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Association between the
metabolic score for insulin
resistance (METS-IR) and
estimated glomerular filtration
rate (eGFR) among health
check-up population in
Japan: A retrospective
cross-sectional study

Gailing Liu, Lin Tao, Qing Zhu, Xiaojing Jiao, Lei Yan
and Fengmin Shao*

Department of Nephrology, People’s Hospital of Zhengzhou University, He’nan Provincial People’s
Hospital, He’nan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou, China
Aim: This study aimed to investigate the relationship between a new metric—

metabolic score for insulin resistance (METS-IR)—and estimated glomerular

filtration rate (eGFR) among Japanese participants who underwent health

check-ups.

Methods: We conducted a cross-sectional study that involved participants in a

medical health screening program, which was conducted at the Medical Health

Check-up Center in Japan. This retrospective study examined the relationship

between METS-IR and eGFR among 881 individuals that joined the program

between March 1, 2004, and December 31, 2012. Covariates consisted of

serum laboratory tests and lifestyle questionnaires. Multivariate linear

regression analysis was used to explore the association between METS-IR

and eGFR. In addition, subgroup and interaction analyses were done based on

age, sex, body mass index (BMI), alcohol use, smoking status, and

hyperuricemia.

Results: A total of 881 individuals participated in this study. High METS-IR was

highly linked with reduced eGFR (adjusted b = -5.04, 95% confidence interval

(CI): -7.65 to -2.43), while METS-IR was utilized as a categorical variable inside

the multiple regression analysis. A decrease in eGFR of 2.54 units was reported

for every 10-unit rise in METS-IR (adjusted b = -2.54, 95% CI: -4.04 to -1.05, P-

value = 0.001). Stratified analysis suggested no marked interaction between

METS-IR and eGFR across age, sex, BMI, and alcohol consumption groups.

However, there was an indication of interaction between METS-IR level,
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smoking status (P-value = 0.001), and uric level (P-value = 0.011) on eGFR

decrease.

Conclusions: METS-IR is remarkably associated with eGFR among the

participants who underwent health check-ups in Gifu, Japan. Although more

studies are required to prove it, METS-IR could be applied as amonitoring index

for early screening, primary prevention, and diagnostic and treatment

management strategies for chronic kidney disease.
KEYWORDS

metabolic score for insulin resistance (METS-IR), estimated glomerular filtration rate
(eGFR), insulin resistance, insulin sensitivity, chronic kidney disease (CKD)
1 Introduction

Chronic kidney disease (CKD) is a threat to human health

and a social and economic burden that affects people worldwide

(1). CKD is symptomatic until the disease stage advances.

Furthermore, CKD has been linked to an increased risk of

cardiovascular illness (2). As a result, identifying and treating

CKD in its early stages are critical for avoiding end-stage renal

failure, cardiovascular disease, and mortality. In 2019, Kidney

Disease: Improving Global Outcomes (KDIGO) proposed that

screening, risk stratification, and therapy for CKD in at-risk

individuals should be initiated immediately, preferably in

primary health facilities or the community (3). Screening for

CKD and catching it early can greatly decrease the risk of death

and illness from CKD and its comorbidities, such as heart

disease (4, 5). In addition, KDIGO recommended using the

estimated glomerular filtration rate (eGFR) as part of the first

line of screening for CKD (3).

Insulin resistance (IR) is a state of diminished response to

insulin in target cells and an important pathogenic mechanism

for the development of metabolic diseases. It is present in many

chronic diseases, including diabetes, cardiovascular disease,

hypertension, and CKD (6, 7). Furthermore, several

investigations revealed that being overweight and having

metabolic syndrome (MS) was significantly linked to a

moderate decline in eGFR (7–12). Therefore, we hypothesized

that there might be an association between IR or related

surrogate markers and eGFR.

