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Understanding shallow water biogeochemical dynamics is a challenge in

coastal regions, due to the presence of highly variable land-water interface

fluxes, tight coupling with sediment processes, tidal dynamics, and diurnal

variability in biogeochemical processes. While the deployment of continuous

monitoring devices has improved our understanding of high-frequency (12 - 24

hours) variability and spatial heterogeneity in shallow regions, mechanistic

modeling of these dynamics has lagged behind conceptual and empirical

models. The inherent complexity of shallow water systems is represented in

the Corsica River estuary, a small basin within the Chesapeake Bay ecosystem,

where abundant monitoring data have been collected from long-term

monitoring stations, continuous monitoring sensors, synoptic sensor surveys,

and measurements of sediment-water fluxes. A state-of-the-art modeling

system, the Semi-implicit Cross-scale Hydroscience Integrated System

Model (SCHISM), was applied to the Corsica domain with a high-resolution

grid and nutrient loads from the most recent version of the Chesapeake Bay

watershed model. The Corsica SCHISM model reproduced observed high-

frequency variability in dissolved oxygen, as well as seasonal variability in

chlorophyll-a and sediment-water fluxes. Time-series signal analyses using

Empirical Model Decomposition and spectral analysis revealed that the diurnal

and M2 tide frequencies are the dominant high-frequency modes and physical

transport contributes a larger share to dissolved oxygen budgets than

biogeochemical processes on an hourly time scale. Heterogeneity and

patchiness in dissolved oxygen resulting from phytoplankton distributions

and geometry-driven eddies amplify the physical transport effect, and on

longer time scales oxygen is controlled more by photosynthesis and
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respiration. Our simulation demonstrates that interactions among physical and

biological dynamics generate complex high-frequency variability in water

quality and non-linear reposes to nutrient loading and environmental forcing

in shallow water systems.
KEYWORDS

shallow water, dissolved oxygen (DO), high-frequency variability, physical transport,
modeling, datamining
1 Introduction

Eutrophication and hypoxia caused by anthropogenic

nutrient loading to coastal and estuarine systems is an ever-

growing environmental challenge in the 21st century (Diaz and

Rosenberg, 2008; Howarth et al., 2011; Rabalais et al., 2014; Hale

et al., 2016). Chesapeake Bay, the largest estuary in the U.S. and

the third largest worldwide, continues to experience hypoxia

during summer (Boynton, 1997; Murphy et al., 2011; Scavia

et al., 2021). Even though hypoxia has been observed since the

early 1900s (Sale and Skinner, 1917; Newcombe and Horne,

1938), hypoxic water volume tripled from 1950 to 2000 (Hagy

et al., 2004). Efforts have been made to restore the Bay through

management and nutrient load reductions (U.S. EPA, 2010;

Linker et al., 2013; Shenk and Linker, 2013; U.S. EPA, 2021),

and these reductions have resulted in modest reductions in

hypoxia (Testa et al., 2018; Ni et al., 2020; Frankel, 2021).

In contrast to the focus on seasonal, deep-water hypoxia in

Chesapeake Bay and other large coastal systems (Scavia et al., 2003;

Carstensen et al., 2014), less attention has been given to high-

frequency hypoxia in shallow, nearshore areas. While these hypoxia

events may be short-lived, they often lead to indirect effects, such as

avoidance of nursery habitats (Brady and Targett 2010; Brady and

Targett, 2013), and direct effects on growth and mortality (Stierhoff

et al., 2009). An array of physical dynamics, such as tidal mixing and

advection, waves, sea level rise, river flow, sediment and nutrient

loads interact to generate a complex water quality regime that differ

in the timescale of responses relative to deeper waters (McGlathery

et al., 2013; Xiao et al., 2021). Feedbacks and interactions between

biotic and abiotic processes can also lead to nonlinear response in

water quality to environmental forcing (Su et al., 2022). Technical

advancement in both continuous monitoring sensors and

unstructured grid models capable of resolving shallow water

features can help to better understand the physical and biological

dynamics that underpin the variability in water quality in coastal

shallow systems. A significant number of continuous water quality

electronic sensors have been deployed in the shallow regions in

Chesapeake Bay, which provide unprecedented continuous high-

frequency monitoring data (CONMON). The sensor data have

revealed high-frequency variability in water quality in shallow
02
systems with large amplitude variations within hours (Shen et al.,

2008; Graziano and Jones, 2017; Duvall et al., 2022). The high-

frequency variability represents a fundamental challenge to our

concept and understanding of ecosystem function and water quality

dynamics, which were previously based on an extrapolation from

deep water Bay studies.

The Corsica River, a sub-tributary in Chesapeake Bay

(Figure 1) is an excellent case study that demonstrates the

challenges in characterizing and managing shallow estuarine

water quality (U.S. EPA, 2013). The major land uses in its

watershed are agriculture (64%), woodland (28%) and

developed areas. The Corsica River provides vital habitats for

numerous species as well as recreational uses. However, high

nutrient concentrations (above algal nutrient-limitation levels),

high algal abundance (measured by chlorophyll-a concentrations),

and low DO events occur in the summer and recur each year

(Boynton et al., 2009). It is classified as impaired by the Maryland

Department of Natural Resources. Fish-kill events due to hypoxic

conditions have also been reported U.S. EPA (2013). To

investigate the ecosystem function and water quality dynamics

in the Corsica River, continuous monitoring data (every 15

minutes) have been collected at multiple locations. In this study,

a state-of-art model, Semi-implicit Cross-scale Hydroscience

Integrated System Model (SCHISM), coupled with the Army

Corps of Engineers Integrated Compartment water quality

model (ICM), was implemented in the Corsica River estuary,

USA with a high-resolution unstructured grid (Figure 1). The

objective of the project is to determine the capacity of this

modeling system to simulate observed high-frequency water

quality variability in the Corsica River and to shed new light on

ecosystem function and water quality dynamics in the shallow

systems, with an emphasis on understanding the factors

controlling high-frequency variability in dissolved oxygen.
2 Methods

2.1 Models

SCHISM and ICM have been described in detail in the

literature (available at https://www.schism.wiki) and only a brief
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description relevant to the interpretation of the simulation

