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Mitochondria are important organelles involved in cell metabolism and

programmed cell death in eukaryotic cells and are closely related to the

innate immunity of host cells against viruses. Mitophagy is a process

in which phagosomes selectively phagocytize damaged or dysfunctional

mitochondria to form autophagosomes and is degraded by lysosomes,

which control mitochondrial mass and maintain mitochondrial dynamics and

cellular homeostasis. Innate immunity is an important part of the immune

system and plays a vital role in eliminating viruses. Viral infection causes

many physiological and pathological alterations in host cells, including

mitophagy and innate immune pathways. Accumulating evidence suggests

that some virus promote self-replication through regulating mitophagy-

mediated innate immunity. Clarifying the regulatory relationships among

mitochondria, mitophagy, innate immunity, and viral infection will shed

new insight for pathogenic mechanisms and antiviral strategies. This review

systemically summarizes the activation pathways of mitophagy and the

relationship between mitochondria and innate immune signaling pathways,

and then discusses the mechanisms of viruses on mitophagy and innate

immunity and how viruses promote self-replication by regulating mitophagy-

mediated innate immunity.
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1 Introduction

1.1 Mitochondria and mitophagy

Mitochondria are dynamic, multifunctional organelles with double-layered
membranes. Mitochondria not only provide energy for life activities and metabolism,
but also serve as the primary site of aerobic respiration, which is known as the
“powerhouse” of the cell (Siekevitz, 1957). Mitochondria are also involved in the
physiological processes of adenosine triphosphate (ATP) and reactive oxygen species
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(ROS) production, regulating lipid metabolism and calcium
signal transduction, and play a crucial role in the maintenance of
normal life activities in the human body (Montava-Garriga and
Ganley, 2020).

Mitophagy is a process in which phagosomes select damaged
and excess mitochondria, and are subsequently degraded
by autophagic autophagolysosomes. Mitophagy controls the
quality of mitochondria, maintains the normal cellular function
and physiological processes (Teresak et al., 2022). There are
many factors that induce mitophagy, such as turnover of
mitochondria during normal cell physiology, disease, excessive
ROS, and viral infection (Lin et al., 2019).

1.2 Mechanisms of mitophagy
activation

Mitophagy can be mediated by two pathways, PTEN-
induced putative kinase 1 (PINK1)/Parkin-dependent
pathway and PINK1/Parkin-independent pathway. Among
them, Parkin-dependent pathway includes ubiquitin
mediated mitophagy; PINK1/Parkin-independent pathway
includes autophagy receptor-mediated and mitochondrial
dynamics-mediated mitophagy (Figure 1).

1.2.1 PINK1/Parkin-dependent mitophagy
PTEN-induced putative kinase 1/Parkin-dependent

mitophagy usually occurs in response to mitochondrial damage
or mitochondrial membrane depolarization. PINK1 is a
serine/threonine kinase located in the inner mitochondrial
membrane. In normal mitochondria, PINK1 is degraded by the
proteasome after entering the inner mitochondrial membrane.
When mitochondria are damaged or depolarized, PINK1
accumulates at the outer mitochondrial membrane (OMM) and
phosphorylates ubiquitin (Ub) molecules at S65 (Xu et al., 2020).
Parkin has a ring finger protein 1 (RING1) domain that binds
to phosphorylated Ub and alters Parkin conformation, leading
to Parkin activation (Kane et al., 2014; Wauer et al., 2015; Tang
et al., 2017). Activated Parkin ubiquitinated mitochondrial
outer membrane protein voltage-dependent anion channel 1
(VDAC1), mitochondrial fusion protein 1/2 (MFN1/2) and
mitochondrial membrane translocase 20 (TOMM20) (Chan
et al., 2011). Structurally, autophagy receptors sequestosome
1 (SQSTM1), nuclear dot protein 52 (NDP52), optineurin
(OPTN), and Tax1-Binding Protein 1 (TAX1BP1), contain
a ubiquitin-binding domain and a microtubule-associated
protein 1 light chain 3 (LC3) interacting LIR region, which
is a bridge between damaged or depolarized mitochondria
and phagosomes (Hanna et al., 2012; Lazarou et al., 2015).
Autophagy receptors link ubiquitinated outer mitochondrial
membrane proteins and phagosomes at the beginning of
mitophagy, prompting damaged or depolarized mitochondria

to be engulfed by autophagosomes and then degraded by
lysosomes (Harper et al., 2018; Pickles et al., 2018).