The metabolic insulin resistance score (METS-IR) is a new

metric for evaluating IR and assessing cardiometabolic risk in

healthy and high-risk populations (13). As the gold standard for

assessing insulin resistance (IR), hyperinsulinemic euglycemic

clamp (HEC) is a steady-state technique but is limited in large-

scale clinical studies and epidemiological investigations because

of its invasive, laborious, expensive, and complex nature (14, 15).
02
Furthermore, insulin-based IR metrics, such as homeostatic

model assessment (HOMA), also have limitations in terms of

accuracy and stability (13, 15). Recently, some IR alternatives

that are not based on insulin assays, such as triglyceride-glucose

(TyG) index (16) and METS-IR (13, 17), have become

increasingly attractive. In the study by Bello-Chavolla OY et al.

(13), METS-IR was validated in three samples: one with

education, health, and care plan (HEC) data, one with

modified frequently sampled intravenous glucose tolerance test

(FSIVGTT) data, and one with a large cohort against HOMA-IR.

Compared with that of HEC and the SI index generated from the

FSIVGTT, METS-IR showed a stronger association with the M-

value adjusted by fat-free mass and diagnostic performance to

identify reduced insulin sensitivity (IS). In addition, METS-IR

was effective in identifying people with early hypertension (17,

18) and was more valid in predicting the risk of type 2 diabetes

(13), ischemic heart disease (19) and coronary heart disease (20).

These studies primarily concentrated on the association of IR

with hypertension or cardiovascular disease. However, few

studies have addressed the correlation between METS-IR and

eGFR. Therefore, this cross-sectional study aimed to explore

whether there was a clear association between METS-IR and

eGFR in the Japanese medical examination population.
2 Methods

2.1 Study design and population

We designed a cross-sectional study that involved participants

in a medical health screening program performed at the Medical

Health Check-up Center in Japan. The program aims to enhance

community health by detecting and evaluating risk factors for

chronic diseases at an early stage. This medical screening service,

named “human dock,” is very well received in Japan.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1027262
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2022.1027262
The data were extracted from the DRYAD database (http://

www.Datadryad.org/). All researchers can get the Dryad data

package containing the information for free (Fukuda, Takuya,

et al., 2016) (21). Information about the work by Fukuda,

Takuya, et al. was gathered using thorough citations (Dryad,

https://doi.org/10.5061/dryad.m484p).

People who had their brachial-ankle pulse wave velocity

checked as part of a health screening program at Murakami

Memorial Hospital from March 2004 to December 2012 were

asked to participate in the study. The Murakami Memorial

Hospital’s ethics committee approved the study, and all

participants provided informed consent before participating in

the study (22). This study was conducted according to the

“Guidelines for Strengthening Reports of Observational Studies

in Epidemiology (STROBE)” (23).

The study excluded pregnant women, people taking oral

contraceptives and hormones, those who were detected as

positive for hepatitis B antigen and/or hepatitis C antibodies,

and those with an ankle-brachial index below 0.95 (21). In the

original article, a total of 912 participants participated in the

study according to the nadir criteria (21). We further directly

deleted 30 missing values for alcohol consumption, exercise, and

fatty liver, as well as 1 with abnormal triglyceride (TG), resulting

in 881 participants included in our study.
2.2 Data collection and measurements

The health check-up included height, weight, blood

pressure, blood biochemical index measurement, urine

analysis, routine blood test, blood glucose, blood lipids, and

ultrasound examination (22). The data were from the publicly

available Dryad database. The detailed data collection methods

were outlined in the original work by Takuya Fukuda et al.

