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Introduction: Pulmonary embolism (PE) is a common thrombotic disease and

potentially deadly cardiovascular disorder. The ratio of clinical misdiagnosis

and missed diagnosis of PE is very large because patients with PE are

asymptomatic or non-specific.

Methods: Using the clinical data from the First Affiliated Hospital of Wenzhou

Medical University (Wenzhou, China), we proposed a swarm intelligence

algorithm-based kernel extreme learning machine model (SSACS-KELM) to

recognize and discriminate the severity of the PE by patient’s basic information

and serum biomarkers. First, an enhanced method (SSACS) is presented by

combining the salp swarm algorithm (SSA) with the cuckoo search (CS). Then,

the SSACS algorithm is introduced into the KELM classifier to propose the

SSACS-KELM model to improve the accuracy and stability of the traditional

classifier.

Results: In the experiments, the benchmark optimization performance of

SSACS is confirmed by comparing SSACS with five original classical methods

and five high-performance improved algorithms through benchmark function

experiments. Then, the overall adaptability and accuracy of the SSACS-

KELM model are tested using eight public data sets. Further, to highlight the

superiority of SSACS-KELM on PE datasets, this paper conducts comparison

experiments with other classical classifiers, swarm intelligence algorithms, and

feature selection approaches.
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Discussion: The experimental results show that high D-dimer concentration,

hypoalbuminemia, and other indicators are important for the diagnosis of PE.

The classification results showed that the accuracy of the prediction model

was 99.33%. It is expected to be a new and accurate method to distinguish

the severity of PE.

KEYWORDS

feature selection, extreme learning machine, disease diagnosis, swarm intelligence,
pulmonary embolism

1 Introduction

Venous thromboembolism (VTE) is a general term for deep
vein thrombosis (DVT) and pulmonary embolism (PE). They
are fundamentally different manifestations of a disease, but
the difference lies in their different parts and stages (Desai
et al., 2021). Behind myocardial infarction and stroke, VTE
is the third most usual type of cardiovascular disease (Duffett
et al., 2020; Yang et al., 2021). PE is the general name of a
company of diseases or clinical syndromes aroused by various
embolus embolizing pulmonary artery or its branches, including
pulmonary thromboembolism (PTE), fat embolism syndrome,
amniotic fluid embolism, air embolism and so on (Yang et al.,
2021). In the European Union, PE is diagnosed in 1–2 out of
1000 people annually (Cohen et al., 2007). The study found that
the incidence of PE was correlated with age, race, and gender
(Heit, 2015). Any factors leading to venous stasis, tissue trauma
or hypercoagulable state (Virchow’s triad) are a risk for PE (Lurie
et al., 2019).

Pulmonary embolism is a fatal disease, and the mortality
rate has been up to 30% in studies including autopsy-
based PE diagnosis (Cushman, 2007). Risk stratification and
early intervention for acute pulmonary embolism (APE) are
beneficial in reducing mortality. Patients with hemodynamic
instability are considered to be at high risk for early death
(Konstantinides et al., 2020). However, for patients with
stable hemodynamics, it is necessary to carry out early risk
assessment employing clinical symptoms, laboratory indicators,
and imaging. Pruszczyk et al. (2021) developed an early risk
assessment scale for hemodynamically stable PE. Another study
found that computed tomographic pulmonary angiography
(CTPA) was helpful for risk stratification (Gao et al., 2021).
Although many risk-assessment methods, such as the Wells
score and revised Geneva score (Klok et al., 2008b; van Es
et al., 2017; Glober et al., 2018; Triantafyllou et al., 2021),
have been proposed, stratification in the intermediate-high-risk
populations remains challenging and remains an important area
of research we need to conduct. Nowadays, a new machine
learning method is used to analyze the effect of biomarkers on
risk stratification of PE.

Numerous diagnostic tools are available to help clinicians
achieve effective conclusions (Li et al., 2022; Liu S. et al., 2022;
Liu Z. et al., 2022). There are different claims regarding the

performance advantages and disadvantages of machine learning
algorithms and traditional statistical methods for diagnosis and
prediction. Statistical methods are relatively mature, relying
on their simplicity and flexibility to first filter out relevant
indicators and then construct multivariate logistic regression
or linear regression models, etc., for aiding the diagnosis of
EMs. However, machine learning, a novel scientific approach
that integrates the benefits of statistics and other disciplines, has
also proven its capability to handle induction and analysis of big
data, non-linear and complex problems. Then, the following is
the current state of research on machine learning techniques for
complementary medical diagnosis.

Too and Mirjalili (2021) introduced the equilibrium
optimization algorithm (EO) into the feature selection method
and proposed a wraparound feature selection model for finding
important features of biological data. Lambert and Perumal
(2021) proposed a high-performance classifier model for the
diagnosis of chronic kidney disease using a dyadic-based Firefly
optimization algorithm combined with deep neural networks.
Kitonyi and Segera (2021) proposed an improved classification
prediction model based on the gray wolf algorithm and gradient
descent algorithm for improving the performance of feature
selection algorithms for medical data processing, and the model
has high accuracy and stability. Hu and Razmjooy (2021)
proposed a deep neural network model on the basis of a
metaheuristic technique for segmentation, feature extraction,
and classification of brain tumors, and the experimental results
showed that this model is excellent in automaticity. Canayaz
(2021) introduced the particle swarm optimization algorithm
(PSO) and gray wolf optimization algorithm into the support
vector machine (SVM) for preprocessing of COVID-19 images,
and the total accuracy of the suggested model was 99.38%.
Mazaheri and Khodadadi (2020) used a metaheuristic algorithm
to remove redundant features and then combined it with a
machine learning algorithm to propose a medical aid system for
heart disease classification with the highest accuracy of 98.75%.
Vijayashree and Sultana (2018) put forward a classification
model combining the PSO with SVM on the basis of population
diversity function and tuning function, which can effectively
classify vast amounts of medical data. Medjahed et al. (2017)
presented a cancer diagnosis model according to kernel learning
and feature selection, which can augment the classification
accuracy of the model using the reduced number of genes.
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It can be seen that more and more researchers are using
machine learning techniques to diagnose diseases and pay
much attention to the classification accuracy and classification
efficiency of classifiers. Since medical images are characterized
by a large amount of input information, different sources, and
high complexity, the ability of diagnostic models to handle large
data and high-dimensional data relationships becomes critical.
Therefore, researchers have started to use non-gradient descent
metaheuristic algorithms for optimizing the diagnostic accuracy
and diagnostic efficiency of the models.

Most conventional optimization algorithms must to interact
with information pertaining to the showcase space’s exterior or
require an asynchronous method to handle problems (Zhang
et al., 2021). Meta-heuristic algorithms, also known as swarm
intelligence algorithms (SIAs), are often utilized to mine optimal
or satisfactory solutions to complex optimization situations.
As a mechanism based on computational intelligence, these
algorithms are robust, self-organizing and flexible. Compared
with traditional optimization methods (Newton’s, simplex,
enumeration, etc.), they have a greater improvement in
problem-solving time, scientific layout, and rational allocation
of resources and are widely used in signal processing, image
processing, production scheduling, and mechanical design.
Over the last few years, more and more SIAs have been put
forward, such as differential evolution (DE) (Storn and Price,
1997), sine cosine algorithm (SCA) (Mirjalili, 2016), salp swarm
algorithm (SSA) (Mirjalili et al., 2017), whale optimizer (WOA)
(Mirjalili and Lewis, 2016), moth-flame optimization (MFO)
(Mirjalili, 2015), particle swarm optimization (PSO) (Kennedy
and Eberhart, 1995), fruit fly optimization algorithm (FOA)
(Pan, 2012), chaotic BA (CBA) (Adarsh et al., 2016), improved
ant colony optimizer (RCACO) (Zhao et al., 2020), chaotic
SCA (Ji et al., 2020), moth-flame optimizer with sine cosine
mechanisms (SMFO) (Chen et al., 2021), improved WOA
(EWOA) (Tu et al., 2020), and so on. Cuckoo search (CS) (Yang
and Suash, 2009) is a SIA proposed by British scholars Xin-
She Yang and Suash Deb in 2009, motivated by the behavior
of cuckoo’s parasitic egg production hatching in nature. It is
broadly employed in various fields since its low complexity and
excellent effectiveness in finding the best. Rosli and Mohamed
(2021) presented a developed CS approach with different spaces
for optimizing the Bouc-Wen model in magnetorheological
damper applications. Mohiz et al. (2021) submitted an enhanced
CS algorithm on the basis of a greedy strategy for optimizing
task placement on a network-on-chip (NoC) core. Bibiks et al.
(2018) proposed an improved discrete CS (IDCS) to solve the
resource-constrained project scheduling problems (RPs). Li X.
et al. (2017) raised an improved cuckoo search (ICS) method
to optimize the disparity pattern of monopulse antennas. Lim
et al. (2016) combined the benefits of genetic algorithm into
the CS algorithm to propose a new hybrid algorithm for
optimizing hole-making operations in engineering. Long et al.
(2014) proposed a hybrid cuckoo pattern search algorithm

(HCPS) according to feasibility rules for handling constrained
numerical and engineering design problems. As can be seen, the
CS algorithm is widely used in optimization problems in various
fields and is a high-performance optimization algorithm.

According to Macerday’s No Free Lunch theory, no single
optimization method can be applied to every optimization
problem, and the CS algorithm is no exception. The
characteristics of the Lévy flight formulation lead to large
randomness in the CS algorithm’s search for the best solution,
which allows the algorithm to compare most solutions during
the search phase and facilitates the fast identification of the
better solution. However, due to its high randomness, the
algorithm is often unable to find a better solution in the later
exploitation stage, thus dropping into the local optimum (LO)
trap and wasting the performance of the later iterations of the
algorithm. Therefore, to solve the dilemma of CS algorithm in
the later period, an improved version of the SSACS algorithm is
put forward by introducing the SSA.

For the sake of proving the overall performance of the
SSACS algorithm, the classical CEC2014 benchmark function
test set is used to test the algorithm comprehensively. During
the benchmark function testing, SSACS is compared with five
well-known basic algorithms and five latest advanced ones
to demonstrate the superiority of the algorithm. Further, to
augment the accuracy in the feature selection process of the
PE dataset, an improved version of the KELM classification
prediction model (SSACS-KELM) based on SSACS is suggested.
To thoroughly test the adaptability and stability of SSACS-
KELM, eight datasets of different sizes are used in this paper.
To further demonstrate that the combination of bSSACS and
KELM is excellent, this experiment combines bSSACS with four
different classifiers. Then, to show the difference in performance
between bSSACS-KELM and classical methods, this experiment
compares bSSACS with five classical methods. Furthermore, to
illustrate the advantages of bSSACS over other algorithms of
the same type, this experiment is designed to compare bSSACS
with nine other swarm intelligence algorithms. For the purpose
of more accurately assessing the processing capability of the
bSSACS-KELM model on PE data, the experiments in this paper
will use four metrics, such as accuracy, precision, specificity, and
Matthews correlation coefficient (MCC), to perfectly emphasis
the reliability of the classification outcomes. Finally, the results
of the experiments, after 10-fold cross-validation, yield the five
most critical features of the PE dataset.