results is given here. SCHISM employs an unstructured grid

with a highly efficient semi-implicit finite-element Eulerian-

Lagrangian algorithm to solve the Navier-Stokes equations and

transport for the physical fields (Zhang et al., 2016). In the

version used here, ICM (Cerco and Cole, 1994; Cerco and Noel,

2004; Cai et al., 2020; Cai et al., 2021) consists of 21 state

variables including multiple species of inorganic nitrogen

and phosphorus, multiple forms of dissolved and particulate

organic nitrogen, organic phosphorus, and organic carbon, three

groups of phytoplankton (Diatoms, Green Algae and

Cyanobacteria) as carbon, chemical oxygen demand (COD)

and dissolved oxygen (DO). The governing equation of

phytoplankton (B) is written as:

∂ B
∂ t

= m − amð Þ · B − aP · B   +∇ · uBð Þ + D∇ Bð Þ :(1);

where µ is phytoplankton growth rate, am is the respiration

coefficient, ap is the coefficient for predation loss and the last two

terms are physical advection and turbulent diffusion, respectively.

The phytoplankton growth rate (m) is determined by temperature,
Frontiers in Marine Science 03
light limitation (Jassby and Platt, 1976) and nutrient limitation,

which is parameterized using the Michaelis-Menten function:

m = mmaxe
−KT 1,2ð Þ T−Toð Þ2 ·

Iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 + K2

I

p ·min
N

N + KN
,

P
P + KP

� �
(2)

where µmax is the maximum growth rate, TO is the

optimal temperature where phytoplanoton growth rate reaches

its maximum, KT(1,2) is the exponential coefficient determining

the temeprature control on phytoplankton growth with KT(1)

applied to temperature below the the optimal temperature and

KT(2) for temperature above the optimal tempetaure, I is the

photosynthetically active radiation (PAR), KI is the parameter

defining the growth-radiation curve, N and P are nitrogen and

phosphorous concentration, and KN and KP are the

corresponding half-saturation coefficients. DO is a crucial state

variable in the ICM water quality model. DO is determined by

photosynthetic production, consumption by phytoplankton

respiration, DOC remineralization, nitrification, the oxidation

of reduced solutes (chemical oxygen demand, or COD),

aereation at the the sea surface, and sediment and tidal

wetland oxygen demand at the bottom:
FIGURE 1

Geographic location of the simulation domain and grid. Background color of the left panel is the bathymetry ranging up to 40 m (blue). Red
triangles on the right panel are the seven freshwater discharge locations from the watershed. Red dots are the four stations with both cruise-
based sample data and sensor-based continuous monitoring data.
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∂DO
∂ t

= aOC 1:3 − 0:3pNHð Þ · m − am½ � · B − aON · NT − aDOC

· aOC ·
DO

kOC + DO
· DOC

−aCOD·
DO

kCOD + DO
· COD +

aair

DZS
DOs − DOð Þ − SOD

DZR

− f Tð Þ aWAW

DZR
(3)

where aOC is the O:C ratio in phytoplankton, pNH is the

ammonium preference for phytoplankton uptake, aON is the O:

N ratio, NT is the nitrification rate, aDOC is the mineralization

rate of DOC, KOC is the DO half-saturation for DOC

mineralization, aCOD is the oxidation rate of COD, KCOD is the

DO half-saturation for COD oxidation, aair is the aeration

coefficient, DOs is the DO saturation concentration, DZs is the

thickness of the surface layer, SOD is sediment oxygen demand,

aW is the net respiration rate of tidal wetlands, Aw is the

wetlands area in the simulation cell, DZB is the bottom layer

thickness, and f(T) is the temperature effect. Parameter

definitions and values of the above equations are given in

Table 1. Note that the aeration term is applied to the surface

layer only and SOD and wetlands DO consumption are applied

only to the bottom layer. When carbon fixation through

photosynthesis is based on nitrate uptake, more oxygen is

released by a factor of 1.3 as compared to ammonium uptake
Frontiers in Marine Science 04
(constants in the first term of Eq. 3; Morel, 1983). Tidal wetlands

have their own function, biogeochemical processes and water

quality properties (Swarth and Peters, 1993; Neubauer and

Anderson, 2003; Cerco and Tian, 2021). Wetland kinetics such

as growth and respiration were not specifically simulated in this

study. Instead, only the net effect of wetlands on water quality

were included. Following Cerco and Tian (2021), wetland net

DO consumption is parameterized as a linear function of the

wetlands area, but with a temperature effect f(T) (the last term on

the right-hand side of Eq. 3). The temperature effect is an

exponential relationship in which respiration rate doubles for

a 10°C temperature increase. ICM incorporates the Di Toro

(2001) sediment diagenesis model, which simulates the sinking

flux of organic matter to the bottom, remineralization, burial,

and flux of nutrients and sediment oxygen demand (SOD) at the

sediment-water interface each time step. A full explanation and

analysis of this sediment flux model in Chesapeake Bay is given

in Brady et al. (2013) and Testa et al. (2013). Briefly, diagenesis is

a function of organic matter concentration and temperature,

yielding sulfide, methane, and ammonium whose oxidation

constitutes SOD. SOD and nutrient fluxes from the sediment

are added to the overlying bottom water cells (Eq. 3), and under

anaerobic conditions, reduced solutes (sulfide, methane) can be

released to the water column to support additional oxygen

consumption (constituting COD).

