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Tumor drug resistance is a multifactorial and heterogenous condition that

poses a serious burden in clinical oncology. Given the increasing incidence of

resistant tumors, further understanding of the mechanisms that make tumor

cells able to escape anticancer drug effects is pivotal for developing new

effective treatments. Neutrophils constitute a considerable proportion of

tumor infiltrated immune cells, and studies have linked elevated neutrophil

counts with poor prognosis. Tumor-associated neutrophils (TANs) can acquire

in fact immunoregulatory capabilities, thus regulating tumor progression and

resistance, or response to therapy. In this review, we will describe TANs’ actions

in the tumor microenvironment, with emphasis on the analysis of the role of

interleukin-8 (IL-8) and extracellular vesicles (EVs) as crucial modulators and

mediators of TANs biology and function in tumors. We will then discuss the

main mechanisms through which TANs can induce drug resistance, finally

reporting emerging therapeutic approaches that target these mechanisms and

can thus be potentially used to reduce or overcome neutrophil-mediated

tumor drug resistance.
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1 Introduction

During the past decades, huge progress has been made in the

field of cancer genetics, immunology and pathology for the

identification of new markers and methods for diagnosis and

treatments (1, 2). Despite these achievements, resistance to

classical chemotherapeutic agents or to novel drugs is one of

the major causes of therapy failure and death in cancer, still

representing a crucial limiting factor in the treatment of cancer

patients (3).

The mechanisms through which cancer cells get resistant or

acquire resistance to drug therapies are numerous, and

sometimes tumors can be resistant to multiple therapies and

display, simultaneously or subsequently, different mechanisms

of drug resistance. In this context, it has been proposed that the

mechanisms of drug resistance in tumors can be both active

(cell-autonomous) or adaptive (non-cell-autonomous): the firsts

depend on cancer intracellular responses, which include, for

example, genetic or epigenetic alterations that promote cell

survival (4–7), while the seconds result from tumor

interactions with the surrounding tumor microenvironment

(TME) (8, 9) that is shaped to favor tumor growth, expansion

and drug resistance.

Together with myeloid-derived suppressor cells (MDSCs)

and tumor-associated macrophages (TAMs), tumor-associated

neutrophils (TANs) represent the most abundant population

(10, 11) of immune cells infiltrated in the TME, and many

studies so far have highlighted the link between elevated TAN

counts and increased risk of metastasis, drug resistance and poor

prognosis (12–17). In TME, neutrophils can acquire

immunoregulatory capabilities, facilitating tumor progression

(18) and drug resistance through a number of different

mechanisms. In this context, interleukin-8 (IL-8, aka CXCL-8),

a member of the CXC chemokine family that is highly produced

by neoplastic cells (19), is an important chemoattractant and

activator for neutrophils and is a key mediator of their biology,

behavior and actions inside the tumor. On the other hand,

increasing evidence is highlighting the crucial role of

extracellular vesicles (EVs) in both the mediation and

regulation of neutrophils’ response within the TME. EVs,

produced both by tumor cells and by TANs, or by other

immune or stromal cells, function in fact as intercellular

mediators of the communication within the TME and beyond,

and can ultimately promote neutrophil-mediated tumor drug

resistance (20).

In this review, we will describe the role of IL-8 and EVs in

the regulation and mediation of neutrophil biology and function

in the TME, promoting pro-tumoral functions of these cells,

ultimately leading to neutrophil-mediated tumor drug resistance

through the production of neutrophil extracellular traps (NETs)

and the secretion of neutrophil-derived EVs and other factors.

Finally, we will discuss emerging therapies that, targeting IL-8,

EVs and neutrophil functions, could be considered as potential
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therapeutic tools to reduce or overcome neutrophil-mediated

tumor drug resistance.
2 Neutrophils in cancer

Neutrophils are the most abundant leukocytes in the

circulation, representing around 70% of all white blood cells (21).

Produced in the bone marrow (BM) through the granulopoiesis

(i.e., progressive maturation) of hematopoietic progenitors,

neutrophils are then released into the blood stream, ready to

respond to a plethora of stimuli released by inflamed tissues (22).

In tumors, several chemotactic and inflammatory factors, as well as

EVs, are released from tumoral and non-tumoral cells and can

attract mature neutrophils, which thus migrate from blood stream

and infiltrate into the TME (23–25) (Figure 1).