(21). Ultrasound examinations were performed by skilled

specialists using the Aloka SSD-650CL (Aloka Co, Ltd,

Tokyo, Japan) to diagnose the presence or absence of fatty

liver based on examination prompts. A judgment against fatty

liver was also made by another physician on the ultrasound

photographs without consulting the participants’ personal

information (24). Fatty liver was defined according to the

two necessary conditions of liver echo contrast and

brightness (25). The body mass index (BMI) was determined

by dividing the participant’s height in meters squared by their

body weight in kg. The formula for METS-IR was Ln [(2 ×

fasting glucose (mg/dL)) + fasting TG (mg/dL)] × BMI (kg/

m2))/(Ln [HDL-c (high‐density lipoprotein cholesterol) (mg/

dL)]). eGFR was computed using the Japanese Society of

Nephrology formula: eGFR = 194 × Cr−1.094 × age−0.287

(mL/min/1.73 m2) for males, while eGFR was multiplied by a

correction factor of 0.739 for females. Serum uric acid levels >

420 mmol/L in men or 360 mmol/L in women were considered

as having hyperuricemia (HUA) (26).
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The same skilled team of interviewers distributed a

standardized questionnaire to each participant. By asking the

participants how many and what kind of alcoholic beverages

they had each week during the previous month, researchers were

able to estimate the average amount of alcohol they drank each

week. Total weekly alcohol consumption was counted in grams

and then classified as follows: nil or little (40 g/week); light (40–

140 g/week); moderate (140–280 g/week); excessive (> 280 g/

week) (24, 27, 28). Additionally, two categories were defined by

their smoking habits: none or past and current smokers (24).

Participants listed the kind, length, and frequency of the sports

or leisure activities they engaged in on the survey (29). We

classified participants as regular exercisers if they engaged in any

type of sport on a regular basis, at least once per week (30).
2.3 Statistical analysis

Data were divided into categories and continuous variables.

Student’s t-test compared continuous, normally distributed

variables between groups. Non-normally distributed data were

compared using the Wilcoxon rank-sum test and reported as the

median interquartile range. Comparing categorical variables as

percentages with the chi-square test. Kruskal–Wallis test or one-

way analysis of variance analyzed differences between METS-IR

index quartile groups. Multivariate regression was utilized to

evaluate the relationship between METS-IR and eGFR. We

calculated regression coefficients and a 95% confidence interval

(CI). Due to the low number of missing values (3.2%), this study

used direct deletion.

To investigate confounding, we added or removed covariates

for correction in the linear regression models one by one and

compared the corresponding effect values. Covariates with effect

values changing by more than 10% were included for multi-model

adjustment in our study (31), and aspartate aminotransferase (AST)

and gamma-glutamyl transferase (GGT) were excluded. During

covariate selection, variance inflation factor ≥ 5 indicated the

presence of multicollinearity, and BMI, total cholesterol (TC),

TG, high-density lipoprotein-cholesterol (HDL-c), and low-

density lipoprotein-cholesterol (LDL-c) were excluded.

Considering the previous literature reporting a possible

association between IR and HUA (32, 33), we did not include

uric acid as a variable for model adjustment. However, we

performed a subgroup analysis by grouping uric acid levels to

explore whether there was a link between METS-IR and eGFR in

people with different uric acid levels. Age, sex, systemic blood

pressure (SBP), diastolic blood pressure (DBP), ALT, fasting blood

glucose (FPG), exercise, fatty liver, alcohol consumption, and

smoking status were eventually included in the multi-model

adjustment. We developed three models. Age and sex were taken

into account in Model 1. Age, sex, SBP, DBP, ALT, and FPG levels

were accounted for in Model 2. Model 3 was based on model 2 and

lifestyle factors (exercise, fatty liver, alcohol consumption, and
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http://www.Datadryad.org/
http://www.Datadryad.org/
https://doi.org/10.5061/dryad.m484p
https://doi.org/10.3389/fendo.2022.1027262
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2022.1027262
smoking status). Interaction and stratification analyses were

performed based on age (< 65 or ≥ 65 years), sex (male or

female), BMI (< 25 or ≥ 25 kg/m2), alcohol consumption,

smoking status, and HUA (hyperuricemia or non-hyperuricemia).

Stratified linear regression models were used for subgroup analysis.

