
Design of a flight controller to achieve improved
fault tolerance

Diseño de una controladora de vuelo para lograr tolerancia a fallas mejorada

Claudio Pose¶∗§1, Leonardo Garberoglio†§2, Ezequiel Pecker-Marcosig∗‡§3, Ignacio Mas¶§4 and Juan Giribet¶§5

¶Departamento de Ingeniería - Universidad de San Andrés
Vito Dumas 284, Buenos Aires, Argentina

∗Facultad de Ingeniería, Universidad de Buenos Aires
Paseo Colón 850, CABA, Argentina

§Consejo Nacional de Investigaciones Científicas y Técnicas
Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, Argentina

†Grupo de Estudio de Sistemas de Control, Facultad Regional San Nicolás, Universidad Tecnológica Nacional
Colón 332, San Nicolás, Argentina

‡Instituto de Ciencias de la Computación (ICC-CONICET)
Madero 351, Ciudad Autónoma de Buenos Aires, Argentina

1cldpose@fi.uba.ar
2lgarberoglio@frsn.utn.edu.ar

3epecker@fi.uba.ar
4imas@udesa.edu.ar

5jgiribet@conicet.gov.ar

Abstract—In the last years, multirotor aerial vehicles 
have gained popularity both as consumer products and in 
professional applications. Safety is one of the main concerns 
during operation, and different approaches to fault tolerance 
have been proposed and continue to be developed. For a 
control system to be able to handle off-nominal situations, 
failures must be properly detected and identified; therefore, 
a fault detection and identification a lgorithm i s required. 
Also, the control loop has to be accordingly modified to 
cope with each particular failure in the best way possible. 
These algorithms usually run on the vehicle’s low-level flight 
computer, imposing on it a large additional computational 
load. In this work, a fault detection and identification module 
is used to evaluate its impact in terms of additional processing 
time on a flight c omputer b ased o n t he C ortex-M3 micro-
controller. While a highly optimized version of the algorithm 
is able to run, it still suggests potential hardware limitations 
for expanding the system capabilities. The evaluation of the 
same module on an improved flight computer design based on 
a Cortex-M7 micro-processor shows a significantly reduced 
footprint in the overall performance, allowing for the addition 
of an augmented method for faster failure detection.

Keywords: Flight computer; Unmanned Aerial Vehicles; 
Fault Tolerance; Fault Detection and Identification.

Resumen— En los últimos años, los vehículos aéreos 
multirotores han ganado popularidad tanto en productos de 
consumo como en aplicaciones profesionales. La seguridad es 
una de las principales preocupaciones durante la operación y 
diferentes enfoques a la tolerancia a fallas se han propuesto 
y continúan desarrollándose. Para que un sistema de control 
maneje situaciones fuera de lo nominal, las fallas deben 
detectarse e identificarse adecuadamente, por lo tanto, se 
requiere un algoritmo de detección e identificación de fallas. 
Además, el lazo de control debe modificarse en consecuencia 
para hacer frente a cada falla de la mejor manera posible. 
Estos algoritmos generalmente se ejecutan en la computadora

de vuelo de bajo nivel del vehículo, lo que le impone una gran
carga computacional adicional. En este trabajo se utiliza un
módulo de detección e identificación de fallas para evaluar
su impacto en términos de tiempo de procesamiento adicional
en una computadora de vuelo basada en el microcontrolador
Cortex-M3. Si bien se puede ejecutar una versión altamente
optimizada del algoritmo, aún sugiere posibles limitaciones
de hardware para expandir las capacidades del sistema. La
evaluación del mismo módulo en un diseño de computadora
de vuelo mejorado basado en un microprocesador Cortex-
M7 muestra una huella significativamente reducida en el
rendimiento general, lo que permite agregar un método
aumentado para una detección de fallas más rápida.

Palabras clave: Computadora de Vuelo; Vehículo Aéreo
no Tripulado; Tolerancia a Fallas; Detección e Identificación
de Fallas.