1.2.2 PINK1/Parkin-independent mitophagy
PTEN-induced putative kinase 1/Parkin-independent

mitophagy is usually mediated by the autophagy receptors,
such as NIP3-like protein X (Nix; also known as BNIP3L),
prohibitin 2 (PHB2), E1B 19kDa-interacting protein 3
(BNIP3), and FUN14 domain containing 1 (FUNDC1). These
autophagy receptors directly anchor to the outer mitochondrial
membrane, and bind to the LC3 domain on autophagosomes in
an ubiquitination independent manner to induces mitophagy
(Hanna et al., 2012; Shi et al., 2014; Chen et al., 2017; Wei et al.,
2017).

1.2.3 Mitochondrial dynamics-mediated
pathway

Most damaged mitochondria are cleared by mitophagy
directly, but some with larger volumes cannot be encapsulated
by autophagosomes and need to be cleaved into small particles
to be phagocytosed and degraded. Mitochondria are in a
balanced process of fusion and fission to maintain the stability
of mitochondrial mass, which is called mitochondrial dynamics.
Mitochondrial fusion is regulated by the mitochondrial fusion
protein 2 (Mfn2), and mitochondrial fission is regulated by
dynamin 1-like (DNM1L) (Wei et al., 2017). When activated by
pathogens, DNM1L is recruited in OMM and assembled into
oligomeric structures that drive the contraction and rupture
of mitochondrial membranes, leading to mitochondrial fission.
Fission mitochondria are engulfed by autophagosomes, which
in turn are degraded by lysosomes. The whole process is called
mitochondrial dynamics mediated-mitophagy (Rambold et al.,
2011; Pernas and Scorrano, 2016).

2 Virus and innate immunity

2.1 Innate immune system

Innate immunity is the first line of defense against the
invasion of exogenous microorganisms, which is a rapid
response to pathogens or danger signals. Host’s innate immune
system recognizes various pattern-associated molecular patterns
(PAMPs) through a series of pattern recognition receptors
(PRRs) to activate the downstream signaling pathway (Brennan
and Bowie, 2010). These receptors are distributed on the cell
membrane or in the cytoplasm, including Toll-like receptors
(TLRs), retinoic acid-inducible gene-I-like receptors (RLRs),
and NOD-like receptors (NLRs) (Bożek and Lengauer, 2010;
Li and Wu, 2021). When pathogenic microorganisms invade
the body, PAMPs are recognized by PRRs expressed by
innate immune cells and induce multiple intracellular signaling
cascades. These cascades of signaling lead primarily to the
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FIGURE 1

Mechanisms of mitophagy activation. Parkin-dependent mitophagy generally refers to ubiquitin-mediated mitophagy. PTEN-induced putative
kinase 1 (PINK1) accumulates and is phosphorylation at the outer mitochondrial membrane (OMM) when mitochondria are damaged or
depolarized. Phosphorylated PINK1 recruits Tu translation elongation factor (TUFM) to the OMM and leads to phosphorylation of Parkin and
ubiquitin. Subsequently, activated Parkin ubiquitinates mitochondrial outer membrane proteins, which are recognized by autophagy receptors
such as nuclear dot protein 52 (NDP52), sequestosome 1 (SQSTM1), optineurin (OPTN), and Tax1-Binding Protein 1 (TAX1BP1), and interact with
light chain 3 (LC3) through the LIR region of autophagy receptors to induce autophagy. Parkin-independent mitophagy depends on several
autophagy receptors, including prohibitin 2 (PHB2), E1B 19kDa-interacting protein 3 (BNIP3), FUN14 domain containing 1 (FUNDC1), and
NIP3-like protein X (NIX), which directly anchor to the outer mitochondrial membrane, and bind to the LC3 do-main on autophagosomes in a
ubiquitination independent manner to induces mitophagy. Mitochondrial dynamics-mediated mitophagy. When activated by pathogens,
mitochondrial fission is regulated by dynamin 1-like (DNM1L), Mfn1, and mitochondrial fusion protein 2 (Mfn2) are activated and recruited to the
mitochondria, inducing mitochondrial fission and fusion, thereby regulating mitophagy.

activation of the downstream nuclear factor kappa B (NF-κB),
interferon regulatory factor 3 (IRF3) and interferon regulatory
factor 7 (IRF7), which enable NF-κB, IRF3 and IRF7 enter the
nucleus and promote secretion of proinflammatory cytokines
and IFNs. Secreted IFNs bind to their corresponding interferon
receptors on the cell membrane, and the expression of hundreds
of interferon-stimulated genes (ISGs) is induced by activation
of the JAK-STAT signaling pathway to defend against and
clear pathogenic microorganisms (Bożek and Lengauer, 2010;
Thompson et al., 2011; Li and Wu, 2021).

2.2 The mechanism of innate immunity
responses to viral infection

There are multiple ways in which innate immune responses
in viral infection, including the TLR pathway, RIG-I pathway
and NLRs pathway (Figure 2).