The main contributions of this paper are as below: (1)
In this paper, a pulmonary embolism-assisted diagnosis model
with higher performance is presented, which can accurately
select the effective features of the PE set and provide valuable
diagnostic information for physicians. (2) This paper combines
the improved swarm intelligence algorithm with the KELM
classifier to propose a classifier with higher accuracy, which
provides a high-performance classifier for the feature selection
situation. (3) In this paper, a swarm intelligence algorithm
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(SSACS) with a more robust exploration capability and higher
convergence accuracy is proposed and validated against peers.

The remainder of this paper is structured as below. Section
“2 Data and methods” describes the PE dataset, the CS
algorithm, the SSA, and the KELM classifier at length. In
Section “3 The proposed method,” the SSACS algorithm and
the SSACS-KELM model are put forward. In Section “4 Results
and discussion,” we validate and analyze the performance of the
SSACS algorithm and the SSACS-KELM model. In Section “5
Discussion,” the paper combines practical medical knowledge
and experimental results for a detailed discussion. Eventually,
Section “6 Conclusion and future works” sums up the whole
content and guides the future work.

2 Data and methods

In this section, the source of the PE dataset and its
acquisition criteria are first described. Then, an overview
of the original CS algorithm, SSA algorithm, and KELM
classifier is presented.

2.1 PE data collection

The Ethics Committee of the Affiliated of the Wenzhou
Medical University agreed on the present study (ethical approval
code: KY2021-R097). Our study selected patients diagnosed
with pulmonary embolism at the First Affiliated Hospital
of Wenzhou Medical University from April 2014 to May
2020. For this retrospective study, PE was confirmed by
CTPA, echocardiography (ECHO), or the value of ventilation-
perfusion (V/Q) scintigraphy in patients with symptoms
suggestive of PE (Konstantinides et al., 2020). Besides, we
excluded patients who have taken anticoagulant or antiplatelet
drugs recently.

According to the European Society of Cardiology (ESC)
guidelines for diagnosing and managing acute PE in 2014
(Konstantinides et al., 2014), patients with the following
manifestations are defined as high risk: (I) shock; (II)
Hypotension: systolic blood pressure <90 mmHg or pressure
drop >40 mmHg for more than 15 min, excluding new
arrhythmia, hypovolemia, or hypotension due to sepsis. A total
of 142 patients we screened were divided according to the
guidelines into two groups: intermediate-low-risk PE (n = 73)
and high-risk PE (n = 69). For each PE patient, information
on the general data (gender, age, vital signs, and past medical
history) and serum biomarkers were collected. We also recorded
whether patients had dyspnea, chest pain, hemoptysis, or
syncope during the onset of the disease.

The data were analyzed and processed by the statistical
software SPSS 21.0 and were stated as the mean ± standard
deviation (χ± SD). All continuous variables met the normality,

and the independent sample t-test procedure was employed to
analyze continuous variables. The Chi-square test was used for
categorical variables. A p-value < 0.05 stood for statistically
significant. All sick people’s general data and serum biomarkers
were described in Table 1. The results from chi-square tests
and independent sample t-test are presented in Tables 2, 3,
respectively.

2.2 Mathematical model of CS
algorithm

The CS algorithm is an intelligent bionic method suggested
by Yang and Suash (2009). The algorithm has attracted a lot
of attention from scholars at home and abroad because of its
advantages of few parameters, easy implementation, robustness,
and success in solving practical problems such as function
optimization and engineering optimization.

The CS algorithm performs a random search of the
target space by simulating the parasitic brood-rearing behavior
of cuckoo species. The algorithm chiefly comes from the

TABLE 1 A complete list of the features used in this study and their
definitions number.

Features Abbreviation

F1 Age Age

F2 Gender Gender

F3 Dyspnea Dyspnea

F4 Chest pain CP

F5 Hemoptysis Hemoptysis

F6 Syncope Syncope

F7 Cardiopulmonary resuscitation CPR

F8 Altered mental status AMS

F9 Chronic heart failure CHF

F10 Chronic lung disease CLD

F11 History of tumor HOT

F12 Systolic blood pressure (mmHg) SBP

F13 Diastolic blood pressure (mmHg) DBP

F14 Pulse rate (times/min) PR

F15 Temperature (◦C) T

F16 Respiratory rate (times/min) RR

F17 Troponin I (µg/L) cTnI

F18 N-terminal-pro basic natriuretic
peptide (pg/ml)

NT-proBNP

F19 D-dimer (mg/L) D-D

F20 Alanine aminotransferase (U/L) ALT

F21 Albumin (g/L) ALB

F22 Total bilirubin (µmol/L) TBIL

F23 Direct bilirubin (umol/L) DBIL

F24 Creatinine (µmol/L) Cr

F25 Glucose concentration (mmol/L) Glu

F26 Potassium ion concentration
(mmol/L)

K+

F27 Sodium ion concentration (mmol/L) Na+

F28 Chloride ion concentration (mmol/L) Cl−

F29 Calcium ion concentration (mmol/L) Ca2+
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TABLE 2 Clinical characteristics in intermediate-low-risk PE patients
and high-risk PE patients.

Index Intermediate-
low-risk PE

(n = 73)

High-risk
PE

(n = 69)

χ2 value P-value

Gender
(male/female)

43/30 30/39 3.379 0.066

Dyspnea
(no/yes)

32/41 26/43 0.556 0.456

CP (no/yes) 59/14 61/8 1.558 0.213

Hemoptysis
(no/yes)

69/4 67/2 0.120 0.729

Syncope
(no/yes)

70/3 49/20 16.171 0.000

CPR (no/yes) 73/0 61/8 6.921 0.009

AMS (no/yes) 69/4 55/14 7.029 0.008

CHF (no/yes) 58/15 55/14 0.001 0.969

CLD (no/yes) 58/15 61/8 2.095 0.148

HOT (no/yes) 62/11 47/22 2.095 0.018

TABLE 3 General data and serum biomarkers in intermediate-low-risk
PE patients and high-risk PE patients.

Index Intermediate-low-
risk PE
(n = 73)

High-risk PE
(n = 69)

P-value

Age 65.49± 13.313 64.65± 11.732 0.691

SBP 118.26± 21.321 86.90± 8.168 0.000

DBP 70.37± 11.881 54.51± 9.646 0.000

PR 88.82± 14.904 92.13± 25.532 0.351

T 37.15± 0.579 37.20± 1.291 0.749

RR 20.11± 2.525 21.09± 5.412 0.175

cTnI 0.39± 0.542 2.91± 20.066 0.300

NT-proBNP 324.59± 389.660 446.62± 620.749 0.166

D-D 5.09± 5.330 9.11± 8.215 0.001

ALT 49.34± 99.048 54.83± 79.260 0.717

ALB 34.037± 4.600 32.47± 4.472 0.042

TBIL 11.99± 6.931 12.48± 8.702 0.710

DBIL 5.06± 4.166 5.46± 4.877 0.594

Cr 69.79± 24.289 85.62± 77.273 0.108

Glu 6.39± 2.188 8.12± 5.745 0.018

K+ 3.79± 0.437 3.91± 0.502 0.130

Na+ 139.68± 3.472 138.10± 3.647 0.009

Cl− 103.36± 4.204 102.81± 5.857 0.524

Ca2+ 2.18± 0.137 2.15± 0.147 0.136

following three assumptions: (i) every cuckoo lays one egg
at a time and chooses its nest arbitrarily; (ii) the eggs
deposited in the best nest can hatch and generate a new
generation; (iii) the number of nests selected for egg-laying
is finite and is found by the nest owner with probability
Pa ∈ [0, 1] after the cuckoo egg is thrown out of the
nest or the nest owner abandons the nest and rebuilds
a new nest in another place. The fundamental flow of
the algorithm is.

(1) Randomly produce L nest locations in the solution space
(i.e., corresponding to L solutions), calculate the fitness of
each nest using the set fitness function, and keep the best
location, and iterate over the rest.

(2) Assume that the current number of selected
generations is k nests numbered i for the location of
x4

i =
(
xi,1, xi,2, · · · , xi,D

)
, where 16i6L, D is the

number of dimensions of the problem solved, in addition
to the optimal direct retention to the next generation, the
rest of further selected generations, that is

x(k+ 1) = x(k)+ a × k−λ, (1 < λ 6 3) (1)

where, a > 0, is the step control quantity, whose size is mainly
determined by the scale of the problem-solving; k−λ is the
random distribution function obeying Lévy’s law.

(3) Assume that the probability of the nest owner finding
cuckoo eggs is Pa, and randomly generate positive
numbers r ∈ [0, 1] obeying uniform distribution, if
r > Pa., then the cuckoo eggs are thrown out of the nest or
the nest is abandoned to regenerate a new nest; otherwise,
it remains unchanged.

(4) Decide whether the set number of selected generations
is satisfied; otherwise, go back to step (2) and go on
to select and update the generations until the selection
conditions are met.

The pseudo-code of the CS algorithm is displayed in
Algorithm 1.

Initialize fitness function

f (x), x = (x1, x2, x3, · · · , xd)
T

Initialize the number of

iterations t = 0, discovered parameter

Pa = 0.25, and population size N
Initialize the initial value of each

individual x0
i (i = 1, 2..., N) in the

population

While l ≤ Maximum number of iterations
Use Lévy flight

Calculate the fitness f t
new,i for the

updated agent xt
new,i

Randomly choose a candidate

individual xt
j from the population

If the fitness of the updated agent

is better

Replace the new agent xt
new,i for the

candidate agent xt
j

End If

Replace some of the suboptimal

solutions with randomly generated
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ones with Pa probability

The next generation keeps better

solutions

Find and maintain optimum

population solutions

Update iteration numbers t = t+1
End While

Return the best solution

Algorithm 1. Pseudo-code of CS.

