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Phage family classification
under Caudoviricetes: A review
of current tools using the latest
ICTV classification framework
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Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR,

China

Bacteriophages, which are viruses infecting bacteria, are the most ubiquitous

and diverse entities in the biosphere. There is accumulating evidence revealing

their important roles in shaping the structure of various microbiomes. Thanks

to (viral) metagenomic sequencing, a large number of new bacteriophages

have been discovered. However, lacking a standard and automatic virus

classification pipeline, the taxonomic characterization of new viruses seriously

lag behind the sequencing e�orts. In particular, according to the latest version

of ICTV, several large phage families in the previous classification system are

removed. Therefore, a comprehensive review and comparison of taxonomic

classification tools under the new standard are needed to establish the state-

of-the-art. In this work, we retrained and tested four recently published

tools on newly labeled databases. We demonstrated their utilities and tested

them on multiple datasets, including the RefSeq, short contigs, simulated

metagenomic datasets, and low-similarity datasets. This study provides a

comprehensive review of phage family classification in di�erent scenarios

and a practical guidance for choosing appropriate taxonomic classification

pipelines. To our best knowledge, this is the first review conducted under

the new ICTV classification framework. The results show that the new family

classification framework overall leads to better conserved groups and thus

makes family-level classification more feasible.

KEYWORDS

bacteriophage, taxonomic classification tools, viral metagenomic data, review of

tools, Caudoviricetes

1. Introduction

Bacteriophages (aka phages) are viruses that infect bacteria (McGrath and van

Sinderen, 2007). Phages are themost abundant biological entities on Earth. It is estimated

that there are more than 1031 bacteriophages on the planet, outnumbering every other

organism on Earth combined (Suttle, 2005; LaFee and Buschman, 2017). In most

microbial communities, phages play a crucial role by shaping and maintaining microbial

ecology (Thingstad, 2000; Koskella and Meaden, 2013), facilitating co-evolutionary

relationships (Hoyles et al., 2014; Cobián Güemes et al., 2016; Silveira and Rohwer, 2016),

and promotingmicrobial evolution through horizontal gene transfer (Brown-Jaque et al.,

2015; Chiang et al., 2019).
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Phages are diverse in size, morphology, and genomic

organization (Ackermann, 2006; Chow and Suttle, 2015).

They have a variety of structural morphologies, among which

tailed double-stranded DNA (dsDNA) phages (Brum et al.,

2013; Kauffman et al., 2018) are the most abundant. Besides

dsDNA phages, there are also phages with single-stranded DNA

(ssDNA) (Lim et al., 2015), single-stranded RNA (ssRNA) (Loeb

and Zinder, 1961) or double-stranded RNA (dsRNA) (Mertens,

2004). Phages also have a wide range of genome sizes. Recently,

an increasing number of megaphages (>200 kbp) have been

sequenced, demonstrating unique genomic features (Yuan and

Gao, 2017). Because of the high diversity of genomes, phages

infecting different hosts typically have a low similarity. However,

phages that infect the same host may also have considerable

differences in their genomes (Hatfull, 2008; Krupovic et al.,

2011).

It is now demonstrated that phages can be found in a

wide variety of environments, including aquatic ecosystems

(Paul et al., 2002; Guttman et al., 2005), human gut

(Manrique et al., 2017; Sutton and Hill, 2019), and soil

(Chow and Suttle, 2015; Williamson et al., 2017). The first

viral metagenome of uncultured marine viral communities

was published in 2002 (Breitbart et al., 2002). Phages

can shape the composition and function of underlying

ecosystems through two different lifestyles: temperate and

virulent. Temperate phages will integrate their genomes into

bacterial chromosomes and replicate with their host. They will

maintain this state, which is also called prophages, until being

induced by the environment’s condition, such as appropriate

temperature and pH value. Then, temperate phages will enter

the lytic cycle to kill the host (Campbell, 2003; Howard-

Varona et al., 2017). In contrast, virulent phages do not

integrate their genomes into the hosts. They stay in the

lytic cycle and kill the hosts after replicating themselves

(Hobbs and Abedon, 2016).

The unique properties and life styles make phages key

players in multiple applications. For example, phage therapy is a

promising strategy for treating bacterial infections, particularly

those with antibiotic-resistant bacteria. It has been found

that intravenous phage preparations could treat Staphylococcus

aureus that induced pneumonia in mice (Saussereau and

Debarbieux, 2012; Oduor et al., 2016). In addition, phages

can be used to treat gastrointestinal infections. It has been

demonstrated that phages are effective in reducing intestinal

pathogens and have less impact on the composition of the

intestinal microbiota compared to antibiotics (Jaiswal et al.,

2013; Galtier et al., 2016; Nale et al., 2016; Gutiérrez and

Domingo-Calap, 2020). Moreover, phages are important in

food safety. The use of specific phage treatments in the food

industry can prevent product spoilage and limit the spread of

bacteria, providing a safe environment for animal and plant food

production (Garcia et al., 2008; Coffey et al., 2010; Sillankorva

et al., 2012; Gutiérrez et al., 2017).