Neutrophil recruitment into the tumor site from circulation is a

multi-step process that involves several factors, but seems to be

mainly regulated by two G protein-coupled receptors (GPCRs):

CXCR4 and CXCR2 (26). CXCR4 is a neutrophil homingmarker in

the bone marrow, while CXCR2 activation by its ligands (i.e.,

CXCL-1, CXCL-2, CXCL-3, CXCL-5, CXCL-6, CXCL-7 and

CXCL-8) induces the release of neutrophils into circulation and

their recruitment into the TME (27–29). Indeed, the diverse cell

types in the TME (e.g., tumor cells, immune cells, fibroblasts)

release large quantities of CXCR2 ligands, forming a chemotactic

gradient that attracts the neutrophils from the bloodstream (29).

Among the chemokines that can influence neutrophil functions, IL-

8 is the master regulator of neutrophil biology and one of the most

characterized chemokine in cancer as it has been found

overexpressed in several tumors (30–43). Once into the TME,

neutrophils turn into TANs, a plastic and dynamic population

that can rapidly switch between two forms: N1 TANs with anti-

tumoral functions, and N2 TANs, with pro-tumoral effects (44–46).

N1 TANs are mature and short-living cells, which exert their highly

cytotoxic and immune-stimulating activities by producing reactive

oxygen species (ROS) and other cytotoxic substances, and by

recruiting and activating other immune cells (17). On the other

hand, N2 TANs are immature and long-living cells, which can

produce and release cytokines, chemokines and other factors to

favor pro-angiogenic, pro-metastatic and immune-suppressive

activities (47). TANs polarization towards one of the two sub-

populations is crucially regulated by multiple TME factors

including, among others, cytokines and chemokines, such as IL-8,

and also EVs, released by tumor, stromal and immune cells (17, 48,

49). In addition, TANs can also regulate cancer progression through

NETosis, a process by which neutrophils extrude a sort of web-like

structures called NETs (50–52). NETs are formed by DNA fibers

decorated with cytotoxic enzymes, such as neutrophil elastase (NE),

myeloperoxidase (MPO) and matrix metalloproteinases-9 (MMP-

9) and are released by activated neutrophils into the extracellular

space as mechanism of defense against pathogen micro-organisms

(53). In tumors, NETs have been identified as factors that can
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significantly contribute to carcinogenesis and metastasis (11, 54) in

several ways, as by inducing the degradation of the extracellular

matrix which promotes the extravasation of cancer cells (50),

trapping circulating tumor cells (CTCs) (55, 56) or deactivating

thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis and

tumor progression (57, 58).

Regulated by different factors and acting through several

mechanisms, neutrophils thus play a key role in hijacking the

immune system response against the tumor, ultimately promoting

cancer progression and tumor drug resistance (59, 60).
3 IL-8 and EVs crucially regulate
and mediate the biology and
functions of TANs in the TME

3.1 IL-8 and TANs

Tumor cells produce several factors, such as cytokines,

chemokines, lipids, and growth factors that, not only increase

their growth and survival in an autocrine manner (61), but also

increase the number of circulating neutrophils by stimulating

granulopoiesis in the bone marrow and promote their

recruitment to TME in a paracrine manner (62–64) (Figure 1). In

particular, among other factors, IL-8 has demonstrated to be crucial
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in tumor progression (19, 65–67), since it was found to be

overexpressed in several tumors, where induces angiogenesis and

is involved in the maintenance of cancer stem cells (CSCs) (68, 69).

Also, a direct correlation between IL-8 and poor prognosis has been

reported (70–73). IL-8 exists as a monomer or dimer and exerts its

activity by binding its two receptors: CXCR1 and CXCR2 (74). It is

a well-known chemoattractant able to recruit leukocytes and in

particular neutrophils, which express a substantial number of IL-8

receptors on their surface (75, 76). During carcinogenesis, the IL-8

released by neoplastic cells promotes the activation of both the

phosphatidylinositol-3-kinase (PI3K) and the mitogen-activated

protein kinase (MAPK) signal pathways via CXCR2, thus leading

to cell migration and survival (77–79). In addition, IL-8 mediates

the formation of NETs, through the binding to CXCR1 and CXCR2

(18, 80) (Figure 1). These mechanisms help to dampen the anti-

tumor immune responses and cause disfunctions of cytotoxic

immune cells, thus crucially contributing to tumor growth and

progression (81).
3.2 Extracellular vesicles and TANs

In addition to IL-8, EVs are other factors that are crucially

involved in the regulation and mediation of TANs’ pro-tumoral

functions in the TME (82). EVs are heterogenous lipid bilayer
FIGURE 1

The role of secreted factors and EVs in neutrophil recruitment and activation into the TME. In TME, cancer cells can regulate neutrophil biology
through the secretion of several factors, among which (1) interleukins and chemokines, such as IL-8, and (2) tumor-derived EVs. These factors
regulate the recruitment of the neutrophils from the bloodstream to the tumor and the generation of TANs, which in turn promote cancer
progression, metastasis and drug resistance through different cell mechanisms: release of neutrophil-derived EVs, degranulation/secretion and
NETosis (4). Together with cancer cells, also other cell types in the TME can release vesicles, which are also potentially able to act on
neutrophils (3, dashed arrows). Image created with biorender.com.
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structures secreted by cells that can carry a plethora of cargoes,

