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Immune checkpoint inhibitors, including anti-PD-1 and anti-CTLA-4 therapies,

are used to (re)activate the immune system to treat cancer. Despite promising

results, a large group of patients does not respond to checkpoint inhibition. In

the vulnerability-stress model of behavioral medicine, behavioral factors, such

as stress, exercise and classical pharmacological conditioning, predict cancer

incidence, recurrence and the efficacy of conventional cancer treatments.

Given the important role of the immune system in these processes, certain

behavior may be promising to complement immune checkpoint inhibition

therapy. Here, we discuss the preliminary evidence and suitability of three

behavioral mechanisms, i.e. stress modulation, exercise and classical

pharmacological conditioning for the benefit of immunotherapy. It is crucial

to study the potential beneficial effects of behavioral strategies that support

immunotherapeutic anti-tumor effects with rigorous experimental evidence, to

exploit behavioral mechanisms in improving checkpoint inhibition efficacy.

KEYWORDS

behavioral medicine, cancer, immune checkpoint inhibition, exercise, stress, classical
pharmacological conditioning
Introduction

Immune responses are the collective of biological processes aiming to protect an

organism from pathogens, like bacteria, viruses and parasites (1). In addition, the

immune system plays a pivotal role in limiting cancer formation through dedicated

immunosurveillance mechanisms (2). Recent developments in immunotherapy have

caused a revolution in the treatment of a number of malignancies, often drastically
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improving disease outcome (3). In particular, immune

checkpoint inhibition (ICI) can be applied to target key

suppressors of the immune system in order to treat cancer (4).

By blocking the interaction between tumor cells and immune

checkpoints on T cells, such as CTLA-4 or PD-1/PDL1, the

break on T cell inhibition is released, enabling activation,

proliferation and the release of cytotoxins such as perforin and

granzymes that eventually lead to apoptosis of tumor cells (5–7).

Despite promising results of ICI, immunotherapy is currently

applicable to only a small proportion of cancers, of which only a

limited number of patients respond (8–10). In addition, ICI

therapy has several severe side effects associated to

autoimmunity (11). Therefore, patients and healthcare at large

would benefit from strategies to improve the efficacy of these

treatments (3, 12–14).

Behavior, and consequently behavioral interventions, have

been shown to broadly affect the immune system (15–26), and as

such may help to improve therapeutic efficacy. Previous studies

have shown that behavioral therapies improved quality of life

and energy levels in patients receiving chemotherapy,

radiotherapy or hormonal therapy (27–33). Also, preclinical

studies have shown effects of behavioral therapies on clinical

outcomes such as tumor growth, which could be partially

mediated by the immune system (34, 35). Hence, we argue

that the application of behavioral therapeutic approaches is

especially relevant for immunotherapy. Nonetheless, research

on behavioral interventions in relation to immunotherapy is

scarce, as opposed to more conventional cancer therapies. While

many pre-clinical behavioral interventions appear to benefit

anti-cancer treatment effectivity, only few directly influence

the immune sys t em and there fo re may se rve a s

complementary to checkpoint inhibition treatment. Based on

the vulnerability-stress model (36), we propose three behavioral

applications in immune checkpoint therapy: management of the

stress response, exercise, and classical pharmacological

conditioning (Figure 1). Modulation of these behaviors can

directly impact cancer development, progression or survival.

Here, we will first review the behavioral factors affecting

immune responses during cancer progression and treatment.

Next, we discuss the potential benefits of behavioral

interventions to support checkpoint inhibitor therapies.
Immune responses can incite or
restrain cancer

The human immune system, often described as innate and

adaptive immune responses (1, 38), is essential for the host’s

survival by offering protection against pathogens through, for

instance, cytokines, lymphocytes and antibodies. Innate

immune responses recognize abnormal cel l surface
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molecules, applicable to a broad group of pathogens, like

viruses and bacteria, but, importantly, also tumor cells. The

main cellular actors of the innate immune response, such as

natural killer (NK) cells, and phagocytes, do not require a

previous encounter to elicit responses. In contrast, adaptive

immunity requires an initial encounter with an agent to mount

an enhanced counterattack upon future encounters, providing

a long-term immunological memory of specific pathogens.

Adaptive immune responses consist of special ized

lymphocytes, like T-lymphocytes (T cells). T cells, subdivided

into the CD4+ T (helper) cells and CD8+ T (killer) cells,

recognize peptide antigens that are presented on the cell

surface via MHC molecules (3). T helper or killer cells

respectively produce immune modulating cytokines or

directly kill pathogenic cells by secreting perforin and

granzymes (6). Perforin translocates to the target cell and

binds to its cell membrane to cause pore formation (39). The

pores allow diffusion of the granzymes into the target cell,

activating cell death (39), and thereby complementing the

innate immune system in clearing infected or tumor cells.

As a result of ongoing immunosurveillance the immune

system can influence tumor onset, growth and therapy (2, 40).

