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Introduction: The production of plant crops is foundational to the global food

system. With the need for this system to become more sustainable while

feeding an increasing global population, tools to investigate future food system

scenarios can be useful to aid decision making, but are often limited to a

calorie- or protein-centric view of human nutrition.

Methods: Here, a mathematical model for forecasting the future cropland

requirement to produce a given quantity of crop mass is presented in

conjunction with the DELTA Model
®
: an existing food system scenario model

calculating global availability of 29 nutrients against human requirements. The

model uses national crop yield data to assign yield metrics for 137 crops.

Results: The crops with the greatest variation between high and low yielding

production were specific nuts, fruits, and vegetables of minor significance to

global nutrient availability. The nut crop group showed the greatest overall

yield variation between countries, and thus the greatest uncertainty when

forecasting the cropland requirement for future increases in production. Sugar

crops showed the least overall yield variation. The greatest potential for

increasing global food production by improving poor yielding production was

found for the most widely grown crops: maize, wheat, and rice, which were

also demonstrated to be of high nutritional significance.

Discussion: The combined cropland and nutrient availability model allowed

the contribution of plant production to global nutrition to be quantified,

and the cropland requirement of future food production scenarios to be

estimated. The unified cropland estimation and nutrient availability model

presented here is an intuitive and broadly applicable tool for use in global

food system scenario modeling. It should benefit future research and policy

making by demonstrating the implications for human nutrition of changes to

crop production, and conversely the implications for cropland requirement of

food production scenarios aimed at improving nutrition.
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1. Introduction

Global crop production is central to the delivery of

nutrition to the world’s population and will continue to

be so as this population grows in the future. Insufficient

future crop production risks reducing global and local food

security, and increasing the burden of malnutrition. Conversely,

increased crop production and the expansion of cropland poses

environmental risks, including increased fertilizer, pesticide,

and water use; deforestation; and loss of biodiversity (FAO,

2020b). Sustainable future cropland use will need to balance

the demand for food production against the impacts of this

land use.

Cropland dynamics and modeling featured at the

United Nations Food Systems Summit in September 2021,

with the Summit’s Scientific Group emphasizing the key

contribution of science through food systems modeling to

support policy-makers and to avoid unintended consequences

(von Braun et al., 2021). Computational modeling can be

applied to global food system questions to aid thinking and

decision making on future changes to achieve sustainability.

Existing models for global cropland use and production

exist and have provided valuable insight into future possibilities

for cropland use. For example, the Parsimonious Land Use

Model (PLUM; Engström et al., 2016), has been used to identify

possibilities for meeting global calorific requirements without

exceeding planetary cropland boundaries (Henry et al., 2018).

The GlobAgri-AgT model has been used to forecast crop and

pasture area under a variety of 2050 scenarios, coupled to diet

and global fore-sighting analyses (Mora et al., 2020). Other

models have been used to estimate the environmental impact of

forecast cropland expansion on biodiversity and carbon storage

(Molotoks et al., 2018; Zabel et al., 2019).

Efforts in complex global system modeling have connected

cropland to economic variables (e.g., demand, pricing, trade),

and further to a range of environmental (e.g., greenhouse

gas emissions, land conversion), and social variables (e.g.,

population, food consumption). Examples of such models

include MAgPIE (Dietrich et al., 2019) and GLOBIOM (Havlík

et al., 2011). Several of the most prominent of these integrated

assessment models have been used to model the Shared

Socioeconomic Pathways (O’Neill et al., 2014), forecasting

(among many other variables) demand for crops and the

subsequent impact on cropland area under these diverse

scenarios (Popp et al., 2017; Wang et al., 2020). There

was important variation in the predictions of these complex

models, a result of their differing underlying assumptions.

This reflects the unavoidable degree of uncertainty introduced

when developing such complex models to capture the full

behavior of complex systems. The complexity of these models

can be a weakness, limiting their broad accessibility. They are

also usually limited to a calorie- or protein-centric analysis of

human nutrition.

Agricultural modeling and analysis that considers future

crop production often focusses on yield gaps (Lobell et al., 2009;

Licker et al., 2010; Neumann et al., 2010; Mueller et al., 2012;

van Ittersum et al., 2013; Fischer et al., 2014; West et al., 2014;

Hatfield and Beres, 2019; Rong et al., 2021). The yield gap for

a crop in a given region is essentially the difference between its

measured yield and its attainable yield, though the definition and

quantification of these values varies (see Fischer et al., 2014 for

a discussion of the differing approaches). These analyses focus

on calculating the magnitude of yield gaps, what the potential

increases in productivity would be if yield gaps were closed, and

the approaches needed to reduce yield gaps. Various techniques

have been used to calculate yield gaps and their potential for

reduction at a local or global level, many of which involve

sophisticated biophysical modeling, including consideration of

water use, fertilizer application and local climate. This research

is extremely useful for advancing efficient and sustainable

agriculture globally, and even greater benefit could be accrued by

linking this research through to a more complete view of human

nutritional needs.