including lipids, proteins and nucleic acids (83–86). In the past they

were divided in three subtypes (microvesicles (MVs), exosomes and

apoptotic bodies) depending on their biogenesis, release pathways,

size, content and functions (84, 87, 88). However, since it is not easy

to clearly determine EVs biogenesis pathway, the last MISEV

guidelines (MISEV 2018) suggest to classify EV subtype referring

to 1) physical characteristics of EVs, such as size or density; 2)

biochemical composition; or 3) descriptions of conditions or cell of

origin (89). One of the main functions of EVs is to facilitate the

exchanges of cellular components, acting as an intercellular

communication system in both physiological and pathological

conditions (88, 90, 91). The EV-mediated intercellular

communication is achieved in two manners: by delivering cargoes

that are within the vesicles in the target cells (92, 93), or by using

EVs surface markers without requiring vesicle internalization (94).

In tumors, EVs are important components of the TME and

promote the crosstalk between cancer and cancer-associated cells

(e.g. fibroblasts, endothelial and immune cells), creating a favorable

niche that supports and nourishes the tumor, promoting its growth

and progression, and also regulating tumor drug resistance.

Tumor-derived EVs are nanoscale membrane vesicles (95)

that contain tumor-specific functional biomolecules both in

their lumen, such as cytokines, growth factors, proteases and

enzymes, as well as on their surface, including receptors/ligands,

adherent molecules, or tetraspanins (96, 97). Tumor-derived

EVs work in both autocrine and paracrine way to favor local

invasion of tumor cells and spreading of metastasis and to

induce the reprogramming of recipient cells (82, 98–101).

They can also promote immune-modulation by attenuating

the cytotoxic activity of T and NK cells, prompting the

recruitment of regulatory B cells and Tregs and inducing the

differentiation of M2 macrophages and N2 immune-suppressive

sub-population of tumor-associated macrophages (TAMs) and

TANs, respectively (102, 103), thereby creating a pro-

tumorigenesis environment for tumor progression (104–106).

Among innate immune cells, neutrophils may be especially

prone to stimulation from tumor-derived EVs (107); for example,

they can promote TAN polarization into the anti-inflammatory N2

tumorigenic subtype (Figure 1). Although the underlying

mechanisms remain poorly understood, Zhang and colleagues

have recently started analyzing tumor-derived EVs induced N2

neutrophil polarization in gastric cancer, demonstrating that gastric

cancer-derived EVs can induce the expression of programmed

death-ligand 1 (PD-L1) on neutrophils, which in turn polarizes

their differentiation through the N2 phenotype and suppresses T

cell-mediated immunity (108, 109). On the other hand, tumor-

derived EVs from murine colorectal CSCs have been shown to

prolong bone marrow-derived neutrophil life-span through the

activation of the NF-kB signaling, which in turn induces the

expression of interleukin-1b (IL-1b) in neutrophils, thus

promoting their pro-tumoral phenotype (110). Besides inducing

N2 polarization, tumor-derived EVs can also modulate other
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metastatic human melanoma cell line (MV3), for example, have

been shown to induce neutrophil chemotaxis through the CXCR2/

PI3K-Akt axis and to promote the formation of NETs (103)

(Figure 1), which play a crucial role in inducing cancer-associated

thrombosis (111–113) and tumor drug resistance (114). Similar

results have been obtained in amousemodel of breast cancer, where

4T1-derived exosomes induced NETs formation in neutrophils

derived from G-CSF-treated mice and accelerated venous

thrombus formation in tumor-free neutrophilic mice (115). Also

the EVs released from a human cell line of breast carcinoma (MDA-

EVs) induced neutrophil activation (i.e., increased chemotaxis and

secretion of IL-8 and MMP-9), N2-like phenotype and increase of

ROS production, which were followed by augmented NETosis

(116). Finally, a recent report also showed that exosomes can

transfer mutant KRAS from DKO-1 colorectal cancer cells to

neutrophils, resulting in increased IL-8 production, neutrophil

recruitment and NETs formation, ultimately promoting tumor

growth and metastasis. Interestingly, these effects were abolished

by an anti-IL-8 treatment (117).

Although tumor-derived EVs represent the majority of vesicles

secreted in the TME, studies have shown that EVs can be released

also by other cells within the TME, such as cancer-associated

stromal cells (CASCs), including fibroblasts, immune cells,

endothelial cells and neurons (118) (Figure 1). These EVs can

influence many aspects of tumor biology, but their direct role in the

regulation of neutrophil biology has not been fully addressed yet.

