mitochondrial oxidative stress

and endoplasmic reticulum (ER) stress activation (53).
4 Mechanotransduction
in adipocytes

It is increasingly recognized that adipocytes are

mechanosensitive and mechanoresponsive cells as mechanical
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stimuli mediate the adipose differentiation process and function

maintains. Dynamic mechanical stimulation loading, likely cyclic

stretching or vibration, could suppress adipocyte differentiation

progenitor cells, including mesenchymal stem cells (MSCs),

preadipocytes, and adipose tissue stromal cells, and several

signaling pathways were identified to be involved in the

regulation. During the mesenchymal lineage selection, high

mechanical stress can be recognized by MSCs and attenuate

adipogenic differentiation from MSCs (54) via inhibition of

GSK3b with subsequent activating b-catenin (55). Also, other

research indicates that cyclic stretching would alter the fate of

MSCs to adipocytes (56, 57). The inhibition of adipogenesis has

relied much on the duration of dynamic loading sessions (55).

Besides, Huang et al. (58) found that the outcomes of adipogenesis

inhibition depended on the magnitudes of the cyclic mechanical

stress on cultured MSCs. In contrast, static stretching might

promote adipogenesis (59), and it is believed the different

signaling pathways would be involved in adipogenesis in response

to cyclic and static stress (60). Furthermore, the examination of

static stress loading on adipocytes showed a dual effect on

adipogenesis: static stretching accelerated differentiation (60), but

static compression inhibited (61). Animal models were also used to

evaluate the effects of mechanical stimuli on adipogenesis,

presenting dynamic loading suppressing adipogenesis (62–66).

This revealed that mechanical stress is critical for adipogenesis,

and different types of mechanical stimuli loading demonstrated

controversial effects on adipocyte fates (55, 67).

Moreover, in the post-differentiation stage of adipocytes,

mechanical stress also participates in maintaining the homeostasis

of adipocytes. Expressing lipid droplets and cytoskeletal

rearrangements in adipogenesis requires optimal ECM

mechanical properties. The increased connective fibers in ECM

may generate excessive mechanical forces on adipocytes during

several kinds of CVD, especially for cardiac fibrosis. Unlike other

adipose tissue, cardiac adipocytes are physiologically exposed to

compound mechanical stress, including tensile, compressive, and

shear strains/stresses (68).

Furthermore, the mechanical cues on the adipocytes might

regulate inflammation and mitochondrial function through

various mechanotransduction signaling pathways (69). The

fundamental biological role of mechanotransduction signaling

is to transduce physical stimuli to molecular pathways and

transcriptional regulation. Generally, the differentiation and

functional maturation of adipocytes are required mechanical

loading, which is also sensitive to mechanotransduction

regulation (68). There are two types of mechanical sensors

associated with adipocytes, known as biophysical and

biochemical sensor mediating pathways. The sensors are

located in the membrane to transduce extracellular stress

stimulation into intracellular signals. Generally, the role of the

physical sensors is to connect the ECM and cytoskeleton,

reshape actin proteins, and finally change chromosome
Frontiers in Endocrinology 06
structure to influence gene transcription. Biochemical sensors

mainly mediate the modification of downstream molecules to

transduce signals into transcription regulation, including

phosphorylation and ubiquitination (Figure 3).
4.1 YAP/TAZ signaling pathway

YAP acts as a transcriptional co-factor that is highly

associated with TAZ. Both YAP and TAZ interact with the

TEA domain (TEAD), which contains family transcriptional

factors to induce gene transcription for diverse cellular

processes, such as cell proliferation and differentiation. The

Hippo pathway negatively regulates YAP and TAZ, regulating

organ size and tumorigenesis (70–73). Extracellular matrix

rigidity, shear stress, and stretching, regarding mechanical

signals, control the activity of YAP and TAZ (74), as well as

cytoskeletal tension (74, 75). Summarily, a stiff environment

favors YAP nuclear localization and activation, whereas

attachment to soft substrates increases cytoplasmic retention

of YAP (74).

Stiffness determines the adipogenesis or osteogenesis of

MSCs via the translocation of YAP. External forces transmit

through cytoskeleton reorientation to assist nuclear deformation

and molecule transport; meanwhile, signal pathways, including

the Hippo, focal adhesion kinase/Ras Homolog Family Member

A/Rho-Associated Protein Kinase(FAK/RhoA/ROCK), and

Wnt/b-catenin, have been evidenced to participate in

mechanotransduction. Weakening cell-substrate interactions

affect YAP localization and differentiation of adipose-derived

stem cells. Allahyari et al. found that these substrates reduce

YAP nuclear localization through decreased cell spreading,

consistent with reduced cell-substrate interactions and

mechanical stress, enhancing adipogenesis. Moreover, the

connective fiber content increases in obese adipose tissue,

resulting in improved overall rigidity of the adipose tissue,

contributing to increased cell death in the obese adipose

tissue (76). Additionally, actomyosin-mediated tension has

been shown to regulate the thermogenic capacity of brown

adipocytes through YAP and TAZ (77).