However, despite the abundance and importance of phages

in various ecosystems, our understanding of phages is still very

limited. According to the database supported by the National

Center for Biotechnology Information (NCBI), the number of

identified phages in class Caudoviricetes changed from 1,359

in 2015 to 4,483 in 2022 in the RefSeq database, which is

tripled in size. Besides the reference genomes, there are roughly

63,588 assembled phages belonging to Class Caudoviricetes in

the Genbank database in 2022, an almost five fold increase

compared to 2015 (16,232). However, the characterization

of phages cannot keep pace with the fast increase of the

sequencing data.

Assigning phages into different taxonomic groups is a

fundamental step following phage discovery. The official

taxonomy was established by the International Committee on

Taxonomy of Viruses (ICTV) (Adams et al., 2017), which

organizes viruses in several taxonomic levels, including class,

order, family, subfamily, genus, and so on. Within the ICTV,

the Bacterial and Archaeal Viruses Subcommittee (BAVS) is

responsible for the phages’ taxa. BAVS classifies phages based

on a variety of phage properties, including the molecular

composition of the genome (ss/ds, DNA, or RNA), the

morphology, the structure of the capsid, and the host range

(Dion et al., 2020). Recently, with the increasing availability

of viral genomes, using genomes for taxonomic classification

has become more widely accepted (Lefkowitz et al., 2018). Due

to the extensive sequencing efforts for virus discovery, ICTV

cannot catch up with the sheer number of newly identified

phages, and thus many viruses are still not classified. One

challenge behind this delay is the lack of standard, accurate,

and comprehensive taxonomic classification tools for phages.

Indeed, phage classification is not a trivial problem. The

taxonomic standard in ICTV is constantly changing as new

phages are discovered. Recently, ICTV updated the phage

classification system in August 2022, in which several major

families in the previous ICTV system are removed, such as

Siphoviridae, Podoviridae, and Myoviridae. These changes can

significantly affect the performance of family classification.

To our best knowledge, no quantitative evaluations of the

performance change have been conducted. Table 1 shows the

average similarity (calculated by Dashing; Baker and Langmead,

2019) of the largest four families in the old and new ICTV

taxonomy classification systems. The updated families are more

conserved as shown by the increased average similarity, making

family-level classification more feasible.

Available taxonomic classification tools often have different

designs and were tested on different datasets by their

authors. Without a comprehensive comparison on the same

training/reference data set and test set, it is difficult for users to

choose the most appropriate solution for their needs. This paper

presents a comprehensive benchmark of the main players in

phage taxonomic classification under the latest ICTV standard.

The remaining of this review is organized as follows. First,
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TABLE 1 The average pairwise Dashing similarity of the four largest phage families under Caudoviricetes.

Old version ICTV New version ICTV

Phage family Similarity Phage family Similarity

Siphoviridae 0.0129 Autographiviridae 0.0171

Myoviridae 0.0157 Straboviridae 0.0748

Autographiviridae 0.0171 Herelleviridae 0.0519

Podoviridae 0.0206 Drexlerviridae 0.0432

we will describe the main methods/models for existing phage

taxonomic classification approaches and discuss whether they

can be retrained/used under the new ICTV taxonomy standard.

Then, we evaluate the four representative approaches that can

be retrained by newly labeled sequences in different usage

scenarios. In particular, we tested these tools on complete virus

genomes, short contigs, simulated metagenomic datasets, and

low-similarity datasets. In addition, we conducted a leave-one-

family-out experiment to test whether these tools can recognize

out-of-distribution sequences. By comparing their performance

and analyzing the underlying reasons, we draw conclusions and

provide guidance for users about choosing the most appropriate

tools for different scenarios.

2. Approaches for phage taxonomic
classification

Most phage taxonomic classification approaches can output

classification results in different ranks, such as order, family, and

genus. In this review, we focus on comparing different tools’

performance at the family level because of the following reasons.

First, the taxonomy by ICTV is under constant changes, which

affects the total genus number significantly. For example, there

are 735 genera in the ICTV database released in 2016. However,

the number of genera increased to 2,224 in 2020. The overhaul

of the genus-level taxonomy can make the definition of “ground

truth” ambiguous. In addition, hundreds of rare genera only

contain one phage, making the construction of reference and test

set difficult. Second, classification at higher taxonomic ranks is

usually easier than at lower ranks due to the smaller inter-class

similarities and more abundant sequences in each class. Thus

classification at order or above is not as challenging as family

classification.Caudoviricetes, a class of phage known as the tailed

phages whose hosts are phage and archaea, contains the majority

of the total phage sequences and can be classified by almost all of

the tools mentioned above, we thus focus on the classification of

the families under Caudoviricetes in this work.

The phage taxonomic classification methods are

summarized in Table 2 following the chronological order,

which includes a brief description, publication year, required

input data type, and the lowest predicted level of each tool. A

majority of these tools conduct phage taxonomic classification

based on sequence comparison, utilizing nucleotide-level or

protein-level similarity between a query virus and the reference

database. The comparison-based methods differ in their

constructed reference database, the alignment method, and how

they utilize these alignments. Both pairwise sequence alignment

and hidden Markov model (HMM)-based profile alignments

are commonly used. Multiple tools construct virus protein

families and use them as marker genes. Using markers usually

incurs less memory usage than using all phage genomes. But

newly sequenced phages with novel genes may not be aligned

to any marker gene families and thus cannot be assigned to a

known class. Learning-based models have also been applied to

phage classification. Learning models can automatically infer

the sequence patterns in phage genomes of different families

and use the learned features for automatic classification. A more

detailed description of these tools is provided below.