2.2.1 TLR pathway against viruses
Toll-like receptors are pattern recognition receptors

expressed by antigen-presenting cells (APCs) and exist on the

cell surface or in the endosomes to sense PAMPs. TLRs on
cell membrane recognize viral proteins, including TLR2 and
TLR4 (Kurt-Jones et al., 2000; Bieback et al., 2002). Endosomal
TLRs, including TLR3, TLR7, TLR8, and Toll-like receptor
9 (TLR9) recognize various viral nucleic acids, among which
TLR3 recognizes double stranded RNA viruses (Alexopoulou
et al., 2001), TLR7 and TLR8 recognize single stranded RNA
viruses and (Diebold et al., 2004), TLR9 uniquely identifies
unmethylated CpG DNA viruses. The TIR domain of TLR3
binds to the adaptor protein TRIF, and interacts with TNF
receptor-associated factor 6 (TRAF6). The TIR domains of
other TLRs bind to MyD88 adaptor protein, and recruits and
phosphorylates downstream interleukin-1 receptor-associated
kinase 1 (IRAK1), interleukin-1 receptor-associated kinase
2 (IRAK2), and interleukin-1 receptor-associated kinase 4
(IRAK4) (Janssens and Beyaert, 2003). Phosphorylated IRAK
interacts with TRAF6 and activates a protein kinase complex
consisting of TGF-beta-Activated Kinase 1 (TAK1) and TAK1-
binding proteins (TABs) (Deng et al., 2000; Wang et al.,
2001). The activated protein kinase complex activates NF-κB
into the nucleus, leading to upregulation of inflammatory
cytokines, including TNF, interleukin 1β (IL-1β), and IFN-γ.
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FIGURE 2

The Toll-like receptor (TLR) pathway, RIG-I pathway and NOD-like receptors (NLRs) pathway responses to viral infection. TLR pathway: TLR2
and TLR4 detected viral proteins on the membrane, TLR3, TLR7, TLR8, and TLR9 detected virus nucleic acids in endosomes. The TIR domain of
TLR3 binds to the adaptor protein TRIF, and the TIR domain of other TLRs binds to the adaptor protein MyD88 to activate and induce nuclear
factor kappa B (NF-κB) to enter the nucleus and promote the secretion of IFN-I and proinflammatory factors; RIG-I pathway: after the virus is
stimulated by dsRNA, caspase recruitment domain (CARD-CARD) interaction between RIG-I and Mitochondrial antiviral-signaling protein
(MAVS) initiates a signaling cascade that activates the TBK1-IRF3 or NF-κB pathway to induce the expression of IFN-I and multiple
proinflammatory genes; NOD-like receptors (NLRs) pathway: When RNA viruses recognized by RNA helicases DHX33 or DHX15, which further
activates to recruit downstream NLRs NOD-like receptors protein 3 (NLRP3) or NOD-like receptors protein 6 (NLRP6) to form NLRP3 or NLRP6
inflammasome complex with pro-cysteinyl aspartate specific proteinase-1 (pro-caspase-1) and apoptosis-associated speck-like protein
containing a card (ASC), which in turn activates caspase-1 to form active IL-1β and IL-18, inducing the onset of inflammation.

IFNs phosphorylate STAT1 and STAT2 to form a heterodimer
by activating the JAK-STAT signaling pathway, which associates
with interferon regulatory factor 9 (IRF9) to form a complex,

interferon-stimulated gene factor 3 (ISGF3). ISGF3 entries into
the nucleus and induces the expression of hundreds of ISGs,
thereby play an antiviral role.
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2.2.2 RIG-I pathway against viruses
Retinoic acid-inducible gene-I-like receptors are

cytoplasmic RNA helicases that act as intracellular receptors
for dsRNA viruses, including retinoic acid-inducible gene I
(RIG-I), melanoma differentiation-associated gene 5 (MDA5)
and laboratory of genetics and physiology 2 (LGP2). RIG-I
and MDA5 contain a DExD/H-box RNA helicase domain,
a C-terminal inhibitory domain (RD), and two tandem
caspase recruitment domains (CARDs) at the N terminus,
whereas LGP2 lacks CARDs domains (Jia et al., 2021). LGP2
reported to regulate RIG-I and MDA5 depending on the type
of infectious RNA virus (Fu et al., 2020; Kong et al., 2021).
Mitochondrial antiviral-signaling protein (MAVS) is a CARD
domain-containing transmembrane protein localized to the
outer mitochondrial membrane. The CARD domain of RIG-I
in the cytoplasm cannot send signals to downstream pathways
under normal circumstances. Upon dsRNA viral stimulation,
the CARD domain is activated and the card-card interaction
between RIG-I and MAVS initiates a signaling cascade. This
signal activates TRAF6 and TRAF3, TRAF6 induces TAK1
protein kinase complex, and TRAF3 activates TBK1 and IKKε

protein kinases, which phosphorylate and activate NF-κB and
IRF3, respectively, and induce the expression of IFN-I and
several proinflammatory genes, thereby playing antiviral effects
(Chiang et al., 2014; Huang et al., 2021).

