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The rapid classification of micro-particles has a vast range of applications in

biomedical sciences and technology. In the given study, a prototype has been

developed for the rapid detection of particle size using multi-angle dynamic light

scattering and a machine learning approach by applying a support vector

machine. The device consisted of three major parts: a laser light, an assembly

of twelve sensors, and a data acquisition system. The laser light with a wavelength

of 660 nm was directed towards the prepared sample. The twelve different

photosensors were arranged symmetrically surrounding the testing sample to

acquire the scattered light. The position of the photosensor was based on theMie

scattering theory to detect the maximum light scattering. In this study, three

different sphericalmicroparticleswith sizes of 1, 2, and 4 μmwere analyzed for the

classification. The real-time light scattering signals were collected from each

sample for 30min. The power spectrum feature was evaluated from the acquired

waveforms, and then recursive feature elimination was utilized to filter the

features with the highest correlation. The machine learning classifiers were

trained using the features with optimum conditions and the classification

accuracies were evaluated. The results showed higher classification accuracies

of 94.41%, 94.20%, and 96.12% for the particle sizes of 1, 2, and 4 μm, respectively.

The given method depicted an overall classification accuracy of 95.38%. The

acquired results showed that the developed system can detect microparticles

within the range of 1–4 μm, with detection limit of 0.025mg/ml. Therefore, the

current study validated the performance of the device, and the given technique

can be further applied in clinical applications for the detection of microbial

particles.
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1 Introduction

Microparticles are small spherical particles with different size

ranges within 1–1,000 μm (Li et al., 2013; Veremchuk et al.,

2021). In the atmosphere, particles with a diameter less than

2.5 μm have the characteristics of strong activity, long residence

time, and transport distance, which significantly harms human

health and the quality of the atmosphere. The application of

rapid classification of microparticles is to prevent damage to

humans from airborne pollution and food contamination

(Wieland et al., 2022). Particles can also be used as an

effective drug delivery transmitter in cancer treatment and

prevention (Nakane, 2012; Gong et al., 2015; Kumar et al.,

2015). Light obscuration test (LOT) is an analytical method in

which particles in a liquid are placed between a laser light source

and a detector. A laser light source is used to illuminate the

particles, thus creating a blocking light. The system processes the

detected signal to display a calibration curve. The calibration

curve quantifies the particles and determines their size (Hawe

et al., 2013). Microparticle detection instruments commonly use

LOT to detect insoluble particles in intravenous fluids for drug

detection. The rapid classification of particles with different sizes

is crucial for the human environment and the timely

identification of microorganisms (Kumar et al., 2015). In the

last decade, many microparticle detection techniques have been

developed (Zhao et al., 2011; Dalili et al., 2019; Lengyel et al.,

2019; Lerche, 2019), such as flowmicroscopy, spectroscopy, mass

spectrometry (Zwicker, 2010; McNay et al., 2011; Kreimer et al.,

2015). Recently, classifying particles using high-speed

microscopy to acquire particle images by artificial intelligence

algorithms has become a mainstream research method. Luo et al.

(2020) developed a pipeline based on machine learning to

identify images obtained from Charge Coupled Device (CCD)

imaging and improved the accuracy of particle identification.

Lugnan et al. (2020) developed a machine learning method for

high-throughput single particle analysis using flow cytometry to

achieve interference pattern classification of transparent PMMA

microparticles with diameters of 15.2 and 18.6 μm. Bals et al.

(2022) used scanning electron microscopy images to record

contrast ratio and resolution, then classified the acquired

images by machine learning based on the shape and size of

micro-particles. The above methods are limited to imaging

analysis and require more space for expensive detection

instruments (Klug et al., 2019; Di et al., 2022; Yue et al., 2022).