In addition, we used smoothed curve fitting (penalized spline

method) to observe whether METS-IR had a nonlinear

relationship with eGFR. For sensitivity analysis, METS-IR was

also turned into a categorical variable, and the P trend was

computed. R version 4.0.2 (http://www.R-project.org) and “Free

Statistics software”were used for all statistical tests (version 1.6). P <

0.05 was regarded as being statistically significant.
3 Results

3.1 Baseline characteristics of
the participants

Between March 2004 and December 2012, 1,445 participants

in the Murakami Memorial Hospital health check-up program

had their medical records with clinical features examined. This

study comprised 912 participants (592 men and 320 women).

The detailed process of inclusion and exclusion was as described

in the previous work of Fukuda et al. (21). After the direct

deletion of 30 missing values for alcohol consumption, exercise,

and fatty liver, as well as 1 abnormal TG, 881 participants were

finally used for analyses. The flowchart for participant selection

is presented in Figure 1.

Based on the quartile groups of the METS-IR, the baseline

characteristics of the study participants are shown in Table 1. The

average participant age was 51.1± 9.4 years, and 575 (65.3%) were

men. Significant statistical differences were detected in sex, age,

BMI, SBP, DBP, AST, ALT, GGT, FPG, UA, TG, HDL-c, LDL-c,

alcohol consumption, smoking status, a habit of exercise, and fatty

liver among different METS-IR index groups (all P-values < 0.05).

Interestingly, male participants with high alcohol consumption,

smoking, and fatty liver had significantly higher METS-IR. The

opposite patterns were observed in the habit of exercise. Regular

exercisers tended to have much lower METS-IR. This was

consistent with our common knowledge as well as previous

studies (17).
3.2 Univariate and multivariate analyses
of METS-IR and eGFR

As shown in Table 2, the univariate analysis indicated that

METS-IR per 10-unit rise, sex, age, BMI, SBP, DBP, GGT, FPG, uric

acid, TC, TG, HDL-c, LDL-c, fatty liver, and smoking status were

associated with eGFR (all P-values < 0.05). The eGFR level

decreased by 2.8 mL/min (95% CI: -4 to -1.59) for every 10-unit

rise in METS-IR.
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Table 3 displays the results of multivariable regression

analyses. All four models showed a negative correlation

between METS-IR and eGFR level after controlling for

different potential confounders (Table 3). A decrease in eGFR

of 2.54 units was reported for every 10-unit rise in METS-IR

(adjusted b = -2.54, 95% CI: -4.04 to -1.05, P = 0.001) when

METS-IR was used as a continuous variable in the fully adjusted

model (model 3). When METS-IR was converted into

categorical variables according to quartiles, compared with

that of participants with lower METS-IR Q1 (≤ 28.61), the

adjusted b values for METS-IR and eGFR in Q2, Q3, and Q4

were -3.32 (95% CI: -5.36 to -1.28, P = 0.001), -3.51 (95% CI:

-5.73 to -1.28, P = 0.002), and -5.04 (95% CI: -7.65 to -2.43, P <

0.001), respectively, in the fully adjusted model. In addition, as

METS-IR increased, the eGFR levels of the study participants

showed a decreasing trend (Table 3, P for trend < 0.001).

Furthermore, we found an increasing trend of a significant

negative linear correlation between the METS-IR index and

eGFR (Figure 2).
3.3 Subgroup analysis

The results of the subgroup analysis are presented in

Figure 3. Stratified analysis suggested no marked interaction

between METS-IR and eGFR across age (< 65 or ≥ 65 years), sex

(male or female), BMI (< 25 or ≥ 25 kg/m2), and alcohol

consumption (none or light, moderate or heavy) groups. The

association between METS-IR and eGFR was robust across age

(P for interaction = 0.554), sex (P for interaction = 0.973), BMI

(P for interaction = 0.095), and alcohol consumption (P for

interaction = 0.395) subgroups. In addition, we observed a

significant interaction in the subgroups of smoking status
FIGURE 1

Flowchart of participant selection.
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(P for interaction = 0.001) and HUA (P for interaction = 0.011).

