
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Lihong Ye,
Nankai University, China

REVIEWED BY

Zhe Yang,
Liaoning University, China
Longqiang Wang,
University of Texas MD Anderson
Cancer Center, United States
Yu Zhao,
Chinese Academy of Medical Sciences
and Peking Union Medical
College, China

*CORRESPONDENCE

Yan Wang

yanwang@cicams.ac.cn

SPECIALTY SECTION

This article was submitted to
Cancer Genetics,
a section of the journal
Frontiers in Oncology

RECEIVED 02 November 2022
ACCEPTED 30 November 2022

PUBLISHED 16 December 2022

CITATION

Yuan B, Qin H, Zhang J, Zhang M,
Yang Y, Teng X, Yu H, Huang W and
Wang Y (2022) m6A regulators
featured by tumor immune
microenvironment landscapes and
correlated with immunotherapy in
non-small cell lung cancer (NSCLC).
Front. Oncol. 12:1087753.
doi: 10.3389/fonc.2022.1087753

COPYRIGHT

© 2022 Yuan, Qin, Zhang, Zhang, Yang,
Teng, Yu, Huang and Wang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply
with these terms.

TYPE Original Research
PUBLISHED 16 December 2022

DOI 10.3389/fonc.2022.1087753
m6A regulators featured
by tumor immune
microenvironment landscapes
and correlated with
immunotherapy in non-small
cell lung cancer (NSCLC)

Baowen Yuan1, Hao Qin1, Jingyao Zhang1, Min Zhang1,
Yunkai Yang1, Xu Teng2, Hefen Yu2, Wei Huang2 and YanWang1*

1Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National
Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of
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Introduction: Recent research has confirmed the critical role that epigenetic

factors play in regulating the immune response. Nonetheless, what role m6A

methylation modification might play in the immune response of non-small cell

lung cancer (NSCLC) remains vague.

Methods: Herein, the gene expression, copy number variations (CNVs), and

somatic mutations of 31 m6A regulators in NSCLC and adjacent control

samples from the GEO and TCGA databases were comprehensively explored.

Using consensus clustering, m6A modification patterns were identified.

Correlations between m6A modification patterns and immune cell infiltration

traits in the tumor immune microenvironment (TME) were systematically

analyzed. Differentially expressed genes were verified and screened by

random forest and cox regression analysis by comparing different m6A

modification patterns. Based on the retained gene panel, a risk model was

built, and m6Ascore for each sample was calculated. The function of m6Ascore

in NSCLC prognosis, tumor somatic mutations, and chemotherapy/

immunotherapy response prediction were evaluated.

Results: Consensus clustering classified all NSCLC samples into two m6A

clusters (m6A_clusterA and m6A_clusterB) according to the expression levels

of 25 m6A regulator genes. Hierarchical clustering further divides the NSCLC

samples into two m6A gene clusters: m6AgeneclusterA and m6AgeneclusterB.

A panel of 83 genes was screened from the 194 differentially expressed genes

between m6A gene clusters. Based on this, a risk score model was established.

m6A modification clusters, m6A gene clusters, and m6Ascore calculated from

the risk model were able to predict tumor stages, immune cell infiltration,
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clinical prognosis, and tumor somatic mutations. NSCLC patients with high

m6Ascore have poor drug resistance to chemotherapy drugs (Cisplatin and

Gemcitabine) and exhibit considerable therapeutic benefits and favorable

clinical responses to anti-PD1 or anti-CTLA4 immunotherapy.

Discussion: In conclusion, methylation modification patterns mediated by the

m6A regulators in individuals play a non-negligible role in prognosis prediction

and immunotherapy response, which will facilitate personalized treatment and

immunotherapeutic strategies for NSCLC patients in the future.
KEYWORDS

m6A regulators, m6A modification, tumor immune microenvironment (TME),
immunotherapy, non-small cell lung cancer (NSCLC)
Introduction

As the second most frequent malignant oncologic disease

worldwide, lung cancer accounts for the greatest number of

mortality (1). 85% of lung cancers are non-small cell lung

cancers (NSCLC). Due to the majority of NSCLC patients

being diagnosed at an advanced stage, its overall 5-year

survival rate is only 8% (2). Therefore, new approaches are

urgently required to explore novel mechanisms of NSCLC that

are susceptible to therapeutic inventions. Recent research has

shown that tumor immune microenvironment (TME) immune

cell infiltrating characteristics are closely correlated with m6A

modifications, which might provide an alternative choice (3–5).

N6-methyladenosine (m6A) RNA modification is the most

prevalent kind of RNA modification in eukaryotic cells. It is

essential for the regulation of epigenetic processes, a variety of

physiological functions, and the development of disease (4, 6, 7).