The simulation domain covers the entire Corsica River

(Figure 1). Grid resolution is about 100 m at the river mouth
TABLE 1 Parameter definition, values and units of the water quality model (Cerco and Noel, 2004).

Symbol Definition Value Unit

B Phytoplankton biomass variable g C m-3

I Light variable W m-2

VW Wind speed variable m s-1

aOC O:C ratio in metabolism and remineralization 2.67 g O2 g
-1 C

aON O:N ratio in nitrification 4.33 g O2 g
-1 N

a0 Reaeration rate 0.157 s-1

aCOD COD oxidation rate 2 d-1

aDOC DOC remineralization rate 0.3 d-1

am Respiration coefficient 0.2 d-1

ap Grazing coefficient 0.05 d-1

aW Wetland DO consumption 1.25 g O m-2d-1

KCOD Half-saturation constant for COD oxidation 0.5 g O m-3

KI Light constant for phytoplankton growth 50 W m-2

KN Half-saturation constant for nitrogen uptake 0.025 g N m-3

KOC Half-saturation constant of DO for DOC remineralization 0.5 g O m-3

KP Half-saturation constant for phosphorus uptake 0.0025 g P m-3

KT1 Temperature coefficient for phytoplankton growth 0.02 °C -1

KT2 Temperature coefficient for phytoplankton growth 0.02,0,0 °C -1

To Optimal reference temperature for phytoplankton growth 16,37,37 °C

µmax Phytoplankton maximum growth rate 4.5 d-1
fron
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to 20 m near the coastline, with 5614 cells, 3159 nodes, and 5

vertical sigma layers. The simulation time step was set at 120

seconds. The model was run for a full year using the 2006

forcing files.
2.2 Data

Solar radiation and long-wave radiation data were

downloaded from the Reanalysis V5 (ERA5) of the European

Centre for Medium-Range Weather Forecasts (https://www.

ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5). Wind,

precipitation, air temperature, pressure, and specific humidity

data were obtained from the North American Regional

Reanalysis domain (NARR; https://www.ncei.noaa.gov/

products/weather-climate-models/north-american-regional).

ERA5 provides hourly data and NARR provides data for every

three hours. Linear interpolation in time was performed on the

NARR data to align with the ERA5 data set.

Watershed runoff and associated nutrient loads were

generated by using the US EPA Chesapeake Bay Program

regulatory watershed model, the Hydrological Simulation

Program–FORTRAN (Shenk et al., 2012), calibrated with the

USGS River Input Monitoring (RIM) stations on the Chesapeake

Bay watershed. There are seven loading points in the Corsica

River simulation domain with model forcing on a daily time

scale (Figure 1). Open boundary conditions were specified based

on the CH3D-ICM (Curvilinear-grid Hydrodynamics 3D

Model) simulation in the entire Chesapeake Bay. This

modeling system has been used as the Chesapeake Bay

regulatory model over the past 30 years and was well

calibrated against long-term monitoring data (Cerco and Noel,

2019). The time step in the CH3D-ICM outputs was daily, which

was used in specifying the boundary conditions and linear

interpolation was performed during the simulation.

The Department of Natural Resource of Maryland (DNR-

MD, USA) maintained a monitoring program in the Corsica

River and twenty-one discrete sampling events were conducted

from April to December 2006. Temperature, salinity and water

quality variables including DO and chlorophyll were measured

during each sampling event for the three stations used here: the

upper estuary station (XHH3851), the mid-estuary station

(XHH4931) and lower estuary station (XHH4916) (Figure 1).

In addition to the discrete sampling data, high-frequency sensors

measuring temperature, salinity (as conductivity), DO and

chlorophyll were deployed at the three observation stations for

continuous data collection (CONMON). The CONMON

sensors record every 15 minutes (https://eyesonthebay.dnr.

maryland.gov), but there were numerous interruptions due to

sensor malfunctions and extreme weather events. The upper

estuary station (XHH3851) has CONMON data for the entire
Frontiers in Marine Science 05
year 2006 (with interruptions), but only from July through

December in the mid and lower estuary stations. Furthermore,

DNR conducted a sensor-based synoptic survey on July 20, 2006

using DATAFLOW. The sensors recorded every four seconds

and the survey lasted about three hours from 8:30 am to 11:30

am with 2886 records in total.

The National Ocean and Atmospheric Administration, USA,

maintained surveys on tidal wetlands in Chesapeake Bay

(https://coast.noaa.gov). In the Corsica domain, dense tidal

wetlands were distributed at the waterhead of all the sub-

tributaries, with the largest wetland area located at the upper

estuary (Figure 2). We also validated rate processes in the model

using direct measurements of sediment oxygen demand (SOD)

and sediment-water ammonium fluxes made at three stations in

2006 using in-situ chamber measurements (Boynton et al., 1981;

Burdige, 1991; Boynton et al., 2009; Boynton et al., 2018).
2.3 Data analysis

Data signal analyses were performed on the simulated DO

time series to interpret the simulated high frequency variability.

The CONMON data had numerous interruptions and signal

analyses on the observed time series was not possible. We used

Empirical Mode Decomposition (EMD) and spectral analysis

using the R programs EMD and Spectrum (Dhiman et al., 2020;

Seilmeyer, 2021). EMD, also known as the Hilbert-Huang

Transform, is a nonparametric, nonstationary analysis, in

which a time series is decomposed into a finite number of

intrinsic oscillatory modes using the local maxima and

minima envelope (Huang and Wu, 2008; Ezer and Corlett,

2012; Huang et al., 2020). It employs an iterative approach:

Once an intrinsic oscillatory mode is determined, it is removed

from the initial data set, followed by the second mode

computation until all the oscillatory modes are determined.