The correlation between METS-IR and eGFR was statistically

stronger in smokers (b = -4.84, 95% CI, -8.12 to -1.56) and non-

hyperuricemic individuals (b = -2.56; 95% CI, -4.2 to -0.92). In

addition, we observed a significant interaction in the subgroups
Frontiers in Endocrinology 05
of smoking status (P for interaction = 0.001) and HUA (P for

interaction = 0.011). The correlation between METS-IR and

eGFR was statistically stronger in smokers (b = -4.84, 95% CI,

-8.12 to -1.56) and non-hyperuricemic individuals (b = -2.56;

95% CI, -4.2 to -0.92).
TABLE 1 Baseline characteristic of the study population according to METS-IR.

Variables Total (n = 881) Q1 (n = 222) Q2 (n = 220) Q3 (n = 220) Q4 (n = 219) P value

Sex, n (%) < 0.001

Male 575 (65.3) 82 (36.9) 126 (57.3) 178 (80.9) 189 (86.3)

Female 306 (34.7) 140 (63.1) 94 (42.7) 42 (19.1) 30 (13.7)

Age, (years) 51.1 ± 9.4 50.8 ± 9.8 52.4 ± 9.1 51.2 ± 9.4 50.0 ± 9.3 0.049

BMI, (kg/m2) 23.1 ± 3.1 19.8 ± 1.4 22.3 ± 1.3 23.8 ± 1.5 26.7 ± 2.9 < 0.001

SBP, (mmHg) 120.2 ± 15.0 112.3 ± 13.1 118.2 ± 14.7 123.3 ± 14.4 127.3 ± 13.2 < 0.001

DBP, (mmHg) 76.1 ± 10.0 70.3 ± 8.9 74.6 ± 9.7 78.4 ± 9.4 81.3 ± 8.3 < 0.001

AST, (IU/L) 20.8 ± 8.1 19.4 ± 6.1 19.0 ± 5.8 20.9 ± 6.9 24.0 ± 11.5 < 0.001

ALT, (IU/L) 19.0 (14.0, 26.0) 15.5 (12.0, 19.0) 16.0 (13.0, 21.0) 20.0 (16.0, 27.0) 26.0 (20.0, 40.0) < 0.001

GGT, (IU/L) 19.0 (14.0, 28.0) 14.0 (11.0, 18.0) 16.0 (13.0, 24.0) 21.0 (15.8, 33.0) 25.0 (19.0, 38.0) < 0.001

FPG, (mg/dl) 98.1 ± 14.2 92.6 ± 8.1 95.7 ± 9.8 99.2 ± 18.5 105.0 ± 15.0 < 0.001

UA, (mg/dl) 5.2 (4.2, 6.1) 4.4 (3.6, 5.2) 5.0 (4.0, 5.8) 5.7 (4.7, 6.2) 6.0 (5.3, 6.9) < 0.001

TC, (mg/dl) 209.5 ± 35.8 208.0 ± 37.7 206.4 ± 32.8 208.9 ± 35.4 214.9 ± 36.7 0.07

TG, (mg/dl) 80.0 (53.0, 123.0) 50.0 (37.0, 69.0) 65.0 (51.0, 88.0) 92.0 (70.0, 127.5) 141.0 (100.0, 192.5) < 0.001

HDL-c, (mg/dl) 53.6 ± 14.6 66.8 ± 13.6 57.4 ± 11.4 48.4 ± 9.7 41.8 ± 9.2 < 0.001

LDL-c, (mg/dl) 127.9 ± 31.8 118.5 ± 32.9 125.6 ± 28.4 132.0 ± 31.2 135.5 ± 31.9 < 0.001

Alcohol consumption, n (%) 0.006

None or minimal 567 (64.4) 165 (74.3) 139 (63.2) 126 (57.3) 137 (62.6)

Light 147 (16.7) 31 (14) 38 (17.3) 45 (20.5) 33 (15.1)

Moderate 88 (10.0) 10 (4.5) 28 (12.7) 28 (12.7) 22 (10)

Heavy 79 (9.0) 16 (7.2) 15 (6.8) 21 (9.5) 27 (12.3)