Paradoxically, immune responses may unintendedly shift from

being tumor suppressive to supportive, for instance through

inflammation. Acute and chronic inflammation both have

distinct cellular profiles (41). Acute inflammation is

characterized by a high presence of neutrophils, whereas

chronic inflammation is featured by the presence of

macrophages and lymphocytes (42). Both types of

inflammation display inappropriate (dis)engagement of the

immune system result ing in tissue remodeling and

destruction, and even DNA alterations due to oxidative stress

(43). As such, inflammation may also become uncontrolled,

predisposing to tumorigenesis (44). Several cancer types, such

as colorectal-, liver-, stomach- and bladder cancer may arise

from sites of infection or chronic inflammation (45). In these

tumors, albeit not exclusively, cancer cells engage with immune

cells into an inflammatory tumor microenvironment, a

prerequisite for most tumors (46). In inflammatory bowel

disease, cancers are found predominantly at the sites of

inflammation and chronic intake of anti-inflammatory

medications has been shown to decrease the incidence of

these cancers (47, 48), by putting a halt to the continuous

recruitment of inflammatory cells that destroy the homeostasis

of local tissues. During inflammation, the immune system

releases reactive oxygen and nitrogen species (ROS and

RNS), thereby causing DNA damage in proliferating cells

(49). Oxidation is the most abundant type of DNA damage

and is also able to inactivate DNA in a non-specific way,

leading to accumulation of DNA lesions, genomic instability

and cancer (50). An inflammatory microenvironment is not

only essential to tumor onset, but also to tumor progression by
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sustaining tumor cell proliferation. This can be exerted by for

instance tumor-associated macrophages with an M2-like

profi le (51), releasing angiogenic factors enhancing

vascularization and thus promoting tumor growth (52).

Subsequently, inflammation can also play a major role in the

prognosis and treatment of cancer. For example, cancer

therapy can trigger inflammatory responses by causing

trauma and tissue injury, thereby stimulating tumor re-

emergence and resistance to therapy (53). Hence, the use of

anti-inflammatory agents, such as non-steroidal anti-

inflammatory drugs, can be beneficial for the prognosis of

patients (54, 55).
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Behavior modulates immune
responses

Behavior and the immune system are interrelated.

Exemplary is the behavioral immune system, which is the

psychological mechanism that allow individuals to detect

parasites or pathogens in their environment and avoid contact

with the objects or individuals carrying them (56, 57). The

behavioral immune system aims to avert infections through

preventive behavior; therefore, behavior directly influences the

immune system. Next to this, the immune system is responsive

to behavioral factors such as stressors, exercise, and classical
FIGURE 1

Adapted vulnerability-stress model (36): pathways linking behavioral factors to cancer. The behavioral medicine (37) model suggests that while
individuals inherit biological risks such as genetic predisposition to cancer, this vulnerability requires interaction with stressors such as chronic
traumatic events. Next to this, lifestyle behavior or behavioral interventions may influence cancer development, progression or recurrence,
mediated by the immune system. Behavioral factors such as stress modulation, exercise and classical pharmacological conditioning are
suggested to influence both conventional cancer treatments, such as chemotherapy, as well as immune checkpoint inhibition therapies.
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pharmacological conditioning. Those behavioral factors may

modulate immune responses singularly as delineated below,

however, they may also influence each other, e.g. exercise can

reduce psychosocial stress (58).

Both physiological stress and psychosocial stress, i.e.

exposure to a physical or social stressor like pain or social

exclusion respectively, evoke a physiological stress response

(59). Being confronted with stressors modulates the immune

system by triggering the fight-or-flight response, which is a

physiological reaction to a perceived harmful event (60). The

physiological stress response depends on several factors, such as

the stressor itself (e.g. duration), the host (e.g. age) and external

factors (e.g. the environment) (61). Stressor perception induce

the secretion of stress-related molecules, such as catecholamines

and cortisol via the sympathetic nervous system or the

hypothalamic-pi tui tary-adrenocort ica l (HPA) axis .

Sympathetic fibers descend from the brain into lymphoid

tissues, for example the thymus and the spleen, which release

different substances that can bind to white blood cells, e.g. (nor)

epinephrine (62). The HPA axis releases adrenal hormones that

bind to white blood cells, regulating their distribution and

function (62). In addition, managing stressful events may be

demanding for individuals, leading them to engage in

maladaptive behaviors as alcohol abuse or changes in sleeping

patterns, which can modify immune system processes. Over 300

studies have investigated the different psychological challenges

capable of modifying features of the immune responses,

illustrating that the more a stressor becomes chronic, the more

the immune system is compromised (62).

Analogously, a bout of exercise may lead to mobilization of

different immune cells, including leukocytes, increased T cell

activity and increased immune activity in general (63–65).

Exercise is defined as physical activity that is planned,

structured, repetitive and purposeful to improve or maintain

physical fitness or health (66). It is generally accepted that

prolonged exhaustive exercise training can depress immunity,

while regular moderate intensity exercise is beneficial (67). The

latter is illustrated by for instance decreased biomarkers of

inflammation (for example c-reactive protein) in physically

active as opposed to sedentary individuals (68).