In this study, we proposed an application of multi-angle

dynamic light scattering (MDLS) method based on machine

learning. The initial sample was diluted by mixing 1 μl of the

original sample (25 mg/ml) with deionized water (DI). The

prepared sample was placed in the device to collect scattered

light for 30 min. The surrounding photodetector acquired the

multi-angle dynamic light scattering signal and converted the

acquired scattered light signal into a voltage wave. The power

spectrum features were obtained from the signal waveform, and

the principal component analysis (PCA) and recursive feature

elimination (RFE) methods were applied to select the optimum

features. Machine learning (ML) is an artificial intelligence

technique that enables fast and automated classification of

input features. ML has been widely applied in various

applications, such as biomedical engineering and optical-based

instruments (Lussier et al., 2020; Shin et al., 2020). Three

machine learning algorithms, including logistic regression

(LR), random forest (RF), and support vector machines

(SVM) were applied for classifying features. The accuracy,

precision, recall, and F1-score were used as evaluation metrics

for classification performance. The overall schematic

representation of the experiments and detection principle has

been illustrated in Figure 1. The results demonstrated that the

proposed technique is effective for the rapid detection and

classification of microparticles. The proposed research aimed

to shorten detection time, reduce detection costs, and simplify

operation methods for classifying microparticles. The detection

process did not require expensive equipment and complex

operations to perform non-contact, non-invasive, and rapid

detection of samples, which had great potential for optical

and clinical applications.

2 Materials and methods

2.1 Micro-particles characteristics

Lumisphere polystyrene fluorescent microspheres from

Tianjin Bessler Chromatography Technology Development

Center (Tianjin, China) were used with a concentration of

25 mg/ml. The microscopic images of the microparticles with

three different sizes were taken by scanning electron microscopy

(SEM), as shown in Figure 2. The testing samples of different

concentrations were prepared using series dilution to find the

optimum concentration for acquiring data. The optimum

concentration of the testing sample was obtained by getting

the highest number of peaks/variations in the acquired

waveform of respective sample. The testing samples with

concentrations of 0.0125, 0.025, 0.05, 0.075, 0.1, and

0.125 mg/ml were mixed with DI water to acquire the optimal

concentration. The solution was vortexed and centrifuged at

1,000 rpm for 10 min. The residue was removed from the sample

to remove unwanted impurities. Then 1 ml of DI water was

mixed with the supernatant to prepare the final sample for the

experiment. All the experiments were performed at a room

temperature (25–28°C).

2.2 MDLS prototype

Mie scattering theory describes the elastic scattering of light

when the wavelength of the incident light is similar or smaller
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FIGURE 1
The flowchart for the detection principle for classifying microparticles based on MDLS and machine learning.

FIGURE 2
Images of three particles scanning under electron microscope (A) 1 µm (B) 2 µm and (C) 4 µm.
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than the diameter size of spherical particles. Mie theory has been

widely applied to laser diffraction analysis to detect particle size

effects (Altug et al., 2022). MDLS combines the angular

information of Mie scattering with dynamic light scattering to

measure particle size. MDLS shows that the intensity of the

scattered light fluctuates in a particular direction with time

because the tiny particles in solution are in Brownian motion,

and the distance between each scattered particle constantly

changes with time. MDLS is a common method for detecting

particle size and has been used in many medical detection devices

(Guo et al., 2018). Optical methods were widely used as an

important research tool for particle classification and qualitative

detection (Fan et al., 2014; Olson et al., 2015).

The prototype contains three main parts: 1) a laser source, 2)

an assembly of the photosensitive sensor, and 3) a data

acquisition system (Hussain et al., 2020a). The designed

prototype and the laser hardware were assembled by the

Nanjing Institute of Advanced Laser Technology, Chinese

Academy of Sciences (Nanjing, China). The laser source of

the device has a wavelength of 660 nm at a rated power of

150 mW. The power rating of the laser source was measured

by PM320E and S130C instruments developed by Thorlabs (New

Jersey, United States). When the laser passes through the sample,

the scattering light was detected by the high-speed silicon

photodiodes FDS100 (wavelength ranges from 350 to

1,100 nm with rise time of 10 ns) manufactured by Thorlabs

(New Jersey, United States). The AD8675 manufactured by

Analog Devices (Massachusetts, United States) operational

amplifier was used in the system to amplify the weak signal.