I. INTRODUCTION

During the last few years, small-scaled unmanned aerial
vehicles have become very popular. Due to the reduction in
production costs, advances in technology and their ease of
use, they have been captivating the public for both simple
recreational uses and professional industry applications.

Among them, multirotor-type vehicles have been pre-
ferred for many of these applications, as their vertical take-
off and landing (VTOL) capabilities, along with their ability
to hover in place (remain static in the air), offer a simpler
learning curve, greater maneuverability, and a higher degree
of safety for less experienced users. In commercial fields,
many applications have been adopting this solution instead
of their manned counterparts, i.e., manned helicopters, as has
happened in the movie industry and in aerial inspection for
civil structures. One application that promises a significant

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 65

Recibido: 04/10/22; Aceptado: 24/11/22

Creative Commons License - Attribution-onCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://doi.org/10.37537/rev.elektron.6.2.162.2022

Original Article

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.37537/rev.elektron.6.2.162.2022


use of this kind of vehicles is package delivery, in which
companies such as Amazon and UPS have been investing
and developing for the past few years, and encouraged
research in the same field, aiming for integration of this kind
of vehicles with public transport to extend their operational
range [1].

As the use of aerial vehicles is becoming massive, it is
starting to make use of aerial space over densely populated
areas, and safety concerns begin to arise. Manned aerial
vehicles, such as commercial planes and helicopters, have
decades of invested research and development, have been
thoroughly tested, and count on international standards to
comply. Unlike their manned counterparts, the history of
unmanned commercial vehicles is quite recent, with new
advances and discoveries that are continually improving
their reliability. Furthermore, there are countries that haven’t
yet issued regulations concerning their use, while the ones
that do have, only consider local regulations, lacking a
worldwide panorama.

For the aforementioned reasons, fault tolerance has be-
come an important aspect to be accounted for in unmanned
vehicles’ design. The ability to continue a normal flight
in the event of a component failure is not only critical
to ensure the integrity of the vehicle and prevent possible
damages to third parties, but also to provide a high degree
of reliability in the completion of sensitive missions, such
as delivering medical equipment, or search and rescue in
disaster zones. Some of the solutions for fault tolerance are
rather simple: relying, for example, in hardware redundancy
[2], which is possible when considering failures in the
commonly used sensors, as the added cost is not prohibitive,
and the additional weight is negligible.

On the other hand, when considering failures in the
actuator set, i.e. the motors and propellers, the solution is
not so straightforward. In many occasions, multirotors with
a high number of motors are used to increase the payload
capacity, and also gain more stability and robustness against
perturbations. In these cases, the design can be exploited to
achieve fault tolerance against motor failure based on hard-
ware redundancy, when certain conditions are satisfied [3]–
[6]. If hardware redundancy is not possible, more complex
solutions based on partial loss of control, mechanical design
and/or vehicle reconfigurability have been proposed [7], [8].

In cases of failure in one of the motors in a multirotor
vehicle, the control strategy will heavily depend on which
of the motors is the one presenting the failure, so that
maximum performance can be achieved in any situation.
In consequence, the failure has to be properly detected and
identified in order to choose the optimal control solution, for
which a Fault Detection and Identification (FDI) algorithm is
required. This kind of algorithms are usually implemented
through an observer-based solution [9], and generally are
quite demanding in terms of required processing power.

This poses a challenge to unmanned aerial vehicles, in
which the on-board computer that runs the algorithms for
sensor data acquisition and control generally relies on a
low level microcontroller as the main processing unit, with
limited resources and processing power. Special attention
has to be paid to the complexity of the algorithms used,
in order to ensure that they can be executed in a given

time window [10], as the low level microcontroller has to
prioritize tasks such as sensor data acquisition and attitude
control.