Classical pharmacological conditioning is the third example

of a behavioral mechanism that has been shown to influence the

immune system. Classical conditioning is a learning process in

which an initially neutral stimulus elicits a learned physiological

response through repeated pairing of the stimulus and the

physiological response. Ivan Pavlov first discovered these

learned reflexes in 1927 (69) by training dogs to salivate at the

presentation of a conditioned stimulus: the sound of a bell.

Conditioning or learning is relevant for any human behavior and

is therefore applied broadly, for example in psychoanalysis

focused on social behavior . Here, we refer to the

pharmacological form of classical conditioning, which is an

instrumental learning paradigm that uses a medication as an
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unconditioned stimulus of which the physiological response is

mimicked in response to a conditioned stimulus. This learning

paradigm has later been applied to immune responses, in which

an immune modulating medication is used as the physiological

reaction, resulting in reduced immune medication dosages and

maintained treatment efficacy in response to a stimulus (15). For

ins tance , rena l t ransplant pat ients , who rece ived

immunosuppressive treatment, were treated with a learned

immunosuppressive placebo response, that was linked to a

gustatory (conditioned) stimulus (70). When re-exposed to the

conditioned stimulus, the T cell proliferative capacity was

reduced in comparison to T cell functions under routine drug

intake. Thus, classical pharmacological conditioning increased

the medication efficacy.
Behavioral factors associated to
cancer onset

Numerous behavioral factors, of which stressors, exercise

and conditioning are three examples, have been associated

with the onset of cancer (71–74). According to the

vulnerability-stress model, vulnerabilities (e.g. genetics) and

stressors (e.g. life events) lead to certain behaviors (e.g.

l i festyle) and physiological responses (e.g. immune

responses) and can influence disease and clinical outcomes

(36). Here, we focus on the above-mentioned behavioral

factors that can be targeted in behavioral interventions and

are exemplary of a spectrum of analogous behaviors. Long

lasting stressors or a lack of physical exercise can substantially

reduce tumor growth as shown in both epidemiological and in

animal models, possibly mediated by immune cell modulation

(34, 35). Classical pharmacological conditioning may be used

to assist cancer treatment.
Stressors

Confrontation with stressors can affect the immune system and

increase cancer occurrence in human (75). The immune system

mediates the relationship between stressors and cancer occurrence

(76). Exposure to stressors is found to be accompanied by pro-

inflammatory responses in animal and human research (77), which

may stimulate tumor growth. Furthermore, stress related molecules,

such as cortisol or the catecholamines (nor)epinephrine, can

regulate diverse signaling pathways through their specific

receptors that enhance the proliferative and invasive abilities of

cancer cells in relation with the tumor microenvironment (78, 79).

Cortisol or glucocorticoids have a pivotal role in regulating stress

reactivity of organ systems (80) through glucocorticoid-receptor-

mediated modulation of target genes (34). Glucocorticoids can

activate survival genes that protect cancer cells from the effects of

chemotherapy (81), and were shown to influence virus activation
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including human papillomaviruses and other cancer-associated

viruses (34). Instead, to counteract the stimulating effects of (nor)

epinephrine on tumor growth, the administration of beta blockers

that interfere with the physiological stress response was associated

with a lower incidence of prostate cancer in a population based

study (82).

The influence of stressors on cancer incidence is also

hypothesized to be moderated by socioeconomic status.

Disparities in socioeconomic status are associated to

inequalities in behavioral factors such as physical inactivity,

obesity, smoking, diet, alcohol and drug use, screening and

treatment uptake (83). These health-impairing behaviors are

thought to be stress-related behaviors and a lower

socioeconomic status has been associated with higher levels of

distress (84). Higher cancer occurrence is found in groups with

lower socioeconomic status (83, 85). Even though confrontation

with long lasting stressors may be one of the factors that plays a

role in these processes, research should detangle the mechanisms

with which stress modulates cancer occurrence and

therapy response.
Exercise

In humans, pooled analyses of epidemiological studies

showed that more physical activity during leisure time was

associated with a decreased risk of 10 different type of cancers,

independent of body mass index (BMI) (86). Overall, physical

activity is associated with a 7%-20% lower cancer risk in

individuals, with the strongest impact on colorectal and breast

cancer (74, 87). One of the mechanisms by which physical

activity may reduce risk of cancer occurrence is a reduction in

chronic, low-grade inflammation and improved immune

surveillance and function (88, 89). Cumulative evidence of

both animal and humans studies shows that exercise

modulates local and systemic inflammatory processes by

altering both the number and function of circulating cells of

the innate immune system (neutrophils, monocytes and NK

cells), and of the adaptive immune system (T and B cells) (89).