2.2.3 NLRs pathway against viruses
NOD-like receptors are one type of PRRs receptors that

recognize PAMPs in the cytoplasm. The nucleotide-binding
oligomerization domain-like receptor protein 3 (NLRP3),
apoptosis-associated speck-like protein containing a card (ASC)
and pro-cysteinyl aspartate specific proteinase-1 (pro-caspase-
1) form an inflammasome complex to regulate IL-1β maturation
and secretion with interleukin18 (IL-18) (Agostini et al., 2004;
Allen et al., 2009). When RNA viruses including reovirus and
rotavirus invade cells, their PAMPs dsRNA could be recognized
by RNA helicases DHX33 or DHX15, which further activates to
recruit downstream NLRs NLRP3 or NLRP6 to form NLRP3 or
NLRP6 inflammasome complex with pro-caspase-1 and ASC,
followed by activation of IL-1β and IL-18 for inducing the onset
of inflammation (Mitoma et al., 2013; Shi et al., 2019; Xing et al.,
2021; Zhang et al., 2022).

3 Mitochondria and innate
immunity pathway

3.1 Mitochondrial proteins and innate
immunity pathway

Studies have shown that MAVS is a key node protein in
innate immunity antiviral signal transduction, which anchored

to mitochondria and is a key adaptor protein in RIG-
I like receptor signaling. RIG-I-MAVS signal transduction
pathway plays a key role in the immune response of cells in
response to RNA virus infection (Zhou et al., 2021). Studies
have shown that MAVS molecules, after being activated by
upstream RIG-I, will form prion-like aggregates and further
activate downstream signaling pathways, eventually activating
transcription factors IRF3 and NF-κB and inducing cells to
express IFN-β, thereby inhibiting the proliferation of the
virus in the body (Liu et al., 2020; Zou et al., 2021).
Further studies found that Postmastectomy Radiation Therapy
9 (PMRT9), localized to mitochondria, directly binds to MAVS
and catalyzes the symmetric dimethylation of MAVS, thereby
inhibiting the aggregation and activation of MAVS. RNA
virus infection attenuates the mitochondrial localization of
PRMT9 and its inhibitory effect on MAVS, decreases the
methylation modification of MAVS, and then promotes the
aggregation and activation of MAVS, and up-regulates the
expression of type I interferon and the antiviral immune
response (Bai et al., 2022). In addition, in the pathogenesis
of Non-alcoholic fatty liver disease (NAFLD), MAVS plays
an important role in mitochondrial metabolism and energy
regulation, and is a key protein that mediates the interaction
between immune response and metabolic homeostasis by
maintaining mitochondrial homeostasis (Fu et al., 2022). Studies
have shown that the mitochondrial protein Era-like 1 (ERAL1)
also positively regulates RLR-mediated innate antiviral immune
responses. On the one hand, ERAL1 binds to MAVS and
promotes MAVS activation; on the other hand, ERAL1 is
transported from mitochondria to cytoplasm and promotes
K63-linked ubiquitination of RIG-I/MDA5 (Li et al., 2021).

3.2 Mitochondrial DNA (mtDNA) and
innate immunity pathway

Mitochondria have emerged as key factor of innate
immunity, which works on anti-viruses. NLRX1, TRAF6,
NLRP3, IRGM, and other innate immune molecules have
also been confirmed to be associated with mitochondria
(Arnoult et al., 2011). Meanwhile, the release of mitochondrial
DNA (mtDNA) activates a series of innate immune signaling
pathways such as STING, TLR9 and NLRP3.

3.2.1 mtDNA-cGAS-STING
The mitochondrial genomic DNA differs from the nuclear

DNA. One of the significant differences is that mtDNA is
generally less methylated than nuclear DNA, which makes
mtDNA very similar to bacterial DNA and usually acts
as heterologous DNA to activate the immune response.
In the event of mitochondrial stress, mtDNA releases into
the cytoplasm through BAX/BAK-dependent mitochondrial
outer membrane permeabilization (MOMP) or mitochondrial
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permeability transition pore (mPTP) (Cosentino et al., 2022).
The mtDNA binds to cGAS, activating the downstream STING
signaling pathway and inducing the production of IFN-I
(White et al., 2014). Under pathological conditions, abnormal
activation of mtDNA-cGAS-STING signaling pathway causes
the overexpression of IFN-I and related inflammatory genes,
which is closely related to the occurrence and development of
various diseases (West et al., 2015).