For example, cancer associated fibroblasts (CAFs) can secrete EVs

which act on cancer cells to enhance their metastatic potential by

delivering bioactive molecules, such as extracellular matrix proteins

and remodeling enzymes (118). Ji et al. demonstrated that primary

colorectal cancer cells can secrete integrin beta-like 1 (ITGBL1)-

bearing EVs which enter the circulation, reach distant organs, and

activate fibroblasts via the TNFAIP3-mediated NF-kB signaling

(119). In addition to fibroblasts, also immune cells can release EVs

within the TME ultimately exerting anti-cancer effects as for natural

killer (NK) cells, or pro-cancer effects in the case of regulatory T

cells (Tregs) (120). NK cell-derived EVs are released by resting and

activated NK cells and both can exert cytotoxic activity on activated

but not resting immune cells (121), but also exhibit immune-

modulatory activity by stimulating other immune cells via

paracrine action or through the circulatory system (122).

Further studies are needed to better understand if this subset

of non-tumor-derived EVsmay have a direct role in the regulation

of neutrophil biology in the context of tumor progression.
4 TAN-mediated tumor
drug resistance

The involvement of neutrophils in tumor drug resistance is

determined by the interplay of several factors. Among others, IL-

8 and EVs are key modulators of neutrophil biology and
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functions within the TME. They act on neutrophils to promote

tumor drug resistance which is exerted through different

mechanisms, such as release of neutrophil-derived EVs,

secretion of specific molecules/factors and NETosis (Figure 1).

These mechanisms can act in a concerted way to promote tumor

drug resistance by reducing the availability or stability of

administered therapeutics, inducing ROS production or

alterations of DNA damage repair pathways, and modulating

antitumor immunity (123).
4.1 Tumor drug resistance promoted by
neutrophil-derived EVs

Like tumor cells, neutrophils can also produce and release

EVs in response to intracellular metabolic changes and/or

extracellular environmental stress. As reviewed by Rubenich

and colleagues, the genetic and molecular composition of

neutrophil-derived EVs reflects that of the mother cell and

varies depending on the existing physiological or pathological

conditions (20, 124). Depending on the context, neutrophils

polarize into inflammatory N1 or regenerative N2 subtypes,

which are thought to be able to release two different kinds of

EVs: the N1-derived and the N2-derived EVs, respectively (124).

During cancer progression, the role of neutrophil-derived

EVs seems to be important for the prediction of disease

outcome, although the underlying mechanisms are still unclear

(125). Even if few, the available evidences on neutrophil-derived

EVs isolated from tumoral contexts seem to mainly suggest a

role for these vesicles in mediating cancer progression and drug

resistance. On the other hand, EVs produced by neutrophils

from healthy donors may possess a tumor suppressive activity

both in vitro and in vivo (126). As recently demonstrated in fact,

EVs from healthy neutrophils contain cytotoxin proteins that are

able to activate the caspases signaling pathway and then promote

tumor cell apoptosis (126) (Figure 2).

The role of neutrophil-derived EVs in drug resistance has

been demonstrated by a recent work from Butin-Israeli and

colleagues (127). Using samples from inflammatory bowel

disease (IBD) patients, who are more prone to develop colitis-

associated colorectal cancer and have an important neutrophil

infiltrate in the intestinal mucosa, they demonstrated that

neutrophil-derived EVs containing miR-23a and miR-155

inhibited Homologous Recombination (HR) repair by

targeting the main HR regulators RAD51 while promoting

non-homologous DNA end joining (NHEJ), ultimately leading

to the formation of highly mutagenic DNA Double-Strand

Breaks (DSBs) (127). This switch from HR to NHEJ may

result in the acquisition of drug resistance in tumors (128–

131) as observed in colorectal cancer, in which neutrophil-

mediated NHEJ induced resistance to a lethal dose of topo-

isomerase I inhibitor Camptothecin (CMPT) as tumor cells

effectively resolved CMPT-induced DSBs and entered normally
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into cell cycle (132) (Figure 2). Other evidence for the role of

neutrophil-derived EVs in cancer, suggest that they can act

either as an onco-suppressor (133–136) or as an onco-

promoter (137–139) in a context-dependent manner. For

example, neutrophil-derived EVs containing miR-223, a

miRNA essential for the development of cells of the myeloid

lineage and the mobilization of neutrophils from the bone

marrow (140–142), have been described to be able to both

sustain and inhibit tumor growth (135, 137–139, 143). In both

acute myeloid leukemia and breast cancer for instance, E2F1-

dependent downregulation of EVs-transported miR-223 is

associated with tumor aggressiveness and poor prognosis (135,

143). Of note, a clear role of neutrophil-derived EVs carrying

miR-223 in drug resistance still remains unknown (Figure 2).