The implementation of efficient algorithms in micro-
controllers with limited resources is a relevant research
topic. Most of the existing autopilot firmware intended for
small-scale UAVs rely on Proportional-Integral-Derivative
(PID) algorithms to perform low-level control. Some efforts
were carried out to implement innovative algorithms for
the attitude control in Cortex-M microcontrollers over an
existing firmware [11]. However, it’s usually preferable to
consider simplified versions of more advanced and well-
established control techniques [12]. Moreover, efforts have
been made to get rid of the idea of periodic execution of
control laws [13], [14], leaving room to run more intensive
algorithms on the same hardware.

This work focuses on analyzing the additional load im-
posed by the implementation of a fault tolerant control mod-
ule in multirotor-type unmanned air vehicles, in flight com-
puters based on low-level microcontrollers of the Cortex-
M family. Particularly, the implementation of a classical
bank of observers for fault detection and identification in
a custom-made flight computer will be shown to consume
roughly 12% of a Cortex-M3 microcontroller resources, as
it doesn’t count with a Floating Point Unit (FPU). This
additional load, together with the rest of the data acquisition
and control algorithms that concurrently run inside the
microcontroller, push its processing capabilities to the limit,
with the possibility of control loop overruns. For these
reasons, a new flight computer was developed in our Lab,
using a Cortex-M7 microcontroller with a single-precision
FPU, in order to reduce the processing times. Counting with
an FPU, as well as a higher clock speed, will show to reduce
the processing time for this kind of algorithms, in order to
run together with all the common guidance, navigation and
control (GN&C) algorithms required in multirotor systems.
Moreover, the Cortex-M7 will be able to run a more complex
fault detection and identification algorithm, allowing for
faster fault detection. The proposed algorithm includes a
model of how a faulty motor behaves, in particular its
transient response until it stops working completely.

This manuscript is organized as follows. Section II
presents the common characteristics in multirotor flight com-
puters and the design of a custom-made, Cortex-M3 based
board. Section III introduces the fault tolerance basics, and
Section IV, the case of study with the common fault tolerant
techniques for multirotor vehicles. Section V describes the
implementation of fault tolerant control in the Cortex-M3
based board and its limitations, while Section VI presents
a new board design based on a Cortex-M7 to overcome
them. Section VII will show a new method for faster fault
detection, taking advantage of the extra resources. Finally,
Section VIII includes the concluding remarks and future
work.

II. FLIGHT CONTROLLER IN UNMANNED VEHICLES

At the core of a UAV is the flight controller (FC) board,
a small computer in which, generally, a low-level micro-
controller is used as the main processing unit, to perform
tasks such as sensor data acquisition and execution of the

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 66 http://elektron.fi.uba.ar



algorithms needed to stabilize and control the vehicle. Flight
computers usually count with a variety of sensors, such as
an Inertial Measurement Unit (IMU) composed of a tri-
axial accelerometer and gyroscope, a tri-axial magnetometer,
a barometer, a Global Positioning System (GPS) receiver,
and different kinds of speed and distance sensors, which
generally provide data at a fixed rate, ranging from tens of
Hz to several thousands of kHz. Moreover, the FC receives
commands from a remote controller encoded in a Pulse
Width Modulated (PWM) signal of 50Hz and produces
PWM commands between 200Hz and 800Hz to set the
speed of a fixed number of BLDC motors (brushless, DC)
through an Electronic Speed Controller (ESC).

In practice, some of these tasks must be executed as soon
as an external event occurs, others with a certain periodicity,
and others fall somewhere in the middle. For example, for
the attitude control loop that is executed at a fixed frequency,
the IMU needs to be read with the same periodicity to
estimate the attitude. As IMU units have their own internal
clock, this can be done by either letting the IMU perform
the readings at a fixed frequency and then inform the
microcontroller that a measurement is available through an
external interrupt (Interrupt ReQuest - IRQ), or by polling
the IMU from the microcontroller at a fixed frequency.
Other sensors, such as barometers and magnetometers, do
not usually count with an internal clock, but may have a Data
ReadY (DRY) or End Of Conversion (EOC) pin to trigger
an external interrupt in the microcontroller. In this case,
the microcontroller requests a measurement and continues
executing other tasks while the sensors perform and store the
reading in their internal registers, and let the microcontroller
get the fresh measurement as soon as possible using the
DRY pin.