Spectral analysis, on the other hand, is a parametric approach

for signal analysis in which the Fourier transformation

decomposes a time series into underlying sine and cosine

functions of different frequencies (Olson, 1986; Sanford et al.,

1990; Fleming et al., 2012). The periodogram quantifies the

contributions of the individual frequencies to the time series and

the spectrum power density, defined as the amplitude power of

the signal, reflects the variance of each signal.

We also applied a Classification and Regression Trees

(CART) approach, which is a common type of machine

learning algorithm for predictive modeling, to explain how the

DO time-series data were related to potential controlling

variables in the model. Due to the interruption in the

CONMON data and the lack of paired predictor variables,

CART was applied to the simulated time series. CART output
frontiersin.org
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is a decision tree where each fork is a split in a predictor variable

and each end node contains a prediction for the dependent

variable (Zhang et al., 2021). CART can statistically demonstrate

which factors are particularly important in terms of explanatory

power (Morgan, 2014). The R package rpart was used for this

analysis (Therneau et al., 2022).

CART can identify and rank key controls on DO, but it

remains a binary prediction at each node and does not provide a

full time-series prediction. Generalized Additive Model (GAM),

on the other hand, can capture nonlinear relationships and

provide time-series prediction of the response variable (Hastie

and Tibshirani, 1986; Murphy et al., 2022). GAM from the

“mgcv” package with cubic regression splines was used (Wood,

2004; Wood, 2006; Harding et al., 2016).

Lastly, DO budgets representing key physical and

biological terms were computed with the simulated results at

the three stations. The key physical and biogeochemical factors

that were analyzed were advect ive transport (Q) ,
Frontiers in Marine Science 06
photosynthetic production (P), respiration (R), aeration (A)

and sediment oxygen demand (SOD). Aeration affects DO

through the sea surface and SOD at the bottom so that

integration over the water column is more appropriate for

the DO budget computation:

DDO
Dt

= Q + P + R + A + SOD :(4)

where DDO is the DO change over time span Dt, and Q, P

and R are integrated over the water column (no integration is

needed for A and SOD). The respiration term includes all

processes consuming DO such as phytoplanton resipiration,

remineralization of organic material, chemical orxygen

demand and nitrification. All these terms were computed and

recorded in the output files except the physical transport.

Following Du et al. (2018) , physical transport was computed

as the difference between DDO and other recorded terms. As the

model strictly maintains mass balance, the calculation of
FIGURE 2

Map of the location of tidal wetlands (green) in the Corsica estuary, which are mostly distributed in the upper estuary and headwaters.
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physical transport is robust. We computed DO budgets at

hourly, daily, and annual time scales.
3 Results

3.1 Physical conditions during
simulation year

We performed our simulations using realistic forcing for the

year 2006. There was a flushing event in the summer of 2006

when freshwater discharge reached to 27 m3 s-1 and DIN loading

up to 4,200 kg N day-1 (Figure 3A). As shown later, this high

loading event had significant impacts on water quality in the

Corsica River. Runoff and nutrient loads were elevated earlier in

the year and in the fall, but there were two dry periods before and

after the summer flushing event (day 60 to 170 and 210 to 240)

where river flow was below 2 m3 s-1. Air temperature showed a

typical seasonal cycle: high temperatures up to 36°C in summer

and as low as 0°C in winter (Figure 3B). On top of the seasonal

cycle, there were higher frequency variations on the order of

weeks to a month. Wind was also characterized by high

frequency variability, with frequencies in order of hours to
Frontiers in Marine Science 07
days (Figure 3B). Wind speed was higher in winter and fall

than in summer. Photosyntheticallyactive radiation (PAR) had

both seasonal and diurnal cycles (Figure 3C). Note that PAR

remained at an elevated level of about 200 Wm-2 during the day

in winter and up to 450 W m-2 in summer. In addition to the

seasonal and diurnal cycles, cloud coverage interrupted the

continuous regular variation, causing low radiation from time

to time regardless of the season.
3.2 Comparison between simulation
and observation

The model successfully reproduced temporal patterns in

water temperature at the three observation stations, including

both the continuous monitoring data and the cruise sampling

data on a bi-weekly and monthly basis (Figures 4A–C). The

CONMON data showed high-frequency variabi l i ty

approximately on a weekly time scale, at the upper estuary

station (XHH3851) in particular, and the model was able to

reproduce these variations in most instances. The maximum

water temperature reached up to 35°C in summer and as low as

2°C in winter at the upper estuary station and about 5°C at the

mid and lower estuary stations.

The salinity simulation matched with observations well

(Figures 4D–F). Salinity was relatively low in late winter and

early spring due to high freshwater discharge, and tended to

increase from spring to summer. However, there was a large

precipitation event in summer 2006, leading to a significant

freshening at all three stations that lasted from July to August.

The model reproduced the timing and magnitude of this

freshening event but tended to overestimate salinity during

several short freshening events in early winter and fall at the

upper estuary station (Figure 4D).

The model largely reproduced the observed seasonal and

high-frequency variability of DO in summer (Figures 4G–I). DO

was higher in the early and late seasons of the year and lower in

summer. However, a high productivity event altered this general

seasonal pattern, leading to high DO in summer. High-

frequency variabilities were particularly visible at the upper

estuary station (Figure 4G). The model reproduced most of

the variability in both frequency and magnitude of DO but

overestimated DO in May and June at this station as compared

with the CONMON data. Most of the discrete sampling data

were within the simulated range. On the other hand, the model

underestimated DO in summer at the mid and lower estuary

stations (Figures 4H, I). The model mostly missed the

supersaturated DO events in summer at these two stations.