Previously, the DELTA Model
R©

was developed and made

accessible through an online platform to allow users to explore

how future global food system scenarios would meet the

nutritional needs of the global population for 29 essential

nutrients (Smith et al., 2021; Sustainable Nutrition Initiative R©,

2021). However, the initial version of the model did not include

any consideration of the resources necessary to support food

production in user scenarios, such as cropland.

Here, a mathematical model was developed to calculate

the cropland requirement of a future global food production

scenario. This model was then incorporated into the DELTA

Model
R©
, allowing cropland requirement to be weighed against

the nutritional performance of future scenarios. The framework

was used to examine 2018 global cropland production, use, and

nutritional performance, and its ability tomodel future scenarios

is demonstrated.

2. Materials and methods

2.1. The DELTA Model®

The contribution of crop foods to global nutrient supply

was obtained from the DELTAModel
R©
(version 1.3; Sustainable

Nutrition Initiative R©, 2021). This model was fully described by

Smith et al. (2021), so only an outline of the relevant aspects is

included here.

The DELTA Model
R©

uses food balance sheet (FBS) data

from the United Nations Food and Agriculture Organization

(FAO) for global production of food commodities in 2018 (the

most recent data currently included in the model) (FAO, 2020a).

The total quantity of food commodities allocated to food use in

this data set is adjusted to account for inedible portions [using
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food item-specific coefficients from various sources (Food and

Agriculture Organization, 1989; United States Department of

Agriculture Economic Research Service, 1992; Rodrigues et al.,

2018)] and in-home waste [using coefficients reflecting food

group wastage by global region (FAO, 2011)]. The remaining

quantity of food available for consumption is converted to a total

quantity of 29 available nutrients using food composition data

(USDA, 2020). Finally, adjustments are made to the available

protein and indispensable amino acid quantities to reflect their

bioavailability in individual food items (FAO, 2013).

This calculation process (Figure 1) yields a global annual

quantity of nutrients at the point of human consumption that

can be compared to global nutrient requirements. The DELTA

Model
R©

was designed to allow scenario analysis out to 2050.

For the purposes of this article, 2018 data is analyzed, and the

scope to simulate future scenarios out to 2030 is presented.

Only the contribution of crop food commodities to nutrient

availability and cropland dynamics are presented here; animal-

sourced foods and grazing land are not included.

The DELTA Model
R©

also uses the FBS mass allocations of

each food commodity to final use. This allocation was adopted

to calculate the cropland area dedicated to the various final uses.

The six relevant FBS final uses are: food, animal feed, other

uses (i.e., non-food, non-feed uses, such as biofuel production),

processing, seed, and supply chain losses.

Here, we wished only to compare the cropland area

dedicated to production of food, animal feed, and other uses.

Thus, supply-chain losses and seed were assumed implicit, and

not included in further calculations. All food commodities

resulting from processing of a primary crop were included in

the allocation of the primary crop. Finally, the proportion of

the production of each food commodity allocated to food, feed,

and other uses was used to identify the total area of cropland

dedicated to each. A simplified example calculation is included

in the Supplementary material. Thus, the total cropland area

harvested for each crop was sub-divided into allocations to

either human food, animal feed or other uses.

2.2. Land area calculations

The role of scenario models is to generate a range of

possible futures that enable insights into the factors required

for different potential outcomes. Whilst the nutrient supply that

can be derived from a given set of primary food commodities

is relatively determinate, the land area required for their

production is subject to uncertainties and should be represented

as a range of values, rather than a single point. As such,

existing variability in crop yields around the world was used

here to incorporate uncertainty into the model in a novel yield

modeling approach.

Data for the harvested area and productionmass in 2018 (the

most recent available) of 137 primary agricultural crops, from

213 individual countries or territories, was obtained from the

FAO online database (FAO, 2021).

The data was separated into individual crops and the list

of countries producing each crop was ordered by yield (defined

throughout this paper as the tons of crop produced per hectare

of cropland). This allowed for calculation of overall global yield

for each crop, and average yield of specific proportions of

global production.

The ordered data was used to calculate the yields of the

highest yielding 50 and 10% of global production, and the

yields of the poorest yielding 50 and 10% of production (see

Supplementary material for a graphical interpretation of this).

On examination, the yield of the highest yielding 10% of

production was considered not achievable in all parts of the

world due to at least 30-fold differences between this value

and the yield of the poorest yielding 10% of production for

several crops.

For example, the highest yielding 10% of cashew nut

production outperforms the global average by an order of

magnitude, and outperforms the poorest yielding 10% by a

factor of 30 (Table 1). Thus, achieving a global average yield of

9.38 tons per hectare does not appear feasible within the time

scope of the DELTAModel
R©
. In contrast, the variation in global

soybean yields is relatively minor, meaning achieving a future

global average yield equivalent to the 2018 yield of the highest

10% of production is more realistic. Wheat is also included in

Table 1 as a crop with intermediate yield variation compared to

cashew nuts and soybeans.

Beyond these examples, the degree of yield variation

across the crops in the dataset was not consistent

(Supplementary Figure S4). Following an analysis of yield

variation for each individual crop in the dataset, it was assumed

that the yield of the highest yielding 50% of production

(hereafter referred to as HY) was a reasonable representation

of an achievable global average yield by 2050 for most crops,

although likely an underestimate for many staple crops. This

assumption is discussed further in sections 2.2.2, 3.3.3, and 4,

and could be updated as new data becomes available in the

future to maintain relevance.