The activities of YAP and TAZ increased in response to

these mechanical changes in hypertrophic adipocytes, and

inhibition or knock-down of YAP and TAZ reduced Wnt5a

expression by impairing glucose tolerance regardless of diet type.

Also, Jin Han et al. demonstrated that YAP is increased in

adipose tissue with weight gain and insulin resistance.

Disruption of YAP in adipocytes prevents glucose intolerance

and adipose tissue fibrosis, suggesting that YAP plays an

important role in regulating adipose tissue and glucose

homeostasis with metabolic stress. Gao et al. reveal type I

collagen inhibit adipogenic differentiation via YAP activation

via increased mechanotransduction stress. And type I collagen
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inactivates autophagy by up-regulating mTOR activity via the

YAP pathway. Through the YAP-autophagy axis, type I collagen

improves glycolipid metabolism, increases mitochondrial

content, enhances glucose uptake, the reduced release of FFAs

and decreases intracellular lipid accumulation.

YAP/TAZ were predominantly in the nuclei of human

visceral adipocytes from obese subjects, with the up-regulated

target genes of YAP/TAZ, likely Cyr61, AmotL2, and Lats. It

suggested that the up-expression of YAP and TAZ in adipocytes

was accompanied by obesity (78). YAP/TAZ is crucial for

adipocyte survival during obesity, and a loss or deficiency of

YAP and TAZ could contribute to the development of adipocyte

apoptosis and lipodystrophy. The results from Wang et al.

indicate that the YAP/TAZ signaling pathway, which TNFa
and IL-1b activate under chronic inflammation stimulation,

maybe a target to control adipocyte cell death and

compensatory adipogenesis during obesity by activation of c-

Jun N-terminal kinase (JNK) and AP-1. During obesity, the

activated YAP/TAZ in the adipocytes up-regulates anti-

apoptotic and downregulates pro-apoptotic factors, such as

BIM (Bcl-2 interacting mediator of cell death) (78).
Frontiers in Endocrinology 07
4.2 MAPK/ERK signaling pathway

MAPKs are ubiquitous serine/threonine kinases activated by

diverse extracellular stimuli, including growth factors, cytokines,

and physiological mechanical signals (79–81). MAPKs are essential

for transducing signals from the cell surface, regulating diverse

cellular behaviors-coordinating development, proliferation, and

differentiation. Three MAPK families are well characterized:

ERKs, p38 MAPKs, and c-Jun N-terminal protein kinases (JNKs)

(82–84). The ERKs family is mainly activated by growth factors,

while the p38 MAPKs and JNKs families are primarily activated by

cellular stress. The MAPK/ERK pathway is activated by mechanical

stress and can control cell behavior in different circumstances and

modify cell-ECM interactions (85–89). However, a single stimulus

can co-activate the different MAPK pathways, such as crosstalk

between p38 MAPK and ERK signaling pathways (90). Several

studies have demonstrated that different mechanical loading

vibrations, stretch, and extracorporeal shockwaves affect the

osteogenic differentiation of adipose‐derived stem cells (ADSCs)

(91–94). In human ADSCs, mechanical stretch significantly

facilitates proliferation, adhesion, and migration, suppressing
FIGURE 3

The molecular signaling of mechanotransduction in adipocytes. The molecular signaling of mechanotransduction in adipocytes includes focal
adhesion kinase (YAP)/transcriptional coactivator with PDZ‐binding motif (TAZ), Mitogen-activated protein kinases (MAPK)/extracellular signal-
regulated kinases (ERK), Ras Homolog Family Member A/Rho-Associated Protein Kinase (RhoA/ROCK), and transforming growth factor b1 (TGF-
b1)/Smad signaling pathway. Moreover, mechanical stimuli mediate adipose differentiation. YAP/TAZ signaling pathway enhances adipogenesis;
MAPK/ERK, RhoA/ROCK, and TGF-b1/Smad signaling pathway inhibit adipogenesis. ECM, extracellular matrix; Mst, mammalian ste20-like protein
kinase; LATS1/2, large tumor suppressor 1 and 2; MOB1, MOB kinase activator 1; SAV1, Sav family containing protein 1; YAP/TAZ, yes-associated
protein)/transcriptional co-activator with PDZ binding motif; TEAD, members of the TEA domain; CDC42, Cell division control protein 42; ERK,
extracellular signal-regulated kinase;MEKK, MAP kinase kinase kinase; TAK, TGF b-activated kinase; MKK, MAP kinase kinase; JNK, c-Jun N-
terminal protein kinases; TCF, ternary complex factor; SRF, serum response factor; AP1, Activator protein 1; ATF2, Activating transcription factor
2; TGF, transforming growth factor b; SARA, Smad anchor for receptor activation; Smurf2, Smad ubiquitin regulatory factor 2; GTP, guanosine
triphosphate; GDP, guanosine diphosphate; RhoA, Ras Homolog Family Member A; ROCK, Rho-Associated Protein Kinase.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1080383
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2022.1080383
cellular apoptosis and increasing pro‐healing cytokines production.