The CONMON data showed large and high-frequency

variations in chlorophyll concentrations as well (Figures 4J–L).

High-frequency variations were observed throughout the year at

the upper estuary station XHH3851 with magnitudes up to 220

mg l-1. The model has also predicted high-frequency variations in
A

B

C

FIGURE 3

Model forcing data for the calendar year 2006, including
(A) Total freshwater discharge (blue line) and dissolved inorganic
nitrogen (DIN) load (red dashed line), (B) Air temperature (blue
line) and wind speed (red line), and (C) Photosynthetically active
radiation (PAR).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1058839
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tian et al. 10.3389/fmars.2022.1058839
chlorophyll concentration, up to 160 mg l-1 at the upper estuary
station XHH3851 in summer (Figure 4J), but relatively lower

variations in other seasons as compared to the CONMON data.

The predicted magnitudes of variations in chlorophyll

concentration at the mid and lower estuary stations were also

lower than that in the CONMON data. The model predicted
Frontiers in Marine Science 08
magnitudes of variations were mostly within 70 mg l-1 and the

magnitudes in the CONMON occasionally reached to 150 mg l-1

at the mid estuary station (Figure 4K) and up to 200 mg l-1 at the
lower estuary station (Figure 4L).

The model also reproduced the magnitude and seasonal

variability of SOD (Figures 4M–O) and sediment-water fluxes of
A B

D E F

G IH

J K L

M N

C

O

P Q R

FIGURE 4

Comparison between model simulations (blue lines) with sensor-based continuous monitoring data (black lines) and cruise-based, discrete
samples (red dots) at three observation stations. Each column displays an observation station with XHH3851 on the left, XHH4931 in the middle
and XHH4916 on the right. Each row displays a variable with temperature on the top (A–C), followed by salinity (D–F), DO (G–I), chlorophyll
(Chl; J–L), sediment oxygen demand (SOD; M-O) and sediment ammonium flux (BFNH4; P–R).
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ammonium (Figures 4P–R). The measured average SOD fluxes in

summer were 2.23, 1.96, and 2.23 g DO m-2 d-1 at the upper, mid,

and lower estuary stations, respectively, and the simulated fluxes

were 2.36, 2.54 and 2.81 g DO m-2 d-1. The model overestimated

ammonium fluxes at the upper estuary stations in summer

(Figure 4P), but matched the observations at the mid and lower

estuary stations. The measured average ammonium fluxes in

summer were 0.11, 0.18, and 0.15 g N m-2 d-1 at the upper, mid

and lower estuary stations, respectively, and the simulated fluxes

were 0.17, 0.20 and 0.18 g Nm-2 d-1. As the diagenesis processes are

sensitive to temperature, the sediment fluxes were higher during the

summer months than the rest of the year. Similar to the DO

simulation, the model predicted high frequency variation in SOD

and nutrient sediment fluxes, particularly in summer under low

DO conditions.

Patchiness and heterogeneity were common features in both

the simulated and observed distribution of DO and chlorophyll

(Figure 5). Both DO and chlorophyll were higher in the upper

estuary than in the lower estuary. In most cases, the simulation
Frontiers in Marine Science 09
matched well with spatial distributions of the observations but

tended to underestimate DO in the mid estuary.
3.3 Signal analysis of the simulated
DO time-series

We first explored the magnitude and frequency of modeled

DO simulations to identify the timescales at which DO varies

most. We concentrate here on the upper estuary station,

XHH3851, where high-frequency variations persisted over the

entire year. Empirical Model Decomposition (EMD) generated

seven modes with different frequencies and periods which all

passed the white noise test (Figure 6). The first signal has a

period of 12.4 hours, which is the semi-diurnal M2 tidal

frequency, while the second signal has a daily period related to

diurnal variations. The amplitudes of the diurnal signal were

much greater than the semi-diurnal signal. Mode seven has a

major period of 121 days, which is coherent with the seasonal
A B

DC

FIGURE 5

Comparison between model simulations (left panels) with sensor-based synoptic survey data (right panels) for DO (A, B) and chlorophyll (C, D)
on July 20, 2006. The survey data were provided by the Department of Natural Resources (DNR) of Maryland and available at https://
eyesonthebay.dnr.maryland.gov.
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cycle, but modified by the summer productive (i.e., high

chlorophyll) event resulting from to the large precipitation

event. There are four other signals from Mode 3 through

Mode 6 with different frequencies and periods, ranging from

days to months, but all of them have low amplitudes as

compared to the tidal and diurnal variations and thus have

lower weights in the composition of the DO time series.

Therefore, we focus on mechanisms associated with the

frequencies with large contributions.

Spectral analysis revealed a similar result as the EMD, where

three prominent signals were resolved by the spectral analysis.