3.2.2 mtDNA activates TLR9
Toll-like receptor 9 recognizes hypomethylated CpG motifs

in DNA through the adaptor protein myeloid differentiation
primary response protein 88 (MYD88) (Zhang et al., 2010),
which activates MAPKs and NF-κB to trigger inflammatory
responses or activates interferon regulatory factor 7 (IRF7) to
enhance type I interferon responses in immune cells. Studies
have demonstrated that CpG motifs in mitochondrial DNA
activate TLR9 signaling, thereby activating p38 and p42-
44 MAPK activity. In addition, mitochondrial DNA in the
plasma of trauma patients and other non-infectious injuries
activate TLR9 through an extracellular release mechanism,
while promoting inflammation by activating TLR9 through
an intracellular binding mechanism (Oka et al., 2012).
Furthermore, oxidized mitochondrial DNA has been shown to
induce TLR9 and IRF7 dependent IFN-α expression, thereby
enhancing the type I interferon response in plasmacytoid
dendritic cells (Caielli et al., 2016).

3.2.3 mtDNA and inflammasome activation
Mammalian inflammasomes are an important part of

the host’s innate immune system, and substantial evidence
suggests that mitochondrial DNA is an endogenous agonist of
inflammasomes (Riley and Tait, 2020). Studies have shown that
when mouse bone marrow-derived macrophages are stimulated
by lipopolysaccharide (LPS) and ATP, mitochondrial DNA
released into the cytoplasm, which promotes the activation of
NLRP3 inflammasome, thereby causing the secretion of IL-
1β and IL-18 (Xian et al., 2021). Moreover, studies also have
shown that mitochondrial DNA directly activates the NLRC4
inflammasomes, and oxidized mitochondrial DNA released
into the cytoplasm during apoptosis can binds to the NLRP3
inflammasome (Jabir et al., 2015).

3.3 Mitochondrial double stranded
RNA (mtdsRNA) and innate immunity
pathway

dsRNAs are usually found in the cytoplasm, and one source
is mitochondrial double-stranded RNA (mtdsRNA), which is
produced by bidirectional transcription of mtDNA (Borowski
et al., 2013; Dhir et al., 2018). PNPase and hSuv3, two helicases
of mtdsRNA, are extremely important in limiting mtdsRNA

levels. Deletion of either of them will result in a substantial
accumulation of mitochondrial dsRNA that escapes into the
cytoplasm (Borowski et al., 2013). Studies have shown that
MDA5 is a major sensor of mtdsRNA. The immune response
induced by mtdsRNA is mediated through the MDA5-MAVS
axis and results in the expression of IFN-I and proinflammatory
cytokine genes (Wiatrek et al., 2019). It has also been shown
that the accumulation of dsRNA can be detected in virus-
infected mammalian cells. Therefore, it is plausible that
mtdsRNA accumulation and escape into the cytoplasm trigger
an antiviral response upon viral infection (Weber et al., 2006;
Dhir et al., 2018).

4 Effects of viral infection on
mitochondrial function and
mitophagy

Viruses are intracellular parasites without cellular structures,
which target mitochondria in many ways to disrupt the
homeostasis of mitochondria and in turn affect the metabolism
and physiology of the host cell, promoting the replication and
propagation of the virus itself in the host cell (Hanada et al.,
2007). At the same time, viruses directly regulate mitophagy
through their own viral factors or indirectly regulate mitophagy
through different means (Figure 3; Kane et al., 2014; Ding et al.,
2017; Sin et al., 2017).

4.1 Virus regulates mitophagy through
PINK1/Parkin-dependent pathway

Many viruses are shown to initiate mitophagy by activating
the PINK1-Parkin pathway. Hepatitis B virus (HBV) and
hepatitis C virus (HCV) promote Dynamin 1 Like (DNM1L)
gene expression and recruitment to mitochondria by stimulating
DNM1L (ser616) phosphorylation, leading to mitochondrial
fission (Kim et al., 2013a,b). After mitochondrial fission,
PINK1 and Parkin genes are up-regulated, and Parkin is
translocated to mitochondria, followed by mitophagy. This
is consistent with the detected changes in Parkin levels in
liver tissue samples from HBV and HCV patients (Jassey
et al., 2019). In addition, when DNM1L is knocked out,
mitochondrial division and mitophagy are induced by the
PB1-F2 protein of influenza A virus (IAV), indicating that IAV
also induces mitochondrial division by stimulating DNM1L
phosphorylation, leading to Parkin-dependent mitophagy
(Yoshizumi et al., 2014; Wang H. et al., 2021). Similarly,
Epstein-Barr virus (EBV), coxsackie virus B (CVB), venezuelan
equine encephalitis virus (VEEV), classical swine fever virus
(CSFV), and porcine reproductive and respiratory syndrome
virus (PRRSV) all promote DNM1L phosphorylation and
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FIGURE 3