Methyltransferases, also known as “writers”, promote m6A

methylation modification in RNA; demethylases, also known as

“erasers”, remove m6A methyl groups from RNA; and binding

proteins, also known as “readers”, bind to the m6A methylation

site in RNA and perform specific biological functions. Three
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types of proteins regulate the dynamic and reversible process of

m6A modification (7, 8). Comprehending the functions of m6A

modification in post-transcriptional regulation would be more

accessible by comprehensively exploring the expression and

function of m6A regulatory proteins (9, 10). The development

of malignant tumors and immunomodulatory disorders are

correlated with dysregulated expression and genetic alterations

of m6A regulator genes (10–12), demonstrating that m6A

regulators may be crucial in regulating the immunological

microenvironment of malignancies.

An increasing number of research have revealed the

relationships between m6A modifications and the immune cell

infiltrating characteristics of the TME (3–5). Wang et al. reported

that dendritic cell activation and maturation were aided by

METTL3-mediated m6A modification. Co-stimulatory molecules

CD80 and CD40 are expressed less when METTL3 is knocked out

(13). Studies suggest the vital role of TME in cancer progression

and therapeutic responses with increasing evidence (14, 15). The

immune response and the benefit of chemotherapy are reflected in

the TME context that was established at diagnosis (15, 16). Clinical

outcomes in various cancers are correlated with changes in the

compositions of CD8 and CD4 positive T cells, macrophages, and

cancer-associated fibroblast infiltration in the TME (17, 18).

The immune checkpoint blockade (ICB) therapy, which

specifically targets the cytotoxic T lymphocyte antigen 4

(CTLA-4) and programmed cell death 1 (PD-1) or its ligands

(PD-L1), has been used for cancer immunotherapy and has

shown promising clinical results (19). Only a small portion of

patients, nevertheless, might benefit from ICB treatment. Thus,

exploring the TME and its associated mechanisms is urgently

needed to improve immunotherapy’s efficacy. As was previously

stated, the microenvironment of malignancies and immune cells

are closely correlated with m6A modifications. Therefore, our

comprehension of immunological regulation in the TME and

immunotherapeutic tactics development will be enhanced by
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fully exploiting the effects of the regulatory network of RNA

m6A modification enzymes on TME cells.

By thoroughly analyzing the gene expression profile of m6A

regulators in 1558 NSCLC samples, the present study could

distinguish different m6A modification patterns. We systematically

correlated the characteristics of TME cell infiltration with genomic

traits as well as the clinical and pathologic characteristics of NSCLC.

We estimated the patterns of TME infiltration in 1,558 NSCLC

samples. Further, a risk model was constructed based on a panel of

83 genes with differential expression, and m6Ascore was calculated

for each sample. Consequently, we developed a method for

quantifying the m6Ascore and found that it is a robust prognostic

biomarker and a significant predictor of response to chemotherapy

(Cisplatin and Gemcitabine) and immunotherapy (anti-PD1 or anti-

CTLA4 immunotherapy).
Materials and methods

Data collection and pre-processing

The study’s workflow is depicted in Figure S1. TCGA Gene

expression data, genomic mutation data (including somatic

mutation and copy number variation), and corresponding

clinical data of NSCLC samples were downloaded from UCSC

Xena (https://xenabrowser.net/datapages/). From the NCBI GEO

database (https://www.ncbi.nlm.nih.gov/geo/), two additional

datasets of NSCLC samples were downloaded. This project

gathered 1705 samples in total, including TCGA-LUAD

(N=568), TCGA-LUSC (N=545), GSE68465 (N=462), and

GSE4573 (N=130) datasets (Table S1). Table S2 provides a

summary of the clinical details of these samples. Table S3 lists

the clinical details of each sample from TCGA dataset. Among the

1579 NSCLC samples, survival status and survival time are

available for 1558 samples. Transcripts per kilobase million

(TPM) values were generated from FPKM values of RNA

sequencing data downloaded from TCGA. The raw “CEL” files

for the Affymetrix-produced GEO microarray data were

downloaded. R packages “affy” and “simpleaffy” were employed

to adjust the background and perform quantile normalization. The

ComBat function from the “SVA” R package was used to remove

the batch effect between TCGA and GEO datasets and the

integrated data after removing the batch effect is provided in

Table S4. The genomic mutation status of NSCLC patients from

the TCGA database was displayed in an oncoplot generated with

the R package “maftools”.
Unsupervised consensus clustering of 25
m6A regulators

A total of 31 m6A regulators were gathered from the papers

on m6A methylation modification. Due to the lacking of six m6A
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regulator genes (IGF2BP1, KIAA1429, METTL16, METTL14,

ALKBH5, and RBMX) in GEO datasets, the remaining 25 m6A

regulators were curated, including seven writers (METTL3,

WTAP, RBM15, RBM15B, CBLL1, ZC3H13, and ZCCHC4), one

eraser (FTO), 15 readers (YTHDF1,YTHDF2,YTHDF3,YTHDC1,

YTHDC2, IGF2BP2, IGF2BP3, EIF3A, HNRNPA2B1, HNRNPC,

FMR1, LRPPRC, ELAVL1, PRRC2A, and SND1), and two repellers

(G3BP1 and G3BP2). Unsupervised consensus clustering was

carried out using the expression levels of 25 m6A regulator genes

to discriminate different m6A modification patterns with the R

package “ConsensusClusterPlus”, which is based on a

computational method called consensus clustering (20).