Smoking status, n (%) 0.001

None or Past 690 (78.3) 187 (84.2) 183 (83.2) 164 (74.5) 156 (71.2)

Current 191 (21.7) 35 (15.8) 37 (16.8) 56 (25.5) 63 (28.8)

Habit of exercise, n (%) 0.002

No 704 (79.9) 164 (73.9) 169 (76.8) 179 (81.4) 192 (87.7)

Yes 177 (20.1) 58 (26.1) 51 (23.2) 41 (18.6) 27 (12.3)

Fatty liver, n (%) < 0.001

No 628 (71.3) 217 (97.7) 196 (89.1) 151 (68.6) 64 (29.2)

Yes 253 (28.7) 5 (2.3) 24 (10.9) 69 (31.4) 155 (70.8)

METS-IR 33.5 ± 6.5 26.0 ± 1.9 30.7 ± 1.2 35.1 ± 1.4 42.3 ± 4.4 < 0.001

Data were mean ± SD or median (IQR) for skewed variables or numbers (proportions) for categorical variables.
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ASL, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, g-glutamyltranspeptidase;
FPG, fasting plasma glucose; UA, uric.acid; TC, total cholesterol; TG, triglyceride; HDL-c, high‐density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; METS-IR,
metabolic score for insulin resistance; Q1, Q2, Q3, and Q4 are quartiles of the metabolic score for insulin resistance(METS-IR).
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TABLE 2 Results of univariate analysis of eGFR.

Variable b (95%CI) p value

METS-IR per 10 -2.8 (-4,-1.59) < 0.001

Sex, n (%) 3.11 (1.46,4.77) < 0.001

Age, (years) -0.51 (-0.59,-0.43) < 0.001

BMI, (kg/m2) -0.37 (-0.62,-0.12) 0.004

SBP, (mmHg) -0.12 (-0.17,-0.07) < 0.001

DBP, (mmHg) -0.21 (-0.29,-0.14) < 0.001

AST, (IU/L) -0.09 (-0.18,0.01) 0.087

ALT, (IU/L) -0.03 (-0.08,0.03) 0.311

GGT, (IU/L) -0.04 (-0.07,-0.01) 0.021

FPG, (mg/dl) -0.15 (-0.2,-0.09) < 0.001

Uric acid, (mg/dl) -2.67 (-3.22,-2.12) < 0.001

TC, (mg/dl) -0.06 (-0.08,-0.03) < 0.001

TG, (mg/dl) -0.03 (-0.04,-0.02) < 0.001

HDL-c, (mg/dl) 0.09 (0.03,0.14) 0.002

LDL, (mg/dl) -0.06 (-0.09,-0.04) < 0.001

Habit.of.exercise, n (%) -1.25 (-3.23,0.72) 0.214

Fatty liver, n (%) -1.97 (-3.72,-0.22) 0.027

Alcohol consumption -1.68 (-3.7,0.34) 0.103

Smoking status 2.31 (0.39,4.23) 0.018

METS-IR, metabolic score for insulin resistance; eGFR, estimated glomerular filtration rate; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; AST,
aspartate aminotransferase; ALT, alanine aminotransferase; GGT, g-glutamyltranspeptidase; FPG, fasting plasma glucose; UA, uric.acid; TC, total cholesterol; TG, triglyceride; HDL-c,
high‐density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
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TABLE 3 Multivariable-adjust b and 95%CI of the METS-IR index quartiles associated with eGFR.