On the other hand, peripherals, such as the remote receiver
which outputs several consecutive PWM signals (each with
a high time ranging from 0.5ms to 2ms) corresponding to
attitude/position reference values and/or flight modes, don’t
have a predictable timing as they depend solely on the
transmitter-receiver link and the user. Hence, an interrupt
input should be used to accurately measure time between
each rising and falling edge, to reconstruct the signal. This
issue shows the need for different levels of priority for
each task. For example, a delay of tens or hundreds of
nanoseconds in reading the IMU measurements from given
registers may not be critical, but a similar delay in detecting
an edge of a PWM signal will result in a significant error
when reconstructing the pulse signal.

For those reasons, it is evident why commercial FCs rely
on low-level microcontrollers that are event-oriented, rather
than using a general purpose operating system (OS) with no
real-time guarantees where deadlines are managed in a best-
effort way, which in some cases is unacceptable. In the case
of real-time operating systems (RTOS), which do not suffer
from this setback, its use may or may not be advantageous,
as any operating system will increase the computational load
of the microcontroller. In cases where the resources are tight,
it may be preferable not to use them. Some off-the-shelf FCs
rely on light RTOS, such as PixHawk with NuttX OS, that,
due to its emphasis on technical standards compliance and
scalability, proves to be useful when porting the software

Fig. 1: Flight computer Choriboard v2.

between different microcontrollers.
Several models of commercial FCs are available nowa-

days, and many of them are open hardware and software,
so any user is able to modify them at will to adapt them
to their needs. However, from an academic perspective, the
development of a custom FC presents some advantages,
namely adapting board size, power requirements, processing
power, and input/output ports for experimental vehicles
which may have non-standard actuators and/or sensors,
and to promote educational projects on UAV technologies.
Moreover, knowing the firmware in detail is an upper hand
when modifying key algorithms, and the access to low-level
code allows for efficient implementation of new algorithms,
without depending on third parties.

A. Choriboard FC v1

In this line of thought, a custom FC was developed for
academic purposes called Choriboard, the first version of
which (Choriboard v1) dates back to 2014 within the context
of an undergrad student project. This board was designed on
an oversized PCB, with enough space between components
to allow for error checking, and several additional on-board
integrated circuits that were initially used for testing and
for educational purposes. Also, as an academic research
project, the components’ cost and board manufacturing were
important issues, so surface mount chips and through-hole,
2.54mm pin headers were chosen for ease of soldering and
connection. Once the original design was debugged and er-
rors were corrected, a second version was produced (Chori-
board v2), that retained the main features, and optimized
the form factor and the number of on-board components.
As these two versions are essentially the same, only the
Choriboard v2 will be described in detail below.

B. Choriboard FC v2

The second version of the Choriboard was designed in
a 100mm× 60mm board, which is shown in Fig. 1. The
microcontroller chosen for this board was the LPC1769,
a 32-bit RISC ARM Cortex-M3 chip that can work at
100MHz, has 512kB of flash memory and 64kB of data
memory. This model doesn’t have a FPU, so floating-point
operations are emulated by software, which makes them
much less efficient considering that it must run the GN&C

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 67 http://elektron.fi.uba.ar



algorithm. At the time, the LPC1769 was chosen due to its
availability, as well as for its well known libraries that were
constantly updated by a wide online community.