Interestingly, in addition to regulate tumor progression and

drug resistance, neutrophil-derived EV have recently also been

engineered to efficiently deliver anti-cancer drugs at the tumor

site (126), thus not only demonstrating the intricate complexity

of the processes regulating neutrophil-derived EVs content and

secretion but also showing the therapeutic potential of

these vesicles.
4.2 Tumor drug resistance promoted by
TAN-released factors and NETosis

Attracted to the tumor site and regulated by the action of IL-

8, EVs and other chemotactic factors, TANs can interfere with

different antitumoral treatments not only by releasing EVs but

also by secreting specific factors as well as by undergoing

NETosis. During degranulation and NETosis, TANs can for

example increase the secretion of matrix metalloproteinases

(MMPs), such as MMP-2 and MMP-9, thus counteracting the

effects of anti-angiogenic therapies. MMP-9, the production of

which is also directly induced by IL-8 through CXCR2 receptor

(144), can in fact cleave matrix-bound isoforms of VEGF-A into

soluble fragments that are able to elicit VEGFR2 receptor

activation and induce angiogenesis with a higher potential

than uncleaved protein (145, 146) (Figure 3). In addition,

TANs can directly secrete the pro-angiogenic cytokine IL-17

(147) or induce the activation of cathepsin B/NLRP3

inflammasome followed by IL-1b overproduction, with

consequent increase of IL-17 secretion (148, 149) (Figure 3).

Besides secreting factors in the TME, TANs can mediate

drug resistance also through the formation of NETs or through

the activities of several NET-associated components (Figure 3).

In agreement with this, increased levels of cell free cell free DNA

(cfDNA), which is at least in part derived from NETs, predict

limited response to chemo- and immune-therapy in several

tumors (150–152). NET components, including NE, MMP-9,

Cathepsin G (CG), the carcinoembryonic antigen cell adhesion

molecule 1 (CEACAM1), and other factors, have been shown to

promote resistance to chemotherapy through different
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mechanisms (55, 153–156). Preclinical studies suggest that NE

can promote malignancy and resistance to chemo- and immune-

therapy by inducing cell epithelial-mesenchymal transition

(EMT) (153, 154, 157). Evidence emerged to support the

infiltration of neutrophils into TME as a driver of EMT

through NE activity (158–160). On the other hand, MMP-9

and CG, associated with NETs, mediate the degradation and

remodeling of the extracellular matrix and, as discussed above,

promote angiogenesis, so that their presence has been associated

with tumor progression and poor response to chemotherapy

(155, 161). Finally, CEACAM1 protein, that decorates NETs and

facilitates NET-dependent pro-metastatic interactions by

improving neoplastic cells adhesion and migration, is

potentially involved also in mediating cancer response to

therapy (156) (Figure 3).

Increased NETosis promotes tumor resistance also to

radiation-therapy (RT) (162). In a syngeneic bladder cancer

model, RT increased NET deposition and, notably, when

NETosis was inhibited by DNase I or neutrophil elastase
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inhibitor, the overall radiation response improved.

Consistently with these data, NETs have been also observed in

bladder tumors of patients who did not respond to RT and had

persistent post-RT relapse (163, 164) (Figure 3). In addition,

tumor-associated NETs can also support metastatic cells to

evade immune response by creating a physical shield from

cytotoxic immune cells, such as cytotoxic CD8+ T and natural

killer cells (NKs), thus preventing interactions between tumor

and effector immune cells (165, 166) (Figure 3). In line with this,

NETs formation has also been shown to mediate the resistance

to checkpoint blockade, thus reducing responses to

immunotherapy (18, 167–169). NETs can also have a role in

detoxifying tetracycline drugs, such as doxorubicin (Figure 3),

and degradation of NETs through DNase treatment restored

chemosensitivity in animal models, demonstrating a functional

role for NETs in chemo-resistance (166). Although this finding

has yet to be corroborated in other tumors, this emerging

evidence is notable since it raises NETs as therapeutic targets

for the improvement of chemotherapy response.
FIGURE 2

Neutrophil-derived EVs. Neutrophil-derived EVs can exert both anti-tumoral (1) or pro-tumoral (2) activities in a context-dependent manner.
The EVs isolated from healthy neutrophils can induce apoptosis of cancer cells through the activation of caspases pathway. On the other hand,
tumoral neutrophil-derived EVs seem to promote cancer spreading, progression and drug resistance. Image created with biorender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fonc.2022.947183
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zippoli et al. 10.3389/fonc.2022.947183
Pharmacological NETosis inhibition has been shown to

synergize with immunotherapies, such as anti-PD-1 and anti-

CTLA-4 mAbs (18, 170), possibly by favoring cytotoxic effector T

cell response against cancer cells following checkpoint inhibition. As

further confirmation of the role of NETosis in immunotherapy

resistance, it has been demonstrated that hPMNs recruited by IL-17

in pancreatic ductal adenocarcinoma undergo NETosis, and when

NETosis is abrogated, the tumor acquires an immunotherapy-

sensitive phenotype (171).