Variable
unadjusted model1 model2 model3

b (95%CI) P_value b (95%CI) P_value b (95%CI) P_value b (95%CI) P_value

METS-IR per 10 -2.8 (-4~-1.6) <0.001 -2.63 (-3.81~-
1.46)

<0.001 -2.21 (-3.59~-
0.84)

0.002 -2.54(-4.04~-
1.05)

0.001

1st Quartile(≤28.61) Ref Ref Ref Ref

2st Quartile(28.61-
32.84)

-4.95 (-7.14~-
2.76)

<0.001 -3.61 (-5.63~-
1.59)

<0.001 -3.34 (-5.38~-
1.31)

0.001 -3.32 (-5.36~-
1.28)

0.001

3st Quartile(32.84-
37.62)

-5.18 (-7.37~-
2.99)

<0.001 -3.9 (-6.01~-1.78) <0.001 -3.36 (-5.55~-
1.17)

0.003 -3.51 (-5.73~-
1.28)

0.002

4st Quartile(≥37.62) -6.27 (-8.46~-
4.07)

<0.001 -5.51 (-7.66~-
3.37)

<0.001 -4.63 (-7.04~-
2.21)

<0.001 -5.04 (-7.65~-
2.43)

<0.001

p for trend <0.001 <0.001 <0.001 <0.001

Model 1 adjust for age and sex.
Model 2 adjust for Model 1+ SBP, DBP, ALT, FPG.
Model 3 adjust for Model 1+ Model 2 +parameters of lifestyles (Exercise, Fatty liver, Alcohol consumption, Smoking status)
METS-IR, metabolic score for insulin resistance; eGFR, estimated glomerular filtration rate; Ref, reference; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT, alanine
aminotransferase; FPG, fasting plasma glucose.
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4 Discussion

In our cross-sectional analysis, the METS-IR index, as a

categorical/continuous variable, was negatively correlated with

eGFR after adjusting for other covariates among individuals who

underwent health check-ups in Gifu, Japan. The results of the

subgroup analysis were stable across age, sex, BMI, and alcohol

consumption groups. Interestingly, the association of METS-IR

with eGFR was significantly different in the smoking status and

HUA subgroups.

METS-IR is a recently developed score to evaluate IR that is

not dependent on insulin measures but rather on laboratory tests

(such as lipids and blood glucose) that are readily available in

primary healthcare (13, 17). HEC (13, 14), the best way to

measure IR, is invasive and not good for a broad population.

Among the most popular IR indicators used in clinical

epidemiology research is the “HOMA-IR,” derived from an

insulin measurement (15, 17). However, because of its price,

especially in less developed areas, its practical applicability is

constrained (17, 34). METS-IR is a novel alternative to IR. It is

calculated using standard measurements (FPG, TG, HDL, and

BMI), and studies have shown that it agrees well with the results

of HEC and intravenous glucose tolerance (13, 17). Therefore,

METS-IR has been promoted in recent years for the assessment

of IR.

The relationship between IR and CKD had been

demonstrated in previous studies (7–9, 12). Irrespective of

diabetes prevalence, a rising trend in HOMA-IR was related to

an increased risk of unfavorable renal outcomes during the
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course of a 12-year prospective cohort study of the general

population without CKD (hazard ratio = 2.06, 95% CI: 1.62–

2.60, P < 0.001) (7).

However, some studies failed to find a significant

relationship between eGFR and IR. Johns et al. (35) observed

no connection between IR and eGFR, even though patients

with MS had a greater risk of CKD and a lower average eGFR

than that of the others. Only hypertension was found to be

correlated to CKD (odds ratio = 3.5, 95% CI: 1.2–10.1, P =

0.02). In another former study (36), multivariate analysis found

no significant connection between HOMA-IR index values and

eGFR. Analysis of covariance-adjusted HOMA-IR index values

in lower eGFR groups were not substantially higher. They

found no notable variations in HOMA-IR values by the

number of MS components. They concluded that reduced

renal function is unrelated to IR. There are also other studies

that have made similar conclusions (37–39). The possible

explanation is that our study differs from theirs in the study

population and the metrics used to proxy for IR. The study

population of this study was a healthy physical examination

population, without deliberate exclusion of the CKD

population, which is closer to the real world. Furthermore,

METS-IR, as a new IR alternative marker, can respond to IR

even better than that of HOMA-IR (13, 40).