Consensus Cumulative Distribution Function (CDF) and Delta

area (relative change of area under the CDF curve) were used to

select the proper clustering numbers within the high-throughput

RNA-seq data.We use the parameters of amaximumevaluated k of

20, an 80% resampling rate, 1000 iterations, and Euclidean distance

to determine the optimal number of clusters and to

guarantee robustness.
Gene set variation analysis (GSVA) and
functional annotation

Using the R package “GSVA”, gene set variation analysis

(GSVA), an unsupervised and non-parametric method, was used

to compute the pathway enrichment scores in order to explore

the biological process variations among different m6A

modification patterns (21). To conduct GSVA analysis, the

well-defined KEGG gene sets of “c2.cp.kegg.v6.2.symbols” were

downloaded from the MSigDB database (https://www.gsea-

msigdb.org/gsea/index.jsp). Gene set enrichment analysis with

a cutoff value of false discovery rate (FDR) < 0.01 was used to

examine biological processes correlated with m6A regulators

using the R package “clusterProfiler”.
Immune cell infiltration estimation

The single-sample gene-set enrichment analysis (ssGSEA)

function from the R package “GSVA” was used to estimate the

levels of immune cell infiltration. ssGSEA evaluates a specific gene

set, including the gene expression data of 28 immune cells that

represent different immune cell types, immune-related functions,

and pathways in NSCLC (22). The enrichment scores

representing the relative level of immune cell infiltration were

compared between samples that belong to different m6A clusters

by the Wilcox test. To illustrate their prognostic values,

significantly different immune cells between m6A clusters were

further analyzed by cox regression and visualized by the R

package “forestplot”.
frontiersin.org

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://doi.org/10.3389/fonc.2022.1087753
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yuan et al. 10.3389/fonc.2022.1087753
Identification of differentially expressed
genes (DEGs) between distinct
m6A clusters

Differential expression analysis was carried out using the R

package “limma”, an empirical Bayesian approach, to identify

DEGs associated with m6A (23). Genes with adjusted p < 0.05

(Benjamini-Hochberg adjustment) and |fold change| > 1.5 in

expression were regarded as DEGs. Hierarchical cluster analysis

was used to divide NSCLC patients into genomic clusters based

on the DEGs. We used a bottoms-up approach called

agglomerative clustering, in which the data points were

initially isolated as separate groups and then merged iteratively

based on similarity until one cluster had been formed. The

similarity was measured with Ward’s linkage, namely the

Euclidean distance between two clusters was defined by the

increase in the sum of squared after the clusters were merged.
Dimension reduction and generation of
m6A gene signatures

For all the identified differentially expressed genes between

m6A clusters, the supervised machine learning algorithm

random forest was applied for dimensionality reduction. After

removing the redundant genes, the remaining genes more

relevant to m6A modification went through survival analysis

with the R package “Survminer”. Genes with significant survival

results (p < 0.05) were added to a Cox regression model in

further analysis. To explore the similarity between gene

expression profile and prognosis efficiency, the m6A score was

introduced. The m6A score was defined refer to the definition of

gene expression grade index (GGI) (24), and the formula is as

follows:

m6Ascore  =  scale oX −oY
� �

Where scale represents the transformation parameter of

standardization and X and Y are the expression of gene sets

with positive and negative Cox coefficients, respectively. The

optimal cutoff value was computed using the surv-cutpoint

function from the “survival” R package. All samples were

subsequently stratified into m6Ascore-high and m6Ascore-low

subgroups, and their relationships with prognosis were evaluated

as well.
Correlation between m6A score and
other pertinent biological processes

Mariathasan et al. have constructed a collection of genes to

store genes related to a sort of biological processes, including

Angiogenesis; CD8 T effector; Antigen processing machinery;

Cell cycle; Cell cycle regulators; KEGG discovered histones;
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DNA damage repair; DNA replication; Fanconi anemia;

FGFR3-related genes; Homologous recombination; Immune

checkpoint; EMT1, EMT2, and EMT3 epithelial-mesenchymal

transition (EMT) markers; Mismatch repair; Nucleotide excision

repair; Pan-F-TBRS; WNT target (25). GSVA was used to

quantify the above-mentioned biological processes in each

sample with an enrichment score. Pearson correlation analysis

was carried out between m6Ascore and enrichment score to

reveal the relationship between m6Ascore and certain associated

biological pathways.
Copy number variation (CNV) analysis

The Genomic Identification of Significant Targets in Cancer

(GISTIC) method was used to identify the common CNV

regions across all samples with TCGA Copy Number Segment

data. The significance threshold of GISTIC was: False Discovery

Rate (FDR), namely q-value ≤ 0. 05. The peak region for each

significant region was identified with a confidence interval of

0.95. The GISTIC analysis made use of the MutSigCV module

from GenePattern, an online analysis tool provided by the Broad

Institute (https://cloud.genepattern.org/gp/pages/index.jsf).
Half maximal inhibitory concentration
(IC50) prediction and tumor immune
dysfunction and exclusion (TIDE) analysis

In order to predict the clinical chemotherapeutic response

from tumor gene expression profiles, the IC50 values of clinical

drugs (Cisplatin, Gemcitabine) were estimated using the R

package “pRRophetic” (26). Then IC50 values between high

m6Ascore samples and low m6Ascore samples were compared.