2.2.1. Production increases and decreases

The mathematical implementation of the model is fully

described in the Supplementary material; an overview is given

here. When predicting the land requirement of increases in

crop production, the corresponding increase in land use was

calculated assuming production at the global average yield (AY).

To incorporate a range of uncertainty into these predictions,

the calculation was also performed assuming increases in

production at HY, or at the yield of the poorest yielding 50% of

production (LY). This gives an expected cropland requirement,

as well as an uncertainty range of cropland requirement needed

to support the increase in production.
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FIGURE 1

Illustration of the DELTA Model
®
calculation process. See section 2 for more detailed description. Some examples of food commodities, foods,

and nutrients are shown for each stage of the calculation. Note that the calculation can be performed either in units of tons, or hectares of

primary crop harvested. *Bioavailability coe�cients are applied to protein and the indispensable amino acids only. Adapted from Smith et al.

(2022b).

TABLE 1 Yield characteristics (tons per hectare) of selected global crop production in 2018, calculated using data from FAO (2021).

Global average
yield

Highest yielding
10%

of production

Highest yielding
50% of

production

Poorest yielding
50% of

production

Poorest yielding
10% of

production

Cashew nuts 0.99 9.38 8.98 0.53 0.31

Soybeans 2.79 3.47 3.45 2.35 1.39

Wheat 3.43 7.02 4.88 2.64 1.79

A similar approach was taken for decreases in production. It

was calculated that any decreases may occur on land producing

at AY, at HY, or at LY.

In a scenario of decreased crop production, the lower

estimate for land area requirement is based on decreases at LY

for a production decrease of up to 50%, after which HY is used

for any further reduction. Conversely, the upper estimate for

land area requirement in a scenario of decreased production

is based on decreases at HY for a production decrease of

up to 50%, after which LY is used for any further reduction.

See the Supplementary material for graphical examples of

these reductions.

To be compatible with the DELTA Model
R©

visual outputs,

it was necessary to aggregate individual crop data into nine crop

groups (cereals, fruits, nuts, pulses, starchy roots, sugar, other

plants, vegetables, and oilcrops). This was performed additively:

upper bound estimates for the crop group are the sum of the

upper bound estimates for all constituent crops, and similarly

for lower bounds and the expected value.

2.2.2. Yield improvements

In addition to increases and decreases in production, it is

also possible for the yield of existing land used to produce crops

to increase or decrease its yield. Two possibilities for modeling

this were considered.

The first approach is to apply a simple yield change

coefficient to all existing yield values. For example, under the

assumption that global yields for a crop will increase by 20%,

the land area required to produce the same amount of the crop

will decrease reciprocally to 83% of the original value. This

coefficient can also be applied to upper and lower bounds when

making predictions about changes to production quantity.

Whilst simple and transparent, this approach does not

account for the extent to which yield of a crop is already

approaching sustainable production limits, thus may result in

unachievably high yield estimates if unconstrained yield change

coefficients are used. Constraining these coefficients would

require data for global yield gaps for all modeled crops, which

are not currently available.
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A second approach is to assume that HY constitutes a

realistic estimate of the average yield that may be possible

globally, as described above. The limitations of this assumption

are presented in the section 4. A productivity improvement

factor between 0 and 100% can then be applied, representing

the proportion of production at LY that is improved to

producing at HY. This approach was selected for use in this

model. See the Supplementary material for a graphical example

of this.

Let the “optimistic case” be defined as assuming 100%

of LY land is improved to producing at HY. In this case,

the optimistic global average yield is simply equal to the

original HY. To calculate the upper and lower bounds in the

optimistic case, the HY and LY for the optimistic case were

calculated, i.e., the yield of the highest yielding 25% of original

production, and the yield of the second-highest yielding 25%

of original production. These values are used as the HY and

LY for the optimistic case, and the upper and lower bounds on

estimates can be calculated using these values. For productivity

improvements of <100%, a scaled linear combination of the

original yield values and the optimistic case yield values

are used.

3. Results

3.1. Global land use for crops

Figure 2 gives an overview of the 2018 crop production

and cropland area reported by the FAO (2021), divided into

nine major crop groups. These data capture the total mass of

food commodities leaving the farm gate, so exclude harvesting

losses (FAO, 2020a). Both production and area harvested were

dominated by cereals. The next highest production crop groups

were sugar and vegetables, whereas oilcrops had the next greatest

area harvested after cereals.

The uses of the produced crops varied between the food

groups. The FAO FBS allocate crop commoditymass to end uses.

Translating these allocations to the cropland area producing

these commodities it was found that, of the overall cropland

area in 2018, 66% was used to produce human food, 18% to

produce animal feed, 14% to produce crops for other uses (e.g.,

biofuel production), and 1% was used to produce non-food

crops (e.g., rubber).