The use of Cortex-M microcontrollers as the core of
an FC presents several advantages in terms of efficiency
in the kind of tasks that these computers execute. For
example, the Nested Vectored Interrupt Controller (NVIC)
allows for low-latency interrupt processing, and to establish
groups and subgroups of priorities for both internal and
external IRQs. This is convenient in order to prioritize
tasks such as the reading of the RC receiver, where sub-
microsecond precision is required to accurately reconstruct
the signal, or where sensor data has to be stamped with
the exact time of acquisition in order to implement a robust
navigation system. Also, a useful feature present in Cortex-
M is the Direct Memory Access (DMA), which allows
for data transfer between peripherals and RAM memory
(and vice-versa), and between memory and memory, without
additional burden to the processor. This comes in handy
for any sensor reading task, as the processor can continue
executing other tasks until all sensor data is transferred,
as well as for bidirectional communication channels with a
ground station, as no additional processing time is required
independently of the amount of data sent and received.
Another common feature of these series of microcontrollers
is the PWM module, whose operation is based on one or
more internal timers and a set of registers where matching
conditions are stored. Additionally, they’re able to work
asynchronously of the main program. This is ideal for motor
speed control, as one signal of this kind is required for each
rotor present in the vehicle.

One of the most important components in an FC is
the Inertial Measurement Unit, generally consisting of a
tri-axial accelerometer and gyroscope, which provides the
minimum required information to estimate the attitude of
the vehicle, and thus achieve a stable flight. The selected
component was the MPU6000 from Invensense, an SPI
device with characteristics summarized in Table I. It comes
with an important feature, called the Digital Motion Pro-
cessor (DMP), that performs internal calculations using the
accelerometer and gyroscope measurements, and outputs a
filtered attitude estimation, which otherwise would have
to be done using microcontroller resources. The attitude
estimation is completed using the information of a digi-
tal compass (magnetometer) that provides the orientation
with respect to the Earth’s magnetic north pole, for which
this board uses an HMC5883L from Honeywell connected
through an I2C interface.

To estimate position, considering outdoor vehicle opera-
tion, the board includes a BMP280 barometer from Bosch
(measuring pressure that can be converted to height), and a
UART serial channel to connect a GPS receiver that supports
both NMEA (ASCII) and SiRF (binary) protocols. However,
the serial channel can also be used for other positioning
devices, such as indoor positioning systems.

Regarding the radio controller receiver, such devices
output a series of PWM signals, one for each channel of the
remote controller, generally corresponding to four analogue
sticks (for commanding vertical thrust and orientation) and
the state of several switches and dials. These PWM signals

TABLE I: IMU Comparison

PRODUCT ICM 20602 MPU6000
Package-Pin 2x2x0,75mm LGA 16

leads
4x4x0,9mm QFN 24
Leads

GYROSCOPE
FSR (dps) ±250/500/1000/2000 ±250/500/1000/2000
ZRO @25ºC ±1dps ±20dps
ZRO over Temp ± 0,02dps/ºC ± 0,16dps/ºC
Sens. Tol. @25ºC ±1% ±3%
Sens. Over Temp. ±2% ±2%
Gyro Noise 0.004dps/

√
Hz 0.005dps/

√
Hz

ACCELEROMETER
FSR ±2/4/8/16g ±2/4/8/16g
Offset @ 25ºC ±25mg X,Y : ±50mg Z: ±80mg
Offset Over Temp X,Y: ±0.5mg/ºC Z:

±1mg/ºC
X,Y: ±0.5mg/ºC Z:
±85mg/ºC

Sens. Tolerance ±1% ±3%
Sens. Over Temp ±1,5% ±2,5%
Accel Noise 100µg/

√
Hz 400µg/

√
Hz

may be available as a series of consecutive signals in a single
output (known as PPM output), or as separate outputs, for
which a PWM to PPM encoder is implemented on the board,
and allows for both type of signals to be read.