In conclusion, TANs and related regulatory factors and

mediators (i.e., IL-8, EVs, and other secreted factors) represent

potential targets for novel therapeutic approaches aiming to

target cancer cells and reduce drug resistance.
5 Therapeutic strategies to inhibit
neutrophils in cancer progression
and cancer drug resistance

5.1 Investigational drugs

5.1.1 Targeting CXCR1/2 and neutrophils
With the aim to overcome the deleterious effects of

neutrophils in cancer, the IL-8 and CXCR1/CXCR2 inhibition

could reduce neutrophils migration to the tumor, thus avoiding

NETs formation and eventually preventing drug resistance. In
Frontiers in Oncology 07
this section, we briefly report an overview of investigational

drugs targeting IL-8 and its receptors CXCR1/CXCR2, and

discuss their therapeutic potential in the field of cancer

resistance (Table 1).

HuMax-IL8, also known as BMS-986253, is a fully human

monoclonal antibody inhibitor of the IL-8 pathway. Humax-IL-

8 was shown to block tumor progression (172), immune escape,

EMT and MDSCs recruitment (173) in humans, thus pushing

further new investigations in cancer resistance (172). HuMax-

IL8 was developed for the treatment of patients with advanced

solid tumors in combination with nivolumab, an anti-PD-1

monoclonal antibody immune check point inhibitor

(NCT02536469), and it is currently under clinical evaluation

for the treatment in several other tumors, including advanced

solid tumors (NCT03400332), non-small cell lung cancer

(NSCLC) (NCT04123379), advanced melanoma and metastatic

renal cell carcinoma (NCT04050462), pancreatic cancer

(NCT02451982), and head and neck squamous cell carcinoma

(NCT04848116). In addition, HuMax IL8 is currently in phase

1b/2 trial in combination with nivolumab for treatment of men

with hormone-sensitive prostate cancer (NCT03689699).

Navarixin is a CXCR1/CXCR2 receptor antagonist that

impairs neutrophils recruitment (174), and that was shown to

repress tumor cells metastasis and angiogenesis in preclinical

models (175, 176). The molecule was shown to suppress CXCR2

signaling by decreasing MAPK/AKT pathway phosphorylation,

resulting in sensitization of colorectal cancer cells to oxaliplatin
FIGURE 3

Mechanisms by which TANs may confer drugs resistance. TANs can promote drug resistance through two main mechanisms: NETosis and
degranulation/secretion. NETs or NETs components can mediate resistance to immune- radio- and chemotherapy, while neutrophil-secreted
factors have been shown to mainly influence angiogenesis and interfere with angiogenic therapies. biorender.com.
frontiersin.org
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treatment (177). Navarixin was assessed for its efficacy and

safety in combination with pembrolizumab, an anti-PD-1

monoclonal antibody, in a phase 2 clinical trial of three types

of solid tumors: programmed death-ligand 1 (PD-L1) positive

refractory non-small cell lung cancer (NSCLC), castration

resistant prostate cancer (CRPC) or microsatellite stable (MSS)

colorectal cancer (CRC) (NCT03473925).

AZD5069 is a reversible CXCR2 antagonist that was shown to

inhibit IL-8 or GRO-a-induced cytosolic calcium increase, CD11b

surface expression, adhesion and chemotaxis in neutrophils (178,

179). The molecule was developed as part of combination

therapies with durvalumab, an anti PD-L1 monoclonal

antibody, in cancer indications including metastatic squamous
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cell carcinoma of the head and neck (SCCHN) (NCT02499328),

and pancreatic ductal adenocarcinoma (NCT02583477).

SX-682 is a CXCR1/CXCR2 antagonist with potential

anticancer activities. It exhibited significant activity in solid

tumor models, where it reversed chemoresistance and

extended overall survival. In syngeneic and genetically

engineered mouse (GEM) melanoma models, it potently

synergized with anti-PD1 therapy inducing complete

remissions (180). In addition, it enhanced both PD-1 immune

check point blockade, reduced MDSCs in the TME, and

increased natural killer (NK) and T cells infiltration into the

tumor site in animal models of head and neck tumor (181). The

molecule is currently under active development as monotherapy
TABLE 2 Summary of the main anti-EV agents in cancer and cancer drug resistance in preclinical models.