However, note that this allocation method hides some

information: for example, of the 795million hectares of cropland

allocated to human food production, around 12% was used to

produce soyabeans. The production of soyabeans results in both

soyabean products for human consumption and soyabean cake

for animal feed, yet soyabean cake is not captured by the FBS as it

is not considered a food commodity. Thus, the allocations above

must not be interpreted as representative of the relative mass

allocated to different uses, but rather the primary purpose of

crop production, and exclusive of by-product use. The allocation

breakdown for each crop group is shown in Table 2.

3.2. Current nutritional contribution of
plant foods

Using the DELTA Model
R©

(version 1.3; Sustainable

Nutrition Initiative R©, 2021), the contribution of crops to

global nutrient availability from food in 2018 was established

(Figure 3). These results are presented in tabular form in the

Supplementary material.

Plant foods were responsible for at least 50% of global

availability for most nutrients included in the model. The

exceptions were calcium, vitamin B12 and the indispensable

amino acids lysine, methionine, and threonine. Within the

plant food groups, cereals were the major contributor to the

availability of most nutrients, partly due to their high production

totals: cereals constituted approximately one third of global

crop mass leaving the world’s farms. The exceptions to this

were: fat and vitamin E, which were predominantly sourced

from oilcrops; calcium, potassium, and vitamins A, B9, and C,

to which vegetables were the greatest contributing group. The

remaining crop groups (constituting 44% of global crop mass),

had varying and comparatively minor contributions to global

nutrient availability. Sugar crops, despite constituting 25% of

2018 crop mass, had a minimal impact on nutrient availability.

This was due to a combination of the limited nutritional value of

sugar crops, the high proportion of mass lost during processing,

and the high proportion of mass directed to non-food uses, such

as biofuel production.

3.3. Forecasting future changes in
cropland requirement

To see the effect on predicted land requirement, global

production of each major crop group was increased by 50% in

themodel. Following the calculationmethodology, the predicted

increase in land area required also increased by 50% for all

crop groups, but the upper and lower estimates varied between

groups. For most crop groups, the increase estimate ranged from

∼ 25 to 75% above the 2018 total cropland area required for

production. However, for the nuts group, the increase estimate

ranged from 14 to 86%, reflecting the high global variability in

nut crop yields. Contrastingly, the increase estimate for sugar

crops ranged from 42 to 58%, due to the low global variability in

yields of these crops.

3.3.1. Analysis of individual crops

The individual crop with the greatest potential for

productivity gain when comparing HY with LY was cashew
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FIGURE 2

2018 crop production and cropland area harvested by major crop group (FAO, 2021).

TABLE 2 Allocation of 2018 cropland area harvested to final use.

Allocation

Total area harvested
(million hectares)

Human food (%) Animal feed (%) Other uses (%)

Cereals 694 55 34 11

Fruits 75 99 1 <0.5

Nuts 13 99 0 <0.5

Oilcrops 301 57∗ 5 38

Other plant 33 96 <0.5 4

Pulses 96 77 22 1

Starchy roots 62 70 22 8

Sugar 31 66 7 27

Vegetables 64 95 5 <0.5

Percentages may not sum to 100% due to rounding.
∗Although 57% of oilcrops land was allocated to food, 37% of oilcrops land was used for soyabean production.

See Supplementary material for detailed calculation methodology.

nuts: the LY/HY ratio for this crop was 0.06. This was

followed by papayas (0.13), pistachios (0.18), and mushrooms

and truffles (0.19). Papayas contributed around 2% of 2018

fruit production, while mushrooms and truffles were < 1% of

vegetable production. In contrast, cashew nuts and pistachios

together constituted around 40% of nut production in 2018,

but the contribution of nuts to global nutrient availability was

minor (Figure 2). Thus, these crops with low LY/HY ratios made

relatively minor contributions to human nutrition. All other

crops had an LY/HY ratio of at least 0.2.

Contrastingly, the individual crops with the least potential

for productivity gain using the LY/HY ratio were cassava leaves
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FIGURE 3

Contribution of plant foods to global nutrient availability. These values were calculated using the DELTA Model
®
(version 1.3; Sustainable

Nutrition Initiative®, 2021), so have been adjusted for waste, inedible portions, and bioavailability as described in section 2.

(0.99; however, this only includes data from two countries:

Congo and Colombia), cashewapple (0.97; includes data from

four countries), and asparagus (0.91). Again, these crops at

the other extreme of LY/HY ratio were minor contributors

to global nutrient availability. The full list is included in the

Supplementary material.

Using the productivity gains approach, the individual crops

that showed the greatest potential for reduction of land use

by improving poor yielding production could be investigated.

Assuming all production at LY were improved to HY, the

individual crops that would reduce their land footprints by the

greatest amount were found. The crops at the top of this list

were the major cereal crops: maize (reduction of 81 million

hectares, or 42% of current land growing maize), wheat (63

million hectares, 30%), and rice (36 million hectares, 28%).

These crops differ from those with the greatest potential for

productivity gains as they occupy greater areas of land, hence

have a greater potential for global cropland use reduction.