2.3 Mathematical model of the SSA
algorithm

The salp swarm algorithm (SSA) (Mirjalili et al., 2017) was
proposed in 2017, which achieves the exploration of solution
space by simulating the foraging behavior of the Bottlenose
Sea Squirt in the ocean in nature. The method has been
successfully applied to deal with the situations of photovoltaic
system optimization, feature extraction, image processing, and
biomedical signal processing with its remarkable features of fast
convergence, robustness, and easy implementation.

Salp swarm algorithm searches for the optimal solution to
the problem by simulating the behavior of the group chain
movement of the bottle sea squirt in the ocean, the algorithm
separates the individuals into leaders and followers, and these
two types of individuals take different movement updates:
leaders are located at the front of the group chain and guide
the population movement according to the position of the
elite individuals; followers are located at the back of the group
chain and follow each other’s movement. The process of SSA
implementation is as follows.

(1) Set the maximum number of selected generations tmax,
initialize the number of selected generations t = 1, and
establish the initial swarm {Xi} (i = 1, 2, ..., N) with
the number of individuals N and dimension D, where
Xi =

(
x1

i , x2
i , · · · , xD

i
)
.

(2) Calculate all individual fitness values, rank agents in
accordance with their fitness, and select the current best
agent as the elite individual G (t).

(3) Selecting the top N/2 individuals of the population as
leaders, i.e., i6N/2 updating the leader individual positions
according to Eq. (2).

Xj
i(t+1) =

{
Gj(t)+c1

[
c2
∗
(
ubj−lbj

)
+lbj

]
, c3 > 0.5

Gj(t)−c1
[
c2
∗
(
ubj−lbj

)
+lbj

]
, c3 < 0.5

(2)

where, Gj(t) is the j-th dimensional component of the current
elite individual, Xj

i(t+1) is the j-th dimensional component of
the leader individual i after the selection of generations; ubj, lbj

are the upper and lower bounds of the position of the j-th
dimensional component of the bottle sheath individual: c2, c3,
are the random numbers between [0, 1]: c1 is the convergence
coefficient, which gradually decreases with the increase of the
selection of generations.

(4) Select N/2 individuals after the population as followers,
i.e., i > N/2 update the position of the following individuals
according to Eq. (3):

Xj
i(t+1) = 0.5

∗
[

Xj
i(t) + Xj

i−1(t)
]

(3)

where Xj
i(t), Xj

i−1(t) denote the j-th dimensional component
of the i-th and (i−1)-th population individuals after t
selection generations, respectively, and Xj

i(t+1) represents
the j-th dimensional component of the updated population
following agent i.

(5) Update the number of selection generations t, judge
whether the maximum number of selection generations is
satisfied, if not reach jump to step (2), otherwise output the elite
individual position G(t), which is the global optimal solution.

The pseudo-code of the SSA is shown in Algorithm 2.

Initialize parameters, population

size N, maximum number of iterations l
Initialize target function

f (x), x = (x1, x2, x3, · · · , xd)
T

While l ≤ Maximum number of iterations
for i = 1 :N
if i ≤ N/2

Update the leader position

according to Eq. (2)

Else

Update the follower position

according to Eq. (3)

End If

End for

Transboundary treatment of bottled

sea squirt individuals beyond the

boundary

Find and maintain optimum

population solutions

End While

Return the best solution

Algorithm 2. Pseudo-code of SSA.

2.4 KELM

The ELM model is a single hidden layer feedforward
network presented by Glober et al. (2018) based on the
generalized inverse matrix theory. Since the connection weights
of the input layer to the implicit layer and the bias of the
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implicit layer of the ELM model do not need to be set
artificially, it has the benefits of simple structure, fast operation,
and good generalization performance, so it has been widely
used in classification and regression problems. When given a
training sample S =

{(
xn, yn

)
, n = 1, 2 · · · , N}, the model

representation is shown in Eq. (4).

ŷ = g(ωx+b) β = h(x) β (4)

where: ω is the weight of the input and implied layers; b is the
implied layer bias.

g( · ) is the activation function; and β is the output weight.
The linear equation system Y = Hβ is solved by the least

squares method, and the regularization factor C is introduced to
enhance the generalization performance of the ELM model, and
the output weight β expression is given in Eq. (5).

β = HT
(

HHT
+

I
C

)−1
Y (5)

where: I is the diagonal matrix; Y is the desired output, based
on which Glober et al. (2018) proposed the KELM model to
replace the random mapping in the ELM model with the kernel
mapping. Define the kernel matrix � = HHT and the matrix
element �ELMi,j = h (xi) h

(
xj
)
= K

(
xi, xj

)
, where K( · ) is the

kernel function. At this point the output function of the KELM
model can be stated as Eq. (6).

ŷ = h(x) β = h(x)HT(HHT
+

I
C
)−1Y =

K (x, x1)
...

K (x, xN)


T(

�ELM+
I
C
)−1Y

(6)

This paper selects the radial basis kernel function with
strong localization and good generalization, and the expression
obtained is shown in Eq. (7).

K
(
xi, xj

)
= exp

(
−γ
∣∣∣∣xi, xj

∣∣∣∣2) (7)

3 The proposed method

In this section, this paper first introduces the core update
method of SSA into the CS algorithm to propose the SSACS
algorithm to boost the exploitation capability of the original
CS and the possibility of getting rid of LO. Since the
SSACS algorithm applies to continuous optimization problems,
it is unsuitable for discrete feature selection situations.
Consequently, this paper presents a discrete version of SSACS
(bSSACS) based on S-type functions. Further, this paper
combines the adapted bSSACS algorithm with the KELM
classifier to propose a hybrid bSSACS-KELM model with
stronger performance.

3.1 The proposed SSACS

The core of the CS algorithm uses the Lévy flight function
to update the optimal solution. The strong randomness of the
Lévy flight function leads to the problem of solid search ability
at the early phase and weak exploitation capability at the later
phase during the iteration process. On the contrary, due to
the characteristics of the SSA, the later exploitation step of the
algorithm needs a large number of excellent samples to cross-
borrow from each other to obtain a better solution. Therefore,
to increase the efficiency of the search and better exploit the
best solution in the later stage of the CS algorithm, the SSA
with stronger exploitation capability is introduced in the second
half of the iterative process of the algorithm. Among them, the
pseudo-code and flowchart of SSACS are shown in Algorithm 3
and Figure 1, respectively.

Initialize the fitness function and the

initial bird nest location

f (x), x = (x1, x2, x3, · · · , xd)
T

Population size: N nests (i = 1, 2, ..., N)

While t ≤ Maximum number of iterations

(MaxNo)

If t > MaxNo/3
Update the current optimal

solution using the SSA core

formula

End If

Using Lévy flights to create a new

solution xt
new,i

Calculate the fitness value f t
new,i

for the updated agent xt
new,i

Randomly choose a candidate

individual xt
j from the population

If the fitness of the updated agent

is better

Replace the new agent xt
new,i for

the candidate agent xt
j

End If

Replace some of the suboptimal

solutions with randomly generated

ones with Pa probability

The next generation keeps better

solutions

Find and maintain optimum

population solutions

Update iteration numbers t = t + 1
End While

Output the best solution

Algorithm 3. Pseudo-code of SSACS.

The complexity of SSACS mainly covers the introduced
SSA, the fast sorting algorithm, and the fitness calculation.
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FIGURE 1

Flowchart of SSACS.

First, the complexity of SSA is O
(
n2). Then, the complexity

of the quick sort algorithm in the best and worst case is
O
(
n∗logn

)
and O

(
n2), respectively. Finally, the complexity

level of the fitness calculation is O(n∗logn). As a result,
the total complexity level of the SSACS algorithm is
O (SSACS) = O(

(
n+logn

)∗ n).

3.2 The proposed feature selection
model

3.2.1 Discretization of SSACS
The SSACS algorithm based on the CS algorithm, like

CS, generally solves continuous optimization problems. If
the SSACS algorithm is applied to feature selection, it is
necessary to discrete the SSACS algorithm. bSSACS algorithm
converts CS into one that can handle discrete questions using a
binary approach.

The bSSACS model transforms the original continuous
space into binary one, where “1” means that the corresponding

feature is selected to participate in the learning process, and
“0” means the opposite. The algorithm first initializes the
nest, then records the nest adaptation value by selecting
generations, determines whether other eggs are found and
Lévy’s flight to update the nest, and finally obtains the optimal
solution after iteration. The individual’s initialization with
binary representation uses a random threshold as Eq. (8).

Xd(t+1) =

{
1, sigmoid (Xd(t)) ≥ r and
0, otherwise

(8)

where Xd(t+1) is the solution of t-th next iteration, rand stands
for a random number in the range of [0,1].

Sigmoid equation in this study is shown as Eq. (9).

sigmoid(x) =
1

1+e−2x (9)

where x denotes the solution produced by the proposed SSACS
method.
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FIGURE 2

Flowchart of bSSACS-KELM.

3.2.2 SSACS-KELM model
In this section, SSACS algorithm based on KELM is

proposed for feature selection. The discrete bSSACS algorithm is
used to gain the optimal feature subset of PE dataset for feature
selection. Then, the subsets are used as input parameters for
KELM to obtain the final classification results. Basic framework
of bSSACS-KELM is presented in Figure 2.

In particular, when bSSACS is combined with the KELM
classifier, its corresponding fitness function is again too simple
and not universal. When the SSACS algorithm is applied to
feature selection, it is necessary to reconsider how to set
the fitness function. There are two main requirements for
feature selection as a data pre-processing process. First, the
obtained feature subset has a high classification accuracy; that
is, the feature subset requires to be acquired with strong
relevance to the class; second, the obtained feature subset
contains as few features as possible so as to prevent dimensional
disasters. Therefore, in this paper, an evaluation function

adapted to the bSSACS-KELM hybrid model is reset, as shown
in Eq. (10).

fitness = α · error+β ·
|R|
|D|

(10)

where α represents a weight that evaluates the significance of
classification error rate, error denotes the error rate of the
classifier model; β is the number of selected feature, |R| denotes
the number of attributes in final subset and |D| is the dimension
of the dataset, i.e., the number of attributes in the entire set. In
this work, α = 0.99 and β = 0.01, as set in many previous research.

4 Results and discussion

Benchmark function tests are conducted in this part to
verify the overall performance of SSACS. Then, to prove
the practicability of SSACS on the feature selection problem,
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experiments based on seven public data sets are conducted in
this paper. To better demonstrate the power of the suggested
SSACS-KELM model, this paper conducts aided diagnosis
experiments on PE data collected from hospitals.

4.1 Benchmark functions comparison
experiment

To prove the optimization superiority of the SSACS method
itself, this subsection uses the classical CEC2014 benchmark
test function set for a comprehensive evaluation of the
algorithm performance.