These signals include: (1) the annual cycle with seasonal

variations, (2) the tidal signal with a period of 12.4 hours, and

(3) diurnal variation with period of 24 hours (Figure 7). The

seasonal variations had the highest spectral power density, but in
Frontiers in Marine Science 10
terms of high-frequency variations, the spectral power density of

the diurnal cycle was much higher than the tidal semi-diurnal

variations. There were also some poorly resolved low-frequency

signals which corresponded to Mode 3 to Mode 6 in the EMD

analysis. The results of the two signal analyses were in high

degree of coherence, strengthening our interpretation of the DO

time-series.
3.4 Predictability of DO
high-frequency variability

CART analysis revealed that water temperature, solar

radiation, and chlorophyll were the dominant predictors for

DO concentrations (Figure 8). The first node split was defined by
A B

D

E F

G H

C

FIGURE 6

Empirical Mode Decomposition (EMD) of simulated DO time series data at the upper estuary station XHH3851. (A) original time series data; (B)
mode 1; (C) mode 2; (D) mode 3; (E) mode 4; (F) mode 5; (G) mode 6; (H) mode 7. The main period of each mode is given in the panel title.
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water temperature where the average DO concentration was 9.2

mg l-1 when the temperature was higher than 13°C (58% of the

data) and the average DO concentration was 12 mg l-1 when the

water temperature was lower than 13°C (42% of the data). The

second node split was defined by solar radiation where the

average DO concentration was 8 mg l-1 when the solar radiation

was lower than 234Wm-2 and 11 mg l-1 when the solar radiation

was above 234 W m-2. On the right-hand side of the tree, the

second category was also split further by temperature. On the

third category, three of the four nodes were split by chlorophyll

with 66% of the total data population. Sea surface elevation (tide)

played a role in the fourth node splitting. There were fourteen

node splits in total, of which six were associated with

temperature and five with chlorophyll.

The GAM predicted 93% of the variance of the DO time

series data using the same predictors as in the CART analysis

(Figure 9). The power of GAM resides in its ability to capture

nonlinear relationships between the dependent variable and the

predictors (Figure 10). Overall, temperature had a negative

relationship with DO (Figure 10A) and chlorophyll had a

positive relationship with DO (Figure 10B). But between

chlorophyll concentrations of 40 and 60 mg l-1, DO declined

with increasing chlorophyll, which was a notable departure from

the general positive relationship. Both tidal elevation and

nutrient load had generally a negative relationship with DO

(Figures 10C, D). DO was relatively insensitive to tides at high

tidal levels, and insensitive to loads at the low end of nutrient
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load. Solar radiation had a general positive relationship with DO

(Figure 10E). Hour of the day (HOD) was designed to capture

the diurnal variations and the fitted GAM spline function was

basically as expected (Figure 10F), where DO concentrations

were higher during the day and lower in the night. As a common

feature, all the relationships are nonlinear.
3.5 DO budget over temporal and
spatial scales

Budget analysis of hourly model output suggested that

physics (including both advection and eddy diffusion)

accounted for 43% of DO variation at the upper estuary

station XH3851 (Table 2), followed by respiration (22%),

photosynthesis (19%), aeration (12%) and SOD (5%).

Moreover, the physical contribution increased to 59% at the

lower estuary station (XHH4916) where the physical impact was

larger than the total of other processes. However, the physical

contribution decreased with time scales. The physics

contribution decreased from 43% at the hourly scale to 16%

on the daily scale, and only 7% on the annual scale at the upper

estuary station XHH3851. On daily and annual scales, both

photosynthetic production and respiration were higher than the

physical contribution at the upper and mid estuary stations, but

physics remained higher than photosynthetic production at the

lower estuary station.
FIGURE 7

Spectral analysis of the simulated DO time-series data at the upper estuary station XHH3851 (time unit in hours). Notation numbers are the periods.
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4 Discussion

4.1 Physical impacts on DO variability
Our model simulation and associated signal analyses

revealed that physical transport is a primary driver of DO

variability on hourly timescales in the shallow Corsica River

system. These tidal-scale impacts on DO variability reflect that

mixing and advection of DO across space is an important feature

of hourly-scale DO variability (e.g., Duvall et al., 2022). The

transfer of DO signals across space depends on the heterogeneity
Frontiers in Marine Science 12
in DO distribution, and both our simulation and the synoptic

surveys showed that heterogeneity is a strong characteristic in

DO distribution (Figure 5). These heterogeneous conditions

emerge from strong spatial patterns of phytoplankton biomass,

as well as interactions between the coastline and current that

drive changes in current velocity and direction. For example,

Tian (2019) and Tian (2020) found that interactions between

physics and coastline meanders can generate complex advection

features that fundamentally alter biogeochemical processes and

water quality properties in the Chester River. Helical advection

resulting from interactions between currents and the coastline

can interrupt saltwater intrusion, vertical diffusivity,
FIGURE 8

Classification And Regression Tree (CART) analysis of DO simulation time-series data at the upper estuary station XHH3851. Independent
variables are water temperature (T), chlorophyll concentration (Chl), sea surface elevation (EL) and solar radiation (RAD).
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phytoplankton development and DO distribution. The Corsica

River has geometry even more complex and shallower than the

connected Chester River estuary, and simulated surface currents

on July 20, 2006 reveal eddies, meanders, and filaments with

spatial scales in the order of kilometers to tens of kilometers

(Figure 11). The complex flow field generates patchy

distributions in DO and chlorophyll. Thus, the bidirectional

tidal current flowing back and forth will lead to high tidal-scale

variations in DO and chlorophyll concentrations at a fixed

station, which explains the tidal-frequency variability shown in

both EMD and spectral analyses.