The board also has several additional communication
interfaces, such as two UARTs, two I2C and an SPI port
for additional sensors, GPIO ports, and digital inputs. A
switching power source is also included on board, that takes
as input a 7 to 30V direct voltage, so it connects directly
to batteries generally used in unmanned aerial vehicles, and
provides 5V and 3.3V outputs for the on-board devices and
possible future co-processor boards.

III. FAULT TOLERANCE

Fault tolerance is the ability of a given system to continue
operating in case a failure occurs, which could be of
different degrees of severity, and which may or may not
degrade the performance of the system. For example, a
failure in a redundant sensor may not affect the performance,
as there is still a way to obtain the same information from
another sensor, but a full power failure in electronic systems
may render them unusable. The objective of designing fault
tolerant systems is to account for a variety of possible
failures, in order make the system robust to its occurrence.

Fault-Tolerant Control Systems (FTCS) are generally di-
vided into two main categories, Active FTCS (AFTCS)
and Passive FTCS (PFTCS) [15]. The latter is designed
considering only a limited number of failure scenarios, and
the same control law operates in nominal conditions and in
failure, although with degraded performance. On the other
hand, AFTCS are more of a tailored solution, as they usually
cover a wider range of possible failures, and each failure is
tackled in a different way in order to obtain the maximum
possible performance. This implies that, as the behavior of
the system will depend on the type of failure that occurs,
it is a requirement for the system to know as accurately as
possible the kind and magnitude of the failure, for which a
Fault Detection and Isolation (FDI) subsystem is required.
Also, the control law has to be actively modified to cope
with the appearance of a failure, in order to maximize
performance in each case. Also, the system may or may not
include a reconfiguration mechanism to make fault tolerance

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 68 http://elektron.fi.uba.ar



Fig. 2: Top view of a standard hexarotor vehicle distribution.

possible, or to improve its performance in case of failure.
This results in a FTCS able to deal with more cases of
failure, while still maintaining the best performance in any
situation. However, the controller is sensitive to the output
of the FDI, as the failure has to be correctly isolated for an
optimal behavior.

An important consequence of choosing AFTCS over
PFTCS becomes evident at this point. The PFTCS operates
in the same way in both the nominal and failure cases, with
no modification in the control algorithm. Conversely, the
AFTCS needs a way to analyze the system’s behavior to
detect and identify the cause of failure, and then modify
the control law accordingly. Therefore, the latter necessarily
requires more processing power to work properly. This
requirement generally arises from the need to track the
system states, and find deviations from its expected behavior,
which is the detection part of the FDI subsystem. Once a
failure is deemed to have occurred, the capability of the
system to discover exactly what kind of failure is producing
the unexpected behavior constitutes the isolation part of the
FDI subsystem.

IV. CASE STUDY: FAULT TOLERANT CONTROL FOR AN
HEXAROTOR

In this work, a multirotor is considered fault tolerant
against motor failures if it can keep the minimum maneu-
verability needed for normal flight, i.e. if it can exert torque
over its three axes and ascend/descend. Hence, the analysis
on fault tolerance will be carried out for a hexarotor-type
vehicle, which is depicted in Fig. 2. Its six rotors are placed
at the vertices of a regular hexagon, at the same distance di
from its geometric center, all pointing upwards. The position
of the center of mass is coincident with the geometric center,
where a reference frame is defined with the x axis pointing
to the nose of the vehicle, the z axis pointing down, and
the y axis completing the frame. Unlike sensor failures,
that may be solved easily with redundant hardware due
to their low weight and affordable cost, the motor group
has a significantly higher weight and cost, meaning that the
number, size and type of motors has to be carefully selected
for a given vehicle, and hardware redundancy may not be
an option.

For this kind of vehicles, where the vehicle’s dynamics
will heavily depend on which motor is failing, AFTCS

are preferred as they tackle the fault by modifying the
control strategy to get maximum performance. There are
several works that implement this kind of fault tolerant
systems, such as [8], [16], [17] for hexarotors, focused on
multirotor design to achieve fault tolerance, and [5], [18],
where the actuator redundancy in standard octorotor vehicles
is exploited to achieve fault tolerance even in some case
of multiple rotor failures. To implement the FDI, there are
two main approaches commonly found in the literature:
direct measurement of the state of the motors, and indirect
measurement or estimation.