In addition, signatures of T cell dysfunction and exclusion were

analyzed using the online algorithm TIDE (http://tide.dfci.

harvard.edu/) to predict the cancer immunotherapy response

to immune checkpoint blockade (ICB) (27). A higher TIDE

prediction score indicates a poor prognosis and a poor response

to ICB therapy.
NSCLC cell line m6A score calculation
and chemotherapy drug IC50 validation

The Cancer Cell Line Encyclopedia was used to download

the gene expression data for NSCLC cell lines (CCLE: https://

sites.broadinstitute.org/ccle/). The m6A score for each cell line

was calculated using the m6Ascore formula. NSCLC cell lines

were stratified into m6Ascore-high and m6Ascore-low groups

based on the cutoff value. Genomics of Drug Sensitivity in

Cancer (GDSC: https://www.cancerrxgene.org/) provided

information on the drug sensitivity of the chemotherapeutic
frontiersin.org
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drugs Cisplatin and Gemcitabine. In general, a dose titration of

Cisplatin and Gemcitabine (6 nM-6 mM for Cisplatin; 0.1 nM-

0.1 mM for Gemcitabine) was administered to STRs-verified cell

lines for 72 hours in culture media after they had been seeded in

96-well plates and grown for 24 hours at 37°C in 5% CO2. Cell

viability was determined using either a metabolic test (Resazurin

or CellTiter-Glo) or DNA dye (Syto60). Every screening plate

was put through rigorous quality control procedures. GraphPad

Prism 9 software was used to calculate the IC50 of Cisplatin and

Gemcitabine in NSCLC cell lines and to generate dose-

response curves.
Statistical analysis

The Wilcoxon test was used to determine whether scores

between the two sample groups were statistically significant. The

log-rank test from the R package “Survminer” was used to assess

the statistical significance between the prognostic survival

curves, which were generated using the Kaplan-Meier method.

The prediction performance of immunotherapy by m6Ascore

was assessed using the receiver operating character (ROC) curve,

and the area under the ROC curve (AUC) was computed using

the R package “pROC”. Patients with high and low m6Ascores

had different mutational landscapes, which were visualized using

the “maftools” R package.
Results

Genetic and transcriptional alteration
landscapes of four types of RNA m6A
methylation regulators in NSCLC

Table S5 lists the 31 RNA m6A modification regulators that

were used in this study, which included ten methyltransferases

“writers”, two demethylases “Erasers”, 17 RNA binding proteins

“Readers”, and two “Repellers”. We first summarized the

occurrence frequency of somatic mutations and copy number

variations in 31 m6A regulator genes in TCGA NSCLC samples.

Specifically, ZC3H13 and KIAA1429 had the greatest mutation

frequency, reaching 4%. The most frequent mutation type was

missense mutation (Figure 1A). Copy number variation (CNV)

frequency analysis showed that copy numbers were generally

changed among 31 regulatory factors. Copy number

amplification commonly occurred in genes such as IGF2BP2,

KIAA1429, and YTHDC1, while copy number deletion

commonly occurred in genes such as RBM15, YTHDF2, and

ZC3H13 (Figure 1B, Table S6). According to the expression of

these 31 m6A regulator genes, principle component analysis

could differentiate TCGA NSCLC samples from adjacent normal

samples (Figure 1C). Gene expression analysis of 31 m6A

regulators between TCGA NSCLC samples and adjacent
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control samples showed that most regulator genes were

significantly overexpressed in NSCLC tissues, especially reader

genes (IGF2BP1, IGF2BP2, and IGF2BP3) from the IGF2BPs

family (Figure 1D).
Unsupervised clustering of m6A
regulator genes

An m6A regulatory network was constructed for 1557

NSCLC samples with expression data and survival information

available to describe the spearman correlations within m6A

regulator genes and the correlations between m6A regulator

genes and NSCLC prognosis (Figure 2A). Results suggested that

different m6A modification patterns might be significantly

influenced by interactions between different functional types of

m6A regulators. Due to the absence of IGF2BP1, KIAA1429,

METTL16, METTL14, ALKBH5, and RBMX expression data in

GEO datasets, the remaining 25 m6A regulator genes were

included for consensus clustering. Two subgroups were

identified using unsupervised consensus clustering, and their

respective names were m6A_clusterA and m6A_clusterB

(Figure 2B). Biological pathway differences between two m6A

clusters were identified using GSVA enrichment analysis.

m6A_clusterA significantly enriched metabolic-related

biological processes like fatty acid metabolism and tryptophan

metabolism, while m6A_clusterB considerably enriched

replication- and transcription-related biological pathways such

as DNA repair and mismatch repair (Figure 2C, Table S7). The

two m6A clusters also had significantly different prognoses, as

demonstrated by the Kaplan-Meier curve of overall survival

(p = 0.007) (Figure 2D).