Phage Proteomic Tree (Rohwer and Edwards, 2002;

Nishimura et al., 2017) is a relatively early program providing

phage genome classification down to the family level. It extracts

protein sequences from virus genomes and clusters these

sequences using BLASTP (Altschul et al., 1997). Then the

clusters in Phage Proteomic Tree are refined and scored. Finally,

the alignment scores are converted to distances, which were used

to generate the final tree using the neighbor-joining algorithm.

Taxon-specific signature genes can be identified in most

virus taxa. POGs (Phage Orthologous Groups) (Kristensen et al.,

2013) is a collection of clusters of orthologous genes from

phages, presented as profiles (multiple sequence alignment).

The viral families of POGs are filtered as “Viruses[Organism]

NOT cellular organisms [ORGN] NOT srcdb_refseq[PROP] AND

vhost bacteria[filter] AND ‘complete genome’ [All Fields]” in

NCBI. Signatures are extracted for each taxon, and we can

use BLASTP to search for matches among the viral protein

sequences. POGs are designed to be well-suited for defining

taxon-specific signature genes, and the profiles built from POGs

are more sensitive and specific to search for signature genes in a

given dataset.

GRAViTy (Aiewsakun and Simmonds, 2018) also extracts

protein sequences from virus genomes and cluster these

sequences using BLASTP (Altschul et al., 1997). GRAViTy

generates protein profile hidden Markov models (PPHMMs)
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TABLE 2 Overview of bioinformatic approaches used for phage taxonomic classification.

Name Year Description Input data Lowest level

Phage Proteomic Tree

(Rohwer and Edwards,

2002)

2002 It uses the BLASTP distance and protein distance scores (similarity

between two proteins) to generate phage proteomic trees, which can

describe the relationships between different phages and can serve as a

genome-based classification system for phages.

Protein

sequences

Family

POGs (Kristensen et al.,

2013)

2013 It provides a collection of orthologous genes clusters from phages,

represented as profiles. It extracts virus-specific genes, and then

classifies phages by aligning query sequences against the marker genes

utilizing BLAST.

Genome

sequences

Genus

GRAViTy (Aiewsakun

and Simmonds, 2018)

2018 It conducts taxonomic classification by computing sequence

relatedness between viruses using Composite Generalized Jaccard

(CGJ) distances that integrate homology detection outputs and shared

genomic features.

Genome

sequences

Genus

CCP77 (Low et al., 2019) 2019 A Phylogeny-based taxonomic classification for Caudovirales, inferring

a concatenated Caudovirales protein (CCP77) tree based on the

concatenation of protein markers using a maximum-likelihood

method.

Genome

sequences

Genus

ClassiPhage (Chibani

et al., 2019a,b)

2019 It uses a set of phage-specific Hidden Markov Models (HMMs)

generated from clusters of related proteins for phage taxonomic

classification. Classiphage 2.0 adds an Artificial Neutral Network

(ANN) in the models.

Protein

sequences

Family

vConTACT (Bolduc

et al., 2017; Bin Jang

et al., 2019)

2019 A network-based application utilizing whole genome gene-sharing

profiles, which integrates distance-based hierarchical clustering and

confidence scores for virus classification.

Protein

sequences

Genus

CAT (von Meijenfeldt

et al., 2019)

2019 It can provide taxonomic classification for contigs or contig bins

utilizing DIAMOND BLASTP homology search for open reading

frames (ORFs).

Genome

sequences

Species

MMseqs2 (Mirdita et al.,

2021)

2021 A protein-search-based taxonomy classification tool for contigs. It

assigns taxa for each possible protein product and uses weighted voting

to assign taxonomic labels.

Genome

sequences

Species

VPF-Class (Pons et al.,

2021)

2021 It automates the classification by assigning the proteins to a set of Viral

Protein Families (VPFs), which are then used to estimate the similarity

between query genomes with classified genomes.

Genome

sequences

Genus

PhaGCN (Shang et al.,

2021)

2021 A semi-supervised learning model. It formulates the taxonomic

classification problem as a node classification problem in a knowledge

network, which is constructed by combining the DNA sequence

features and protein sequence similarity.

Genome

sequences

Family

and genomic organization models (GOMs) based on the

sequences from BLASTP-based clustering. Then it computes

Composite Generalized Jaccard (CGJ) similarity scores (a

geometric mean of the two generalized Jaccard scores computed

for a pair of PPHMM signatures and a pair of GOM signatures)

between each sequence pair to construct the heat map and

dendrogram and estimate sequences’ relatedness. GRAViTy

requires users to choose reference database freely but need

sequences in GenBank format as input.

CCP77 (Low et al., 2019) applies a concatenated

protein phylogeny for the classification of tailed dsDNA

viruses belonging to the specific order Caudovirales.

Classiphage (Chibani et al., 2019a,b) uses phage-specific

Hidden Markov Models (HMMs) (Eddy, 2011) profiles

generated from clusters of related proteins for classification.

The HMM profiles are built using the produced multi-

sequence alignment files by the “hmmbuild” command.