Viral infection induces mitophagy through different pathways. Some viruses such as hepatitis C virus (HCV), influenza A virus (IAV), porcine
reproductive and respiratory syndrome virus (PRRSV), Hepatitis B virus (HBV), classical swine fever virus (CSFV), coxsackie virus B (CVB),
venezuelan equine encephalitis virus (VEEV), and Epstein-Barr virus (EBV) phosphorylate and recruit mitochondrial fission is regulated by
dynamin 1-like (DNM1L) to mitochondria, promoting mitochondrial fission in turn causing PTEN-induced putative kinase 1 (PINK1)/Parkin
dependent mitophagy. There are also viruses such as human herpes virus 8 (HHV-8), HPIV3, IAV, hantaan virus (HTNV) utilize encode proteins
that act as mitophagy adaptors to bind mitophagy receptors and light chain 3 (LC3), initiating mitophagy.

induce mitophagy through the PINK1-Parkin pathway (Li
et al., 2016; Gou et al., 2017; Keck et al., 2017; Xie et al., 2020;
Wang R. et al., 2021).

4.2 Virus regulates mitophagy through
PINK1-Parkin independent pathway

Some viruses initiate mitophagy independent of the
PINK1-Parkin signaling pathway. PINK-Parkin-independent
mitophagy is usually mediated by autophagy receptors, such
as NIX, BNIP3, FUNDC1, and PHB2 (Liu et al., 2014). These
autophagy receptors anchored on the outer mitochondrial
membrane, interact with LC3 through the LC3 interacting
region, promoting mitophagy. Viruses use their encoded
proteins as mitophagy adapters to bind to autophagy receptors
and LC3 to initiate mitophagy (Birgisdottir et al., 2013). For

example, the vIRF-1 protein encoded by human herpes virus 8
(HHV-8) directly bind to NIX and LC3 to activate mitophagy.
Tu translation elongation factor (TUFM) is a protein that exists
in the cytoplasm and mitochondria (Lin et al., 2020). The
matrix protein of human parainfluenza virus type 3 (HPIV3)
is transferred to mitochondria through interaction with TUFM
and interacts with LC3 to mediate mitophagy (Ding et al., 2017).
Moreover, both PB1-F2 protein of IAV and GN protein of
hantaan virus (HTNV) promote mitophagy in this way (Wang
et al., 2019; Wang R. et al., 2021). It was found that West Nile
virus (WNV) infection induce LC3 lipidation and the formation
of LC3-labeled autophagic vacuoles in Vero cells, but the link
between WNV and mitophagy is unclear (Beatman et al., 2012).
The autophagy-receptor-dependent, rather than PINK1-Parkin-
dependent mitophagy also plays an important role in viral
replication, suggesting that autophagy receptors may be critical
targets against viral infection.
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FIGURE 4

Viruses promote self-replication by suppressing innate immunity through mitophagy. MeV, EBV, HCV, HPIV3, IAV, HHV-8, SARS-COV-2,
Hepatitis B virus (HBV), and classical swine fever virus (CSFV) induce mitophagy in different ways, rendering the innate immune signal
transduction adaptor Mitochondrial antiviral-signaling protein (MAVS) degradation, which in turn inhibits the secretion of IFN-I and promotes
viral self-replication.

5 Viruses promote self-replication
by mtDNA-cGAS-STING

5.1 DNA virus and mtDNA-cGAS-STING
signaling pathway

During DNA virus infection, cGAS recognize the genomic
DNA of the virus, and activate the downstream STING signaling
pathway by binding to mtDNA. Accordingly, viruses have
evolved corresponding mechanisms to evade the host’s immune
surveillance. For example, Herpes Simplex Virus Type 1 (HSV-
1) virus can rapidly degrade the mtDNA of host cells through
its encoded conserved nuclease UL12.5, resulting in complete
loss of mtDNA in infected cells, thereby evading the immune
response of host cells and facilitating its own replication
(Duguay and Smiley, 2013).