For differentiation of human ADSCs, mechanical stretch inhibited

adipogenesis and enhanced osteogenesis, regulated via the MAPK

signaling pathway (95). And Zhang et al. revealed that ERK

stimulates the stretch-induced psteogenic differentiation of

ADSCs (96). So, the MAPK/ERK signaling was considered an

adipogenic pathway. Besides, the adipogenic property of the atrial

secretome was enhanced in atrial fibrillation patients by atrial

natriuretic peptide-related-activating cGMP-dependent

pathway (97).

In maintaining stem cell homeostasis, MAPK participated in

the regulation of apoptosis under mechanical stress (98).

Moreover, Akutagawa et al. (99) found that the up-regulation

of ERK1/2 signaling would inhibit surrounding cellular

apoptosis, which provided a novel insight into the mechanisms

of the interplay between adipose tissue and cardiomyocytes.

Zhao et al. (100) demonstrated that the MAPK/ERK pathway

was involved in the thermogenesis and lipolysis by histamine H4

receptor, indicating mechanical stress mediated the metabolic

status of adipocytes via MAPK signaling.
4.3 RhoA signaling pathway

As the cornerstone member of the Ras Homolog Family

Member(Rho) GTPase superfamily, Rho A was initially

investigated in cancer cells, associating with cell cycle

progression and migration (101). RhoA is crucial for

maintaining the cytoarchitecture of the cell as a dominant

control of actin dynamics. RhoA signaling is also involved in

signal transduction and gene transcription regulation to affect

physiological functions, including cell division, survival,

proliferation, and migration (101, 102). In terms of cardiac

remodeling and cardiomyopathies, RhoA is highly dose-

dependent. It is essential for maintaining cytoskeletal

organization and cardiac homeostasis under mechanical stress

(103), such as cyclic stretch and shear stress (104, 105). Su et al.

demonstrate that the external forces transmit through

cytoskeleton reorientation to assist the nuclear formation and

molecule transportation, and the FAK/RhoA/ROCK signaling has

been identified as involved in adipogenesis (106). And the

proliferation of ADSCs could be activated by b1 and its crucial

downstream signaling molecules, namely the small GTPase RhoA

and phosphorylated-myosin light chain. Obesity would induce

hypoxia in adipose tissue, which creates a diseased phenotype by

inhibiting adipocyte maturation and inducing actin stress fiber

formation facilitated by myocardin-related transcription factor A

(MRTF-A/MKL1) nuclear translocation and the induced RhoA

signaling (107). RhoA has been identified to be responsible for

cardiomyocyte hypertrophy due to mechanical stress (103). It

regulates the development of adipocyte hypertrophy via the

interaction between adipocytes and cardiomyocytes (60). In

contrast, RhoA mediates adipogenesis in ADSCs by underlying
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substrate stiffness (108). Moreover, stress fiber formation was also

observed in adipocytes from HFD-fed mice, prevented by Rho-

kinase inhibition. Further, it demonstrated that mechanical

stretch could partly associate with the increased activity of Rho-

kinase in the mature adipocytes and stress fiber formation, which

revealed positive feedback to induce fibrosis (60).
4.4 TGF-b1/Smads signaling pathway

TGF-b and related growth factors secrete pleiotropic factors

that play critical roles in embryogenesis and adult tissue

homeostasis by regulating cell proliferation, differentiation,

death, and migration. The TGF-b family members signal via

heteromeric complexes of type I and type II receptors activating

the Smad family of signal transducers (109). Notably, the type I

receptors require specific transphosphorylation by the type II

receptors before they are activated to bind and phosphorylate

their receptor-activated Smad substrates (110). After the

activation of the receptor, Smad proteins are phosphorylated

by type I receptor kinase at the two carboxy-terminal serine

residues and translocate into the nucleus to regulate gene

expression, referring to the TGF-b1/Smad signaling pathway

(109, 111). TGF-b1 involves the development of different

diseases, including cardiac abnormality, cardiac fibrosis,

cardiac dysfunction, and cardiac remodeling, as well as cardiac

hypertrophy (112, 113).

Regarding cardiac fibroblasts activated by increasing

mechanical stress, TGF-b1 has been identified as one of the

most relevant pro-fibrotic factors triggering Smad-dependent

signaling cascades (112, 114). It is also considered an intrinsic

mechanism of mechanotransduction in the regulation of matrix

stiffness-induced adipocyte differentiation. Moreover,

concerning cardiac pressure overload, fibroblasts act as a

protective role through TGF-b1/Smad3 pathway (115), and the

activated TGF-b1 would induce adipose fibrosis with elevated

extracellular substrates, which generates high static pressure and

tissue stiffness to accelerate the cardiac fibrotic process in turn.

Wang et al. suggest that an adipokine, orosomucoid, exerts a

direct anti-fibrosis effect in adipose tissue via downregulated

TGF-b1, and orosomucoid is expected to become a novel target

for the treatment of adipose tissue fibrosis (116).