The results of our study are in agreement with those found

by Shi W et al. (41). TyG is another novel alternative marker of

IR. Shi W et al. reported that after full adjustment, each SD
FIGURE 2

Association between METS-IR index and eGFR. METS-IR,
metabolic score for insulin resistance; eGFR, estimated
glomerular filtration rate.
FIGURE 3

Subgroup analyses of the METS-IR and eGFR. METS-IR,
metabolic score for insulin resistance; eGFR, estimated
glomerular filtration rate.
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increase in TyG resulted in an extra 42.6 percent probability of

lower eGFR. The highest TyG quartile had 1.934 times the risk of

the lowest. The eGFR decreased linearly with TyG. This study

indicated TyG as a predictive tool for preventing low eGFR (41).

Takuro Okamura et al. further reported that the TyG index

presented a significant risk of developing CKD in all study

participants and demonstrated that the TyG index could be

used as a predictor for incident CKD (16). According to recent

research by Pengbo Wang et al., a high METS-IR score was

linked to an increased risk of slightly lower eGFR and a high risk

of quick eGFR decline in the Chinese rural population

(excluding those with eGFR less than 60 mL/min) (8). Our

findings are consistent with the above studies.

Both our study and prior research have investigated the

connect ion between METS-IR and eGFR, and the

pathophysiological basis for this result is strong. It has been

previously shown that eGFR and other elements of the MS help

to explain the variability of IS in older men with CKD stages 3 and 4

(42). Various probable mechanisms connecting the IR and the

development of CKD have been revealed by some investigations,

meantime. IR has various effects on kidney function, including

abnormalities in hemodynamics, podocyte function, and tubular

function, among others (43). They hypothesized that endothelial

cell injury and enhanced vascular permeability induced by IR or

hyperinsulinemia would lead to glomerular ultrafiltration and

mesenteric hyperproliferation, which would then lead to a

decrease in eGFR (44–46). On the other hand, other

investigations found that overactivated inflammatory responses

could govern elevated IR states. Therefore, the pathophysiology of

CKD is heavily influenced by oxidative stress, the inflammation

process, and metabolic acidosis brought on by IR (16).

Additionally, we noticed a significant interaction in the

relationship between the METS-IR index and eGFR in the

subgroups of smoking status and HUA, respectively. We

observed that this association was more pronounced in the

smoking population. According to a previous community

study, which supports this idea, those who smoke cigarettes

regularly have relatively low IS than that of those non-smokers,

and IS increases after 1–2 weeks of quitting smoking, although it

does not return to normal (47). We also found that METS-IR

was meaningfully correlated with eGFR in individuals without

HUA, whereas in individuals with HUA, this association was

absent. The possible reason is that METS-IR is strongly

associated with HUA based on a previous study (32, 33),

which weakened its association with eGFR. The above findings

require further research.

This study, however, had some limitations. First, our study

was cross-sectional, which makes causal inferences from our

findings more difficult. Second, we did not assay HOMA-IR,

which has been more widely used in past research to assess IR.

However, in previous studies comparing the validation of
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multiple metrics, HOMA-IR and METS-IR were included to

assess IR levels, and their similarity in different clinical settings

was noted (13, 40). The conclusions showed that METS-IR and

HOMA-IR had similar assessment effects. Third, the detailed

methods used in the medical examination, such as blood

pressure measurements as well as original data of serum

creatinine, height, and weight, are not clear because the data

used in this study came from other studies that were already

published. Fourth, just like in any observational study, it is

possible that unmeasured confounders played a role in the

detected association between METS-IR and eGFR. Finally,

because almost all of the participants were Japanese, it is not

clear whether our conclusions are applicable to other

ethnic groups.
5 Conclusions

The METS-IR is highly associated with eGFR among

individuals who underwent health check-ups in Gifu, Japan.

These findings indicated that individuals with elevated METS-IR

should have closer monitoring of their renal function and be

identified in time to avoid the eventual development of renal

failure. METS-IR might be employed as a monitoring marker for

early screening, primary prevention, and diagnostic and therapy

management techniques for CKD; however, further research is

needed to prove it.
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