Exercise may also reduce the visceral fat mass, which is

accompanied by less adipokine secretion and less macrophage

infiltration into the adipose tissue, thereby reducing

inflammation (90). Exercise also activates the HPA axis,

initiating cortisol release, which in the case of exercise can

contribute to an effective anti-inflammatory systemic host

environment by downregulating cytokines as tumor necrosis

factor (TNF)-a. The aforementioned physiological events

activated by exercise are only examples among many other

processes that have been detailed in a number of reviews (89–

91). For example, exercise is accompanied by a higher level of

catecholamines, such as (nor)epinephrine, which were related to

similar anti-inflammatory effects as cortisol (90).
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Classical pharmacological conditioning

Different from psychosocial stress or exercise, which can also

be part of lifestyle, classical pharmacological conditioning is

always an intervention and, therefore, there are no

epidemiological studies investigating this behavioral

mechanism in relation to cancer onset.
Behavioral factors enhance
conventional cancer treatments

The behavior factors that we specified in our model have

shown to influence conventional cancer treatments, such as

chemotherapy, radiotherapy, and hormonal treatment. The

immune system is one of the main links thought to connect

behavioral factors to cancer therapy (92).
Stress modulation in conventional
cancer therapies

There are indications that pharmacological stress

modulation can improve cancer progression. The physiological

stress response seems to drive therapeutic resistance in murine

tumor models (93, 94). The cellular and molecular

microenvironment of cancer includes (peripheral) nerves that

can modulate behavior or malignant cells, promoting tumor

growth and illustrating the cross-talk between the neuroimmune

system and cancer progression (35). Regulation of the tumor

microenvironment by the sympathetic nervous system has been

demonstrated in animal studies (95). Intratumoral

neurotransmitters and neuropeptides have regulatory roles in

the physiological and pathological functions of tissues, and

emerging data suggest that cancer cells may take advantage of

neurotransmitters-initiated signaling pathways to activate

uncontrolled proliferation (96). For example, norepinephrine

and epinephrine activate b-adrenoreceptors expressed on both

cancer and immune cells thereby promoting growth of

mal ignanc ie s and inflammat ion . Moreover , the se

catecholamines can induce an endothelial cell metabolic switch

mediated by b-adrenoreceptors resulting in increased tumor

vascularization (96). The b-adrenergic pathway may be

suppressed by beta blockers and as an example, it was shown

that propranolol, a medication of the b-blocker class, was used to
complement the treatment of several types of cancer, directly

blocking cancer cell proliferation induced by epinephrine in

vitro (97). This experimental evidence is supported by clinical

studies that combine propranolol with other agents to stop

metastasis (98), and epidemiological evidence showing that of

24,238 patients, the 12,119 propranolol users (for over six

months) had lower risk of head and neck, esophagus, stomach,
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colon and prostate cancers (99). On the other hand, preclinical

administration of dexamethasone, a synthetic glucocorticoid,

induced chemotherapy and resistance in breast cancer, as well

as in vitro tumor samples and cancer cell lines (100–102). This

evidence underlines the importance of the HPA-pathway

modulation in conventional cancer treatments.

While psychological interventions seem to influence

immunity (103), evidence in relation with cancer remains very

limited. Studies using psychological interventions in patients

with cancer often did not assess treatment efficacy or health-

related quality of life (104). The results of interventions on

psychological wellbeing, such as cognitive behavioral therapy, in

cancer treatment are variable finding mostly effects on outcomes

such as anxiety, and fatigue (105). However, these interventions,

e.g. cognitive behavioral therapy and mindfulness, cannot be

tested in preclinical models.
Exercise and conventional cancer
therapies

There is both pre-clinical and clinical evidence for a relation

between exercise and the immune system and effectiveness of

exercise during chemotherapy or radiotherapy (16–26). In

patients, exercise has been associated with reduced side effects

of cancer and its treatment (27, 28). Thereby, exercise improved

the physical and mental health and the overall self-reported

quality of life of patients (27–29). Patient-reported outcome

measures were complemented by immunological readouts,

including the number of NK cells, expression of IL-6, or TNF-

a production (16–26). In observational and randomized

controlled exercise trials - both increases and decreases in

defined immune markers were reported. For example, immune

markers of NK cells differed: exercise had an inhibitory effect on

the absolute number of NK cells in patients with breast cancer

(106), an augmenting effect on NK cells percentages in patients

with lung cancer (107), whereas no effect in another cohort of

patients with breast cancer and other solid tumors was observed

(17, 22). Comparably, IL-6 expression differed after exercise

interventions, showing either a decrease in some studies (24–26),

but no effects (17, 20, 23, 108), or an increase in other studies

(16, 18, 109). Given the diverse effects that exercise has on the

number of immune cells in patients with cancer, for instance in

NK cells, it has been suggested that exercise may instead affect

the cytotoxic activity of the immune cells, mirroring the effects

exercise has on healthy individuals through inflammatory

response pathways (110, 111). The large variation in the type

of exercise interventions ranging from aerobic to resistance

training may explain differences in exercise responses (26,

106, 107).