Tidal advection can be cyclic, the effect of which can be

balanced out between the opposite tidal phases (flooding and ebb

tide). As an example, the tidal effect is illustrated for 10 days (July

1-10) together with other processes affecting DO concentration

(Figure 12). Tidal fluxes of DO are cyclic between positive and

negative within a tidal cycle. When computed on a daily basis, the

tidal effect on DO is largely balanced out between the two tidal

phases, which explains the smaller contribution of physics to DO

variability on a daily basis than on hourly time scales. Two

additional factors can affect the DO budget with a tidal cycle:

Residual current and stability of the spatial gradient. If a residual

current exists, water mass advection may not be balanced between

the two phases of the tide. If the gradient is not stable, the advected

quantity of DO will differ as well. The two factors can act in the
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same direction (strengthen each other) or the opposite (reducing

their effect). As a result, the physical effect is not the simple linear

equation that can be easily predicted in a real shallow water

system. The spatial variation in physics contribution to DO

variability (Table 2) can be explained by the difference in

residual current and gradient stability.
4.2 Biogeochemical impact on high
frequency variability

Even though tide is a primary driver of variability at sub-

diurnal frequencies, biogeochemical processes are the dominant

drivers for diurnal variations. This can be ascribed to the net

primary production during the day, respiration during the night,

and aeration that responds to under- and super-saturation

associated with metabolism. Primary production is the

dominating factor that generates DO, and it also stimulates high

respiration during the day as well as during the night (Figure 12),

forming a diurnal cycle of net DO production during the day and

consumption during the night. Unlike the tidal effects that are

cyclic during a day, DO production through photosynthesis is

accumulative over time, explaining its increasing weight in the DO

budget on longer time scales. Moreover, biogeochemical processes

significantly contribute to the spatial variability as well. On top of
FIGURE 9

Generalized Additive Model (GAM) prediction (blue line) of DO simulation time-series data (black circles) at the upper estuary station XHH3851
using the same prediction variables used in the CART analysis (Figure 8).
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the patches in distribution caused by eddies, both DO and

chlorophyll have relatively elevated concentrations in the upper

estuary (Figure 5). Turbidity limits phytoplankton growth in the

water head and nutrients become limiting in the lower estuary so

that phytoplankton growth peaks in the upper estuary, leading to

both high chlorophyll and DO concentration (Tian et al., 1993).

Even though SOD has a fairly regular seasonal cycle, there are

high-frequency variations in SOD (daily-weekly scale) associated

with variations in temperature, organic matter variability, algal

growth and DO concentration in the overlying water.
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4.3 Relationship between DO and
environmental factors

Temperature is a major predictor of DO in the shallow

Corsica River system. Temperature influence on DO solubility is

a major mechanism in determining their relationship (Najjar

et al., 2010; Li et al., 2015; Irby et al., 2018). Temperature not

only influences DO solubility, but also respiration and

biogeochemical processes. Tian et al. (2021) reported that

under future climate warming conditions, decreasing solubility
A B
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C

FIGURE 10

Generalized Additive Model (GAM) fitted function of each predictor (x axis) in predicting DO concentration (y axis) for water temperature (A),
chlorophyll-a (B), sea surface elevation (C), nitrogen loading (D), solar radiation (E) and hour of the day (F).
TABLE 2 Percent contribution (%) to DO budget across different time scales and stations (SOD: Sediment Oxygen Demand).

Station Physics Respiration Photosynthetic production Aeration SOD

Hourly time scale

XHH3851 43 22 19 12 5

XHH4931 43 31 17 4 3

XHH4916 59 25 10 3 2

Daily time scale

XHH3851 16 28 37 16 6

XHH4931 17 41 32 5 7

XHH4916 30 41 20 5 3

Yearly time scale

XHH3851 7 36 50 1 7

XHH4931 16 46 32 2 4

XHH4916 31 45 19 1 4
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under higher temperatures contributes 55% of the total DO

decrease in the Chesapeake Bay, whereas biological processes

contribute 33% and change in stratification 9%. Stratification is

absent in the shallow systems so that solubility and biological

processes primarily determine the relationship between DO

and temperature.

The positive chlorophyll-DO relationship (Figure 10B)

indicates that photosynthetic production of DO is crucial to

determine DO dynamics in shallow systems. Du et al. (2018) also

reported that chlorophyll is a good predictor of DO. The

decreasing trend of DO around 60 mg l-1 chlorophyll

concentration represents a departure from this general

relationship under specific environmental conditions. During

some periods of the summer, mineralization of organic matter or

other environmental factors decrease DO regardless of DO

production through photosynthesis. In fact, high chlorophyll

concentration occurred during the summer due to increased

nutrient loading and nutrient fluxes from the sediment

(Figures 2 and 4P–R). During this period, water temperature

was around 30 °C. Such high temperatures can accelerate the
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remineralization of organic substances and subsequently

increase DO consumption, overwhelming DO production

through photosynthesis. This phenomenon shows the degree

of complexity and interactions between different processes in

determining water quality in the coastal shallow water systems.

Generally, high chlorophyll in these systems can buoy DO,

however, high chlorophyll is also an indicator of respiration

potential and temperature helps mediate whether high

chlorophyll is a net negative or positive in the DO balance.

The negative relationship between tide and DO at the upper

estuary station depends on the location of the station within the

estuarine system. DO was relatively lower in the mid estuary

than in the upper estuary (Figure 5). High tide brought water

from the mid estuary to this station and low tide brought in

water from the upper estuary, forming the negative relationship

between DO and tide. The negative relationship between

nutrient loading and DO is as expected, given that nutrient

loading fuels eutrophication and hypoxia in coastal and

estuarine systems. Solar radiation is a primary diver in

determining DO in the Corsica River, revealed by the CART
FIGURE 11

Simulated surface current on July 20, 2006.
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analysis. The continuous positive relationship between DO and

solar radiation indicates that light is a limiting factor and did not

reach to a saturation level. Similar relationships between DO

variability and daily variability in PAR have been found in the

Delaware Inland Bays (Tyler et al., 2009), where multiple cloudy

days under warm temperatures lead to hypoxia.