A small flask made of round bottom silicon was used in the

experiment (Celo Measure & Control Technology Co., Hefei).

UV-1800 Spectrophotometer (SHIMADZU, Japan) measured

the absorbance of the glass (Figure 3), which was

approximately zero between 500–700 nm wavelength.

The original prototype was designed with 32 photoelectric

sensors for signal acquisition (Hussain et al., 2020b). However,

the initial number of 32 sensors consumed more computational

power. The redundant data acquisition channels did not provide

enough information, significantly deteriorating the classification

results. The intensity of scattering light depends on the shape,

size, and characteristics of the particles based on the Mie

scattering theory. Particles of different sizes exhibited different

scattered light patterns. The maximum scattering light intensity

occurs in the incoming light’s forward direction (Lock and Laven,

2011). Therefore, the number of sensors was tested and reduced

from 32 to 12.

The 3D assembly of the developed prototype was designed

using Solidworks 2020 software, as shown in Figure 4. The 3-

axis positioning table controlled the “XYZ” 3-axial alignment

of the light source to ensure that the laser is focused on the

center of the sample. The laser beam positioning unit, laser

collimator, sample flask and the direction of the incident light

to the sample were optimized to acquire maximum signal

energy from the forward scattering light. The calibrated

system guarantees that no interference from external

factors appears throughout the detection experiments. The

signals were collected by NI data acquisition card (PCI-6225).

The system showed zero voltage in the dark environment. The

data collector maintained the calibrated zero signal waveform

when the flask was filled with DI water as an empty sample.

The collected data were further processed for features

evaluation and data classification using MatlabR 2018a

software.

2.3 Features extraction and features
selection

2.3.1 Features extraction
Signal-to-noise ratio (SNR) gives the ratio between the power

of the information signal carried in the acquired signal to the

noise signal and measures the quality of the signal. Higher SNR

indicates better signal quality and provides valid information for

computational analysis (Szkulmowska et al., 2005). The SNR

calculated the quality of the signal, where Ps denoted the total

signal power and Pn denoted the noise power, as presented in

Eq. 1:

SNR � 10lg
Ps

Pn
(1)

Various time-domain feature extraction algorithms have

been developed for signal classification tasks (pahuja et al.,

2022; Wang et al., 2022). Rami et al. developed an

Electromyography (EMG) signal-based feature extraction

method to extract power spectrum features from the non-

FIGURE 3
Testing the absorbance of glass flasks used for sample
detection from 500 to 700 nm.
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stationary signal in time domain (Khushaba et al., 2014). The

acquired data from the prototype also showed non-stationary

behavior. In the feature extraction technique, the MDLS

signal is denoted by x [j], the length of the signal is

represented by N, and the sampling frequency is fs. The

MDLS scattered signal can be expressed over time by a

function of X [k] after the discrete Fourier transform

(DFT). According to Parseval’s theorem, the power

contained in the signal is equal to the sum of the powers

of the components of the signal from the complete orthogonal

set. The Parseval’s theorem is applied to the derivation of the

power spectral characteristics:

∑N−1

j�0
x j[ ]∣∣∣∣ ∣∣∣∣2 � 1

N
∑N−1

k�0
X k[ ]X* k[ ]| | � ∑N−1

K�0
P k[ ] (2)

The power spectrum characteristic P [k] is calculated by

multiplying X*[k] and X [k], where k denotes the frequency of

the signal. Eq. 2 represents the phase-excluded power spectrum.

According to the symmetry of the Fourier transform, all

positive and negative frequencies were included to handle the

whole spectrum. The given method used the time domain signal

to evaluate the power spectrum features. All odd moments were

set to zero by the FT. Therefore, according to the definition of the

nth order moment m of the power spectral density P [k], all odd

moments will be calculated as zero, which is defined as:

mn � ∑N−1

k�0
knP k[ ] (3)

Based on Eq. 2, Parseval’s theorem can be used when n = 0.