The accumulation of TGF-b1 in adipose tissue under

overloading mechanical stress induces mesenchymal stem cells

to secrete IL-6, and IL-6 polarizes macrophages into the M2

phenotype by presenting an inflammatory environment (117).

The inhibition of TGF-b1 in EAT would reduce the

inflammation activity in atrial fibrillation-induced abnormal

mechanical stress (118). Moreover, obesity and endotoxemia

favor the development of adipose tissue fibrosis, a condition

associated with insulin resistance, through immune cell Toll-like

receptor 4 and TGF-b1 signaling, indicating a tight association

between fibrosis and inflammation (119).
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5 Mechanotransduction regulates
adipocytes in cardiovascular disease

5.1 Reduced mechanical signaling
induced adipogenesis in ARVC

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a

major type of chronic, progressive, heritable myocardial disorder

with a broad phenotypic spectrum caused by mutations in genes

encoding proteins of cardiac desmosomes (120). It is characterized

by a high risk of sudden cardiac death and progressive heart failure,

and its phenotypes are enhanced and triggered by strenuous

physical activity, while excessive mechanical stretch and load and

repetitive adrenergic stimulation are mechanisms influencing

disease penetrance (121, 122). In the cardiac tissue of patients

with ARVC, fibro-fatty infiltration occurs predominantly in the left

ventricle, with the reduction of cellular adhesion, expression of

desmosomes, and cell-cell junction proteins in cardiomyocytes.

Approximately 50% of patients with ARVC have mutations in

genes encoding desmosomes, which, together with integrins and

cadherins, contribute to structural mechanoresponsive cytoskeletal

elements, such as F-actin, microtubules, and intermediate filaments.

Desmosomes maintain the structural integrity of the ventricular

myocardium and are also implicated in signal transduction

pathways. Mutated desmosomal proteins are thought to cause the

detachment of cardiac myocytes by the loss of cellular adhesions

and affect signaling pathways, leading to cell death and substitution

by fibrofatty adipocytic tissue (121, 123–125). Generally, the

mutation or loss of function on cell-cell junction would reduce

the mechanical features of cardiomyocytes, which was confirmed by

the inactivation of YAP (126). Accordingly, the ECM in

cardiomyocytes turns out to be a soft substrate affecting the

interstitial cells, adipocytes, and stem cells.

In ARVC, the mechanical stress leads to intracellular

signaling changes mainly involving suppression of Wnt/b-
catenin and YAP signaling pathways and activation of the

EP300-TP53, which drive alternative cell fate, such as fibrotic

or adipogenic signaling (127, 128). It is widely recognized that

the suppression of Wnt/b-catenin and Hippo pathways involves

the altered mechanotransduction and mechanosensing of

cardiomyocytes, eventually leading to an arrhythmogenic

phenotype (121). b-catenin is translocated into the

endoplasmic reticulum from the sites of cell-cell apposition

due to low mechanical stress loading. In addition to the

abnormal mechanotransduction in ARVC, fibro-fatty

infiltrates predominantly in the left ventricle. The adipose

tissue infiltration in the heart is often considered a peculiarity

of ARVC (120). Partial nuclear translocation of plakoglobin and

subsequent suppression of canonical Wnt signaling had been
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involved in the pathogenesis of fibroadiposis in the right

ventricle and its outflow tract, which were considered the

predominant sites of involvement in ARVC. Suppression of

the canonical Wnt signaling leads to a switch to adipogenesis

in the second heart field progenitor cells (129). Also, the reduced

mechanical stress would enhance the adipogenesis process by

activating PPARg and C/EBPa, which were negatively regulated

by Wnt/b-catenin (130, 131). A series of studies have reported

that the Isl1+Wt1+ myo-adipo progenitors, Isl1+Med2c+

progenitors, c-Kit+Sca1+ progenitors, fibro-adipocyte

progenitors, MSCs, and epicardial cells could be the origins of

adipocytes under lower mechanical stimulation (132). Besides,

PPARc modulators rosiglitazone or 13-hydroxy-octadecadienoic

acid (13HODE) had been used to shift glycolysis to fatty acid

metabolism to model ARVC lipogenesis in human induced

pluripotent stem cell-derived cardiomyocytes (hiPSC-CM)

(133). Hippo signaling could be activated in ARVC, which

phosphorylated YAP protein and inactivated it. And YAP was

a co-factor in interaction with b-catenin, participating in

adipogenic phenotype. Additionally, a study based on ARVC

transgenic mice model demonstrated that the accumulation of

cardiac adipose tissue was not tightly associated with the serum

level of low-density lipoprotein, indicating the fate alternation of

cardiac progenitor or stem cells would be the major cause of

adipose tissue accumulation upon low mechanical stress

loading (134).
5.2 Stiff ECM promoted adipose-
associated inflammation in
cardiac fibrosis

Cardiac fibrosis refers to myofibroblasts’ collagen deposition

in the ECM (128), which can be found in most cardiac

pathologic conditions (135, 136). Although in most myocardial

diseases, the extent of cardiac fibrosis predicts adverse outcomes.