The heatmap of 25 m6A regulator genes, which was classified

by two m6A clusters, showed the relationship between the

expression level and matching clinical information, such as

cancer type, smoking indicator, stage, sex, and age. The

distribution of clinical information between the two m6A

clusters does not significantly differ. Notably, NSCLC patients

in m6A_clusterB were more likely to express the IGF2BPs

family, including IGF2BP2 and IGF2BP3 (Figure 3A). Among

the most common gene mutations in people with NSCLC, we

analyzed the mutation status of nine genes: EGFR, ALK, ROS1,

BRAF, KRAS, CD274, MET, RET, and ERBB2. Results showed

that only the mutation status of KRAS (p = 7.74e-05) and RET (p

= 0.015) were significantly different between m6A_clusterA and

m6A_clusterB, while the other seven genes were not significant

(Chi-square test, p > 0.05). Excluding KRAS, NSCLC samples

without the above-mentioned gene mutations are more in

m6A_clusterA than in m6A_clusterB (Figure 3B). Furthermore,

to illustrate the impact of m6A regulators on immune cell

infiltration, ssGSEA was conducted based on the sample

expression data and obtained the proportion distribution of 28

immune cell types in two different m6A clusters of NSCLC
frontiersin.org
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samples (Figure 3C). Results showed that 22 of 28 immune

infiltration cells had differential expression between the two m6A

clusters and most of them were highly expressed in

m6A_clusterA, except for activated CD4 T cells and memory B

cells, which were highly expressed in m6A_clusterB (Figure 3C,

Table S8). This suggests that m6A_clusterA has an immune

microenvironment that is hot and suppressive. For the 22

differentially expressed immune infiltration cells, univariate

Cox regression analysis revealed that activated CD4 T cells

(p = 0.0085), monocytes (p = 0.024), and activated B cells

(p = 0.0212) were significantly associated with the prognosis of

two m6A clusters (Figure 3D, Table S9).
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Identification of m6A signature genes

Using the R package “limma”, 194 m6A phenotype-related

differentially expressed genes between m6A clusters were

identified in order to explore the probable biological functions

of each m6Acluster (Table S10). Unsupervised hierarchical

cluster analysis has classified the NSCLC patients into two

genomic clusters , termed m6A_gene_c lusterA and

m6A_gene_clusterB, which are roughly in accordance with the

m6A modification pattern, based on the expression of the 194

differentially expressed genes (Figure 4A, Table S11). The log-

rank test and Kaplan-Meier curve indicate that the genomic
A B

DC

FIGURE 1

Genetic and transcriptional variation landscapes of RNA m6A modification regulator genes in the TCGA dataset. (A) The frequency of mutations
and the distribution of mutation types of m6A regulator genes in NSCLC tissue samples. (B) The frequency of m6A regulator gene copy number
variation in NSCLC tissue samples. Blue triangles denote deletion and red dots denote amplification. (C) Principle component analysis results to
distinguish NSCLC samples from adjacent normal tissues based on the expression of m6A regulator genes. (D) The expression profile of m6A
regulator genes in cancer samples and adjacent normal samples. Asterisks in red indicate genes belonging to the IGF2BPs family. NS p > 0.05;
*p < 0.05; **p < 0.01; ***p < 0.001.
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phenotypes of m6A modification were significantly related to OS

in NSCLC patients and patients in m6A_gene_clusterB had

better prognoses (Figure 4B, p = 0.0014). Among the 25 m6A

regulator genes, 17 were significantly more abundantly

expressed in m6A_gene_clusterA than in m6A_gene_clusterB,

while three were significantly highly expressed in m6A_gene_

clusterB (Figure 4C).
Clinical and transcriptome features of
m6A-related phenotypes

Among the 194 differentially expressed genes derived from

the previous analysis, redundant genes were removed using the
Frontiers in Oncology 07
random forest algorithm, leaving 83 feature genes that were most