4.1.1 Benchmark test experiment setup
First, to make sure the fairness of the comparison

experiments of optimization algorithms, following other AI
based rules for fair testing (Wu et al., 2018; Yang et al., 2022;
Zhang Y. et al., 2022), the initial population number is 30, and
the internal parameters of each algorithm are set to default
values; in addition, to avoid the contingency of comparison
experiments as much as possible, the number of evaluations
of algorithms is 30,000, and every approach is repeatedly
tested 30 times on this basis. In the analysis of experimental
results, the mean value method, Wilcoxon signed-rank test,
and Freidman test are employed to ensure the correctness and
reliability of the analysis outcomes. Moreover, all experiments
are conducted on the same computer, and the software used
in the experiments is Matlab2017b, and the core hardware is
Intel(R) Xeon(R) CPUE5-2660v3 (2.60 GHz). Eventually, the
specific description of the CEC2014 test set is displayed in
Table 4.

4.1.2 Benchmark functions comparison
experiment

To validate the superiority performance of SSACS
algorithm, SSACS is compared with five original classical
algorithms and five improved latest algorithms. Classical
algorithms include SSA, CS, SCA, PSO, and MFO. Improved
algorithms are made up of CBA, SCADE, SMFO, IGWO, and
ACWOA. There are four classes of functions of the test set,
including unimodal functions, multimodal functions, hybrid
functions, and composition functions. The superiority of SSACS
can be demonstrated in all aspects.

Table 5 illustrates the experimental results of benchmark
tests, where Avg is the mean and Std denotes the variance of
a algorithm after run 30 times, respectively. The best results
are bolded in each column. By viewing the mean values from
Table 5, it can be seen that SSACS has the smallest mean
value for most of benchmark functions, indicating that SSACS
achieves relatively higher quality solutions than the others.
Variance values obtained by SSACS are smaller than the others,
which represents the higher stability of SSACS in optimizing the
benchmark functions.

TABLE 4 Description of the 30 benchmark functions.

Class No. Functions F∗i = Fi(x∗)

Unimodal
functions

1 Rotated high conditioned elliptic
function

100

2 Rotated bent cigar function 200

3 Rotated discus function 300

Simple
multimodal
functions

4 Shifted and rotated Rosenbrock’s
function

400

5 Shifted and rotated Ackley’s function 500

6 Shifted and rotated Weierstrass
function

600

7 Shifted and rotated Griewank’s
function

700

8 Shifted Rastrigin’s function 800

9 Shifted and rotated Rastrigin’s
function

900

10 Shifted Schwefel’s function 1000

11 Shifted and rotated Schwefel’s
function

1100

12 Shifted and rotated Katsuura function 1200

13 Shifted and rotated HappyCat
function

1300

14 Shifted and rotated HGBat function 1400

15 Shifted and rotated expanded
Griewank’s plus Rosenbrock’s function

1500

16 Shifted and rotated expanded Scaffer’s
F6 function

1600

Hybrid functions 17 Hybrid function 1 (N = 3) 1700

18 Hybrid function 2 (N = 3) 1800

19 Hybrid function 3 (N = 4) 1900

20 Hybrid function 4 (N = 4) 2000

21 Hybrid function 5 (N = 5) 2100

22 Hybrid function 6 (N = 5) 2200

Composition
functions

23 Composition function 1 (N = 5) 2300

24 Composition function 2 (N = 3) 2400

25 Composition function 3 (N = 3) 2500

26 Composition function 4 (N = 5) 2600

27 Composition function 5 (N = 5) 2700

28 Composition function 6 (N = 5) 2800

29 Composition function 7 (N = 3) 2900

30 Composition function 8 (N = 3) 3000

In order to more accurately analyze the experimental
outcomes of the benchmark function of SSACS, Table 6 shows
the test results of the Wilcoxon signed-rank test, where ‘+/−/=’
represents the performance “better than other algorithms/worse
than other algorithms/equal to other algorithms,” ‘Mean-level’
denotes the average ranking of 30 replicate experiments, and
‘rank’ denotes the final overall ranking. It can be seen that SSACS
outperforms at least 21 benchmark functions compared with
all other 8 algorithms, and the overall ranking of SSACS is in
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TABLE 5 Comparative results of SSACS with peer swarm intelligence algorithms.

F1 F2 F3

Avg Std Avg Std Avg Std

SSACS 1.5305E+05 7.6624E+04 1.0000E+10 0.0000E+00 3.0000E+02 4.8692E−07

SSA 1.8596E+06 7.0084E+05 1.0776E+04 1.0603E+04 1.4178E+03 5.9472E+02

CS 1.1978E+06 4.9497E+05 1.0000E+10 0.0000E+00 3.0000E+02 3.3492E−09

SCA 2.3528E+08 6.9501E+07 1.6904E+10 3.0885E+09 3.6036E+04 7.4915E+03

PSO 9.0024E+06 2.7237E+06 1.4685E+08 1.3469E+07 9.3760E+02 1.2161E+02

MFO 1.1091E+08 1.2450E+08 1.1655E+10 8.4305E+09 1.1185E+05 5.2547E+04

CBA 4.5071E+06 1.5824E+06 9.4105E+03 7.7486E+03 5.0098E+03 6.5034E+03

SCADE 4.9037E+08 7.1471E+07 3.0125E+10 3.9419E+09 5.6506E+04 6.6783E+03

SMFO 8.1396E+08 2.9141E+08 4.3063E+10 1.1416E+10 7.5643E+04 7.5801E+03

IGWO 1.6657E+07 7.1265E+06 2.1259E+06 9.4622E+05 6.2834E+03 2.3790E+03

ACWOA 1.5760E+08 6.3861E+07 7.1385E+09 3.2777E+09 5.0165E+04 9.4496E+03

F4 F5 F6

Avg Std Avg Std Avg Std

SSACS 4.0454E+02 1.2923E+01 5.2004E+02 5.7788E−02 6.1527E+02 4.2093E+00

SSA 4.8757E+02 3.6108E+01 5.2006E+02 5.8801E−02 6.1845E+02 3.8175E+00

CS 4.2726E+02 3.2623E+01 5.2083E+02 5.7655E−02 6.2483E+02 1.6563E+00

SCA 1.4322E+03 2.5735E+02 5.2094E+02 4.2208E−02 6.3325E+02 2.3141E+00

PSO 4.7275E+02 4.3189E+01 5.2094E+02 4.2282E−02 6.2221E+02 2.9204E+00

MFO 1.3930E+03 8.5099E+02 5.2024E+02 1.9434E−01 6.2467E+02 3.3657E+00

CBA 4.9837E+02 3.3237E+01 5.2014E+02 1.9687E−01 6.3941E+02 3.0695E+00

SCADE 2.2667E+03 4.8950E+02 5.2096E+02 4.3342E−02 6.3432E+02 2.4224E+00

SMFO 7.0204E+03 2.6299E+03 5.2090E+02 8.6576E−02 6.3836E+02 2.1000E+00

IGWO 5.2014E+02 3.1220E+01 5.2053E+02 1.5103E−01 6.1946E+02 2.8638E+00

ACWOA 1.2191E+03 4.6089E+02 5.2080E+02 1.6444E−01 6.3324E+02 2.2305E+00

F7 F8 F9

Avg Std Avg Std Avg Std

SSACS 7.0000E+02 9.0641E−09 8.2168E+02 7.1351E+00 1.0045E+03 1.8697E+01

SSA 7.0001E+02 1.0224E−02 9.0744E+02 2.7149E+01 1.0075E+03 2.5665E+01

CS 7.0000E+02 1.8016E−03 8.3010E+02 5.4559E+00 1.0409E+03 2.2051E+01

SCA 8.3328E+02 3.7302E+01 1.0416E+03 2.8526E+01 1.1708E+03 1.9179E+01

PSO 7.0232E+02 1.6743E−01 9.7051E+02 2.3160E+01 1.1110E+03 2.6577E+01

MFO 7.9998E+02 6.7237E+01 9.3824E+02 4.0258E+01 1.1056E+03 5.1840E+01

CBA 7.0001E+02 1.3192E−02 1.0112E+03 4.9803E+01 1.1633E+03 6.2608E+01

SCADE 8.8714E+02 3.6260E+01 1.0699E+03 1.9488E+01 1.2067E+03 1.7405E+01

SMFO 1.0074E+03 8.7666E+01 1.0779E+03 2.8079E+01 1.2171E+03 2.0380E+01

IGWO 7.0096E+02 9.0343E−02 8.8963E+02 1.9110E+01 1.0153E+03 2.4640E+01

ACWOA 7.3772E+02 2.3945E+01 9.9219E+02 2.2500E+01 1.1347E+03 2.4153E+01

F10 F11 F12

Avg Std Avg Std Avg Std

SSACS 1.7818E+03 2.7743E+02 4.1829E+03 2.9480E+02 1.2001E+03 4.1058E−02

SSA 4.3706E+03 6.6190E+02 4.8537E+03 7.3362E+02 1.2004E+03 2.0277E−01

(Continued)
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TABLE 5 (Continued)