The increased production on the same land footprint that

could be achieved if all production were improved toHY showed

similar rankings. In this case, an extra 829 million tons of maize

(72% increase), 312 million tons of wheat (42% increase), and

259 million tons of rice (38% increase) could be produced from

the same land area as was used for these crops in 2018.

3.3.2. Analysis of crop groups

Table 3 shows the crop data aggregated to crop groups. The

crop group with the greatest potential for productivity gains was

nuts: the LY/HY ratio for this group was 0.16. This was followed

by oilcrops (0.33) and other plant (0.33). Contrastingly, the crop

groups with the least potential for productivity gain using this

ratio were sugar (0.79) and vegetables (0.53).

Assuming all production at LY were improved to HY, the

crop groups that would reduce their land footprints by the

greatest amount were: cereals, with a possible reduction of

278 million hectares (40% of land currently producing cereals);

followed by oilcrops (152 million hectares; 50%); and pulses (38

million hectares, 39%). At the other extreme, only 3.6 million

hectares of sugar crop land would be saved (12%) and 9.1 million

hectares of land producing nuts (although this constituted 73%

of the land producing nuts in 2018).

The increase in production without increasing land

footprint that could be achieved under global HY conditions

was also dominated by the crop groups occupying the greatest

land area. In this case, an extra 1.9 billion tons of cereals (67%

increase), 957 million tons of oilcrops (102% increase), and 618

million tons of starchy roots (74% increase) could be produced

from the same cropland area as was used for these crop groups

in 2018.
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TABLE 3 Aggregated results by crop group for production, area harvested, yield and outcomes if HY were achieved for all crops globally.

Crop group Production
(millions
of tons)

Area
harvested
(millions

of
hectares)

Global
average
yield

(tons per
hectare)

HY (tons
per

hectare)

LY (tons
per

hectare)

LY/HY Land saved if all production
were at HY

Additional production on
the 2018 land footprint if
all production were at HY

Millions
of

hectares

% of
2018
land
used

for this
crop
group

% of
2018
global
cropland

Millions
of tons

%
increase

in
production
compared

to
2018

Cereals 2,857 694 4.1 6.9 2.9 0.43 278 40% 20% 1,913 67%

Fruits 850 75 11.4 17.6 8.4 0.48 26 35% 2% 467 55%

Nuts 18 13 1.4 5.3 0.8 0.16 9 73% <1% 48 264%

Oilcrops 940 301 3.1 6.3 2.1 0.33 152 50% 11% 957 102%

Other plant 35 33 1.1 2.1 0.7 0.33 16 50% 1% 35 101%

Pulses 92 96 1 1.6 0.7 0.44 38 39% 3% 60 65%

Starchy roots 832 62 13.4 23.4 9.4 0.40 26 43% 2% 618 74%

Sugar 2,183 31 70 79.1 62.7 0.79 4 12% <1% 285 13%

Vegetables 1,117 64 17.5 25.3 13.4 0.53 20 31% 1% 498 45%
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3.3.3. Comparison to yield gap modeling

Several yield gap publications have calculated the potential

increase in mass of specific crops if production were to achieve

attainable or potential yields globally. Table 4 compares these

estimates with the results found here.

The existing estimates use varying methodologies and data

sources, and most rely on data recorded between 2000 and

2010, whereas this work uses 2018 data. The Global Yield

Gap and Water Productivity Atlas is continuously updated and

includes more recent data than the other publications used in

this comparison.

The potential production increases calculated vary by 2–87%

between the different yield gap analyses but are all greater than

the potential increases calculated here, with the exception of the

maize estimate fromMueller et al. (2012).

To check the sensitivity of these results to the definition

of HY, the potential production increases were also calculated

assuming HY represented the average yield of the best

performing 10% of crop production, rather than the best 50%. In

this instance, the potential production increases for rice (45%)

and soy (24%) changed little. However, the increases for maize

(101%) and wheat (105%) were significant, but still within the

range observed in the literature.

3.3.4. Scenario example

To illustrate the use of the cropland area forecasting

technique described here, it was implemented in the DELTA

Model
R©

framework to compare 2018 cropland requirement

with 2030 cropland requirement if all crop production were to

increase at the same rate as the forecast global population [i.e.,

increasing 12% from 7.6 billion people in 2018 to 8.5 billion

people in 2030 (United Nations, Department of Economic

and Social Affairs, Population Division, 2019)]. The results are

shown in Figure 4.

The model predicted a matching 12% increase in cropland

requirement over 2018 to support the increased production,

with lower and upper bounds of 7 and 17% increases,

respectively. However, improving 30% of global LY crop

production to HY for all crops in this scenario was predicted

to reduce cropland requirement to within 1% of the 2018

requirement. The upper and lower bounds for this estimate were

a 4% increase and a 3% decrease compared to 2018, respectively.

The nutritional outcomes of these 2030 scenarios were

similar to the 2018 scenario: under the assumption that non-

food use of crops remained constant, per capita energy, protein,

and fat availability would change by <3%, as the population

increase would be matched by increased crop production. The

availability of most other nutrients changed by <6% from 2018

levels. The exception was vitamin B12, per capita availability of

which fell by ∼ 10% due to being sourced almost exclusively

from animal-sourced foods, production of which was held

constant in this simulation.