To date, most causal evidence of exercise on the anti-tumor

efficacy of cancer treatment comes from animal studies (112,

113). A large advantage of these in vivo experiments is that there
Frontiers in Immunology 06
is little variation in interventions; i.e. most studies examined the

effects of voluntary running. These experiments indicate that

physical exercise modulates factors that are inherent to cancer

treatment sensitivity, including the tumor microenvironment,

e.g. hypoxia, tumor cell metabolism and tumor perfusion, next

to having profound effects on immune cell populations (112–

114). Illustrating these results, voluntary running tumor bearing

mice experienced reduced tumor growth in diverse cancer

models, e.g. lung cancer or myeloma, and displayed higher NK

cell mobilization compared to sedentary control groups (113,

115, 116).
Classical pharmacological conditioning
of conventional cancer therapies

Conditioned effects in cancer patients during therapy were

shown on outcomes such as nausea and immune modulation

(117–120). Patients who were given a beverage prior to adjuvant

chemotherapy experienced more nausea at later time points

when they were confronted with the beverage alone compared to

patients who did not receive a beverage before the therapy (118),

and the other way around, e.g. a conditioning paradigm was

applied to reduce nausea (120). Similarly, pediatric cancer

patients undergoing chemotherapy showed increased natural

killer cell activity and interferon-g levels upon arrival at the

hospital, when previously confronted with two cycles of

chemotherapy in the hospital (117). These results may be seen

as an indication that conditioned effects in cancer patients are

possible on immune cell populations, however, the effects on

cancer outcomes and therapy response remain to

be investigated.

The mechanisms of how the immune system is conditioned

are largely unknown. An association between the conditioned

stimulus and the immune response needs to be established in the

brain and conditioning thus relies on the interaction between the

central nervous system and the immune system (15). Some

murine studies demonstrated that lesioning of the insular

cortex and central nucleus of the amygdala obstructs

immunological conditioning, suggesting that these areas

mediate conditioning (121, 122). Other murine studies

hypothesize that continuous administration of substances,

such as antigens, may be disruptive for the hosts’ homeostasis,

and that conditioning may be a favorable alternative given a

decreased substance administration (123). By linking the

immune reaction with the central nervous system, it is

assumed that the effect of the substance might be achieved

without the disruptive effects of the substance (123).

Furthermore, it is thought that different pharmacological

conditioning paradigms rely on different mechanisms, given

that the physiological reaction mimics diverse medication

effects (124, 125). Despite little evidence on the pathways of

this associative learning process, the conditioning paradigm has
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been successfully used in numerous rodent studies of

nonconventional therapies, echoing the effects of cyclosporine

A, opioids, lipopolysaccharide (LPS), lithium chloride, anti-

lymphocyte serum, ovalbumin and bovine serum albumin

using taste and odor as conditioned stimuli (126–132).
Immunotherapy may be supported
by behavioral factors

Immune suppressive mechanisms in cancer hamper effective

immune responses (133). By therapeutically assisting anti-

cancer immune responses, tumor growth and progression may

be counteracted and cure can be promoted. Promising targets for

immunological therapies are immune checkpoint proteins,

which are used as a break in the immune system and

consequently block over-activation of the immune system

preventing autoimmunity (3). In addition, checkpoint signals

are required for optimal T-cell recognition and generation of

long-lasting T cell memory responses (3). One of the most well-

known checkpoint proteins is Cytotoxic T lymphocyte antigen-

4, or CTLA-4 (134), which is considered critical for maintenance

of T cell homeostasis and tolerance (135). T cell activation

requires engagement of the T cell antigen receptor-CD3

complex and ligation of costimulatory receptors, such as

CD28, that bind to CD80 (B7.1) and CD86 (B7.2) on antigen-

presenting cells. CTLA-4 is transported to the immunologic

synapse when there is a potent or long-lasting stimulus (via the

T cell receptor) (136), and outcompetes binding of CD28 to

CD80 and CD86, hereby acting as negative regulator of

proliferation and effector function of T cells (137). When

tumor cells express ligands (e.g. CD80, CD86) for CTLA-4, T

cell activity is inhibited after binding, hereby evading clearance

by the immune system (138). Monoclonal antibodies, i.e.

checkpoint inhibitors, can block CTLA-4, allowing activation

of T cells and killing of tumor cells (7).

Programmed death (PD)-1 is another immune checkpoint

molecule involved in regulating the balance between immune

activation and tolerance, similar to CTLA-4 (134). Its ligands

PD-L1 (B7-H1) and PD-L2 (B7-H2) are expressed on antigen

presenting cells, but can be expressed on tumor cells as well,

resulting in an immunosuppressive tumor microenvironment.

Therefore, also anti-PD-1 or anti-PD-L1 monoclonal antibodies

promote T cell-mediated tumor cell death (139, 140).

Immune checkpoint inhibitors (i.e. Ipilimumab (anti-

CTLA-4), Nivolumab (anti-PD-1), Pembrolizumab (anti-PD-

1), Atezolizumab (anti-PD-L1)) have been approved or are

studied in clinical trials to treat multiple types of cancer of

which melanoma and lung cancer respond best to therapy. Next

to this, there are currently several antibodies and small

molecules in development, targeting other immune

checkpoints such as TIM3, CD39, B7H3, CD73, LAG3, and

more (141–145).
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Unfortunately, large groups of patients do not respond to or

benefit from immunotherapy (8–10). It is not completely clear

yet why some patients respond and others do not, which may

have to do with tumor-intrinsic qualities. For instance, it was

shown that high microsatellite instability (MSI) results into a

high number of mutations and increased number of tumor-

infiltrating lymphocytes (146, 147). As such, patients with an

MSI-tumor are suitable candidates for immunotherapy.