F10 F11 F12

Avg Std Avg Std Avg Std

CS 2.0560E+03 2.4299E+02 4.6119E+03 3.0117E+02 1.2008E+03 1.0627E−01

SCA 6.9709E+03 4.7807E+02 8.0593E+03 3.4507E+02 1.2024E+03 2.8540E−01

PSO 5.1984E+03 5.8340E+02 5.8494E+03 6.1109E+02 1.2025E+03 2.1388E−01

MFO 4.4727E+03 8.6847E+02 5.2184E+03 7.1480E+02 1.2005E+03 2.2144E−01

CBA 5.4694E+03 7.2200E+02 5.8944E+03 6.1739E+02 1.2011E+03 4.2208E−01

SCADE 7.2395E+03 3.9331E+02 8.1839E+03 2.5706E+02 1.2026E+03 3.0303E−01

SMFO 7.4697E+03 4.6484E+02 8.2682E+03 4.9074E+02 1.2023E+03 3.9524E−01

IGWO 3.5766E+03 6.0607E+02 4.6287E+03 6.4620E+02 1.2007E+03 3.0636E−01

ACWOA 4.8013E+03 7.8277E+02 6.3415E+03 7.2310E+02 1.2018E+03 5.4145E−01

F13 F14 F15

Avg Std Avg Std Avg Std

SSACS 1.3002E+03 5.0972E−02 1.4002E+03 3.2542E−02 1.5064E+03 1.8784E+00

SSA 1.3005E+03 1.1367E−01 1.4004E+03 2.4055E−01 1.5093E+03 3.1472E+00

CS 1.3003E+03 5.5667E−02 1.4002E+03 2.9906E−02 1.5111E+03 2.3256E+00

SCA 1.3029E+03 3.4656E−01 1.4442E+03 7.2420E+00 4.5504E+03 2.1786E+03

PSO 1.3004E+03 8.0161E−02 1.4003E+03 1.2221E−01 1.5163E+03 1.4908E+00

MFO 1.3021E+03 1.3630E+00 1.4323E+03 2.3698E+01 1.0120E+05 1.5193E+05

CBA 1.3005E+03 1.3003E−01 1.4003E+03 1.3822E−01 1.5673E+03 1.7886E+01

SCADE 1.3039E+03 1.9797E−01 1.4861E+03 1.3544E+01 1.7835E+04 7.6600E+03

SMFO 1.3054E+03 1.0109E+00 1.5372E+03 4.1593E+01 5.1691E+04 4.5347E+04

IGWO 1.3006E+03 1.0192E−01 1.4003E+03 2.0992E−01 1.5159E+03 4.7386E+00

ACWOA 1.3017E+03 1.0026E+00 1.4166E+03 1.1640E+01 1.9832E+03 5.8631E+02

F16 F17 F18

Avg Std Avg Std Avg Std

SSACS 1.6115E+03 6.1321E−01 3.3120E+03 4.9144E+02 1.8710E+03 2.6342E+01

SSA 1.6117E+03 7.6459E−01 1.3223E+05 9.4160E+04 5.4251E+03 2.8516E+03

CS 1.6124E+03 1.9734E−01 3.8911E+03 2.4956E+02 1.8732E+03 1.7226E+01

SCA 1.6127E+03 2.7115E−01 6.2377E+06 3.1462E+06 1.7361E+08 8.4804E+07

PSO 1.6120E+03 5.3353E−01 2.5217E+05 9.7430E+04 2.0452E+06 5.0246E+05

MFO 1.6129E+03 5.7196E−01 2.9230E+06 3.6385E+06 2.5133E+07 1.3716E+08

CBA 1.6133E+03 3.3415E−01 2.3316E+05 1.7157E+05 6.6000E+03 4.6311E+03

SCADE 1.6128E+03 1.5927E−01 1.4708E+07 7.0964E+06 1.8190E+08 1.1361E+08

SMFO 1.6126E+03 2.6648E−01 4.3572E+07 4.3075E+07 7.2172E+08 6.4484E+08

IGWO 1.6116E+03 6.2946E−01 9.6883E+05 6.8163E+05 2.1875E+04 3.2060E+04

ACWOA 1.6122E+03 5.2104E−01 2.1762E+07 1.3663E+07 5.2842E+07 4.8926E+07

F19 F20 F21

Avg Std Avg Std Avg Std

SSACS 1.9064E+03 7.4411E−01 2.0500E+03 1.7401E+01 2.9571E+03 1.9740E+02

SSA 1.9141E+03 2.1321E+00 2.3600E+03 8.7168E+01 5.7097E+04 4.8479E+04

CS 1.9079E+03 9.6224E−01 2.0558E+03 1.3542E+01 3.0697E+03 2.1758E+02

(Continued)
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TABLE 5 (Continued)

F19 F20 F21

Avg Std Avg Std Avg Std

SCA 1.9864E+03 2.0455E+01 1.6212E+04 5.9168E+03 1.3332E+06 6.0373E+05

PSO 1.9178E+03 2.7564E+00 2.3379E+03 6.6419E+01 1.1894E+05 6.5836E+04

MFO 1.9633E+03 5.2391E+01 1.0044E+05 1.2069E+05 2.1203E+06 7.4718E+06

CBA 1.9321E+03 3.2419E+01 3.1634E+03 1.2995E+03 1.1892E+05 7.5593E+04

SCADE 2.0132E+03 1.3645E+01 2.4525E+04 6.9326E+03 2.4411E+06 1.5081E+06

SMFO 2.1704E+03 8.5390E+01 9.7620E+04 1.2569E+05 2.3357E+07 1.9225E+07

IGWO 1.9163E+03 2.8444E+00 3.9006E+03 1.9533E+03 3.5076E+05 2.6508E+05

ACWOA 2.0129E+03 4.2759E+01 3.1689E+04 1.3314E+04 4.4990E+06 3.4834E+06

F22 F23 F24

Avg Std Avg Std Avg Std

SSACS 2.3956E+03 9.4518E+01 2.6152E+03 9.2504E−13 2.6249E+03 1.2091E+00

SSA 2.5956E+03 1.6596E+02 2.6153E+03 1.5908E−02 2.6409E+03 7.7351E+00

CS 2.4520E+03 9.7415E+01 2.6152E+03 1.3747E−12 2.6256E+03 1.1883E+00

SCA 2.9426E+03 1.2026E+02 2.6689E+03 1.1485E+01 2.6001E+03 8.2194E−02

PSO 2.8574E+03 2.3362E+02 2.6161E+03 5.7559E−01 2.6269E+03 6.7535E+00

MFO 3.0401E+03 3.4313E+02 2.6878E+03 5.6193E+01 2.6760E+03 2.9128E+01

CBA 3.3602E+03 3.1116E+02 2.6158E+03 2.7425E−01 2.6846E+03 3.4466E+01

SCADE 3.0688E+03 1.6394E+02 2.5000E+03 0.0000E+00 2.6000E+03 2.3118E−06

SMFO 3.4814E+03 6.4031E+02 2.5000E+03 0.0000E+00 2.6000E+03 4.8541E−06

IGWO 2.5964E+03 1.7419E+02 2.6224E+03 3.2919E+00 2.6000E+03 5.7849E−03

ACWOA 3.1264E+03 2.3408E+02 2.5325E+03 7.4023E+01 2.6000E+03 1.3236E−05

F25 F26 F27

Avg Std Avg Std Avg Std

SSACS 2.7044E+03 1.0596E+00 2.7002E+03 6.4524E−02 3.1019E+03 7.5526E−01

SSA 2.7116E+03 4.1282E+00 2.7006E+03 1.2918E−01 3.4663E+03 1.6607E+02

CS 2.7057E+03 1.3162E+00 2.7003E+03 6.1900E−02 3.1087E+03 6.3116E+00

SCA 2.7251E+03 8.2339E+00 2.7025E+03 6.0714E−01 3.4946E+03 3.2336E+02

PSO 2.7126E+03 5.5087E+00 2.7872E+03 3.4612E+01 3.4272E+03 3.0759E+02

MFO 2.7164E+03 1.1278E+01 2.7023E+03 1.4525E+00 3.6674E+03 1.8792E+02

CBA 2.7365E+03 1.6057E+01 2.7106E+03 5.5105E+01 4.0093E+03 4.1839E+02

SCADE 2.7000E+03 0.0000E+00 2.7037E+03 4.9502E−01 3.1970E+03 2.3009E+02

SMFO 2.7000E+03 0.0000E+00 2.7491E+03 4.5363E+01 2.9000E+03 0.0000E+00

IGWO 2.7097E+03 2.3386E+00 2.7007E+03 1.6078E−01 3.1107E+03 5.1704E+00

ACWOA 2.7000E+03 0.0000E+00 2.7438E+03 4.9984E+01 3.6797E+03 3.7660E+02

F28 F29 F30

Avg Std Avg Std Avg Std

SSACS 3.7288E+03 7.0830E+01 3.9240E+03 1.2958E+02 4.7588E+03 3.6568E+02

SSA 3.8593E+03 2.8295E+02 3.0717E+06 5.2359E+06 1.1678E+04 3.3452E+03

CS 3.7717E+03 5.1184E+01 3.9001E+03 9.4392E+01 4.7947E+03 3.6983E+02

SCA 4.8548E+03 3.6287E+02 9.9182E+06 5.0267E+06 2.6991E+05 9.9071E+04

PSO 6.9150E+03 7.5970E+02 2.6824E+04 5.2180E+04 1.3278E+04 5.5336E+03

MFO 3.9130E+03 1.5820E+02 2.4916E+06 3.2052E+06 5.6241E+04 5.2002E+04

CBA 5.4492E+03 8.2514E+02 3.5947E+07 4.3112E+07 2.9730E+04 5.4889E+04

SCADE 5.3278E+03 4.7543E+02 1.7381E+07 1.0264E+07 4.3698E+05 1.5944E+05

SMFO 3.0000E+03 0.0000E+00 7.4962E+05 4.0889E+06 7.5821E+05 7.1805E+05

IGWO 3.8590E+03 1.5799E+02 1.7487E+06 4.4972E+06 2.8804E+04 1.2917E+04

ACWOA 4.1662E+03 1.2071E+03 2.0752E+07 1.7503E+07 3.9836E+05 3.3714E+05
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TABLE 6 Wilcoxon signed-rank results.

Algorithm +/−/= Mean-level Rank

SSACS ∼ 1.67 1

SSA 26/1/3 3.97 3

CS 21/1/8 3.10 2

SCA 29/1/0 8.23 9

PSO 27/1/2 5.77 5

MFO 29/0/1 7.37 8

CBA 28/1/1 6.77 6

SCADE 26/3/1 8.50 10

SMFO 25/5/0 8.63 11

IGWO 26/2/2 4.60 4

ACWOA 26/4/0 7.20 7

first place, which verifies that the above experimental results are
correct. In addition, the average ranking of SSACS is also far
ahead compared to the second place, which also verifies the high
stability of the algorithm. To further prove the correctness and
credibility of the test outcomes, the benchmark test outcomes
of SSACS are also analyzed using the Freidman test method. It
can be seen that in Figure 3 Freidman test, SSACS also ranks
first, far ahead of other comparison algorithms. Therefore, these
two tests can prove that the benchmark function experimental
results of SSACS at this time are credible and accurate, and the
performance of SSACS is also very strong.

To show the advantages of SSACS over other peer
algorithms in more detail, this paper also records the change
process of the values of the optimal solutions generated by

SSACS iterations, as shown in Figure 4. In F1 for Unimodal
Functions, SSACS converges with higher accuracy in the
middle and late phases of the iteration, which indicates that it
has better optimization performance for simple optimization
problems. In F6, F10, and F12 of Simple Multimodal
Functions, SSACS can successfully get rid of LO during
the iteration, which indicates that it has a stronger global
optimization ability on multi-peaked problems. In F19, F22,
F26, and F30 of Hybrid Functions and Composition Functions,
SSACS has stronger exploitation ability and convergence
speed, which represents that it has higher optimality finding
efficiency when dealing with complex problems. In summary,
SSACS is a very excellent group intelligence optimization
algorithm.