According to the time-differentiation property of the FT, when

n ≠ 0, the nth order derivative of the discrete time signal equals the

spectrum multiplied by the nth power of k as follows:

F Δnx j[ ][ ] � knX k[ ] (4)

Therefore, the number of extracted features is defined by the

following properties:

2.3.1.1 Zero-order moments

The zero-order moment represented the total power in the

frequency domain:

m0 �
�������∑N−1

j�0
x j[ ]2√√

(5)

2.3.1.2 Second-order moments and fourth-order

moments

The second-order moment indicates the magnitude of the

fluctuation of the power spectrum corresponding to the mean

value. In the power spectrum characteristics, the power spectrum

FIGURE 4
Prototype of the optical system designed by Soildworks 2020. (A) Laser source: Laser source with wavelength of 660 nm and power rating of
150 mW laser sources was used to emit laser beam; (B)Optical collimation: The optimized collimation systemwas used to ensure that the scattering
light signal from the micro-particles was fully transmitted to the detector unit in real time. (C) Adjustment table: The 3-axis positioning system was
used to adjust the position of the horizontal x and y axis and the vertical z axis so that the laser beam can be focused on the center of the sample.
(D) Sample: Different concentrations ofmicroparticle samplesmixedwith DI water was prepared as experimental samples. (E) Sensors: A photodiode
with wavelength range of 350–1,100 nm and rise time of 10 ns was implemented to convert the light signal to an electrical signal.
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with k2P[X] is correlated with spectrum related to kX[k], and
represented by Eq. 2:

m2 �
���������∑N−1

k�0
k2P k[ ]

√√
�

������������
1
N

∑N−1

j�0
Δx j2[ ]( )√√

(6)

Similarly, the fourth-order moments can be expressed by the

following equation:

m4 �
���������∑N−1

k�0
k4P k[ ]

√√
�

�������������
1
N

∑N−1

j�0
Δ2x j[ ]( )2√√

(7)

The features were normalized (m0,m2 andm4) to reduce the

effect of noise on the features, where λ was routinely set to 0.1.

m0 � mλ
0

λ
, m2 � mλ

2

λ
, m4 � mλ

4

λ
(8)

Thus, the first three extracted features f 1, f 2, f 3 are defined as:

f 1 � log m0( ) (9)
f 2 � log m0 −m2( ) (10)
f 3 � log m0 −m4( ) (11)

2.3.1.3 Sparsity

Sparsity defines the energy contained in a vector which is

represented by:

f 4 � log
m0�������

m0 −m2
√ �������

m0 −m4
√( ) (12)

2.3.1.4 Wavelength ratio

The waveform length characteristic defines the sum of the

absolute values of the second and fourth-order derivatives of the

signal:

f 5 � log
∑N−1

j�0 Δ2x
∣∣∣∣ ∣∣∣∣∑N−1

j�0 Δ4x
∣∣∣∣ ∣∣∣∣⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (13)

However, the sampling frequency of the data acquisition was

set to 1 kHz for the 12 channels. The five features were collected

from each channel to form the feature vector

f � [f 1, f 2, f 3, f 4, f 5]. A total of 60 features were extracted

from 12 channels, and the feature filtering algorithms were

applied to filter the feature set.

2.3.2 Features selection method
The dimensionality of features affects the classification

results, and irrelevant features may degrade the performance

of the classifier (Li et al., 2017). Feature selection methods

optimize the feature set and remove low relevance and

redundant features. Feature selection methods are useful for

removing irrelevant features affecting the training model and

improving the classification accuracy of the model (Khaire and

Dhanalakshmi, 2022). The PCA and RFE were used as

dimensionality reduction algorithms.

2.3.2.1 PCA

PCA is a commonly used algorithm for data dimensionality

reduction. PCA can project each data point onto only the first few

principal components to obtain low-dimensional data while

preserving as much variation as possible. In PCA, high-

dimensional features are determined based on the eigenvectors

and eigenvalues of the covariance matrix for K principal

components and mapped to the K-dimensional space (K <
N), where K-dimensional features are associated as new

eigenvectors based on the magnitude of the eigenvalues (Yang

et al., 2004).