Nonetheless, even in tumors with high MSI observed response

rates range between 30% and 50% (147), indicating that there are

other factors that come into play besides the genetic and

immunologic aspects of the tumor. Similarly, predictive

biomarkers, like tumor-cell PD-L1 expression, are used to

stratify the immunotherapy responders from the non-

responders (148). However, PD-L1 testing alone is insufficient

for patient selection in most malignancies and immune

responses are not uniform across all malignancies. It is

estimated that in the US 38% of patients with cancer are

eligible for ICI therapy, given the molecular profile of their

tumor, but only up to 11% respond to the ICI therapy (10). The

remaining 27% of patients were eligible but did not respond,

indicating the necessity for better predictive biomarkers, next to

the need of increasing treatment sensitivity. Another drawback

of checkpoint inhibition is that it is not cost effective in certain

malignancies, with an economic benefit for choosing

chemotherapy to treat i.e. recurrent or metastatic head and

neck cancers and non-small cell lung cancers (12).

Furthermore, both CTLA-4 and PD-1 blockade can have

severe immune related autoimmune complications, for

example side effects on the gastrointestinal tract, brain,

thyroid, lungs and skin (3, 13, 14). In the light of the diverse

drawbacks, efforts are needed to improve and support

immunotherapy, enhance its anti-cancer effects and decrease

the side effects.

Behavioral factors have been shown to influence both the

immune system and cancer treatment and may therefore

possibly offer opportunities to improve immunotherapy.

Given that behavioral factors can influence the effectiveness

of conventional chemo- and radiotherapy, and that the

immune system is thought to modulate this effect,

immunotherapy may offer an ideal opportunity for

behavioral intervention (Figure 2).
Physiological stress modulation and
immune checkpoint inhibition

Few preliminary studies investigated the impact of stress

modulation with pharmacological interventions on checkpoint

inhibitors efficacyalthough there are indications that stress

influences immunotherapy. For instance, social disruption

stress compromised a vaccine based immunotherapy (poly(d,l-

lactide-co-glycolide) microsphere) in a murine melanoma model
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through impairing CD8+ T cell responses (149). Also, either

behavioral stress or surgical stress, weakened the inhibition of

metastasis by immunostimulating agents (CpG class C and

glucopyranosyl lipid-A stable emulsion) (150, 151). Studies

linking stress to cancer immunotherapy assume the

involvement of the of HPA-axis , for example by

glucocorticoid-induced expression of the immunosuppressive

transcription factor TSC22D3 of dendritic cells (152).

With regard to ICI in a retrospective analysis of 109

medical records of non-small lung cancer patients, treated
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with either ICI therapy or ICI in combination with

chemotherapy, the 28 patients who were concomitantly

prescribed any beta blocker had a longer progression free

survival with a hazard ratio of 0.58 (153). A possible

association between beta blocker use and improved

progression free survival in non-small-cell lung cancer

patients treated with ICI, should however be confirmed in

clinical randomized controlled trials. In humans, there are no

randomized controlled trials using psychological interventions

to complement immune checkpoint inhibition cancer therapy.
FIGURE 2

Putative effect of behavioral interventions on effectivity of immune checkpoint inhibition therapy. Behavioral interventions such as stress
modulation, exercise and classical pharmacological conditioning may enhance the effectivity of immune checkpoint inhibition, promoting tumor
cell death by higher T cell infiltration and activation created with BioRender.com.
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An indication of a relation between stress exposure and the

efficacy of anti-PD-L1 was found in a mouse study (154). In this

study researchers applied daily chronic unpredictable mild

stressors, such as water or food deprivation, tail pinching,

bodily restraint et cetera, for a total of 28 days. The effect of

anti-PD-L1 therapy was attenuated in the stressed groups,

coinciding with a decrease in CD8+ lymphocytes and increase

of regulatory T cells at tumor sites. In line with this, chronic cold

stress strongly reduced anti-PD-1 efficacy in breast cancer and

melanoma mouse models (155). An experimental group that

experienced cold-induced stress (by being housed in an

environment of 22 degrees Cels ius instead of the

thermoneutral temperature of 30 degrees Celsius) had larger

tumors but this effect was counterbalanced by b-blocker
treatment. The enhancement of anti-PD-1 efficacy by co-

treatment with propranolol treatment was likely to be CD8+

dependent, i.e. there was an increased frequency of effector

CD8+ T cells in subcutaneous breast cancer tumors and

melanoma. The effects of propranolol treatment did not persist

in T cell-deficient mice, suggesting that the b-adrenergic system
influences T cell activity (155, 156). Similar results were found in

mouse models of fibrosarcoma and colon cancers, where

reduced tumor growth as well as enhanced response to anti-

CTLA-4 therapy was observed after blocking the b-adrenergic
receptor with propranolol (156). Here, propranolol treatment

resulted in a reduction of tumor angiogenesis, increased T-cell

infiltration, but a decrease in myeloid derived suppressor cells, as

well as modifications on tumor associated macrophages,

together leading to a tumor-suppressive environment (156).