4.2 Feature selection experiments

In this part, first, the evaluation criteria for the feature
selection experiments are described. Immediately after, SSACS
is used in feature selection experiments on public datasets to
make clear the efficiency and generalization of SSACS to handle
feature selection problems. Finally, SSACS is used in a real PE
problem to select the five key-features.

4.2.1 Feature selection experimental setup
In the feature selection experiment, the same experimental

environment of the benchmark function is followed, and in
particular, five different feature selection evaluation metrics are
added. The details are described below.

FIGURE 3

Friedman test results.
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FIGURE 4

Convergence curves of SSACS and competitors.

The confusion matrix is a schematic diagram for recording
classification prediction results in the field of pattern
recognition, which describes the relationship between the
true category attributes of sample data and the predicted
category and is a significant indicator for assessing the
performance of classification models. Evaluation metrics such
as accuracy, specificity, and sensitivity can be calculated using
the confusion matrix. The binary classification problem divides
the samples into positive and negative samples. The confusion
matrix consists of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FP).

Accuracy (ACC) is the most commonly used classification
evaluation metric, which measures the classifier’s ability to
recognize the correct samples. The accuracy range is located

in [0, 1], and the closer the accuracy is to 1, the better the
classification performance of the classifier is. The accuracy rate
is calculated as follows.

ACC =
TP+TN

TP+TN+FP+FN
(11)

Precision (PRE) dictates the proportion of the examples
classified as positive cases that are actually positive cases.
Similarly, the closer the precision is to 1 means the better the
classifier is, and the precision is calculated as follows.

Precision =
TP

TP+FP
(12)
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TABLE 7 Parameter setting of the optimization algorithms.

Algorithms bSSACS bMFO bGWO BGSA BPSO

Values pa = 0.25 a = 2, b = 1 a = [0,2] wMax = 20; wmin = 1e-10 Max = 0.9, min = 0.4

Algorithms bALO BBA BSSA bWOA bCS

Values ∼ a = 0.5; r = 0.5 ∼ a = [0,2] pa = 0.25

Sensitivity (SEN) is the probability that a patient is actually
ill and is diagnosed as such, and it measures the classifier’s
ability to identify positive cases. The closer the sensitivity is
to 1, the better the ability to test patients. The sensitivity is
calculated as follows.

Sensitivity =
TP

TP + FN
(13)

Specificity (SPE) is the probability that an actual disease-
free individual is diagnosed as disease-free, and it measures the
ability of the classifier to recognize negative cases, reflecting
the ability of the classifier to identify disease-free individuals.
Specificity is calculated as follows.

Specificity =
TN

TN + FN
(14)

MCC reflects the correlation between diagnostic results
and actual outcomes. For balanced data, higher ACC and
MCC values both point to higher quality predictions, while
for unbalanced data, MCC is a more accurate reflection
of the predictor’s predictive quality than ACC. MCC is
calculated as follows.

MCC =
TP × TN − FP × FN√√√√ (TP+FP) × (TP+FN)

× (TN+FP) × (TN+FN)

(15)

In addition to the classification evaluation method, the
discrete algorithms re-used in this experiment include bSSACS,
bMFO, bGWO, BGSA, BPSO, bALO, BBA, BSSA, bWOA, and
bCS. Table 7 displays the values of the key parameters set for
each algorithm. In addition, the number of populations for the
feature selection experiments is set to 20, and the experimental
results are validated using the classical ten-fold cross-validation
method.

4.2.2 Public dataset experiments
We must evaluate algorithmic features in computer science

to assess the influence of computational pieces since diverse
strategies depend on different traits and trends (Cao et al.,
2022; Liu Y. et al., 2022; Zhang Z. et al., 2022). In the part,
to prove the feature selection practicality of bSSACS-KELM
against different datasets, 8 public datasets from the well-known

machine learning database UCI Machine Learning Repository
are used in this paper. Table 8 shows the key parameters of
these datasets. In order to distinguish these feature datasets as
much as possible to validate the performance of bSSACS-KELM
accurately, the datasets used in this paper have a relatively large
difference in the number of samples and features. The largest
number of samples in the dataset is 569 in BreastEW, and the
smallest is 152 in JPNdata; the largest number of features is 30,
and the smallest is 10. Finally, the public dataset experiments
also use the mean and variance to represent the experimental
results accurately. In addition, mean and total ranking is used in
this paper to show the superiority of bSSACS-KELM in different
datasets visually.

Table 9 shows detailed data on the Accuracy of bSSACS-
KELM compared with other famous methods. It can be observed
that bSSACS-KELM has the highest accuracy in most of the
datasets, with the highest being 98.8% for wdbc. In addition,
the lowest accuracy of bSSACS-KELM is 93%. The combination
of the highest and lowest values means that the classification
performance of bSSACS-KELM is better in terms of accuracy
and stability, regardless of the dataset. In contrast, other similar
methods, especially the unimproved CS-KELM and SSA-KELM,
are far inferior to bSSACS-KELM. Table 10 displays the average
and overall ranking of bSSACS with other approaches on
different datasets, and the results show that in agreement with
the experimental analysis, bSSACS ranks first.

To further demonstrate the superiority of bSSACS-KELM
in feature selection, the classification results were carefully
evaluated using SEN. Table 11 shows the outcomes of this
Sensitivity evaluation, and Table 12, indicates the Sensitivity
ranking results. It can be seen that bSSACS performs equally
well in this data, with bSSACS ranking first and bALO and

TABLE 8 The 8 public-datasets.

Datasets Samples Features Classes

Hepatitis 155 19 2

BreastEW 569 30 2

JPNdata 152 10 2

Heart 270 14 2

IonosphereEW 351 34 2

CongressEW 435 16 2

HeartEW 270 27 2

wdbc 560 30 2
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TABLE 9 Accuracy results of experiments on public datasets.

Hepatitis BreastEW wdbc JPNdata

AVE STD AVE STD AVE STD AVE STD

bMFO 0.948 0.051 0.986 0.023 0.982 0.022 0.902 0.084

bGWO 0.961 0.045 0.986 0.014 0.982 0.014 0.889 0.054

BGSA 0.948 0.051 0.988 0.017 0.984 0.013 0.895 0.063

bALO 0.864 0.072 0.954 0.028 0.958 0.021 0.703 0.138

BBA 0.852 0.060 0.960 0.025 0.954 0.025 0.700 0.149

BSSA 0.948 0.040 0.984 0.022 0.981 0.010 0.920 0.077

bWOA 0.968 0.034 0.988 0.012 0.979 0.016 0.894 0.086

bCS 0.911 0.041 0.974 0.022 0.972 0.015 0.882 0.059

bSSACS 0.968 0.034 0.988 0.008 0.986 0.011 0.933 0.056

Heart IonosphereEW CongressEW HeartEW

AVE STD AVE STD AVE STD AVE STD

bMFO 0.933 0.049 0.963 0.019 0.975 0.025 0.933 0.052

bGWO 0.922 0.032 0.963 0.030 0.972 0.026 0.941 0.040

BGSA 0.930 0.056 0.966 0.019 0.968 0.029 0.944 0.020

bALO 0.822 0.072 0.855 0.039 0.939 0.049 0.841 0.058

BBA 0.815 0.105 0.900 0.050 0.926 0.050 0.826 0.078

BSSA 0.937 0.043 0.957 0.028 0.968 0.031 0.937 0.053

bWOA 0.922 0.037 0.963 0.038 0.972 0.021 0.930 0.044

bCS 0.881 0.055 0.937 0.044 0.959 0.034 0.896 0.049

bSSACS 0.930 0.044 0.958 0.033 0.975 0.025 0.937 0.043

TABLE 10 The ranking of bSSACS-KELM and its peer methods.

Methods bMFO bGWO BGSA bALO BBA BSSA bWOA bCS bSSACS

Average-ranking 3.375 3.75 2.625 8.25 8.75 4.125 4 7 2.125

Overall-ranking 3 4 2 8 9 6 5 7 1

BBA ranking last. Finally, after different datasets and different
evaluation methods, experiments prove that bSSACS-KELM has
good feature classification performance.

4.3 Feature selection experiment in PE
dataset

In this section, to prove the practicality of the bSSACS-
KELM model to process real data from hospitals and to assist
realistic doctors in diagnosing diseases, this paper uses PE
datasets collected from hospitals for classification prediction.
First, to further demonstrate that the combination of bSSACS
and KELM is excellent, this experiment combines bSSACS
with four different classifiers, including FKNN, KNN, MLP,
and SVM, with the help of the PE dataset for comparison
experiments. Then, to show the performance difference between
bSSACS-KELM and classical methods, this experiment is

designed to compare bSSACS with five classical methods,
including BP, CART, RandomF, and so on, where the algorithm
settings and codes are from MATLAB default. Furthermore, to
illustrate the advantages of bSSACS over other algorithms of
the same type, this experiment is designed to compare bSSACS
with nine other swarm intelligence algorithms, including bSSA,
bALO, and bCS, etc. For the purpose of more accurately
assessing the processing capability of bSSACS-KELM model
on real data, four evaluation methods, including Accuracy,
Precision, Specificity, and MCC, will be used in this section of
the experiment to illustrate the reliability of the classification
results fully. Finally, the results of the experiments, after
10-fold cross-validation, yield the five most critical features
of the PE dataset.

The combination of different classifiers of bSSACS will
have different classification effects. To demonstrate that the
combination of bSSACS and KELM is excellent, bSSACS
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TABLE 11 Sensitivity results of experiments on public datasets.

Hepatitis BreastEW wdbc JPNdata

AVE STD AVE STD AVE STD AVE STD

bMFO 0.758 0.237 1.000 0.000 0.952 0.059 0.961 0.087

bGWO 0.817 0.200 1.000 0.000 0.953 0.038 0.930 0.138

BGSA 0.758 0.237 1.000 0.000 0.958 0.034 0.946 0.069

bALO 0.475 0.360 0.978 0.037 0.886 0.056 0.621 0.370

BBA 0.417 0.236 0.997 0.009 0.882 0.060 0.786 0.160

BSSA 0.775 0.222 1.000 0.000 0.948 0.026 0.877 0.105

bWOA 0.842 0.169 1.000 0.000 0.943 0.044 0.934 0.070

bCS 0.642 0.242 0.997 0.009 0.924 0.040 0.948 0.089

bSSACS 0.842 0.169 1.000 0.000 0.962 0.030 0.934 0.070

Heart IonosphereEW CongressEW HeartEW

AVE STD AVE STD AVE STD AVE STD

bMFO 0.960 0.047 1.000 0.000 0.970 0.039 0.960 0.056

bGWO 0.947 0.042 1.000 0.000 0.962 0.041 0.927 0.049

BGSA 0.960 0.056 1.000 0.000 0.959 0.051 0.967 0.047

bALO 0.867 0.054 0.951 0.015 0.924 0.063 0.860 0.066

BBA 0.860 0.086 0.982 0.031 0.910 0.052 0.893 0.095

BSSA 0.960 0.034 0.991 0.027 0.963 0.035 0.960 0.034

bWOA 0.953 0.063 1.000 0.000 0.963 0.030 0.960 0.047

bCS 0.927 0.049 0.991 0.019 0.944 0.047 0.927 0.058

bSSACS 0.987 0.028 1.000 0.000 0.963 0.039 0.967 0.035

TABLE 12 The ranking of bSSACS-KELM and its peer methods.