The quiescent cardiac fibroblasts differentiating from ECM-

depositing myofibroblasts are considered a milestone of

cardiac fibrosis and a vital process of adverse cardiac

remodeling. The complex interplay of biochemical signals and

mechanical stimuli accounts for this conversion. Releasing

neurohumoral mediators, cytokines, and growth factors

activated myocardial injury and transduced fibrogenic

intracellular signaling cascades (137). The prolonged

mechanical cues activate fibroblast persistently with excessive

collagens accumulation, leading to a high stiffness ECM. YAP/

TAZ has been implicated in fibrotic responses in the heart by

accentuating TGF-b-driven activation of Smad 2/3 (138, 139).

Moreover, animal models have shown that YAP/TAZ might
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contribute to activating myofibroblasts and scar formation via

directly activating effects on fibroblasts and promoting

fibrogenic effects in cardiomyocytes (140), or through

inhibiting inflammatory activation of a fibrogenic response in

EAT (141). Additionally, integrins, adhesion junction

mechanoregulation through nuclear b-catenin translocation,

and mechanosensitive ion channels are associated with

mechanical stimuli in cardiac fibrosis (142).

With enhancing mechanical stimuli, ECM with elevated

stiffness was crucial to fibrosis formation and cellular

dysfunction in adipocytes, while fibrosis ’s feedback

amplification through ECM stiffness develops subsequently

(143). These increased mechanical stimuli altered intracellular

biochemical signaling to affect adipocytes’ cellular behaviors.

The stiffness of ECM determined the adipogenesis, cell size of

adipocytes, and the status of lipids metabolism (144).

Pathologically, ECM mechanics could affect transcriptional

changes in gene expression and subsequent production of

ECM-related proteins, further driving adipose tissue fibrosis

(145). The ECM alteration inhibits the adipocyte’s ability to

accumulate and release lipids, and subsequently, adipocyte

dysfunction occurs through collagen type I and VI (76, 146).

With regard to the lack of ECM plasticity, adipocytes present

with ectopic lipid deposition decreased lipolysis and adipokine

secretion, and increased expression/production of cytokines (IL-

6, G-CSF) and fibrotic mediators (LOXL2 and the matricellular

proteins THSB2 and CTGF) (147), which promotes myocardial

disarray, cardiac fibrosis (32). During cardiac fibrosis, stiff ECM

induces the production of pro-inflammatory and pro-fibrotic

cytokines or adipokines in EAT, which enhances the localized

inflammation in cardiac fibrosis (148). Besides, dysfunction of

adipocytes has been identified under exceeding pressure

overloading. And exosomes isolated from Ang II-stimulated

adipocytes promoted cardiac fibroblast activity. Su et al. (149)

reported that miR-23a-3p level was significantly increased in

exosomes derived from Ang II-challenged adipocytes and serum

exosomes from Ang II-infused mice, and adipocyte-derived

exosomes mediated pathologic communication between

dysfunctional adipose tissue and the heart by transporting

miR-23a-3p. In another study, activation of ADRB3 in

adipocytes offers cardiac protection through suppressing

exosomal iNOS and inflammation activity, and adipocyte-

derived exosomes from ADRB3 knock-out mice accelerated

Ang II-induced cardiac fibroblast dysfunction (150). The

stimulated adipocytes perpetuated inflammation and fibrosis

by producing IL-1b and transforming growth factor TGF-b1,
indicating a relevant role in fibrotic remodeling (151). The ECM

remodeling caused adipocytes’ mitochondrial disorder, and

restoring mitochondrial function would inhibit the ability of

transplanted ADSC and inflammation cytokines releasing to

reduce cardiac fibrosis (152). Also, the reduction of adipose

tissue could ameliorate cardiac fibrosis (153).
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5.3 Mechanical stimuli-stressed
adipocytes mediated metabolic disorder
in heart failure

Mechanotransduction is crucial to maintain cardiac function,

accounting for suitably sensing and responding to mechanical loads

which trigger structural, signaling, and functional alterations due to

various cellular processes (154). In addition to cellular and

molecular signaling pathways involving heart failure (HF) (155,

156), cardiac mechanotransduction attributing to biomechanical

stress is also critical (157). Previously, most studies have focused on

the molecular mechanism and impacts of mechanotransduction

loading on cardiomyocytes. Currently, as the biological function of

EAT in CVD has been identified, the mechanotransduction

regulation on adipocytes has been demonstrated. First, excessive

mechanical stress would lead to cardiac hypertrophy and heart

failure. Upon volume overload, the bio-physical strain and shear

forces affect cardiomyocytes and chamber walls and subsequently

increase cardiomyocyte length, leading to eccentric hypertrophy

and chamber dilation (154, 158, 159). Chronic pressure overload

exerts biomechanical fiber stress on the heart and its associated cells

(158, 159). In terms of the heart undergoing altered wall and/or

tissue stress, cardiac mechanotransduction participates in a basic

biological mechanism, determining the adjustments and

modifications (160, 161).