Classiphage 2.0 additionally trains an Artificial Neutral

Network (ANN) using phage family-proteome to phage-

derived HMMs scoring matrix, which can classify

more phage families and include more features than its

previous version.
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vConTACT (Bolduc et al., 2017; Bin Jang et al., 2019) is

a high-throughput network-based approach utilizing whole-

genome gene-sharing profiles. It clusters the input viral genomes

together with characterized genomes. The genomes in the same

cluster indicate the same family or genus, and the predicted

family can be inferred if there are characterized genomes in the

same cluster.

CAT (von Meijenfeldt et al., 2019) provides taxonomic

classification using homology searches. It uses DIAMOND

BLASTP to identify homologous sequences and then assigns

query sequences into taxa with a voting approach. The authors

of CAT show that using the best hit strategy can lead to

low specificity and thus design a more robust strategy based

on multiple hits. Users can select the reference database and

tune the setting, which is more flexible than some other tools.

Moreover, it has a very low memory usage.

MMseqs2 (Mirdita et al., 2021) is a fast contig taxonomic

assignment tool. Similar to CAT, it conducts protein homology

search against reference sequences and uses majority vote

to assign the most specific taxon for a contig. With some

optimizations and adoption of 2bLCA (Hingamp et al., 2013),

MMseqs2 circumvents the need of adjusting a parameter in

CAT and achieves faster speed on the tested bacterial and

eukaryotic datasets. It allows users to supply a customized

reference database.

VPF-Class (Pons et al., 2021) provides both taxonomic

classification and host prediction for input viral genomes. It

compares predicted proteins against the set of constructed Viral

Protein Families (VPFs) (from the IMG/VR system). Then it

derives taxonomic classifications and confidence scores from the

list of VPFs detected on each query genome. However, VPF-

Class does not require users to download and select the reference

datasets.

PhaGCN (Shang et al., 2021) is a semi-supervised learning

model for phage taxonomic classification developed by our

team. This model constructs a knowledge graph by combining

the DNA sequence features learned by Convolutional Neural

Networks (CNN) and protein sequence similarity gained from

the gene-sharing network. The learning model can incorporate

the automatically learned features for each contig. However,

unlike sequence comparison-based approaches, PhaGCN only

accepts phage-like sequences as input. Thus, a pre-processing

step is needed for detecting those contigs from metagenomic

data. A number of tools, such as VirFinder (Ren et al., 2020),

Seeker (Auslander et al., 2020), and PhaMer (Shang et al., 2022)

can be applied in the pre-processing step.

3. Experiments and results

Because of the changes in the ICTV classification system,

the models/reference databases need to be updated using the

latest labeled sequences. However, not all the tools in Table 2

can be updated easily. Among them, only CAT, GRAViTy,

PhaGCN, MMseqs2, and vConTACT 2.0 allow users to change

their reference databases or retrain the models with reasonable

efforts. The others do not specify the feasibility of changing

models or reference databases in the descriptions. The source

code of CCP77 is only available on request but not to the

public. The code of GRAViTy released at GitHub is the alpha

version and the author mentioned that they are currently

working on a new and improved version that is more user-

friendly and written in python3. Nevertheless, we downloaded

and installed the alpha version of GRAViTy. The alpha version

is computationally expensive and requires 30 h to build a

reference database with about 1200 genomes and another 25 h

to process just 300 queries. Therefore, we focus on evaluating

the performance of the four tools: PhaGCN, vConTACT 2.0,

CAT, and MMseqs2. These tools were recently published and

demonstrated good performance in their own or others’ tests.

In addition, the corresponding codes and tools are still under

maintenance. None of them requires an internet connection or

a web server. To mimic the scenario of applying these tools to

datasets without known taxonomic composition, we apply all

these tools with their default parameters, which are optimized

by the authors. The commands for running all these tools are

available in the Supplementary material. All the tools were run

on IntelVRrXeonVRr Gold 6258 R CPU with 8 cores.

3.1. Dataset

We rigorously evaluated these phages taxonomic

classification tools on multiple datasets. The detailed

information is listed below.

• The RefSeq dataset RefSeq is a widely used benchmark

dataset in phage classification tasks. By October 2022, there

are 1,826 complete sequences with family-label under Class

Caudoviricetes in the RefSeq database. In this paper, we

only focus on the phages infecting bacteria. After filtering

out the families that infect archaea or contain sequences

less than 6, there are 19 families (including 1460 complete

sequences) we can use in our experiments. Table 3 shows

the number of sequences within the 19 families under class

Caudoviricetes, among which Autographiviridae contains

the largest number of sequences. For the tools that require

protein sequences, we used Prodigal (Hyatt et al., 2010)

to predict and translate the nucleotide sequence into

the proteins.

We sorted the sequence by their release time at RefSeq.

Then, we used the first 80% of the labeled complete sequences

from each family as the training set/reference database to

retrain/update the four tools, and the rest 20% as test set. Because
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TABLE 3 The 19 families under class Caudoviricetes from the RefSeq database we used in the experiments.

Family name Number Family name Number

Autographiviridae 370 Straboviridae 204

Herelleviridae 127 Drexlerviridae 117

Demerecviridae 94 Peduoviridae 83

Casjensviridae 76 Schitoviridae 76

Kyanoviridae 62 Ackermannviridae 62

Rountreeviridae 35 Salasmaviridae 34

Vilmaviridae 31 Zierdtviridae 26

Mesyanzhinovviridae 17 Chaseviridae 14

Zobellviridae 13 Orlajensenviridae 11

Guelinviridae 8 Total 1,460

Number: the number of complete sequences in each family.

we split the data in chronological order, the data in the test set

are more recent (almost all were released in 2020 or after).