Methods bMFO bGWO BGSA bALO BBA BSSA bWOA bCS bSSACS

Average-ranking 2.25 3.875 2.625 8.5 8.5 3.75 2.875 6.25 1.5

Overall-ranking 2 6 3 8 8 5 4 7 1

was combined with four other classifiers, and a comparison
experiment was conducted, and the outcomes are displayed in
Figure 5. It can be viewed that the results of bSSACS-KELM are
far ahead of the other classifiers in the four aspects of Accuracy,
Precision, Specificity, and the box plot can also know MCC, and
the stability of the KELM model. In contrast, the combination
of bSSACS with SVM and MLP is not accurate enough, and the
stability is very poor. Therefore, it can be concluded that the
combination of bSSACS and KELM is very suitable.

To further illustrate the benefits of bSSACS-KELM over the
performance of classical classification methods, a comparison
experiment between bSSACS and classical methods was
conducted in this paper. The box plot results of the experiments
are shown in Figure 6. It can be seen that bSSACS-KELM has
a significant advantage over other classification methods. CART
occasionally works well but is much less stable than bSSACS-
KELM; the two methods, BP and ELMforFS, have inferior
overall performance. The complete test outcomes indicate that

bSSACS-KELM has a considerable advantage over the classical
classification methods.

The above experiments can prove that the combination
of KELM with the swarm intelligence algorithm will have a
stronger performance. To prove the superiority of bSSACS
combined with KELM over other competitors, this paper
compares the classification models of bSSACS-KELM with other
famous SIAs, including BMFO, BGWO, BGSA, BPSO, BALO,
BBA, BSSA, and BWOA. Figure 7 box plots represent the
outcomes of this comparison experiment. It can be observed that
the bSSACS data are close to 1 for the first five classification
evaluation metrics, which indicates that the bSSACS-KELM
model also has very strong prediction performance among
similar algorithms and is well suited for predicting PE problems.
The SSACS-KELM has higher accuracy and excellent stability
than the original SSA and CS algorithms. Among Accuracy and
Error, the integrated classification based on the bSSACS model
is better and has the highest accuracy and stability. In Specificity
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FIGURE 5

Results of five different classifiers based on SSACS.

FIGURE 6

Comparison results of SSACS-KELM with other classical methods.

and Precision, the bSSACS model based on the bSSACS model
has the highest accuracy for selecting both negative and as
positive cases. The correlation between the true and predicted
values based on the bSSACS model is the highest in MCC. In
Time, it can be seen that bSSACS has an acceptable level of time
complexity while improving performance.

To further enhance the credibility of this comparison
experiment, this paper uses the Friedman test method to verify
and rank the test outcomes, as shown in Table 13. The analysis
of the test method shows that bSSACS-KELM is indeed stable
in the first place. Therefore, after the above experiments, it

can be shown that bSSACS-KELM is a very suitable model for
PE-assisted prediction and can effectively classify the PE dataset.

Table 14 shows the detailed data of the experiments on the
PE dataset based on the bSSACS-KELM model. The first column
is the label of the ten-fold cross-validation, the second one is the
number of features selected for feature selection, and the rest are
Accuracy, Specificity, Precision, and MCC used above. The value
of Accuracy under ten-fold cross-validation is 99.33%, the value
of MCC is 0.9875, and the values of Specificity and Precision is
1. Again, this shows that combining bSSACS with KELM turns
out to be a very good PE classifier model.
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FIGURE 7

Comparison of SSACS and eight algorithms on six evaluation criteria.

Figure 8 shows the number of times every indicator was
chosen by the bSSACS-KELM model under 10 times 10-fold
cross-validation, with the horizontal axis representing the 29
features of the PE dataset and the vertical axis representing the
number of times they were selected. The top 5 features are F6,
F11, F12, F19, and F21, which represent Syncope, HOT, SBP,
D-D, and ALB, respectively, and these five features were selected
more often than the other features, which is also consistent with
the actual medical statistics.

5 Discussion

This study uses the bSSACS-KELM model for feature
selection and classification prediction on real PE datasets.
First, experiments demonstrate that bSSACS-KELM has higher
accuracy and stability than bSSACS-FKNN, bSSACS-KNNN,
and bSSACS-MLP models, so that bSSACS-KELM is more
suitable and satisfied than the other methods for feature
selection of PE datasets. Subsequently, the bSSACS-KELM
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TABLE 13 Friedman test results.

Method bMFO bGWO BGSA BPSO bALO BBA BSSA bWOA bCS bSSACS

Accuracy Avg 4.85 5.4 4.35 4.45 7.05 9.5 4.55 4.3 6.35 4.2

Rank 6 7 3 4 9 10 5 2 8 1

Error Avg 4.85 5.4 4.35 4.45 7.05 9.5 4.55 4.3 6.35 4.2

Rank 6 7 3 4 9 10 5 2 8 1

Specificity Avg 4.95 4.95 4.95 4.95 6.15 8.8 4.95 4.95 5.85 4.5

Rank 2 2 2 2 9 10 2 2 8 1

Precision Avg 5 5 4.95 5 5.9 9.05 4.95 4.9 5.75 4.5

Rank 5 5 3 5 9 10 3 2 8 1

MCC Avg 4.85 5.4 4.35 4.45 6.95 9.5 4.55 4.35 6.45 4.15

Rank 6 7 2 4 9 10 5 2 8 1

Timecost Avg 7.6 4.3 2.2 3 1 4.8 7.3 5.8 9 10

Rank 8 4 2 3 1 5 7 6 9 10

model is compared to BP and CART. Therefore, bSSACS-
KELM has obvious advantages to settle the classification
problems. Besides, we experimentally compared bSSACS-KELM
with its counterparts BMFO-KELM and bALO-KELM. The
test outcomes indicate that bSSACS-KELM has a greater
advantage in the same kind of SIAs. In a word, the features
chosen by bSSACS-KELM from the PE dataset are statistically
summarized, and Syncope, HOT, SBP, D-D, and ALB are
identified as the crucial features in the dataset. Previous related
work is referred to and analyzed to confirm that the chosen
features are consistent with medical statistics.

Early diagnosis plays a critical role in the treatment and
prognosis of patients due to the high morbidity and mortality
of PE. One or more risk factors of PE, which are non-specific in
clinical diagnosis, hinder the progress of diagnosis and increase
the difficulty of treatment. In order to reduce the rate of
misdiagnosis and missed diagnosis and to better help patients,
we analyzed the factors affecting the risk of PE.

TABLE 14 The detailed results acquired by SSACS.

Fold Selected feature
subset size

Accuracy Specificity Precision MCC

#1 13 1.0000 1.0000 1.0000 1.0000

#2 11 1.0000 1.0000 1.0000 1.0000

#3 12 0.9333 1.0000 1.0000 0.8750

#4 10 1.0000 1.0000 1.0000 1.0000

#5 12 1.0000 1.0000 1.0000 1.0000

#6 10 1.0000 1.0000 1.0000 1.0000

#7 8 1.0000 1.0000 1.0000 1.0000

#8 13 1.0000 1.0000 1.0000 1.0000

#9 7 1.0000 1.0000 1.0000 1.0000

#10 11 1.0000 1.0000 1.0000 1.0000

Avg. ∼ 0.9933 1.0000 1.0000 0.9875

Std. ∼ 0.0200 0.0000 0.0000 0.0375

D-dimer is a biomarker of fibrin formation and degradation
(Halaby et al., 2015) and is highly sensitive to thrombosis. It
has a high sensitivity (approximately 96%) but a low specificity
(approximately 40%) in the diagnosis of PE (Glober et al.,
2018; Lei et al., 2021). Pregnancy, cancer, venerable age, chronic
inflammatory conditions, and many other illnesses can also
increase the content of D-dimer (Choi and Krishnamoorthy,
2018; Aranda et al., 2021), which brings more difficulties to
diagnosing PE. According to a retrospective study in 2019, a low
pretest clinical probability score (traditional Wells) in a patient
with a D-dimer level of less than 1,000 ng per milliliter and a
moderate pretest clinical likelihood score in a patient with a
D-dimer level of less than 500 ng per milliliter could rule out
PE and be protected from radiation (Kearon et al., 2019). A D-
dimer concentration greater than 3,000 microg/ml in patients
with chronic PE is highly associated with acute PE, and these
patients must be hospitalized (Agterof et al., 2009). Non-ICU
COVID-19 patients with a D-dimer level ≥2,000 ng/mL are
considered to need further examination to rule out PE (Thoreau
et al., 2021). Data from a 3,619 study of PE showed that high
D-dimer levels had almost been proved to be significantly
associated with the severity of PE (Hou et al., 2021). Another
trial looked at the percentage decrease in D-dimer concentration
between at diagnosis and within 1 month of diagnosis. After a
month of anticoagulant therapy, D-dimer decreased by 76.6%
for complete recanalization and 31.4% for residual thrombosis.
Pulmonary artery recalculation was achieved in 73 of 80 patients
(91.2%) with a 70% or more decrease in D-dimer concentration.
Measuring the degree of D-dimer decline can aid clinicians
forecast the risk of recurrent PE (Aranda et al., 2021). Several
more studies have shown that there was a correlation between
D-dimer level and short-term or 3-month mortality (Klok
et al., 2008a; Agterof et al., 2009; Kline, 2009; Singanayagam
et al., 2011; Bi et al., 2021). Elevated plasma D-dimer level was
positively associated with 3-month mortality in APE (Becattini
et al., 2012). A variety of factors affecting a D-dimer level
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FIGURE 8

Selected features of the SSACS method.

make us more cautious in clinical encounters with patients with
elevated D-dimer concentration.