4. Discussion

The DELTA Model
R©

has been used to analyse the nutrient

adequacy of current and future global food system scenarios

(Smith et al., 2021; Sustainable Nutrition Initiative R©, 2021).

Broadening the scope of the model to include the cropland

requirement of global food system scenarios, as detailed here,

begins the task of including the resource footprints and

environmental impacts of food production in the model. It also

allows policy and research users to see the interrelationships and

trade-offs between human nutrition and land use in future food

production scenarios.

4.1. Analysis of findings

That crop production (and cereals in particular) should have

a major role in the delivery of nutrition to the global population,

as calculated here, is unsurprising. Also clear is the minor role of

sugar crops in nutrition, despite their high contribution to global

crop mass. However, sugar crops showed the least variation in

yields of all crop groups. This is likely due to the dominance

of sugar crop production by a few countries; for example,

around 60% of global sugar cane is produced by Brazil and

India. Sugar cane also uses C4 photosynthesis, increasing their

photosynthetic, water, and nitrogen-use efficiency compared

to crops using C3 photosynthesis, likely contributing to these

minor yield variations compared to most food crops (Sage et al.,

2013). Sugar crops occupy a relatively small land area at 31

million hectares (∼2% of global cropland). Thus, although sugar

crops are poor contributors to human nutrition, little cropland

could be gained for production of other crops or alternative uses

by reducing sugar production or by raising the productivity of

poorer yielding sugar production to best practice.

Contrastingly, the production of both individual nut crops

and the nut crop group showed wide variation in global yields.

This is in part due to the dominance of production by individual

nations. For example, the USA was responsible for 59% of global

almond production on just 21% of the global area harvested

for almonds, while Viet Nam produced 45% of cashew nuts on

<5% of the global area harvested. The remainder of production

was sourced from a high number of low producing countries,

meaning that HY largely reflects the performance of a single

country. In these instances, it must be asked whether the

performance of these dominant countries can be replicated by

the rest of the nut-producing world, or whether the production

in these high-yielding countries can be further increased.

It has been suggested that nut crops should be more widely

produced and consumed due to their nutrient density and

reduced carbon footprint, compared to many other protein

sources (Clune et al., 2017; Afshin et al., 2019; Willett et al.,

2019). However, others have raised concerns over the protein

quality (Rutherfurd et al., 2014; Chalupa-Krebzdak et al., 2018;
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TABLE 4 Comparison of potential increase in production of specific crops calculated by di�ering sources using various methodologies.

Crop Production increase
if

all 2018 cropland
production

were at HY (%)

Production increase if yield gaps were closed (%)

Fischer et al.,
2014

Mueller et al.,
2012

Neumann et al.,
2010

GYGA∗

Maize 72 98 64 100 106

Rice 39 72 47 56 102

Soybeans 23 30 ND ND 106

Wheat 42 50 71 56 137

ND, no data; GYGA, global yield gap atlas.
∗See Global Yield Gap and Water Productivity Atlas. Available online at: www.yieldgap.org, van Ittersum et al. (2013), and Schils et al. (2018).

FIGURE 4

Comparing cropland requirement in 2018 with two simulated scenarios. The 2030 scenario shows predicted cropland requirement if all crop

production were to increase by 12%, to match the population increase from 2018 to 2030. The 2030 adjusted scenario is identical, but 30% of LY

production has been improved to HY. Error bars indicate the upper and lower bounds of the prediction.

Wolfe et al., 2018) and high contributions to water use and water

scarcity of nut production (Ridoutt et al., 2018; Sokolow et al.,

2019). The results presented here pertain only to the yields of nut

production, which show the greatest potential for improvement

toward best practice of all crop groups.

However, the greatest potential for increasing food

production on existing land was found for the staple crops.

Although these crops showed smaller differences between HY

and LY than nuts, the far larger areas of cropland dedicated to

their production means that even minor gains in productivity

would translate to large increases in production. However,

whether increases in production of these crops should be

targeted must be questioned. From a nutritional perspective,

staple crops are high contributors to energy and macronutrient

availability, as well as some specific minerals (e.g., iron, zinc).

However, the DELTA Model
R©

shows that it is micronutrients,

rather than macronutrients, that are limiting global nutrient

availability, and that the staple crops are not the densest

sources of these nutrients (Smith et al., 2021; Sustainable

Nutrition Initiative R©, 2021). Other food groups, such as

vegetables, nuts, and certain animal-sourced foods may

be better options from the perspective of delivering global

nutrient sufficiency.

A separate issue is the use of crops once harvested. Although

the majority of all crop production modeled was allocated to

human food use, more than a quarter of sugar crop mass

and more than a third of oilcrop mass leaves the food system

entirely for other uses, such as biofuel production (FAO, 2021).
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The efficiency of this cropland use for delivering nutrition is

therefore poor, and this fact should be weighed against the

benefits of these other uses.

The two future scenarios presented in Figure 3, one in which

crop production increases with the population, and a second in

which this occurs with a 30% productivity gain across all crop

groups, are merely illustrations of the potential use of the model.