closely related to the m6A relationship between these genes and

NSCLC patient survival. These 83 genes were classified into two

groups, a positive group with 30 genes and a negative group with

53 genes, based on the coefficient value of genes obtained from

the Cox regression (Table S12). According to the m6Ascore

formula, m6A scores for all samples were calculated and the best

cutoff of m6Ascore (cutoff = -0. 7437558) was established by the

“surv_cutpoint” function of the R package to classify NSCLC

samples into m6Ascore high and low groups (Figure 5A, Table

S13). Results of the survival analysis demonstrated that the

m6Ascore might accurately characterize the prognosis of

NSCLC patients (p < 0.0001), with the m6Ascore_low group

has a good prognosis while the m6Ascore_high group has a bad
A B

D

C

FIGURE 2

m6A regulator genes unsupervised clustering in NSCLC samples. (A) m6A regulator gene interactions in NSCLC. The circle size reflects how
each gene affects the ability to predict survival. The stronger the association between gene expression and prognosis, the larger the circle. The
red circle indicates prognostic protective factors and the blue circle indicates prognostic risk factors. The spearman correlations between genes
are linked by lines connecting them, with positive correlations denoted by solid grey lines and negative correlations by purple dotted lines. The
interaction strength between m6A regulators determines line thickness. (B) Consensus clustering of m6A regulator genes, 1 and 2 represent two
subgroups. (C) GSVA enrichment analysis revealed the activation state of biological pathways with distinct m6A clusters. The heatmap was used
to depict these biological processes, with red indicating activation and blue indicating inhibition. (D) Two m6A clusters showed a significant
survival differences, as depicted in the Kaplan-Meier curve.
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prognosis (Figure 5B). To better depict the function of

m6Ascore, GSVA was performed with known gene signatures.

A significant positive correlation between m6Ascore and

biological processes, including the cell cycle and DNA

replication, has been found using pearson correlation analysis.

In contrast, the correlation between m6Ascore and other

biological processes, such as angiogenesis and EMT3, is

significantly negative (Figure 5C, Table S14). m6Ascores

between m6A clusters and between m6A gene clusters were

compared using the Wilcox test. Results showed that

m6A_clusterA had a substantially lower m6Ascore than

m6A_clusterB, while m6A_gene_clusterA had a significantly

higher m6Ascore than m6A_gene_clusterB (Figure 5D).

Furthermore, as shown in Figure S2, there are significant

differences in m6Ascores across several clinical categories,

including EGFR mutation status, age, and sex (Figures S2A,

B). Additionally, in both the TCGA and GEO datasets, NSCLC

patients with high and low m6Ascores had significantly different

overall survival probabilities (Figure S2C).
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Molecular characteristics of m6Ascore
groups in TCGA datasets

The distribution of tumor somatic mutations in TCGA

NSCLC datasets is visualized by the R package “maftools”

(Figures 6A, B, left), and the GISTIC algorithm was used to

evaluate and visualize the distribution of somatic copy number

alterations in groups with high and low m6Ascores, respectively

(Figures 6A, B, right). The mutational landscape revealed that

the top 15 genes in the high m6Ascore group had higher tumor

mutation frequencies than those in the low m6Ascore group. The

most mutational gene was TP53 (80% vs. 37%). GISTIC plots

revealed that the m6Ascore low group had significantly fewer

copy number alterations than the m6Ascore high group, which is

consistent with somatic mutations. Based on these data, we were

able to more fully illustrate the impact that m6A score

classification has on genomic variation and to demonstrate the

potentially intricate interactions between individual somatic

mutations/alterations and m6A modifications.
A B

DC

FIGURE 3

Transcriptome characteristics and immune cell infiltration features in two m6A regulator gene clusters. (A) The expression pattern of the m6A
regulator genes between the two m6A clusters that matched the clinical information, including cancer type, smoking indicator, stage, sex, and
age. (B) The nine most common gene mutation statuses in NSCLC. (C) The boxplot shows the abundance of 28 infiltrating immune cells among
the two m6A clusters. NS p > 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (D) Forest plots of hazard ratios (HRs) for 22 immune infiltration
cells associated with OS and meaningful immune cells were marked in red (p < 0.05).
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The value of m6Ascore in
predicting chemotherapy and
immunotherapy response

To extend the potential therapeutic use of m6Ascore, we

explored whether the intrinsic m6Ascore in cancer cells could

predict their response to various drugs, which was inspired by the

cross-talk between m6Ascore and many key cancer-related

pathways. Using the R package “pRRophetic” and the expression

profile from TCGA and GEO datasets, IC50 values of

chemotherapeutic drugs Cisplatin and Gemcitabine were

calculated. According to a comparison of the relative distribution

of Cisplatin and Gemcitabine IC50 values, the IC50 value in the low

m6A score group was significantly higher than that in the high

m6A score group, indicating that the high m6A score group had

poor drug resistance (Figure 7A). Moreover, based on the mRNA

expression profile in the TCGA data set, the TIDE algorithm was
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employed to assess the clinical effect of ICB treatment in the

m6Ascore high and low groups. Results revealed that patients with

high m6Ascores had TIDE scores that were significantly lower than

those with low m6Ascores. That was to say, compared to patients

with low m6Ascores, NSCLC patients with high m6Ascores

exhibited a better therapeutic benefit and clinical response to

anti-PD1 or anti-CTLA4 immunotherapy (Figure 7B). According

to the ROC curve, the m6Ascore may be a reliable biomarker for

predicting outcomes and evaluating the therapeutic efficacy of anti-

PD1 and anti-CTLA4 treatments (AUC = 0.88) (Figure 7C).