Drug Antitumor therapy Mechanism of targeted or cancer therapy resistance In vitro model Reference

Heparin cisplatin EV uptake inhibitor Ovarian cancer Samuel P et al., 2018 (189)

Amiloride cisplatin EV uptake inhibitor Ovarian cancer Samuel P et al., 2018 (189)

Dynasore cisplatin EV uptake inhibitor Ovarian cancer Samuel P et al., 2018 (189)

GW4869 cisplatin EV inhibitor Ovarian cancer Cao Y et al., 2017 (190)

EV inhibitor Melanoma Matsumoto A et al., 2017 (191)

EV inhibitor Prostate cancer Panigrahi GK et al., 2018 (192)

Indomethacin doxorubicin/pixantrone EV inhibitor Lymphoma Koch R et al., 2016 (193)
TABLE 1 Summary of the main CXCL8-CXCR1/2 inhibitors for cancer therapy.

Drug Therapeutic
combination

Indication Trial phase/
Study type

Recruitment
status

NCT
number

Nivolumab (anti PD-1) Advanced solid tumor Phase 1 Completed NCT02536469

Cabiralizumab (anti CSF1R) Head and neck squamous cell carcinoma Phase 2 Recruiting NCT04848116

Humax
IL8

Nivolumab (anti PD-1) Prostate cancer Phase 1 Recruiting NCT03689699

Nivolumab (anti PD-1) Adenocarcinoma of the prostate Phase 2 Recruiting NCT03689699

Nivolumab (anti PD-1) Pancreatic cancer Phase 2 Recruiting NCT02451982

Navarixin Pembrolizumab (anti PD-1) Metastatic solid tumor Phase 2 Completed NCT03473925

Durvalumab (anti PD-L1) Metastatic pancreatic ductal carcinoma Phase 1/2 Completed NCT02583477

AZD5069 Durvalumab (anti PD-L1) Advanced solid tumor and squamous cell carcinoma of
head and neck

Phase 1/2 Active, not
recruiting

NCT02499328

Monotherapy Myelodysplastic syndrome Phase1 Recruiting NCT04245397

SX-682 Pembrolizumab (anti PD-L1) Metastatic melanoma Phase 1 Recruiting NCT03161431

Nivolumab (anti PD-1) Metastatic colorectal cancer Phase 1/2 Recruiting NCT04599140

Nivolumab (anti PD-1) Metastatic pancreatic ductal adenocarcinoma Phase 1 Recruiting NCT04477343

Reparixin Monotherapy Fatigue Phase 2 Not yet recruiting NCT05212701

Locally advance or metastatic breast cancer

Paclitaxel (antineoplastic agent) Metastatic breast cancer Phase 1 Completed NCT02001974

Paclitaxel (antineoplastic agent) Metastatic breast cancer Phase 2 Completed NCT02370238

Monotherapy Breast cancer Phase 2 Terminated NCT01861054

RP-72 Monotherapy or combination with
gemcitabine

Pancreatic cancer Phase 1 Recruiting NCT04338763
f
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or in combination with anti PD-1 molecules for the treatment of

myelodysplastic syndrome (MDS) (NCT04245397), melanoma

(NCT03161431), metastatic colon adenocarcinoma or colorectal

carcinoma (NCT04599140) and metastatic pancreatic

adenocarcinoma (NCT04477343).

Reparixin is an antagonist of IL-8 that binds CXCR1 and

CXCR2 receptors to prevent neutrophil chemotaxis, thus

avoiding graft tissue damage in organ transplantation and

cancer, including breast cancer (182, 183). The combination of

reparixin with antineoplastic agent docetaxel reduced the tumor

size in a model of human breast cancer cell lines and breast

cancer patient-derived xenografts (184) demonstrating that

reparixin is able to reduce in vivo the tumor-initiating ability

of breast cancer cells by affecting the CSC population; in fact, in

tumor-bearing mice treated with reparixin alone or in

combination with chemotherapy, the CSCs proportion was far

lower than in tumor from mice receiving chemotherapy alone.

Additional preclinical evidence highlighted the antitumor and

antistemness activity of reparixin in epithelial thyroid cancer

(185) and pancreatic cancer (186). Several clinical trials were

conducted to assess the efficacy of reparixin in combination with

taxanes or in monotherapy in metastatic breast cancer

(NCT02001974, NCT02371238, NCT0161054). A new phase 2

clinical trial (NCT05212701) has started to evaluate the efficacy

of reparixin in the treatment of oncological fatigue in locally or

advanced metastatic breast cancer, a highly disabling condition,

very common in cancer patients.