It is almost certain that increases in production and changes

to productivity will not be uniform across all crop groups in

the future. However, the model can indicate the likely cropland

requirement of future production systems, as well as showing the

degree of uncertainty in these predictions.

4.2. Limitations

Due to the number of countries included in the analysis,

we have not reported here results at a geographic level, such as

where individual countries rank for production or yield of crops

or crop groups. This would be a large exercise, beyond the scope

of this work. This data is accessible online alongside the DELTA

Model
R©
(www.sustainablenutritioninitiative.com).

Uncertainty in estimating future cropland requirement

stems from multiple factors. Crop yields are dependent on

soil quality, crop genetics, weather, management practices, the

rate of crop development, and several other factors. Moreover,

these factors vary in importance between different crops. As

such, forecasting the land required to produce a certain amount

of a crop or crop group globally requires a high degree of

generalization. The limitations of such top-down approaches

are well-discussed in yield gap modeling, with the aggregation

of localized, crop-specific, biophysical, bottom-up data to form

a global picture presented as a more accurate approach (van

Ittersum et al., 2013; Fischer et al., 2014; Rattalino Edreira et al.,

2021). However, given the current absence of such data for many

crops, top-down empirical approaches must suffice.

The FAO national crop production and area harvested data

were chosen here for their broad coverage of global production

and regular data updates, allowing for modeling estimates to

be updated over time. However, the FAO data has several

limitations. Data at a national level does not allow the variation

at a sub-national level to be ascertained, which is high in some

countries with regional variation in production practices and

climate (Arata et al., 2020; Liu et al., 2021). There are also

countries that are not included in the FAO dataset, and the

quality of data included will vary between reporting authorities.

It should also be noted that solely 2018 crop data was used

here. Others have analyzed temporal changes in crop yields using

FAO and other datasets (see Arata et al., 2020 and references

therein). These analyses are important for forecasting future

changes to crop yields, which can be incorporated into cropland

requirement forecasting.

To account for the variability in crop yields when forecasting

increases and decreases in production in the future, the AY, HY,

and LY for each crop was calculated. The choice of the average

yield of the upper and lower yielding halves of production

to represent bounds on predictions is worthy of discussion.

Alternative choices, such as the highest and lowest yielding 10%

of production as HY and LY [as has been used at regional and

global scales for selected crops elsewhere (Licker et al., 2010;

Laborte et al., 2012; Liu et al., 2021)], or specific bounds based

on the yield characteristics of individual crops were considered,

and compared to the results of yield gap analysis in section 3.3.3.

The choice of a 50% threshold for HY and LY was made due

to the global resolution of the model and the diversity of crops

included. The 10% thresholds used elsewhere were justified by

a greater understanding of attainable yields, through the use

of more localized data, often including climatic, management,

and soil quality data. A similar approach here would have

necessitated either the user or the model making decisions

on the location of changes to production for the modeled

crops. This added degree of complexity risked impairing the

transparency of the model or the simplicity of its use, which

were given greater priority due to the intended use of the

model by a broad range of stakeholders. Improving low

yields to HY was thus assumed attainable for most crops

in most producing regions, regardless of fixed climatic and

geographical constraints.

It is likely that for some crops, improving a large proportion

of LY production to HY will not be possible. The highest

yielding countries for a crop often have climatic, geographical,

and technological advantages over the poorer yielding countries.

Some of these barriers will be impossible to overcome, meaning

that the modeled improvements will not be achievable. Even

where such improvements are achievable, they may come

with changes to management practices, such as higher use of

fertilizers, pesticides, or irrigation. The trade-offs necessary to

implement these practices, such as financial and environmental

costs, should be considered in addition to yield outcomes

(Fischer et al., 2014). As holistic a view of outcomes as

possible is desirable when considering future changes to crop

production. The method presented here does not capture all of

these outcomes but was chosen as a transparent and intuitive

generalizable approach.

As well as forecasting the cropland requirement of changes

in total crop production, it was also necessary to consider

the impacts of increasing crop yields on existing land. The

approaches considered: linear increases to global average yields,

or productivity gains via proportionally increasing land at

LY to HY, each have advantages and disadvantages. While

the former allows for yields to be achieved that are above

current best practice due to future improvements in crop

technology and management and is most analogous to existing

yield gap approaches, the degree of possible improvement will

vary between crops. The comparison of our results with those
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obtained in yield gap modeling in Table 3 demonstrates that,

for the four major crops analyzed, our estimates of potential

increases in production should be considered conservative. This

is likely due to the fact that we do not allow for current high

yielding production to be further improved, whereas previous

yield gap analyses consider the possible improvement of all

cropland more locally. The conservative nature of our estimates

for the staple crops should not necessarily be extrapolated to

other crops: there is a paucity of yield gap data for most food

crops, preventing any conclusions on this.

Finally, the modeling approach presented here has not

considered the varied characteristics of different cropland. The

use of total cropland area as a metric has been criticized

as not capturing the locally specific impacts of land use.