A. Direct Measurement FDI

The direct measurement FDI approach is straightforward:
the system should have a way to directly measure some
state(s) of a motor that provide(s) enough information to
decide if the motor is working as expected, or if it presents
a fault [19], [20]. This is usually achieved using additional
sensors (other than the strictly necessary for the vehicle
to perform a standard flight) for each motor, measuring,
for example, their speed or current consumption, and by
additional filtering by software to estimate if these pa-
rameters are consistent with the commanded speed. The
additional sensors produce an increase in cost and weight,
and also present scalability issues, as the number of sensors
is proportional to the number of rotors.

Another problem of using direct measurements to perform
FDI is shown in Figs. 3 and 4. In the first figure, a speed
sensor had been installed in one motor in a test bench,
and four different experiments were carried out with the
motor initially working at 40%, 50%, 60% and 70% of its
maximum speed. At t = 0 s, the power of the motor is turned
off and the motor’s speed begins to decrease, however, due
to its inertia, it continues spinning and, thus, generating a
significant force and torque for at least a couple of seconds,
causing significant delays in the fault detection. On the other
hand, if the propeller is suddenly detached from the motor,
the force and torque would instantly disappear, and the lower
moment of inertia would make the motor stop spinning much
faster.

In the second experiment (Fig. 4), a test bench was built
to measure the consumption of a motor as a function of its
PWM command signal, shown in the blue continuous line,
depicted as reference. Then, a flight was performed with an
hexarotor vehicle using six motors of the same kind with
varying degrees of wearing due to use, and propellers in
different conditions (new, slightly wore, slightly damaged),
while measuring the current consumption without any fil-
tering. It is shown that the current consumption of each
motor deviates from the test bench curve, and also presents
measurement noise. In these cases, to infer if the motor is
working properly or not becomes more difficult due to a
wide array of possible behaviors.

Both speed and current sensors have to deal with many
different situations and behaviors of the variable measured,
and be robust enough to guarantee a detection in a reason-
able amount of time for the fault tolerant control to be able
to correct it. This poses a challenge when designing FDI
subsystems by direct measurement, as it is difficult to ensure
robustness against possible modeling errors. Additionally,

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 69 http://elektron.fi.uba.ar



Fig. 3: Speed over time of an hexarotor motor that is initially
working at 40%, 50%, 60% and 70% of its maximum speed,
for which the power is cut off at t = 0 s.

Fig. 4: Measured current with respect to PWM commands
for each motor, for a hexarotor in flight, and test bench
reference.

for the reasons described above, both sensors (speed and
current) are simultaneously needed to obtain a robust fault
detection system, as each one has the ability to cover for
the shortcomings of the other.

B. Indirect Measurement FDI

The indirect measurement approach, on the other hand,
is generally implemented by means of an observer-based
detection and isolation algorithm. A standard implementa-
tion of this solution is shown in Fig. 5, in a typical attitude
control loop of a multirotor, that estimates the attitude
using the on-board sensors, and then generates a desired
torque q to follow the reference, which is accomplished
by commanding an adequate set of forces f to the motors.
The FDI subsystem uses the information of the commanded
motor forces to predict the dynamics of the multirotor; if the
difference between the predicted dynamics with respect to
the real behavior (called the residues) is close to zero, then
all the motors are working properly, if a deviation exists, it
may be caused by the appearance of a failure.