Second, failing hearts present abnormal biomechanical

features. In HF with preserved ejection fraction (HFpEF)

patients, incompatible myocardial contraction induced

inflammation in the coronary micro-vasculature and heart,

which increased cardiomyocyte resting tension and the end-

diastolic wall stress (162–164). In HF with reduced ejection

fraction patients, myocardium remodeling (155, 156), such as

left ventricle dilatation, wall thinning, ventricular shape changes,

myocardial hypertrophy, and myocardial fibrosis, contribute to

enhanced biomechanical loading and lead to the end-diastolic

wall stress due to subsequently exerting biophysical cues on

myocardial tissue and EAT (154). In addition, gene expression is

activated by biomechanical stress responding to the alteration of

cellular and wall stress in the heart (159, 165). The role of

myocardial ECM as a mechanical scaffold that preserves cardiac

geometry and facilitates force transmission seems intuitive;

however, matrix macromolecules and myocardial cells can also

interact with each other. In the pathogenesis of HF, prolonged

pressure overload triggers fibrosis and perturbs cardiomyocyte

relaxation, increasing myocardial stiffness and causing diastolic

dysfunction. Persistent pressure overload eventually results in

dilative remodeling and systolic dysfunction. Evidence

demonstrates that pressure overload contributes to fibrillar

collagens deposition in pressure-overloaded hearts. The

cardiac ECM is subsequently affected, increasing passive

stiffness by altering mechanical properties of the ventricle and

critically regulating inflammatory, fibrotic, and hypertrophic
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cellular responses. In contrast to pressure overload in the heart,

volume overload led to interstitial collagen loss and, remarkably

ECM degradation. In response to volume overload, the

mechanical stretch may increase oxidative stress and activate

an autophagic degradation of procollagen in volume-

overloaded hearts.

Along with mechanical stress loading, the metabolic status of

adipocytes is a significant determinant of macrophage

inflammatory output. Macrophage/adipocyte fatty-acid-

binding proteins act at the metabolic and inflammatory

pathways interface. Both macrophages and adipocytes are the

sites for active lipid metabolism and signaling (166). Moreover,

during HF process, chronic adrenergic is stimulated, resulting in

aberrant adipose tissue lipolysis, which is mediated by adipose

triglyceride lipase (167). In animal models of HF, increased

circulating FFA and attenuated insulin response were observed

(168). Lipid metabolism in HF is characterized by the

downregulation of enzymes of b-oxidation of FA and other

mitochondrial enzymes, suggesting an imbalance between

myocardial FFA delivery and utilization (169–171).

In contrast, mechanical unloading of the failing heart can

increase the adipocyte size and reduce the macrophage

infiltration in the heart (172). Additionally, Thiele et al. (173)

identified a specific set of fatty acids liberated from adipocytes

under isoproterenol stimulation (palmitic acid, palmitoleic acid,

and oleic acid), which induced pro-apoptotic effects in

cardiomyocytes. And Atglistatin significantly blocked this

adipocytic fatty acid secretion. Additionally, Shen et al. (174)

revealed a positive impact of adipose-PGC1-a on distal organ

systems, with beneficial effects on HO-1 levels, reversing obesity-

linked cardiometabolic disturbances by uncoupling protein 1

(UCP1), fibroblast growth factor 21 (FGF21), and pAMPK

signaling, with a reduction in inflammatory adipokines.

Emerging evidence demonstrated that EAT might guide the

therapeutic decision in diabetic patients as drugs such as

metformin, glucagon-like peptide-1 (GLP-1) receptor agonists,

and sodium-glucose cotransporter 2 inhibitors (SGLT2i) have

been associated with attenuation of EAT enlargement (175).

Mitochondrial dysfunction would also participate in pressure

overloading myocardial injuries, and Hou et al. (176) suggested

that UCP1 knockout aggravated ISO-induced myocardial

damages by inhibiting AMPK/mTOR/PPARa pathways.

Moreover, the p38 MAPK signaling participated in ectopic

lipid deposition and metabolic dysfunction with impaired

transcripts for oxidative phosphorylation, tricarboxylic acid

cycle, and fatty acid metabolism. The impaired metabolism

enhanced cardiac inflammation involving neutrophils,

macrophages, B- and T-cells, while knock out of p38 MAPK

significantly reduced adipose function and inflammation
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activities, indicating p38 MAPK mediated heart-adipose-

immune cell crosstalk.
5.4 The impact of adipose tissue under
mechanical changes during myocardial
infarction/atherosclerosis on recruiting
immune cells

The sudden ischemic death of myocardial tissue is referred

to as acute myocardial infarction (AMI). Cardiac ischemia

induces profound aberrant metabolic and ionic channel

activity in the affected myocardium and consequently leads to

rapid depression of systolic function. The biochemical profile

and compositions of the ECM dynamically change, which is

critical for regulating key cellular events during the three

processes of infarct healing, including the inflammatory phase,

the proliferative phase, and the maturation phase. First, the

inflammatory cascade is triggered by alarmins released by dying

cells and contributes to the development of infarct healing (177).