To validate the chemotherapy response in high and low

m6Ascore groups, we first classified NSCLC cells into m6Ascore-

high (NCI-H23, NCI-H2023, COR-L32, NCI-H1781, and NCI-

H2170) and m6Ascore-low (VMRC-LCD, NCI-H1838, NCI-

H2342, NCI-H661, and NCI-H2347) groups with distinct

differences. The dose-response curves and IC50 values

indicated that Gemcitabine treatment is generally more
A B

C

FIGURE 4

Genes that differ in expression are associated with m6A. (A) Unsupervised analysis and hierarchical clustering of differentially expressed genes
associated with the m6A phenotype to divide NSCLC patients into two genomic groups.Patient annotations include m6A cluster, cancer type,
smoking indicator, stage, sex, and age. (B) Kaplan-Meier curve depicts the association between m6A modification genomic phenotypes and OS.
(C) The two m6A gene clusters’ expression of 25 m6A regulator genes. NS p > 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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effective in NSCLC cell lines. The m6Ascore-high group of

NSCLC cell lines has higher anti-tumor activity when treated

with Cisplatin and Gemcitabine (Figures 8A, B), which is in line

with the predicted result that the group with a high m6A score

has poor drug resistance.
Discussion

The immunological state of TME in diverse malignancies is

regulated by RNA m6A modification (28, 29). Recent studies
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have uncovered the relationships between m6A regulators and

immune cell infiltration. The accumulation of myeloid-derived

suppressor cells necessary to maintain the activation and

proliferation of CD4+ and CD8+ T cells was reduced when

METTL3 was selectively depleted in colorectal cancer cells (30).

Natural killer cell homeostasis and maturation, as well as their

anti-tumor and antiviral activity, are positively regulated by

YTHDF2 (31). YTHDF1 deficiency in classical dendritic cells

could enhance antigen presentation, initiate anti-tumor

responses, and improve the therapeutic effectiveness of PD-L1

checkpoint blockade (32). Nevertheless, these research
A B

DC

FIGURE 5

Construction of m6A scores. (A) An alluvial diagram of the m6A clusters showing different m6A gene clusters, m6Ascores, and survival outcomes.
(B) The Kaplan-Meier curve demonstrated a significant correlation between m6A scores in the high and low groups and overall survival. (C)
GSVA and Pearson correlation analysis show correlations between m6Ascore and biological pathways constructed with known gene signatures
in NSCLC. A positive correlation is indicated by red, while a negative correlation is indicated by blue. The circle size is inversely proportional to
the levels of significance, and X indicates no significant correlation. (D) Boxplots show the differences in m6A scores between m6A clusters and
between m6A gene clusters. ****p < 0.0001.
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concentrated on the single m6A modification regulators, and the

integrated roles of various m6A regulators in modifying immune

characteristics in NSCLC need to be further investigated. More

efficient immunotherapy approaches will result from a

knowledge of the involvement of distinct m6A modification

patterns in TME cell infiltration and the TME anti-tumor

immune response.

The global transcriptional and genetic profiles of m6A

modification regulator genes and their mutual correlation in

NSCLC were the focus of this study. When compared to healthy

controls, the expression of METTL3 and METTL14 in NSCLC

samples exhibited a contrary trend. As well-studied m6A writers,

METTL3 and METTL14 are reasonably thought to have similar

functions. Although a similar phenomenon exists in prostate

cancer (33), further studies are required in the future to figure

this out. m6A readers from the IGF2BPs family showed high

expression levels and mutation frequency, especially IGF2BP2.
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According to Li et al., IGF2BP2 and IGF2BP3 was essential for

lung cancer progression, and they could identify and stabilize

m6A sites and function as ‘readers’ in the post-transcriptional

regulation manner (34). A study found that IGF2BP2 regulated

macrophage activation in an m6A-dependent manner, which

indicated a potential therapeutic target of macrophages in

inflammatory diseases (35). RBM15 and its paralogue

RBM15B contain RNA-binding motifs, which make it easier to

recruit m6A methyltransferase to specific sites in RNA (36, 37).

Our results showed that RBM15 and RBM15B were significantly

up-regulated in NSCLC samples and had frequent CNV

alterations, indicating their potential role in promoting cancer

cell migration and invasion (38). Our comprehension of how

epigenetic regulation affects diverse physiological processes and

TME cell-infiltrating characterization will be enhanced by a

thorough evaluation of the patterns of m6A modification,

which will highlight the heterogeneity of m6A modification.
A

B

FIGURE 6

Molecular features of m6Ascore groups in TCGA datasets. (A) The distribution of tumor somatic mutations in NSCLC with a high m6Ascore is
depicted in the waterfall plot. Each column represents a patient. TMB is depicted in the upper barplot, and each gene’s mutation frequency is
indicated by the number on the left. The horizontal barplot on the right depicts the percentage of each variant type, and overall survival status is
shown as patient annotations (left). GISTIC plot depicts the distribution of somatic copy number alterations in NSCLC with a high m6Ascore,
regions of copy number amplification are highlighted in red, and regions of copy number deletion are highlighted in blue. Several significant
gene names are marked (right). (B) The waterfall plot displays the somatic mutation distribution (left), and the GISTIC plot shows the distribution
of somatic copy number alterations (right) in NSCLC with a low m6Ascore.
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These regulators’ effects on immune infiltration mechanisms via

m6Amodification require additional biology studies utilizing cell

culture and even PDX mice models.