• Short contigs dataset This dataset contains segments with

different lengths, including 500, 1,000, 3,000, 5,000, 10,000,

and 15,000 bp. We randomly generated the segments from

the 20% RefSeq dataset (293 sequences) mentioned above.

For each length, we cut ten segments from each phage

genome by selecting a random start position. Finally, we

had 2,930 phage contigs for each length and 29,300 for all

different lengths. Then, we used these segments to evaluate

the performance of the four tools on short contigs.

• Simulated metagenomic dataset We used a simulated

metagenomic dataset generated by six common bacteria

living in human gut (Shang et al., 2022). We first utilized

metaSPAdes (Nurk et al., 2017) to assemble the reads into

contigs. Then PhaMer (Shang et al., 2022) was applied

to identify bacteriophages from metagenomic data, and

the labels of the contigs were determined using BLAST

(Camacho et al., 2009). Eventually, 37 contigs were used

in the experiments. More details about this dataset will be

provided in the section of Experiment 4.

• Low-similarity dataset To test the tools’ performance on

classifying highly diverged phages, we constructed a hard

case where the test sequences share low similarity with the

reference database/training data. Specifically, we calculated

the Dashing pairwise similarity of the sequences in each

family and then used the approach in Petti and Eddy (2022)

to partition the data into two parts with specifiedmaximum

similarity. With this method, we got 264 and 45 genomes

for training and test, where each test genome has at most

0.015 Dashing similarity with any reference genome. Then

we randomly cut 15 contigs with a length of 3,000 and 5,000

bp, respectively, from each testing genome. Finally, there

are 675 contigs for each length in the test set.

3.2. Evaluating criteria for di�erent tools

3.2.1. Metrics

An ideal phage classification tool should assign correct labels

for as many inputs as possible. Nevertheless, there is usually a

tradeoff between the percentage of prediction and the accuracy

of the prediction. Some tools may sacrifice the percentage of

prediction in order to achieve high specificity and accuracy,

while others may predict more with lower accuracy. Thus the

first metric is prediction rate, which is the ratio of outputs with

prediction results (Npred in Equation 1) to the total input (Nall

in Equation 1). Because some tools only provide a family name

as output, commonly used metrics such as AUROC cannot

be computed. In this work, we calculated accuracy, recall, and

precision for each tool (Equations 2–4). Ncorrect is the number

of sequences with correct predictions in output. Ntotal is the

total number of sequences used to evaluate, which can be Nall

or Npred when we report accuracy for all input phage sequences

(Nall) or only for sequences with predictions in output (Npred),

respectively. Providing accuracy for all input sequences has the

advantage of using the same denominator (i.e., Nall) for all

tools. But it penalizes the tools of low prediction rate twice.

On the other hand, reporting accuracy for only sequences with

predictions removes the impact of prediction rate but may

favor tools with low prediction rate (i.e., small Npred). Thus,

reporting both can provide a more comprehensive evaluation

for users. For example, if there are 293 (Nall) sequences

input, among which 290 sequences have classification prediction

results (Npred), and 285 of them have correct results (Ncorrect),

the accuracy on all input will be 285/293 = 0.973, and the

accuracy on predicted sequences will be 285/290 = 0.983. We

only calculate the recall and precision of each family (Precisioni
and Recalli) to check the performance on different families.

TPi, FPi, and FNi are the true positive, false positive, and false

negative for family i, respectively.
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Prediction rate =
Npred

Nall
(1)

Accuracy =
Ncorrect

Ntotal
(2)

Precisioni =
TPi

TPi + FPi
(3)

Recalli =
TPi

TPi + FNi
(4)

3.2.2. Description of the output

Because the output format of each tool is different, we will

describe how we process the output and calculate the metrics

in detail.

vConTACT 2.0 can output the result of each sequence

and assign it a “VC State”, including “Singleton”, ‘Outlier”, or

“Clustered”. In addition, the sequences with a “Clustered” state

will be assigned to a VC cluster/subcluster. When the query

sequence is within the same VC cluster as a reference genome,

the taxonomic labels can be assigned based on the known labels.

However, some sequences are clustered but have no reference

genome in the same VC cluster, so they can not be assigned with

a known label. Therefore, we treat the sequence with VC state of

“Singleton”, “Outlier”, and “Clustered” but no reference genome

in the same clusters, as “no prediction”. In other words, Npred

of vConTACT 2.0 refers to the number of the sequences that are

clustered with reference genomes.

PhaGCN will not output the classification results for the

sequences they can not classify, so Npred of PhaGCN is the

number of sequences that can be predicted.

MMseqs2 and CAT will not output any prediction result

for the sequences they cannot classify. The classification result

of MMseqs2 and CAT can be a label at different ranks. If the

prediction at the lowest rank is above family, we also treat this

sequence as “no prediction” for the family level. The number of

the rest sequences is Npred of MMseqs2/CAT.