Second, the phagocytes infiltrate the affected myocardium and

clear dead cells and matrix debris by activating anti-

inflammatory pathways to inhibit cytokine and chemokine

signaling. Undergoing the activation of the renin-angiotensin-

aldosterone system and the release of TGF-b, fibroblasts

transform into myofibroblasts and promote ECM protein

deposition (178). Infarct healing is intertwined with the

geometric remodeling of the chamber, characterized by

dilation, hypertrophy of viable segments, and progressive

dysfunction (178). After AMI, the loss of cardiomyocytes and

the dysregulation of ECM homeostasis results in impaired

cardiac function and heart failure (178, 179). Therefore,

cardiac mechanotransduction is altered since the myocardial

ECM as a mechanical scaffold preserves cardiac geometry and

maintains cardiac function. Optical coherence elastography

showed the infarcted heart features a fibrotic scar region with

reduced elastic wave velocity, decreased natural frequency, and

less mechanical anisotropy at the tissue level after MI, suggesting

lower and more isotropic stiffness (180). In the MI animal

model, studies showed that reduced graphene oxide (rGO)/silk

yields the ability to promote cardiomyocyte structure formation

and functions because it can mimic the natural cardiac ECM and

provide mechanical support for recovery after MI (181). Further,

rGO/silk remarkably reduces the expression of the canonical

TGF-b/Smads signaling pathway and YAP/TAZ in the infarcted

heart (182).

Moreover, atherosclerosis plays a critical role in the

pathophysiology of MI since atherosclerotic plaques impair

vascular function and can lead to arterial obstruction and
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tissue ischemia, and the rupture of an atherosclerotic plaque

within a coronary artery can result in an acute myocardial

infarction (183). The atherosclerotic plaques promote the

recruitment and entry of cells of the innate immune system

into heart tissue, prompting the release of cytokines and aseptic

inflammation (184, 185), which affect endothelial dysregulation

in the arterial wall. The mechanochemical events also contribute

to atherosclerosis development by transforming the

proatherogenic mechanical stimulus of blood flow-low and

low/oscillatory arterial wall shear stress in the biochemical

reactions in endothelial cells and the interplays with

adipocytes (186).

The evolution of atherosclerotic lesions and heart disease has

been attributed to paracrine signaling between EAT and adjacent

coronary vessels and myocardium (187). Even though the

epicardium is responsible for the repose period in the adult

heart, MI can contribute to epicardial thickening, fetal gene

reactivation, and the epicardial progenitors differentiating into

fibroblasts and myofibroblasts (188). Previous studies found that

the paracrine signals regulate the behavior and fate of injury-

activated epicardium since vascular endothelial growth factor A

was delivered to the myocardium during MI. Regarding MI,

insulin-like growth factor 1 receptor (IGF1R) signaling is a

critical pathway for facilitating EAT formation by promoting

epicardium-derived cells differentiating into adipocytes (189).

Moreover, IGF1 may also associate with the expansion of other

visceral fat depots, which share common developmental origins

with EAT. The IGF1-driven progenitor fate switch is operative

only within a brief time window after MI since IGF1 activation

did not stimulate adipogenic differentiation of progenitor cells in

the absence of MI. The requirement for MI in combination with

IGF1 to stimulate progenitor differentiation into adipocytes may

result from hypoxic conditions and MI activation of progenitors

(189). So, MI induced adipose proliferation and accumulation in

the heart. Then, the deposited adipose tissue recruited and

activated immune cells leading to enhanced inflammation in

MI, Horckmans et al. (190) infarcted mice also had larger

pericardial clusters, and 3-fold up-regulated numbers of

granulocyte-macrophage colony-stimulating factor-producing

B cells within pericardial AT, but not spleen or lymph nodes.

Furthermore, lipolysis of EAT increased significantly after

MI. Removal of EAT improved cardiac function, in part, by

weakening the inflammatory response. Accordingly, Gomez

et al. (191) showed that a subpopulation of cardiac

inflammatory macrophages emerged from myeloid cells of

adipose tissue origin and played a detrimental role in cardiac

remodeling and function after MI. Diabetes abolishes the ability

of adipose tissue-derived myeloid cells to populate the infarcted

heart. The production of the adipokine hormone leptin and

adipocyte expansion mediated the conversion of monocytes to

macrophages post-MI and was involved in the process of

angiogenesis (192). The inhibition of PPARg of ADSCs caused
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a significantly larger number of M2-polarized macrophages in

the infarct area with a significantly longer duration (193).
6 Maintaining cardiac function by
targeting adipose tissue

Multiple experimental studies have reported that

cardiovascular health might benefit from therapeutic

interventions targeting adipose tissue. Nonetheless, a safe and

cost-effective intervention targeting adipose tissue remains to be

further explored. Simple lifestyle interventions and common

medications can improve adipose tissue function with

substantial cardiovascular benefits.