2.3.2.2 RFE

Removing several features at a time often negatively

impacts classifier performance, while using a small subset

may yield better results. Therefore, RFE was introduced to

overcome the drawback (Guyon et al., 2002). REF is a feature

selection method with good generalization performance based

on backward search of the model as features were removed in

each iteration by using the feature importance metric within

the model as a metric. RFE searches for a subset of features by

starting with all features in the training dataset and

successfully removing features until the desired numbers

are obtained.

2.4 Machine learning

Machine learning represents a class of algorithms for data

classification. With the development of artificial intelligence,

machine learning technology has been widely applied in

various fields, especially in biomedical engineering and life

science (Goodswen et al., 2021). Among different machine

learning algorithms, LR is a probabilistic non-linear regression

with applications in prediction and discrimination. RF is an

integrated learning model that contains multiple decision trees,

and the output category is determined by the plurality of the

categories output from the individual trees. SVM is a typical

supervised learning classification algorithm in machine learning,

which classifies data by finding the maximum interval in the

feature space (Ghannam and Techtmann, 2021).

After acquiring the experimental data, the machine learning

classification algorithms were applied based on Sklearn

0.19.0 package (Intel Core i7-10700 CPU processor,

2.90 Ghz, 32 GB RAM, RXT 3070). The SVM classifier

acquired the highest classification accuracy compared with

other classifiers. The machine learning classification process

is presented in Figure 5, where the data set was divided into a

training set and a test set in the ratio of 7:3. After denoising, the
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data was segmented by adding a sliding window length of

250 ms and slid over the data signal with an increment of

150 ms. The power spectrum features were extracted for the

signals in each window. The features extracted from three

particle sizes of 1, 2, and 4 µm were labeled before training

the machine learning classifier.

2.5 Performing analysis and features
contribution

2.5.1 Performing analysis
Model evaluation metrics were applied to select a model with

high generalization ability for machine learning classification

tasks. Models with high generalization ability tend to adapt the

unknown samples. Cross-validation is used to assess machine

learning classifiers on the training set for checking their

performance. In 5-fold cross-validation, the dataset is divided

into 5 subsets that are not utilized in training the classifier. The 5-

subsets were used for testing the model to evaluate the classifier

(Bergmeir and Benitez, 2012; Wong and Yeh, 2020). The

performance was assessed based on the average value

generated from each result of the subset. In this research, the

5-fold cross-validation was performed to optimize the

parameters of the classifier. The generalization performance of

the model was tested on the test set.

The confusionmatrix was plotted for subsequent computation

of performance evaluation metrics. The confusion matrix is a class

of tables used to visualize the classification results and evaluate

classification performance. The values from the confusion matrix

were represented by True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN). The given characteristics

were applied to evaluate the performancemetrics, in which TP and

TN denote the results of particle size that had been correctly

classified, while FP and FN represent the results of particle size data

classified incorrectly by the classifier. These parameters constituted

the confusion matrix were used to evaluate the performance

metrics, including precision, accuracy, recall, and F1 score.

Precision represents the percentage of correctly predicted results

to total outcomes. Recall is the probability that the predicted

positive samples were positive samples. The F1 score was

obtained from the weighted average of precision and recall.

The above metrics were used to evaluate the performance of

the classifier and defined respectively:

Accuracy � TP + TN
TP + TN + FP + FN

(14)

Precision � TP
TP + FP

(15)

Recall � TP
TP + FN

(16)

F1score � 2 × TP
2 × TP + FP + FN

(17)

2.5.2 Features contribution
Shapley value is a solution concept that involves the equitable

distribution of benefits and costs to several actors working jointly

in the game theory (Ribeiro et al., 2016; Lundberg and Lee, 2017).

Shapley values are mainly applied to situations where the

contribution of each actor is not equal but cooperates to

obtain a benefit or reward. Shapley values have been widely

used in artificial intelligence to provide good interpretability for

machine learning and deep learning black box models

(Rozemberczki et al., 2022). The proposed method can

attribute the output value of the model to each Shapley value

in the dataset at each sample level. Shapley values provide a

natural way to calculate which features contribute to predictions,

interpreting a model trained on a set of features as a coalition of

players’ value functions. The Shapley value explains the degree of

contribution of each feature to the outcome.