3.3. Experiment 1: Leave-one-family-out
experiments

The constant change of ICTV underscores a need for

classification tools to recognize the sequences that are not part of

the current classification system. For example, the three largest

families, Siphoviridae, Podoviridae, andMyoviridae, were largely

removed from the current ICTV system. Some of the sequences

that belonged to these three families are not part of any existing

family. Thus, the classification tools need to handle these out-of-

distribution sequences by providing a signal for users.

To examine whether the tested tools can single out those

out-of-distribution sequences, we removed all the phages in one

family from the training data and retrained themodels. Then the

retrained models are applied to the removed family members.

Ideally, the test sequences in this removed family should not be

classified into any existing family labels.

At first, we conducted the experiments on a small and

a relatively large family: Guelinviridae and Rountreeviridae.

The classification results are plotted in Figures 1, 2, which

show that PhaGCN assigned all of the query genomes to

one of the other families in the training set, while CAT

and MMseqs2 can correctly recognize a few sequences as

“no family label”. However, vConTACT 2.0 can assign all

sequences to “Outlier/Singleton” or a “VC cluster” without

reference genomes.

We then extended the experiment to each family. Because

the current version of PhaGCN is not designed to handle out-

of-distribution sequences, we only show the results for CAT,

MMseqs2, and vConTACT 2.0 in Table 4. The output of these

three tools for the test sequences are divided into two parts: those

that did not output a family label (“no prediction”, defined in

the Section 3.2.2), and those that can output a family label from

the training data (i.e., a misclassification in this experiment).

Table 4 shows the misclassification rate of each tool. CAT and

MMseqs2 assign more test sequences to other families in the

reference database. In contrast, vConTACT 2.0 can assign almost

all sequences of each family to “Outlier/Singleton” labels or

“VC cluster” without reference genomes. The misclassification

rates of CAT and MMseqs2 vary widely across different families,

with the ranges 0–1 and 0–0.92, respectively. A closer look

at those results reveals that the misclassified phages tend to

distribute in a small set of families. For example, almost

all sequences belonging to Guelinviridae are classified into

Salasmaviridae by CAT, which is likely due to the higher inter-

family similarity between them. Specifically, 29.6% proteins of

Guelinviridae can align with Salasmaviridae using BLASTP.

Similarly, sequences from Zobellviridae tend to be classified

into family Autographiviridae because they share about 16.9%

proteins. Therefore, the inter-family similarity is an essential

factor leading to misclassification. Overall, the misclassification

results of MMseqs2 are more divergent than CAT. For example,

CAT will classify Autographiviridae genomes into 4 other

families, while MMseqs2 will assign them into 8 families

(including the 4 families in CAT).

Then we extended the experiment to the genomes that

are unclassified at the family level in the RefSeq database

under class Caudoviricetes. Because the three largest families

Myoviridae, Siphoviridae and Podoviridae were removed, we

used the genome sequences that initially belonged to these

three families but now no longer have a family label as

the test data. There are 2445 of them, and the classification

result is shown in Figure 3. MMseqs2 and CAT misclassified

about 65% of the input sequences. vConTACT 2.0 can identify
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FIGURE 1

The classification result of Guelinviridae sequences in tools that are retrained by removing all Guelinviridae sequences. “independent clustered”:

The sequences are in a VC cluster without any reference genome.

FIGURE 2

The classification result of Rountreeviridae sequences in tools that are retrained by removing all Rountreeviridae sequences. “independent

clustered”: The sequences are in a VC cluster without any reference genome.

TABLE 4 The percentage of misclassified sequences in leave-one-family-out experiment for each family.

Family name CAT MMseqs2 vConTACT 2.0

Autographiviridae 0.78 0.58 0.12

Straboviridae 0.05 0 0

Herelleviridae 0.02 0.2 0

Drexlerviridae 0.3 0.25 0.01

Demerecviridae 0 0.32 0

Peduoviridae 0.55 0.84 0

Casjensviridae 0.86 0.87 0

Schitoviridae 0.24 0.21 0

Kyanoviridae 0 0.18 0

Ackermannviridae 0 0.02 0

Rountreeviridae 0.86 0.91 0

Salasmaviridae 0.88 0.82 0.44

Vilmaviridae 0.13 0.45 0

Zierdtviridae 0.81 0.92 0

Mesyanzhinovviridae 0 0.06 0

Chaseviridae 0 0.14 0

Zobellviridae 0.77 0.38 0

Orlajensenviridae 0.73 0.18 0

Guelinviridae 1.0 0.88 0

Average 0.42 0.43 0.03
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98% unclassified sequences by assigning them in independent

clusters or outputting a “Singleton/Outlier” label and only

misclassified 2% sequences. In conclusion, vConTACT 2.0

performs better in identifying novel phages than the other

three tools.

3.4. Experiment 2: Classification
performance

As we described in Section “Dataset”, we used 20% (293)

of the complete sequences from the RefSeq database as the

test set, and the other 80% as the reference/training set. To

mimic metagenomic assembled contigs, we generated six sets

of segments of different lengths for comparison, including

500, 1,000, 3,000, 5,000, 10,000, and 15,000 bp. We randomly

selected the start positions for each length and cut ten

segments from each complete sequence. Finally, we had 2,930

phage fragments for each length and 29,593 for all different

lengths as the test data (293 complete sequences + 2930 * 10

short fragments).