Despite these promising preliminary results, we are unaware of

any ongoing clinical trials in humans.
Exercise and immune checkpoint
inhibition

Several murine studies investigated the synergistic effects

of exercise and immune checkpoint inhibitors on cancer

treatment (157–160). Higher tumor necrosis and less

apoptosis was found in a patient-derived xenograft model

of non-small cell lung carcinoma when anti-PD-1 treatment

was combined with exercise, indicating that excise may

improve anti-PD-1 effectivity (157). Another study

demonstrated that aerobic exercise, i.e. daily 30 minutes

treadmill exposure, sensitized pancreatic tumors to anti-

PD-1 therapy, which resulted in anti-tumor immunity

though IL-15Ra+ CD8+ T cells and decreased tumor

growth (160). Two other in vivo studies found no

synergistic effects of the combination of exercise and

immune checkpoint inhibition. However, one study

observed an increase in CD8+ T cells in orthotopically

implanted breast tumors when anti-PD-1 was combined
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of mice without voluntary running regime (158, 159). These

preliminary preclinical results offer a stepping-stone to

translate exercise interventions to the clinic.
Classical pharmacological conditioning
and immune checkpoint inhibition

To the best of our knowledge there are no published

studies investigating the effects of a learned immune

reaction on the efficacy of immune checkpoint inhibition.

However, a recent study showed that conditioning of

rapamycin-induced immunomodulation reduced tumor

growth effectively in a murine glioblastoma model (161). In

this study, the mTOR inhibitor Rapamycin was repeatedly

paired with a novel gustatory stimulus. The experimental

group, receiving only 10% of the initial drug dose together

with the gustatory stimulus during the testing phase, showed

similar tumor inhibition as the control group receiving 100%

of the drug dose. the tumor growth inhibition was driven by a

central and peripheral upregulation of pro-inflammatory

markers and a decrease in anti-inflammatory cytokines such

as IL-10. Similarly, older studies showed that conditioning of

immunotherapy was more effective in delaying tumor growth

in mice than immunotherapy alone (162, 163). For example, in

a syngeneic in vivo study, the unconditioned stimulus was the

injection of immunostimulating DBA/2 spleen cells, and the

conditioned stimulus was camphor odor. When conditioned

mice were re-exposed to the odor of camphor only, tumor

growth was still delayed compared to non-conditioned mice

(162). These experiments suggest that the immune system of

the mice consistently mimicked the effect of the immune

modulator when presented with the conditioned stimulus,

which influenced health outcomes, demonstrating the

feasibility of conditioning immune responses (123, 161–

167). Therefore, conditioned effects of immunomodulatory

inhibitors may be suitable also for immune checkpoint

inhibition. Of note, both mechanistic animal studies and

controlled human studies in healthy subjects and patients

are necessary to understand whether learned immunity is a

promising addition to immunotherapy. In patients, the

conditioning paradigm could be applied using specific

stimuli, for instance combining the use of checkpoint

inhibitors with a distinctive stimulus: a taste, sound or smell.

This setting may serve for reducing medication dosages, i.e.

checkpoint inhibition could be given in reduced quantities or

placebo medication could be administered intermittently.

Potentially, the use of mechanisms that harness mimicking

placebo effects could reduce healthcare costs associated to the

high expenses of several medications, including immune

checkpoint inhibition.
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Several ongoing clinical trials in patients study how

behavioral factors may affect the quality of life and other

cancer-related outcomes during ICI (Table 1). To the best of

our knowledge there are no ongoing clinical trials on stress

modulation or classical pharmacological conditioning in

checkpoint inhibition, but various studies use exercise as

intervention. The results of these studies are yet unknown and

most studies focus on feasibility of the intervention as primary

outcome measure. Therefore, the mechanisms of behavior on
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cancer outcomes in patients undergoing immune checkpoint

inhibition therapy remain unknown.

Conclusion

Behavioral factors are associated with the onset and therapy

response of cancer. Behavioral interventions such as modulation

of psychosocial stress, exercise, and classical pharmacological

conditioning, have therefore been used to reduce toxicity and
TABLE 1 Ongoing studies researching behavioral factors and immune checkpoint inhibition therapy.