With consistent clustering, we have identified two

independent m6A modification patterns with significantly

different TME immune cell infiltration traits, among which

m6A_clusterA showed immune inflamed phenotype and

enriched abundant immune cells, known as hot tumor.

Immune checkpoint inhibitors are frequently associated with
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greater benefits in such tumors (39). Therefore, m6A_clusterA

had a better prognosis. As defined by us, m6A signature genes

are the genes that are expressed differently in different m6A

modification patterns. Two genomic clusters were identified

using m6A signature genes, which is consistent with m6A

modification clusters. m6A regulator genes were also

differentially expressed between genomic clusters. This

phenomenon demonstrates once more how the m6A

modification significantly shapes various TME landscapes.
A

B
C

FIGURE 7

The response of the high and low m6Ascore groups to chemotherapy/immunotherapy. (A) Differences in IC50 of Cisplatin and Gemcitabine
treatment. (B) Differences in TIDE prediction score. (C) The receiver operator characteristic curve (ROC) shows the predictive performance of
m6Ascore in NSCLC patients receiving anti-PD1 and anti-CTLA4 therapy (AUC, 0.88).
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Taking into account the individual variability of m6A

modification, an m6Ascore algorithm based on the m6A

signature genes was developed to compute the m6Ascore of

each sample. m6Agenecluster and m6Ascore groups have

apparent differences in prognosis, clinical features, or

molecular characteristics. As a result, we demonstrated that

m6Ascore might be used to evaluate the clinicopathological

traits of patients, such as tumor inflammation, prognosis,

genetic variation, and so forth. This demonstrated that

m6Ascore was robust and reliable and could be utilized to

identify the tumor immune phenotypes by comprehensively

assessing individual tumor m6A modification patterns.

Therefore, m6Ascore could be utilized to predict the

effectiveness of chemotherapy and the patient’s clinical

response to anti-PD1 and anti-CTLA4 immunotherapy for

NSCLC, in addition to being used as an independent

prognostic biomarker to predict patients ’ survival .

Immunotherapy response results predicted from m6Ascore

classification demonstrated that the predictive performance of

the m6Ascore in NSCLC patients treated with drugs anti-PD1
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and anti-CTLA4 reaches a meaningful result (AUC = 0.88).

Several novel ideas for cancer immunotherapy that alter m6A

modification patterns by targeting m6A regulators or m6A

signature genes were presented in our study. By harnessing the

immune system, firing up the TME cell infiltration

characterization to turn tumors from “cold” to “hot” is a

promising strategy to explore novel drug combinations or

novel immunotherapeutic agents.

This study is the first to comprehensively and methodically

analyze the relationships between m6A regulator modification

patterns, immune infiltration, and treatment resistance in

NSCLC. Their relationships attracted emerging attention in

recent years (40). The numerous results generated from this

study will provide hints for other researchers in deep mechanism

study and direct m6A immunotherapy in lung cancer. In

addition, in the analysis process, our study is the first to use

public drug sensitivity experimental data to validate the value of

m6Ascore in predicting chemotherapy response, making our

prediction results more reliable. However, limitations exist in

this study. Firstly, when merging two large TCGA cohorts and
A

B

FIGURE 8

Validation of chemotherapy drugs’ IC50. (A, B) Measurement of IC50 by DNA dye or metabolic assay in NSCLC cell panels (VMRC-LCD, NCI-
H1838, NCI-H2342, NCI-H661, NCI-H2347, NCI-H23, NCI-H2023, COR-L32, NCI-H1781, NCI-H2170) treated with Cisplatin and Gemcitabine.
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two GEO datasets of NSCLC patients, intra-tumor heterogeneity

in different databases was not considered. A study has proven

that tumor heterogeneity affects cancer immunotherapy (41).

Secondly, this study confirmed the strong impact of m6A

modification on the immune characteristics of NSCLC, but

only theoretically valid. Bench works are warranted in the

future to explore the underlying mechanisms. Thirdly, this

study lacks an external clinical cohort to verify the results.

Therefore, large external NSCLC cohorts are needed for

further validation.
Conclusions

In this study, a thorough examination of m6A regulators in

NSCLC was conducted with bioinformatics analysis. We initially

screened DEGs of m6Aclusters, then separated NSCLC patients into

two categories, and computed the m6Ascore in order to build a risk

model with a good predictive value for prognosis. The results of this

study may help us learn more about how m6A signaling influences

the progression and prognosis of NSCLC. This work emphasizes

the important clinical implications of RNA modifications’ cross-

talks and contributes to developing individualized immune

therapeutic approaches for NSCLC patients.
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