A good taxonomic classification tool should have a high

prediction rate and high accuracy. First, we recorded the

prediction rate of each tool on different lengths. Because

PhaGCN only accepts contigs longer than 2,000 bp, we do not

show its results on 500 and 1,000 bp in Figure 4. The prediction

rate (Figure 4A) of all tools becomes higher with the increase

in sequence length. This is expected because longer sequences

usually provide more information for classification. Almost

all pipelines can maintain a high prediction rate (>80%) on

short sequences except vConTACT 2.0. PhaGCN has the highest

prediction rate if the inputs are longer than 5,000 bp, while CAT

is slightly lower. vConTACT 2.0 is mainly designed for complete

or long sequences, and its prediction rate drops sharply when the

inputs are shorter than 15,000 bp. All four can handle more than

95% of complete sequences, among which PhaGCN can predict

all of them (100%), and the prediction rates of MMseqs2, CAT,

and vConTACT 2.0 are 99.3, 97.9, and 95.1%, respectively.

Figure 4B shows the accuracy of the four tools on

phage sequences with predictions (Npred in Equation 1).

Similar to the prediction rates above, the accuracy of these

approaches becomes better as the sequence lengths increase.

The classification ability of CAT, PhaGCN, and MMseqs2 are

not significantly affected by the change of contig lengths. On

incomplete contigs, the accuracy of vConTACT 2.0 has an

obvious upward trend when length increases. CAT gains the best

prediction accuracy for contigs longer than 5,000 bp. Combined

with the slightly lower prediction rate of CAT mentioned above,

we can conclude that there is a tradeoff between the prediction

rate and the accuracy of CAT. The accuracy of PhaGCN is

slightly lower than the other two on contigs, and all three

tools reach a high accuracy (100%) for all complete sequences

with predictions.

Figure 4C shows the accuracy of the four tools on all

input phage contigs (Nall in Equation 1), which combines

the results in Figures 4A,B in order to display the overall

performance of each tool. It reveals that PhaGCN keeps the

best performance on contigs longer than 5,000 bp and reaches

100% accuracy on complete genomes because it gains 100%

accuracy and prediction rate in Figures 4A,B, respectively. It

is worth noting that the other three tools all have a less than

100% recall on Autographiviridae, most likely due to the lower

pairwise similarity in Autographiviridae (Table 1). Due to the

length limitation of PhaGCN, it is not suitable for classifying

contigs shorter than 2,000 bp. When classifying contigs longer

than 2,000 bp, PhaGCN and MMseqs2 are recommended for

obtaining high prediction rates. Otherwise, CAT is a better

choice if precision is the primary consideration.

3.5. Experiment 3: Impact of training set
size on classification performance

Being a learning-based classification tool, PhaGCN can

be affected by training data size. To test whether PhaGCN

and other alignment-based tools suffer from reduced training

data/reference database, we used 80% (the same as Experiment

2), 60%, and 50% of the RefSeq databases as the reference

database for these tools, respectively. Then we tested them on

the same test set as in Experiment 2. As shown in Figure 5A, the

prediction rates of PhaGCN with different reference databases

have no obvious differences. There is a slight change in the

prediction rate of CAT, MMseqs2, and vConTACT 2.0, but the

differences do not exceed 0.2%. In addition, the accuracy of

these tools shown in Figure 5B are almost identical and are less

affected than the prediction rate.

3.6. Experiment 4: Classification
performance on the simulated
metagenomic dataset

In this experiment, we used the simulated metagenomic

dataset provided in PhaMer (Shang et al., 2022). The dataset

is a small-scale metagenomic dataset simulated by CAMISIM

(Fritz et al., 2019) using the commonly seen bacteria living in the

human gut and the phages that infect these bacteria. The reads

were assembled into contigs using metaSPAdes (Nurk et al.,

2017).

We kept contigs of size above 3,000 bp. To assign labels to the

contigs, we used BLAST (Camacho et al., 2009) tomap contigs to

reference genomes and calculated the coverage. Only the contigs

with at least 90% of the sequence aligning to a reference genome

were kept. Others are likely chimeric contigs due to assembly
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FIGURE 3

The classification result of 2,445 unclassified sequences. “independent clustered”: The sequences are in a VC cluster without any reference

genome.

FIGURE 4

The performance of each tool on contigs from the RefSeq. (A) The prediction rate of four tools on di�erent lengths. (B) The accuracy of four

tools on phage contigs with predictions. (C) The accuracy of four tools on all input phage contigs. X-axis: The lengths Y-axis: The values.

FIGURE 5

(A) The prediction rate of four tools with reduced reference datasets. (B) The corresponding accuracy on sequences with predictions. X-axis:

The tools and training data partitions Y-axis: The values.
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errors and thus are not used for testing. Finally, the number of

contigs we could use in the experiment is 37. The name of the

families and the number of genomes within each family are listed

in Table 5. Compared to Table 3, this test set contains a different

abundance distribution for the component families, which can

thus change the performance of these tools.

As shown in Figure 6A, PhaGCN, MMseqs2, and CAT can

classify all the simulated sequences correctly, which is slightly

higher than that on the RefSeq data in Experiment 2. A plausible

reason is that most of the sequences in this simulated dataset

belong to Straboviridae and Ackermannviridae, which make up

a large part of the reference database according to Table 3 (14%

and 4%). In addition, they have greater intra-family similarities.