# Study Tumor Intervention N Primary (1) and secondary (2) outcomes Location ID

1 Exercise to
Boost Response
to ICI

Cutaneous
melanoma,
cutaneous
squamous
cell
carcinoma,
Merkel cell
carcinoma

30 minutes arm ergometer/pedal
ergometer/treadmill exercise up
to 12 times and 12 months prior
to each administration of
standard of care checkpoint
blockade immunotherapy across
all cycles

32 1: Feasibility of the exercise intervention
2: Tumor Immunological Biomarkers

Moffitt
Cancer
Center
Tampa,
Florida, USA

NCT05358938

2 Exercise as a
Supportive
Measure for
Patients
Undergoing ICI

Melanoma 60 minutes group, machine
based resistance and endurance
exercise (moderate-to-high-
intensity), 2 times a week for 12
weeks

40 1: Feasibility of the exercise intervention
2: Quality of life (EORTC QLQ-C30, version 3.0),
fatigue (MFI), sleep Quality (PSQI), depression (CES-
D), physical Activity (SQUASH), cardiopulmonary
fitness (maximal aerobic capacity (VO2peak) via a
maximal incremental cycling test), muscle strength
(isometric and isokinetic with the Isomed 2000®

diagnostic module), pain (BPI)

Heidelberg
University
Clinic,
Heidelberg,
DE

NCT03171064

3 Low-moderate
Intensity
Pedaling During
Immunotherapy
Administration

Skin, kidney,
bladder
cancer

30 minutes on a pedal ergometer
(low-moderate intensity)
concurrent to ICI infusion for
maximum 12 weeks

10 1: Feasibility of pedaling measured by the number of
completed pedaling sessions and the ability of patients
to meet pedaling intensity goals.
2: Quality of life scores (Quality of Life Questionnaire -
Core 30), treatment response biomarkers (checkpoint
inhibitors, functional T and B cell subsets, pro and anti-
inflammatory monocyte subsets, and soluble
inflammatory mediators), CT-derived sarcopenia rates

Rush
University
Medical
Center,
Chicago,
Illinois, USA

NCT04127318

4 Combined
Aerobic and
Resistance
Exercise
Training in
Metastatic Renal
Cell Carcinoma

Renal cell
carcinoma

12 weeks home based, combined
aerobic and resistance exercise
training plan

16 1: Feasibility of the exercise intervention
2: Change in Health Related Quality of Life (FACT-G),
the incidence of grade 3-5 toxicities as per CTCAE 5.0

Johns
Hopkins,
University/
Sidney
Kimmel
Cancer
Center,
Baltimore,
Maryland,
USA

NCT05103722

5 i-Move Melanoma 12-week semi-supervised
individualized exercises:
moderate intensity aerobic
exercise (walking and cycling,
20-45 min, 3-5 times a week),
resistance training exercises (2-3
times a week) and stretching

30 1: Feasibility of the exercise intervention
2: Fatigue (FACIT F), functioning (PROMIS),
symptoms (Edmonton Symptom Assessment Scale),
quality of life (SF-36), adherence (Godin Leisure-time
Physical Activity Questionnaire), physical fitness and
functioning (30 s chair stand test, the 6 min walk test,
the arm curl test and the Australia-modified Karnofsky
Performance Scale)

Peter
MacCallum
Cancer
Centre,
Melbourne,
Australia

ACTRN
12619000952145
EORTC QLQ-C30, European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire C30; MFI, Multidimensional Fatigue Inventory; PSQI, Pittsburgh Sleep
Quality Index; CES-D, Center for Epidemiological Studies Depression Scale; SQUASH, Short QUestionnaire to ASsess Health-enhancing Physical Activity; BPI, Brief Pain Inventory;
FACT-G, Functional Assessment of Cancer Therapy – General; CTCAE 5.0, Common Terminology Criteria for Adverse Events 5.0; FACIT F, Functional assessment of chronic illness
therapy-fatigue; PROMIS, Patient-Reported Outcomes Measurement Information System V2.0; SF-36, Short Form 36 Health Survey Questionnaire.
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potentially improve conventional cancer therapy outcomes. In

Figure 3, we summarize how behavioral factors might affect the

individual immune cell types. With the rise of various

immunotherapies that counteract the immune suppressing

interactions between tumors and the immune system, there

are ample opportunities for non-invasive behavioral

interventions to improve immunotherapeutic results. Hence, it
Frontiers in Immunology 11
is of paramount importance to rigorously examine the potential

advantageous effects of behaviors that may support tumor cell

clearance by the immune system activated by ICI therapy. The

efficacy of these behavioral factors remains to be tested both in

animal models, to investigate underlying mechanisms, and in

patients, to explore their suitability for the benefit of

cancer therapy.
FIGURE 3

Cellular cascade of additive effects of behavioral interventions on immune checkpoint inhibition therapy. Immune checkpoint inhibition activates T
killer cells (1 and 2). Behavioral factors or interventions can either improve (green line) or decrease (blue line) the effects of the immune therapy
(3). Stress hampers the immune system through for instance the effects of glucocorticoids and (nor)epinephrine, inhibiting T killer cell function
and numbers, thereby enhancing cancer cell survival (4 and 5, blue cascade). Classical pharmacological conditioning can enhance T killer cell
activity and numbers mediated by brain-immune communication. Exercise may increase the amount of NK cells, induce IL-6 secretion, altogether
improving T killer cell activation, leading to a better anti-tumor response (4 and 5, green cascade) created with BioRender.com.
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