Albumin, which is the most abundant circulating protein
in the body and occupies about 50% of the whole protein
content in plasma, plays a critical role in the physiological
stage of the body, including osmotic effect, anti-inflammatory
activity, anti-thrombus formation, antioxidation and carriers of
endogenous and exogenous substances (Caraceni et al., 2013;
Arroyo et al., 2014; Hoskin et al., 2020). The first study to
find that hypoproteinemia is an independent predictor of long-
term mortality from acute pulmonary embolism was conducted
in 2018 (Tanik et al., 2020). In addition, this also applies to
patients with postoperative acute pulmonary embolism (Pan,
2012). As indicated by the laboratory metrics in Table 3,
albumin concentrations in the high-risk group were lower than
those in the intermediate-low-risk group (P-values < 0.05). The
results were the same with previous studies. For every 1 gm/dL
reduction in albumin concentration, the possibility of a massive
APE was 75% more likely (Omar et al., 2020), while with each
unit increase in albumin concentration, the probability of death
decreased by approximately 15.4% (Liu et al., 2020). Pulmonary
embolism can cause inflammation of pulmonary blood vessels
and parenchyma (Celik et al., 2021). Until now, a large amount
of evidence makes clear that inflammatory response has been
considered closely related to VTE. Inflammatory markers,
involving C-reactive protein (CRP), tumor necrosis factor alpha,
interlenkin-6 (IL-6), and interlenkin-8 (IL-8), be capable of
triggering the coagulation system by inducing the expression of
tissue factors (Branchford and Carpenter, 2018). Furthermore,
elevated white blood cell count is strongly associated with
recurrent VTE in cancer patients (Trujillo-Santos et al., 2008)
and can lead to poor prognoses in patients with PE (Sanchez
et al., 2008). Apparent higher CRP and white blood cell counts
in patients with lower serum albumin levels may be one of

the reasons for the higher mortality (Kennedy and Eberhart,
1995). Reduced anti-inflammatory capacity in patients with
hypoproteinemia also increases the severity of PE (Hoskin
et al., 2020). Serum albumin performs antioxidant functions
by providing 80% of extracellular thiols, providing sulfur-
containing amino acids for glutathione, binding and inactivating
free metals (copper and iron etc.) and capturing free radicals
(Bruschi et al., 2013; Taverna et al., 2013; Arroyo et al., 2014).
Elevated reactive oxygen species and myeloperoxidase levels
can cause lung damage (Ovechkin et al., 2007). So, we can
speculate that reduced antioxidant capacity in patients with
hypoproteinemia may be another reason for the poor prognosis
in patients with APE. On the one hand, serum albumin plays a
role in dilating blood vessels and inhibiting platelet aggregation
by acting as a storage, carrier, and supplier role for nitric oxide
(NO) and eicosanoids (Arroyo et al., 2014). On the other hand,
the inhibitory function of albumin on platelet aggregation were
related with reducing the production of thromboxane A2 and
promoting endoperoxides to prostaglandin D2 transformation.
More importantly, plasma albumin is inhibitable to platelet-
activating factor (Mikhailidis and Ganotakis, 1996). This may
be another explanation for the association of low albumin levels
with poor prognosis.

History of the tumor as a risk factor for poor prognosis
in sick people with PE has been reported in considerable
literature. In the autopsy of 127,945 cancer patients, 5.3% of
the deaths were related to PE (Valerio et al., 2021). Pancreatic
cancer, brain cancer, and multiple myeloma have the highest
risk of VTE (Klok et al., 2008b), especially in the first year
of diagnosis (Geerts et al., 2008; Cronin-Fenton et al., 2010),
whereas hematologic and breast malignancies have an lower risk
(Shinagare et al., 2011). Among the pathology of lung cancer,
adenocarcinoma is the most associated with PE (Cui et al., 2021).
This may be caused by adenocarcinoma cells secreting mucin,
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activating blood platelets, and the thrombogenic mediator
(Geerts et al., 2008). In addition, D-dimer, stages III–IV, DVT,
low arterial partial oxygen pressure (PaO2), chemotherapy, and
hyperleukocytosis are also considered risk elements for PE in
lung cancer sick people (Chuang and Yu, 2009; Li G. et al.,
2017; Ma and Wen, 2017; Cui et al., 2021). Data from a previous
study showed that the median survival time of the PE group
(n = 30) was remarkably shorter than that of the non-PE
group (n = 60, P < 0.05) (Ma and Wen, 2017). Another study
also confirmed this (Li G. et al., 2017). Compared to patients
without cancer, patients with cancer showed less severe PE,
which may also be one of the reasons for the poor prognosis
due to the untimely detection of PE (Au et al., 2021). Cancer
complicated with PE increases treatment difficulty and shortens
the survival time. If cancer patients have unexplained dyspnea
and increased D-dimer (>2.0 g/ml) (Kwon et al., 2021), it is
time to perfect CTPA as possible. Early detection, diagnosis, and
timely anticoagulation symptomatic treatment can remarkably
improve the prognosis and prolong the survival time of cancer
patients.

If the thromboembolic area exceeds 30–50% of the
pulmonary artery bed (Keller et al., 2015), mechanical factors,
neurohumoral factors, and hypoxia contribute to pulmonary
artery contraction, resulting in increased pulmonary vascular
resistance (Smulders, 2000; Lankhaar et al., 2006) and
subsequently increased pulmonary artery pressure. After that,
the increase of right ventricular afterload and ventricular wall
tension leads to right ventricular enlargement, resulting in
ventricular septum shift and following impaired left ventricular
function. As a result, cardiac output is reduced, which is the
cause of systemic hypotension or shock when a pulmonary
embolism occurs (Mebazaa et al., 2004; Chin et al., 2005;
Gok et al., 2020; Konstantinides et al., 2020). Right ventricular
dysfunction (RVD) and hypotensive shock are the main
cause of death from APE, which has been shown in many
previous studies. Based on data from a study of 39,257 APE
patients, 30-day PE-related mortality in patients with systolic
SBP < 90 mmHg was 2.6 times higher than in other patients
(absolute risk, 13.6%). Moreover, they also found that patients
with an SBP <70 mmHg had the highest mortality while those
with an SBP ≥130 mmHg had a lower mortality rates (Quezada
et al., 2020). Ates et al. (2017) found that blood pressure index
(BPI), with the <1.4 cut-off level, can be used as a predictor of
mortality from APE, with a sensitivity of 60.6% and specificity
of 80.8%. High central venous pressure and low cardiac output
secondary to (RVD) can lead to reduced renal blood flow and,
thus, enhanced blood urea nitrogen (BUN) (Gok et al., 2020).
There has been evidence that increased BUN is highly related
to APE mortality (Tatlisu et al., 2017; Gok et al., 2020; Fang
and Xu, 2021), and BUN was 34.5 mg/dL as the optimal cutoff
value for predicting in-hospital mortality for APE (Tatlisu et al.,
2017). To reduce mortality, PE patients with hemodynamically
unstable need further assessment to determine whether there

are indications for thrombolytic therapy in addition to general
supportive and anticoagulant therapy (Schellhaass et al., 2010).

The clinical symptoms and signs of PE lack specificity
and often manifest as dyspnea, chest pain, hemoptysis or
syncope. Several clinical studies have shown that the most
common clinical symptom in patients with PE is dyspnea,
followed by chest pain, while syncope (4–17%) and hemoptysis
are relatively rare (Pollack et al., 2011; Pribish et al., 2020;
Richmond et al., 2021). Syncope in PE patients may be caused
by cerebral hypoperfusion due to reduced cardiac output,
arrhythmias due to hemodynamic instability, or neurogenic
syncope (Keller et al., 2018; Siddappa Malleshappa et al.,
2020). Inadequate oxygen supply due to hypoxemia is also
a cause of syncope (Keller et al., 2018; Pop et al., 2019).
In the emergency department, 2.2% of syncope patients were
eventually diagnosed with PE (deSouza, 2020). Furthermore,
another study was 1.4% (Badertscher et al., 2019). de Winter
et al. (2020) found in a meta-regression analysis that patients
with pulmonary embolism associated with syncope had higher
short-term mortality, which was associated with hemodynamic
instability. Another study found that syncope’s prediction of 30-
day mortality from pulmonary embolism was gender-specific,
holding true in women but not in men. In addition, laboratory
tests in patients with syncope showed higher levels of D-dimer
and troponin T, and RVD was more pronounced in women
with syncope. Dzudovic et al. (2020) also proposed that the
increased mortality of high-risk PE patients with syncope
was caused by RVD and hemodynamic instability, while the
mortality of sick people with low and medium risk of PE was
not significantly increased (Mohebali et al., 2020). There was
no significant association between syncope and prognosis or
mortality in patients with hemodynamically stable pulmonary
embolism (Barco et al., 2018). These may be related to the
pathophysiological mechanism of syncope. Patients with PE
who take syncope as the first symptom are at higher risk of
cerebral hemorrhage, so neurological examination should be
emphasized in these patients (Chopard et al., 2021).

6 Conclusion and future works

The paper proposes the SSACS-KELM classification
prediction model with high accuracy to effectively select
the key features in the PE dataset to assist physicians in
diagnosing pulmonary embolism. First, this paper details the
actual sampling method and sampling locations of the PE
dataset to ensure the authenticity and validity of the original
data. Then, to enhance the accuracy and stability of the
traditional feature selection approach, this paper proposes
optimizing the traditional KELM classifier by using the swarm
intelligence method. Further, to address the shortcomings
of the swarm intelligence algorithm, an enhanced variant of
SSACS is presented. In the experimental part, the optimization
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performance of SSACS is first verified by 30 benchmark
functions and 10 peer swarm intelligence algorithms. Then,
the adaptability and accuracy of the SSACS-KELM model for
different datasets are verified using eight public datasets. Then,
this paper shows the superiority of SSACS-KELM through
comparison experiments with five traditional feature selection
methods, five machine learning classifiers, and nine KELMs
based on swarm intelligence algorithms. Finally, the key
features, Syncope, HOT, SBP, D-D, and ALB, are finally derived
by a 10-fold cross-validation method. A careful discussion
proves that these five features are also fully compatible
with medical facts and statistical results. In conclusion, the
benchmark function performance of SSACS is very strong, and
the classification accuracy of SSACS-KELM is very excellent,
which is expected to be an effective model for PE diagnosis.

The proposed method also has some limitations. First,
the combination of the CS algorithm and the SSA increases
the complexity level of the original algorithm. This problem
can be solved by parallel computing or with the rapid
exploitation of computer technology and the continuous
improvement of computer computing power. Second, the
optimization performance of the SSACS algorithm has been
proven in the medical field, and the others are only theoretical
evaluations. In future work, SSACS will be applied to image
segmentation, engineering optimization, and other problems.
Finally, we will delve into classification and prediction in
machine learning based on SSACS for other fields, such as new
energy and agriculture.
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