GAM output allowed us to quantify the relative role of

multiple, sometimes competing processes in impacting DO

variability. GAM minimizes the generalized cross validation

score (GCV) for parameter selection and prediction, and GCV

can be used as a measure of prediction power for individual

variables, where the estimation errors with lower values indicate

higher prediction power. Based on the GCV values, water

temperature has the highest prediction power, followed by tide,

chlorophyll, solar radiation, wind speed and nutrient loads. The

highly ranked tide effect in the Corsica River is similar to results

found for the Caloosahatchee River (Florida, USA) and Perdido

Bay (Alabama, USA), where tide was found to be a major factor

in determining DO concentration (Xia et al., 2010; Xia et al.,

2011; Xia and Jiang, 2015). However, the lower ranked wind

forcing in the Corsica River differs from the two latter shallow

water systems where both wind speed and direction have

significant effect of DO variation. Because the Corsica River is

a small system (6 km long) compared to the Caloosahatchee

River (45 km) and Perdido Bay (30 km), wind fetch is always

limited is the Corsica River. The low rank of nutrient loading

may be surprising, but it only reflects the impact of loads on DO

within a given year, which contrasts with other studies that relate

inter-annual changes in nutrient loading to DO depletion.
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4.4 Model limitation and
future development

The model was able to simulate high frequency variability in

both DO and chlorophyll similar to that observed in the

CONMON data. However, the variability and magnitude of

modeled chlorophyll was lower than the CONMON data,

particularly in the simulation at the upper estuary stations.

The discrete chlorophyll measurements did compare well with

model estimates in this region (Figure 4J), so there remains an

open question about the mismatch between modeled

chlorophyll and the sensor-based measures. The chlorophyll

content of phytoplankton is complex, with the carbon to

chlorophyll (C:Chl) ratio changing with growth phase,

photoacclimation, diurnal changes in photosynthesis, and

dominant algal species (Carberry et al., 2019; Masuda et al.,

2021). However, a constant ratio was used in the simulation (C:

Chl=25), suggesting that a dynamic C:Chl may help improve

future simulations. Also, chlorophyll sensors are based on

fluorescence and the fluorescence of chlorophyll can change

up to an order of magnitude due to quenching effect and across

difference species for which the model does not have

corresponding parameterization (Falkowski and Kolber, 1995;

Sackmann et al., 2008; Carberry et al., 2019). Other autotrophs

are present in shallow coastal systems in addition to

phytoplankton . For example , ver t ica l ly migrat ing

phytoplankton are common in this region, and the passing of

a thin layer of cells by the sensor could cause a rapid increase in

fluorescence that would not be captured in our model. Benthic
FIGURE 12

DO fluxes from different processes at the upper estuary station XHH3851. Advection, photosynthesis and respiration are integrated in the water
column, aeration is at the sea surface and sediment oxygen demand at the bottom.
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microalgae and their resuspension have the potential to alter

observed autotrophic biomass and chlorophyll concentration.

Kemp et al. (2005) estimated that benthic microalgae production

accounted for 10-30% of phytoplankton production in the upper

Chesapeake Bay, which can significantly alter sediment fluxes of

nutrients and organic matter (Cerco and Seitzinger, 1997; Tyler

et al., 2003). Submerged aquatic vegetation (SAV) can

complicate biogeochemical cycles and the function of shallow

systems. A recent study using the CH3D-ICM modeling system

revealed that SAV can take up nutrients from sediment and

release organic and inorganic materials to the water column

(Carl Cerco, personal communication, April 6, 2022). Tidal

wetlands can have similar effects. All benthic autotrophs have

diurnal cycles leading to high frequency variations in the water

column. The model also underestimated DO supersaturation

during summer daytime periods. While high DO is not as crucial

to simulate as low DO, which can be fatal to marine life, missing

high daily DOmay indicate conventional models need structural

change to capture diel-cycling hypoxia. Specifically, reaeration

schemes that are spatially variable may be necessary to account

for differences in fetch within small systems and more refined

information on the respiration of the organic matter pool in

shallow waters with large allochthonous inputs compared to

open mainstream bay stations may be necessary.
5 Conclusion

Our model simulation reproduced high-frequency

variability in DO and chlorophyll that matched that observed

in sensor-based continuous monitoring data. Signal analysis

showed that there are two major modes in the high-frequency

variation of DO: semi-diurnal M2 tidal frequency and diurnal

frequency. The diurnal spectral power density is much higher

than the semi-diurnal tidal signal, implying that biogeochemical

processes dominate over physical transport in determining high-

frequency variability, particularly by the net photosynthesis

production during the day and respiration in the night.

However, physical transport contributes to DO variability on

an hourly time scale and the tidal signal is significant. The

simulated flow field is dominated by eddies and meanders, which

lead to patchiness and heterogeneity in the distribution of water

quality properties. Biogeochemical processes also generate

heterogeneous distribution with higher DO and chlorophyll in

the upper estuary and lower in the mid estuary. Temperature,

chlorophyll, and solar radiation are the major predictors of DO

in the Corsica River, with temperature having larger impacts on

low DO in summer whereas chlorophyll accounts for DO

supersaturation conditions during phytoplankton blooms.

Changes in DO solubility and biological rate are the major

mechanisms in determining the DO-temperature relationship.

Chlorophyll has a positive relationship with DO, indicating that

photosynthetic production dominates their relationship. The
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continuous increase in DO with solar radiation indicate that

light is a limiting factor in photosynthetic production in the

Corsica River. Our study shows that a high-resolution,

unstructured grid model has the potential to resolve complex

physical and biological dynamics governing water quality in

shallow water systems. We also demonstrated how machine

learning approaches can be helpful in analyzing complex

numerical model output to decipher the complex interactions

among numerous forcing factors in shallow water systems.
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