5.2 RNA viruses and
mtDNA-cGAS-STING signaling
pathway

The activation of cGAS-STING signaling pathway has
been observed during the infection of a variety of RNA
viruses, and studies have shown that the activation of cGAS-
STING signaling pathway is related to the release of mtDNA
caused by RNA virus infection. For example, dengue virus
(DENV) stimulates the release of IL-1β from host cells, which
stimulate adjacent cells to increase mitochondrial volume,
reduce mitochondrial membrane potential, and finally promote
mtDNA release and activate cGAS-STING pathway (Aarreberg
et al., 2019). In addition, DENV promotes the release of
mtDNA by inducing the production of ROS in host cells, and
activates the innate immune signaling pathway mediated by
TLR9 and cGAS (Lai et al., 2018). Studies have shown that
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the influenza and Zika viruses manipulate mtDNA to escape
host immune response (Newby et al., 2007; Zheng et al., 2018).
Influenza virus binds to mtDNA via the RNA-binding domain
of the non-structural protein (NS1) protein to evade cGAS-
STING-dependent antiviral immune responses, while Zika virus
enhances the stability of cysteine-containing aspartate-specific
proteinase-1 (caspase-1) through its encoded NS1, in order to
promote the cleavage of cGAS by caspase-1, and achieve the
effect of inhibiting the host immune response.

6 Viruses mediate immune escape
by inducing mitophagy

6.1 Viruses promote self-replication by
triggering mitophagy to inhibit IFN-I

Interferon is a glycoprotein produced in response to
stimulation by viruses or other interferon inducers. The
generation of IFN- I (IFNα and IFNβ) is the core element
of anti-virus, which is crucial to the survival of host cells
during virus infection (Perry et al., 2005). During viral
infection, viral PAMP is recognized by RLRs receptors and
binds to MAVS on the outer mitochondrial membrane to
activate MAVS, which induce IFN-I secretion by recruiting
and activating TRAF6, TBK1, and TABS (Castanier et al.,
2010). Studies have shown that some viruses, including Mesles
virus (MEV), HHV-8, CSFV, EBV, HBV, HCV, IAV, SARS-
CoV-2, and HPIV3, antagonize IFN-I production through
mitophagy. Virus-induced mitophagy promotes the degradation
of MAVS, and low levels of MAVS block its downstream
signaling pathways to inhibit the secretion of IFN–induced
mitophagy promotes the degradation of MAVS, and low levels
of MAVS block its downstream stream signaling pathways
to inhibit the secretion of IFN-I, which in turn inhibits the
production of antiviral proteins and promotes viral replication
(Figure 4; Xia et al., 2014a). In this process, viruses use
different mechanisms to induce mitophagy to inhibit IFN-I
production. For example, MEV infection induces SQSTM1-
mediated mitophagy to degrade MAVS, which attenuates the
RLR signaling pathway and promotes viral replication (Xia
et al., 2014a). Similarly, CSFV infection also inhibits IFN-I by
inducing mitophagy through the autophagy receptor NDP52
and affecting mitochondrial dynamics (Kim et al., 2014; Fan
et al., 2019). In addition, HBV induced Parkin dependent
mitophagy, and recruited linear ubiquitin assembly complex
(LUBAC) to mitochondria and disrupt MAVS signalosome,
which in turn disrupts IFN-I synthesis (Khan et al., 2016). Viral
proteins also play important roles in the induction of mitophagy
and the inhibition of IFN-I. EBV uses its own encoded protein
BHRF1 to act on mitochondria to control innate immunity.
BHRF1 recruited DNM1L to induce mitochondrial fission,
which forms small particles and captured by autolysosome,

rendering the innate immune signaling adaptor MAVS degraded
and IFN-fission (Bekisz et al., 2010). HPIV3 matrix protein
(M) and IAV matrix protein PB1-F2 induced mitophagy by
interacting with autophagy receptor TUFM on mitochondria
and LC3, which in turn inhibited IFN-I secretion (Alymova
et al., 2014; Ding et al., 2014). HHV-8 vIRF-1 protein and
SARS-CoV-2 ORF10 protein activated mitophagy by binding to
the autophagy receptor Nix on mitochondria (Vo et al., 2019;
Li et al., 2022), which leads to MAVS degradation, attenuates
the ability of the innate antiviral response, and promotes viral
self-replication (Shi et al., 2020).