Danirixin is a CXCR2 antagonist originally developed for the

potential oral treatment of chronic pulmonary disease (COPD).

The molecule is able to strongly reduce the CD11b upregulation

mediated by IL-8 or GRO-a agonists in healthy donor

neutrophils, thus making the molecule a potential therapeutic

agent for diseases characterized by neutrophil hyperactivation

(187). In addition, Danirixin was found to block migration,

invasion and EMT events mediated by TAMs and IL-8 in a

preclinical in vitro model of breast cancer (188).

RP-72 is a 72 amino-acid recombinant protein that blocks

the activation of IL-8-mediated signaling transduction pathways

by decreasing proliferation of susceptible pancreatic cancer cells.

The protein is under a Phase 1 clinical trial development for the

potential intravenous treatment of metastatic pancreatic cancer

in monotherapy or in combination with antiangiogenic

gemcitabine (NCT04338763).

5.1.2 Targeting EVs
Targeting EVs in cancer progression could also represent a good

strategy to counteract tumor drug resistance (Table 2). In this

context, promising results were obtained in an in vitro model of

ovarian cancer, in which the treatment with heparin, amiloride and

dynasore inhibited EV release after treatment with cisplatin (189)
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known as mechanism responsible for cancer resistance to the

therapy. Similar results were obtained in another model of ovarian

cancer, in which the phospholipase inhibitor GW4869 was shown to

inhibit the exosomal DNAmethyltransferase 1 (DNMT1)-mediated

cisplatin resistance in cells, and to increase apoptosis (190). These

findings suggest that the combination of cisplatin with EV inhibitors

can potentially overcome the drug resistance. In a melanoma model,

the same GW4869 inhibited exosome secretion that caused the

induction of tumor cell proliferation and apoptosis (191). A similar

effect was observed in a model of prostate cancer where treatment

with GW4869 effectively reduced cancer cell viability associated to

exosome secretion (192). In aggressive B-cell lymphomas,

suppression of exosomal drug resistance with indometacin

increased efficacy of doxorubicin therapy (193). Finally, in a tumor

mice model the treatment with dimethyl amiloride (DMA), known

to reduce exosome release into the bloodstream, given in

combination with the chemotherapeutic drug cyclophosphamide,

halted the tumor growth by 50% or more, if compared to the

untreated controls (192).

Thus, new interest is arising for the development of EV/

exosome pathway inhibitors. The combined use of IL-8 biological

activity inhibitors that modulate the hyperactivation of neutrophils

could represent a new strategy to mitigate cancer drug resistance

induced by EVs release. A first example of such approach is

represented by the combined blockade of IL-8 and IL-6 in

osteosarcoma. Starting from data showing that osteosarcoma

tumor-secreted EVs can induce a pro-metastatic phenotype by

strongly inducing IL-6 production in mesenchymal stem cells

(MSCs), it has been demonstrated that EVs from aggressive

cancer cell lines can induce MSCs to express inflammatory

cytokines and chemokines, among which IL-8 was the most

upregulated one, and that this was due to tumor EV-associated

non-coding RNAs. The blockade of IL-8 signaling with ladarixin

(an allosteric inhibitor of CXCR1 and CXCR2) and, even more

strikingly, its combination with tocilizumab (an anti-IL-6 receptor

antibody) reduced lung metastasis formation in a xenograft mouse

model of osteosarcoma and, notably, prevented the occurrence of

MSC-induced tumor resistance to antimetastatic drugs (abstract

submitted to the ASCO 2022 meeting).
6 Conclusions

TANs play a key role in tumor drug resistance, and their

activities in this context are regulated and mediated by different

factors. Among these, EVs and IL-8, produced either by tumoral

cells or by neutrophils themselves, crucially function to both control

and mediate the pro-tumoral functions of neutrophils in the TME.

The role of both EVs and IL-8 is crucial for neutrophil-mediated

tumor drug resistance, which is mainly due to the induction of
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NETs formation and the secretion of pro-tumoral factors, including

neutrophil-derived EVs. Growing evidence has highlighted the close

association between high levels of IL-8, EVs production, NETosis,

and limited therapeutic response in a variety of malignancies, thus

paving the way to investigations on the therapeutic potential of

combination treatments either of IL-8 activity blockers, or anti-EVs

drugs, or NETosis inhibitors with standard antitumoral therapies, to

reduce or counteract tumor drug resistance (162, 193).

In conclusion, IL-8 and EVs represent key potential targets

for the development of novel therapeutic options aimed to target

neutrophil-mediated tumor drug resistance.
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