Ridoutt and Navarro Garcia (2020) proposed metrics such

as cropland scarcity, cropland malnutrition footprint, and

cropland biodiversity footprint as alternatives that better capture

the complexities of land suitability for specific crops.While these

are powerful tools for local decision making, they were not

included here due to the challenges of sufficient global data and

intuitive ease of interpretation. Instead, the approach produced

in this paper allows for rapid calculation and easy understanding

of the implications of future changes to global food production

on cropland use and its connection to human nutrition.

4.3. Recommendations for future study

Future work could use alternative methods for the

consideration of specific crops, and indeed this approach

has been taken by others. For example, Liu et al. (2021)

considered China’s total attainable maize and soy production

if all production in each Chinese county was able to achieve

the yields of the best performing 10% of production in that

county. The use of the best performing 10% as the attainable

level was considered appropriate given the individual crop and

county resolution of the modeling approach. In contrast, given

the global perspective of the modeling presented here, the best

performing 50% was selected as a more appropriate estimate of

an attainable global average.

As mentioned in the introduction, yield gap analysis is a

common approach in researching future cropland requirement

(Cassman et al., 2003; Lobell et al., 2009; Neumann et al., 2010;

Mueller et al., 2012; Fischer et al., 2014; West et al., 2014;

Hatfield and Beres, 2019; Rong et al., 2021). Frequently, average

crop yields are found to plateau at around 80% of the potential

yield, often due to the increasing financial costs of incremental

production gains (Lobell et al., 2009; van Ittersum et al., 2013;

Fischer et al., 2014). Using yield gaps in predictive modeling is

limited by the availability of global data, which is only available

for the most widely grown crops.

Previous research has shown that even staple

crops such as wheat, maize and rice are not grown

at full potential yields in the majority of producing

countries (Lobell et al., 2009; Neumann et al., 2010;

Hatfield and Beres, 2019; Rong et al., 2021). Thus,

modeling linear yield increases may be appropriate for

certain crops.

The method of productivity gains applied here does

not allow for possible large improvements in attainable

yields due to technological advancement. However,

bringing global yields closer to best practice is more

realistic when simultaneously considering all crop

species. Future work could combine the approaches

of linear increases in yield and the productivity gains

presented here with consideration of yield gaps for

individual crops.

Current and future reductions in the yields of certain crops

in most parts of the world due to climate change have been

identified, with particular focus on wheat, rice, maize, and

soy (Lobell et al., 2011; Challinor et al., 2014; Zhao et al.,

2017; Ray et al., 2019). It has been estimated that year-by-

year climate variability already accounts for around a third of

observed yield variability in major crop varieties (Ray et al.,

2015); this variability may increase in many regions as climatic

conditions diverge from previous averages. To model such

future scenarios, linear decreases to crop yields or shifts of

HY production to LY could be simulated. These approaches

were beyond the scope of this work but should feature in

future modeling.

Climate change is also likely to have an impact on the

nutritional value of crops. Crops grown experimentally

at elevated CO2 concentrations generally showed higher

yields given sufficient nutrient and water availability,

but also both positive and negative impacts on nutrient

content (Myers et al., 2014; Dong et al., 2018). A

full understanding of these impacts on nutrients in a

wider range of crops would allow for these changes

to be included in the nutritional calculations for

future scenarios.

The FAO reported that cropland covered around 1.4

billion hectares in 2018, a rise of 20% since 2000 (FAO,

2020b). The potential for increasing cropland area without

conversion of non-agricultural land lies largely in land currently

used for animal grazing. It has been estimated that, of the

close to two billion hectares of 2010 global grazing land,

685 million hectares was suitable for crops (Mottet et al.,

2017). This sets an upper limit on cropland area (without

conversion of non-agricultural land) of around 2.1 billion

hectares, comparable to estimates elsewhere (Rockström et al.,

2009; Henry et al., 2018). However, the conversion of grassland

to crops would result in a reduction of available grazing land,

with an impact on animal production. As implied by Figure 3,

animal-sourced foods are major contributors to nutrient

availability, particularly vitamin B12 from meat and calcium

from dairy (Smith et al., 2022a,b). Any reductions in animal
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production due to cropland expansion may have consequences

for nutrient availability from these sources. Moreover, further

expansions in cropland are concerns for both biodiversity

(Delzeit et al., 2017; Usubiaga-Liaño et al., 2019) and carbon

balance (Engström et al., 2017). These factors must feature in

any model attempting to capture the full scope of impacts of

cropland expansion.

5. Conclusion

Forecasting the future dynamics of the global food system

is clearly challenging given the high number and magnitude of

the uncertainties involved. However, such forecasting will be

key to inform shifts toward more sustainable crop production

and achieving global nutrient adequacy. Themodeling presented

here allows for the simultaneous calculation of cropland

footprint and nutrient availability in future scenario modeling.

The insights generated by the DELTA Model
R©

demonstrate

the nutritional importance of current crop production and the

potential cropland and nutritional outcomes of productivity

gains in individual crops and crop groups. Unifying the

nutritional value of production with the cropland area necessary

to achieve it allows the sustainability of future food system

scenarios to be assessed against both these criteria. The model

should be used in future policy discussion and research to

quantify the connections between human nutrition and land

use, to avoid situations where one or the other is excluded from

decision making.
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