6.2 Viruses promote self-replication by
triggering mitophagy to suppress
inflammation

NOD-like receptors protein 3, one of the PRRs receptors,
acts as a sensor protein that, upon activation, induces the
secretion of IL-1β and IL-18 and initiates the death of
proinflammatory cells. Accumulating evidence showed that
mitophagy plays an important role in NLRP3 inflammasome
activation (Kim et al., 2016). Study has shown that some
viruses inhibit the activation of the NLRP3 inflammasome
by inducing mitophagy, thereby helping the virus to escape
host immune defenses (Zhang et al., 2018). For example, MeV
activates NLRP3 and induces IL-1β via mitophagy in THP-1
cells, whereas MeV non-structural V protein decrease NLRP3
and IL-1β through mitophagy (Komune et al., 2011). IAV
infection phosphorylated the mitophagy-inducing factor unc-
51 like autophagy activating kinase 1 (ULK1), which triggers
serine/threonine kinase 2 (RIPK2)-mediated mitophagy for
negatively regulating NLRP3 signaling pathway, and finally
reduced the antiviral immunity (Lupfer et al., 2013; Chen
and Takeshi, 2015). However, the links between virus induced
mitophagy and inflammasome signaling are still unclear, and
mining the connections among them would be a major
breakthrough.

6.3 Viruses promote self-replication by
triggering mitophagy to inhibit
apoptosis

Apoptosis is a way in which the host defends against viral
infection. Immune evasion and inhibition of apoptosis are
required for successful virus infection. Interestingly, inhibition
of apoptosis reduces the antiviral immune response and thus
supports viral infection. Accordingly, viruses are also constantly
evolving various ways to regulate apoptosis for their replication.
It had shown that MeV triggers mitophagy to prevent apoptosis
and cause damage to the organism (Djavaheri-Mergny et al.,
2010). Edmonston B (MV-Edm) infection induced mitophagy
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and reduced the release of cytochrome c (CYCS) to the
cytoplasm and thus blocked the pro-apoptotic cascade, thereby
maintaining MeV replication in non-small lung cancer cell
(Yang et al., 2010; Xia et al., 2014b). In addition, HBV,
HCV, VEEV, CSFV, PRRSV, NDV, and TGEV all can induce
mitophagy through different mechanisms and inhibit apoptosis
for persistent infection (Kim et al., 2013a,b; Meng et al., 2014; Li
et al., 2016; Zhu et al., 2016; Gou et al., 2017; Keck et al., 2017).
On the contrary, some studies have shown that in Vero cells,
WNV with low infection can trigger the mitochondrial mediated
apoptosis pathway, which is initiated by the release of Cyt-c and
the formation of apoptosome (Chu and Ng, 2003; Pan et al.,
2021). It was found that WNV infection induce LC3 lipidation
and the formation of LC3-labeled autophagic vacuoles in Vero
cells, but the detailed mechanism is still unclear.

6.4 Viruses promote self-replication by
inhibiting mitophagy to regulate
inflammation

Studies have shown that most viruses increase mitophagy
to evade the innate immune response (Zhang et al., 2018).
But there are also studies found that some flaviviruses
inhibit mitophagy to promote viral invasion into tissues. For
example, Zika virus (ZIKV) inhibits mitophagy to maintain
damaged mitochondria in cells and amplifies inflammatory
signaling cascades. ZIKV NS5 protein antagonizes mitophagy
by preventing its translocation onto depolarized mitochondria
through binding to host protein Ajuba (Jia et al., 2020). ZIKV
antagonizes mitophagy, which in turn causes specific chemokine
amplification and thus increases DAMP signaling, increasing
the spread of the virus to tissues (Ponia et al., 2021).

7 Viruses disrupt innate immunity
by affecting mitochondrial
dynamics

Some viruses disrupt innate immunity by affecting
mitochondrial dynamics, which in turn promotes self-
replication. For example, in DENV infection, DENV NS4B
(non-structural protein 4B) and DENV protease NS2B3 disrupt
innate immunity by perturbing mitochondrial dynamics (Strack
and Cribbs, 2012; Yu et al., 2015). DENV NS4B induces
mitochondrial elongation by inactivating DNM1L, which alters
mitochondrial morphology, inhibits interferon production,
and promotes DENV replication. DENV NS2B3, a protease
essential for viral protein processing. Studies have shown that
DENV NS2B3 has two novel cellular targets, MFN1 and MFN2.
DENV NS2B3 impairs mitochondrial dynamics and impairs
IFN responses by targeting MFNS, ultimately promoting DENV
replication and inducing cell death (Yu et al., 2015).

8 Conclusion and perspectives

During viral infection, mitochondrial dynamics, autophagy
activity and innate immune response of host cells are altered
to promote viral replication. Revealing the mechanisms of
mitochondria and innate immunity in host cells during virus
infection will provide new strategies and new targets for
antiviral drugs. At present, although some roles of mitophagy
in antiviral immunity have been revealed, many questions
remain unexplained and remain to be explored. Future studies
need to explore more links of viral replication and mitophagy,
particularly between viral proteins and host mitophagy specific
proteins. Exploring the mechanism of mitophagy under viral
infection and discovering the corresponding targets will provide
new therapeutic strategies for combating viral infection.
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