FIGURE 5
Flowchart of the microparticles classification based on machine learning.
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3 Results

3.1 Prototype design

The prototype was successfully developed with a dimension

of 50 cm × 30 cm × 30 cm. The testing sample was placed in the

chamber of the prototype, as shown in Figure 6A. The sample

was placed to focus the laser light on the center of the flask, as

shown in Figure 6B. The particles that randomly moved in the

flask scattered the detection beam while the sensor received the

scattered signal in real-time. The pattern of scattering light was

affected by the size and shape of the microparticles (Hussain

et al., 2019). A black box was used to avoid external

interference, improving the quality of the acquired signal, as

shown in Figure 6C.

3.2 Optimized condition experiments

The testing samples with concentrations of 0.0125, 0.025,

0.05, 0.075, 0.1, and 0.125 mg/ml were mixed with DI water to

acquire the optimal concentration. Each of the experiments was

performed for 30 min. Samples with different concentrations

were tested to obtain the average number of peaks (Figure 7). The

scattering of the light was weak when the concentration was too

low, so the number of detected peaks was less. At higher

concentrations, the number of detected characteristic peaks

was also too low due to particle-to-particle interaction.

Overall, the experimental results showed that a higher number

of peaks in the waveform were generated at a sample

concentration of 0.025 mg/ml. The classification outcomes

showed incorrect results for samples with concentrations

below 0.025 mg/ml. Therefore, the sample concentration of

0.025 mg/ml is considered as the detection limit.

FIGURE 6
(A) Internal status of the prototype during the operation; (B) photodetectors are distributed in the backward direction; and (C) an external cover
of the system is used to avoid external light (dimension: 50 cm × 30 cm × 30 cm).

FIGURE 7
Average peak values were obtained using samples with
different concentrations.
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3.3 Signal testing

The prepared samples with an optimum concentration were

used to detect the MDLS. The time-domain light scattering signals

from three different particles were obtained for 30 min. The SNR of

the signal increased from 2.98 to 6.698 after applying the second

order Butterworth filter to the acquired raw data. Figures 8A–C

shows the test signal obtained from 12 channels for three particles

with time duration of 3 min. An output signal shows significant

variations in the peak values obtained from different particles sizes.

FIGURE 8
Partial waveform signals from three different sizes of particles (A) 1 µm (B) 2 µm and (C) 4 µm appeared during the 180 s of detection, during
which the particles passing through the beam showed a significant voltage signal on the sensor.
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The peak values represent the time when the particles pass through

the detection beam. The signal test significantly revealed the

similarity of the particle signals of the three different particle sizes

in terms of peak features and combinations of detection channels, so

the feature extraction and machine learning approach can

significantly improve the effectiveness of the classification task.

3.4 Features reduction and classification
algorithms

PCA and RFE were used as feature selection algorithms,

and then 5-fold cross-validation was applied to the features.

Before training and testing the classifiers, the features matrix

were labeled as 1 µm (class 0 label), 2 µm (class 1 label), and

4 µm (class 2 label). The number of features varied from 5 to

60, with an increment of 5 in each iteration. A 5-fold cross-

validation evaluated the results of each feature selection. The

highest accuracies of LR, RF, and SVM classifiers using

50 selected features with PCA were 91.97%, 88.89%, and

91.74%, respectively (Figure 9A). Similarly, the highest

accuracies of LR, RF classifiers were 92.08%, 91.52%,

using 30 selected features, the highest accuracy of SVM

classifier were 95.38% using 50 selected features with RFE,

(Figure 9B). Overall, the classification results using RFE were

more accurate than PCA. The RFE feature selection method

selected a subset of 50 features to obtain the highest

classification accuracy.

The confusion matrix was plotted from the outcomes to

evaluate the performance of the three classifiers. The row of

the confusion matrix represented the actual sample classes,

and the column represented the predicted sample classes

(Figure 10). The green boxes in the diagonal line

represented the outcomes that were correctly classified.