The performance of vConTACT 2.0 is lower than the other three

tools because the assembled contigs are short. This experiment

shows that PhaGCN,MMseqs2, and CAT can process assembled

contigs with different lengths.

3.7. Experiment 5: Classification
performance on the low-similarity
dataset

Although the updated families under the new ICTV

standard exhibit higher pairwise sequence similarity, there are

TABLE 5 Family composition of the simulated metagenomic dataset.

Family name Number

Straboviridae 28

Drexlerviridae 6

Demerecviridae 1

Peduoviridae 1

Ackermannviridae 1

Total 37

still some diverged members. The diverged members may

appear more often when sequencing new or underrepresented

ecosystems. Thus, we test these tools’ performance on predicting

highly diverged sequences using the “low similarity dataset”.

There are 45 genomes in the test set with the maximum

Dashing similarity of 0.015 with any reference genome. Then

we randomly cut 15 contigs with a length of 3,000 bp and

5,000 bp from each test genome, leading to 1,350 contigs

in total. Figure 6B shows the accuracy of all inputs. Because

vConTACT 2.0 can not handle short contigs, we exclude it from

this experiment.

Figure 6B reveals that the accuracy of MMseqs2 decreases by

more than 10% compared to Figure 4C from Experiment 2. And

the accuracy drop in CAT (6%, 5.2%) are greater than PhaGCN

(3.3%, 2%) on the contigs of the same lengths. Therefore,

the increased divergence between test and training data has

a greater impact on alignment-based tools than PhaGCN in

this experiment.

3.8. Comparison of running time

Running time is also an essential factor to consider for

practical usage. Table 6 shows the running time of the tools

for processing 500 complete sequences in RefSeq when using

a different number of CPUs. Users can save more time

by increasing the number of CPUs. The table also shows

that CAT and MMseqs2 take the least time to process 500

complete phages.

4. Discussion and conclusion

This work presents a review of taxonomic classification tools

on phage family classification under Caudoviricetes. To our

FIGURE 6

(A) The performance of the four tools on the simulated metagenomic dataset. The bars show the accuracy on all inputs. The top part with

patterns in vConTACT 2.0 shows the percentage of contigs that are not clustered with any reference genome. (B) The performance of each tool

on the two low-similarity datasets. Each bar shows the tools’ accuracy on all input contigs.
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TABLE 6 The total running time of tools for classifying 500 genomes

using a di�erent number of CPUs.

Time (min) PhaGCN MMseqs2 CAT vConTACT 2.0

1 CPU 23 2 3 141

4 CPUs 18 1 2 64

All the tools are run on IntelVRrXeonVRr Gold 6258 R CPU with 8 cores.

best knowledge, this is the first review under the new ICTV

standard released in August 2022. Compared to the previous

version of ICTV, the updated families in the latest system are

more conserved, which warrants a high prediction rate and

accuracy of alignment-based tools. For example, the prediction

rate of CAT and vConTACT 2.0 were 62 and 92% on the data

in the previous ICTV system, respectively. And their accuracy

on complete genomes were only 61.7 and 86%. However, their

prediction rate and accuracy are significantly better under the

new classification system.

The constant change of the taxonomic classification system

by ICTV emphasizes the need for a tool to provide database

updating or model retraining. Tools without these utilities can

return obsolete or even wrong labels, making their practical

usage limited. Many of these tools in Table 2 either lack this

option or need excessive efforts to retrain.

Despite great efforts, the current classification system

by ICTV is not complete. New families can appear with

new viruses sequenced and discovered, particularly those

from underrepresented ecosystems. Thus, it is desired that a

classification tool can handle out-of-distribution inputs, which

are not part of any existing families. Based on our leave-one-

family-out experiment, vConTACT 2.0 is more sensitive to those

out-of-distribution sequences than others. However, a price paid

by vConTACT 2.0 is its low prediction rate on short contigs,

which is likely caused by the low gene sharing significance

score between the query and the reference. Other tools perform

better on short contigs, which is important for virus composition

analysis in metagenomic data.

PhaGCN can only classify sequences on the family level.

The lowest levels that the other three tools can classify are

genus level or below. The experimental results show that all

of them can perform well on complete genomes from the

RefSeq database after retraining. PhaGCN has the highest

prediction rate when classifying short contigs (>3,000 bp), and

CAT gains a higher accuracy with a slightly lower prediction

rate. Therefore, when classifying incomplete contigs larger

than 3,000 bp, PhaGCN, CAT, and MMseqs2 can all be

considered, but PhaGCN has a better overall performance.

In addition, CAT and MMseqs2 can be used to classify

contigs shorter than 2,000 bp because PhaGCN can not

handle that length. All these four tools are robust against

the size reduction of the reference database/training data.

The performance of PhaGCN is less affected in classifying

highly diverged sequences that share low similarity with the

reference genomes.

The focus of this review is family-level classification.

While the current families annotated by ICTV usually contain

multiple phages per family, the genus size distribution exhibits

a much more skewed distribution with many genera only

containing one phage genome. It is not trivial to create

appropriate reference database/training data vs. test data

with hundreds of rare genera. It is our future work to

examine the impact of the long tail distribution on current

classification tools.
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