Several studies showed that cardiovascular health in patients

with diabetes might significantly benefit from antihyperglycaemic

medications, such as glucagon-like-peptide 1 (GLP1) agonists

(194), dipeptidyl peptidase 4 (DPP4) inhibitors (195), and

sodium-glucose cotransporter-2 inhibitors (SGLT2i) (196).

Additionally, the adipose tissue produces angiotensinogen and

angiotensin II, possibly activating the RAAS (197). Thus, the

pharmacological intervention targeting the RAAS in the adipose

tissue might partly mediate the beneficial effects of angiotensin-

converting enzyme inhibitors, angiotensin II-receptor blockers,

mineralocorticoid-receptor antagonists, or novel therapeutic

agents (198). In addition, other medications might cooperate

with brown adipose tissue activation to facilitate the beneficial

effects of the medication. Likely, atorvastatin favors the hepatic

uptake of lipoprotein remnants due to the brown adipose tissue

activation, which results in the lipid-lowering and anti-

atherogenic effects of atorvastatin (199). Methotrexate might

restore eNOS phosphorylation and endothelial function by

decreasing pro-inflammatory cytokines in PVAT and increasing

adiponectin expression (25).

Moreover, cardiac remodeling and dysfunction resulting

from obesity can be reversible after weight loss (200, 201).

Calorie restriction improves vascular insulin sensitivity and

reduces age-related pro-inflammatory cytokine production

(202). Isocaloric intermittent fasting prevents obesity-related

metabolic dysfunction through increased adipose tissue

thermogenesis and fasting-mediated periodic upregulation of

VEGF in adipose tissue, which is linked with M2 macrophage

polarization and adipose tissue browning (203). The male rat

model finds that aerobic exercise can restore the anticontractile

vascular effect of PVAT and reduce the expression of the

inducible isoform of NOS in PVAT by comparing with no

exercise, which might be attributed to decreasing circulating

insulin, leptin, and TNF levels (204). Compared with dieting

alone, exercise-induced weight loss is more likely to improve

circulating adipokine profiles and insulin resistance (205).

Encouragingly, the randomized, controlled clinical trials

demonstrate the beneficial effects of exercise without calorie
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restriction present with fat reduction, insulin resistance (206),

and increasing adipokine profile (205, 206). Exercises with high-

intensity interval training substantially reduce total adipose

tissue and VAT mass and increase cardiorespiratory fitness in

obese children (207, 208). However, simple activities, such as

active commuting, can also lead to meaningful weight loss (209).
7 Conclusions

The adipose tissue is a dynamic organ involved in various

pleiotropic interactions with the cardiovascular system. As such,

adipose tissue is increasingly recognized as a crucial regulator of

cardiovascular health and a driver of CVD pathogenesis.

Moreover, the adipose tissue has striking biological variability

depending on its location and metabolic state. Inappropriate

adipose tissue distribution induces systemic lipotoxicity and

insulin resistance and results in the development of comorbid

conditions, such as cardiovascular disease. Therefore, maintaining

mitochondrial homeostasis, normal mechanotransduction, and

prompt oxidative stress is a potential therapeutic strategy for

cardiovascular diseases associated with adipose tissue.
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cardioprotective action of transplanted stem cells derived from mouse cardiac
adipose tissue. Front Pharmacol (2022) 13:906173. doi: 10.3389/fphar.2022.906173

153. Takahara S, Ferdaoussi M, Srnic N, Maayah ZH, Soni S, Migglautsch AK,
et al. Inhibition of ATGL in adipose tissue ameliorates isoproterenol-induced
cardiac remodeling by reducing adipose tissue inflammation. Am J Physiol Heart
Circ Physiol (2021) 320(1):H432–h446. doi: 10.1152/ajpheart.00737.2020

154. Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac
hypertrophy and failure. Circ Res (2015) 116(8):1462–76. doi: 10.1161/
CIRCRESAHA.116.304937

155. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS,
et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic
heart failure: The task force for the diagnosis and treatment of acute and chronic
heart failure of the European society of cardiology (ESC)Developed with the special
contribution of the heart failure association (HFA) of the ESC. Eur Heart J (2016)
37(27):2129–200. doi: 10.1093/eurheartj/ehw128

156. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DEJr., Drazner MH, et al.
2013 ACCF/AHA guideline for the management of heart failure: a report of the
American college of cardiology Foundation/American heart association task force
on practice guidelines. Circulation (2013) 128(16):e240–327. doi: 10.1161/
CIR.0b013e31829e8776

157. Krueger W, Bender N, Haeusler M, Henneberg M. The role of
mechanotransduction in heart failure pathobiology-a concise review. Heart
failure Rev (2021) 26(4):981–95. doi: 10.1007/s10741-020-09915-1

158. Voorhees AP, Han HC. Biomechanics of cardiac function. Compr Physiol
(2015) 5(4):1623–44. doi: 10.1002/cphy.c140070

159. Maksuti E, Westerhof BE, Ugander M, Donker DW, Carlsson M, Broomé M.
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