The remaining feature data points represented the

incorrectly classified values. The identification accuracy,

precision, recall, and F1 score of the testing dataset were

evaluated using Eqs 14–17, and the results are presented in

FIGURE 9
Average classification scores obtained from LR, RF and SVM classifiers using (A) PCA and (B) RFE for feature selection after 5-fold cross-
validation.

FIGURE 10
Confusion matrix of three different classifiers (A) RFE-LR (B) RFE-RF (C) RFE-SVM on testing set.
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Table 1. Overall, the SVM(kernel = “linear”, decision_

function_shape = “ovr”,C = 100, gamma = 0.0001,

probability = True) classifier achieved higher

classification accuracy than LR and RF classifiers.

3.5 Features contributions

The Shapley values were used to validate whether the 50 power

spectrum features subset influenced the prediction results. We

computed the Shapely values that were contributed from the

power spectral features of the SVM classification model. The

average Shapely values from each feature and the

corresponding Shapley values for each data point were

calculated and counted. The bar chart on the left (Figure 11A)

showed the average Shapley values for the three classifiers,

indicating each feature’s average contribution to the final

output. The scatter plot on the right (Figure 11B) demonstrated

the distribution of Shapley values and their contribution to the

model output structure. The color of each point represented

the intensity of the feature value. Blue data points indicated

low features, while red represented the opposite. The results

showed a significant contribution of the first 12 features to the

results, consistent with the proposed channel arrangement

for the acquisition system. The first 12 features that

corresponded to the zero-order moment features of the

12 channels played a crucial role in the contribution of the

classification results.

4 Discussion

The objective of this paper is to develop a new system and to

verify the ability of the proposed technique for the identification

TABLE 1 Four evaluation metrics of different classifiers on test dataset.

Model evaluation metrics LR RF SVM

Accuracy (%) 92.26 91.31 95.38

Precision 0.9238 0.9170 0.9536

Recall 0.9226 0.9131 0.9538

F1 score 0.9215 0.9125 0.9634

FIGURE 11
Quantification of feature impact on prediction through analysis of Shapley additive explanations (SHAP) values of the 20 most impactful
features. (A) Averaged Shapley values of features with higher contribution indicate an average effect of these features on the output amplitude. (B)
The scatter plot represents the distribution of Shapley values and the effect on the model output of all test samples.
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of different particle sizes. With the continuous development

of point-of-care testing (POCT) technology, detection

techniques are gradually evolving with high accuracy and

simplicity. The developed system can identify the size of

microparticles with high accuracy in a short time. The

given analysis was conducted by collecting a large amount

of data based on the scattering light from particle samples of

different sizes (1, 2, and 4 μm). The time-domain features

were obtained from the acquired data, and the features were

reduced the number of features to acquire higher

classification accuracy. The RFE feature selection method

selected a subset of 50 features, and gave best results

compared with PCA features selection method. The

selected features were trained using machine learning to

automate the detection procedure. The logistic regression

classifier gave classification accuracies of 95.30%, 92.38%,

89.17% for particle sizes of 1, 2 , and 4 μm, respectively.

The random forest classifier gave classification accuracies

of 92.59%, 96.71%, 76.62% for particle sizes of 1, 2, and

4 μm, respectively. The SVM classifier showed higher

identification accuracy with prominent classification

parameters. The SVM classifier gave the highest

classification accuracies of 94.41%, 94.20%, 96.12% for

particle sizes of 1, 2, and 4 μm, respectively. The trained

SVM classifier gives an average classification accuracy of

95.38%. The detection limit of the given method is

0.025 mg/ml. The contribution and effect of each feature to

the results were analyzed by features selection methods.

Selected features identified by the RFE feature filter have

shown superior classification results. The Shapley values of

these features described a significant contribution to the

results. In summary, the developed system based on MDLS

and machine learning can quickly and accurately detect

microparticles. Furthermore, the prototype was highly

integrated, and the developed method did not require

lengthy sample preparation. The given technique requires

further validation for practical applications that can be

applied to detect microbial particles within the range

of 1–4 µm.
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