The simplified vehicle dynamics for the hexarotor shown
in Fig. 2, disregarding the gyroscopic and aerodynamics
components, among other factors, and linearised around
hovering, are shown below:φ̈θ̈

ψ̈

 =

J−1x qx
J−1y qy
J−1z qz

 (1)

Fig. 5: Block diagram of the typical attitude estimation and
control system in a multirotor, where the FDI algorithm de-
tects and identifies failures based on input-output variables.

where [φ, θ, ψ] correspond to the roll, pitch, and yaw angles
respectively (rotation around the x, y and z axes), and Ji
and qi, i ∈ {x, y, z} to the inertia moment and the torque
exerted in the i axis. Then, the state-space representation is
as follows:

x =
[
φ θ φ̇ θ̇ ψ̇

]T
y =

[
φ θ

]T
ẋ =

[
03×3 13×3

03×3 03×3

]
︸ ︷︷ ︸

Ac

x +

[
03×6

I−1m A

]
︸ ︷︷ ︸

Bc

f

y =
[
13×3 03×3]︸ ︷︷ ︸

Cc

x

(2)

with q = [qx, qy, qz]
T = A ·f, where f is the vector of forces

exerted by the motors, A is the force-torque matrix depen-
dent on the motor disposition, and Im = diag(Jx, Jy, Jz).
The corresponding discrete state-space model, considering
a fixed time step Td, where fd = 1/Td is the frequency of
execution of the control loop, is as follows:

xk =
[
φk θk ψk φ̇k θ̇k ψ̇k

]T
yk =

[
φk θk ψk

]T
xk+1 = Adxk +Bdfk

yk = Cdxk,

(3)

where matrices (Ad, Bd, Cd) correspond to the discretiza-
tion model of system (2).

To implement a classical FDI algorithm, usually a bank
of observers is used. Since the vehicle’s state vector is
observable, it is possible to design an observer to estimate
its attitude around nominal state (i.e. hovering) and with all
the motors working properly:

x̂k+1 = Adx̂k +Bdfk + L(yk − ŷk)
ŷk = Cdx̂k
rk = yk − ŷk

(4)

where the î notation corresponds to the estimation of the
variable i, and rk is the residue, the difference between the
real measurement yk and the estimated (observed) output
ŷk.

So, if L is designed such as Ad−LCd is Hurwitz, and the
vehicle doesn’t present a failure in any rotor, the observer is

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 70 http://elektron.fi.uba.ar



Fig. 6: Reconfigurable fault-tolerant hexarotor.

consistent with the behavior of the system, and the residue
tends to zero. If a failure appears, the estimated output
deviates from the measured output, which allows to use the
norm of the residue as a failure detection subsystem.

In a similar way, considering a total failure may occur in
motor i, the following observer can be proposed:

x̂k+1,i = Adx̂k,i +Bd,ifk + L(yk − ŷk,i)
ŷk,i = Cdx̂k,i
rk,i = yk,i − ŷk,i

(5)

where the only difference with respect to the previous case
is replacing Bd with Bd,i, which corresponds to the matrix
Bd with its i-th column replaced by zeros. While the vehicle
is in nominal state, the estimated output differs from the
measured output, but, when a failure occurs in motor i,
this observer becomes consistent and the norm of rk,i tends
to zero, identifying that this motor is the one presenting a
failure. By using one of these observers for each possible
failure, in this case one for each of the six motors, a total
failure in any of them can be isolated. This set of observers
is called a bank of observers.

V. EXPERIMENTAL ANALYSIS

The bank of observers developed in the previous section
is a computationally demanding algorithm that requires a
periodic execution in the control loop. This implies an
additional load for the microcontroller in the FC.

This FDI algorithm was implemented in the Choriboard
v2, which is mounted in a fault tolerant hexarotor shown in
Fig. 6. This vehicle corresponds to an optimal reconfigurable
hexarotor that was proposed to deal with total motor failures,
in order to achieve maximum maneuverability in case of an
occurrence of such a fault [21]. The control algorithm is
executed at a frequency of 200Hz, which results in Td =
5ms. This means that every process that involves attitude
estimation and control, execution of the FDI, command of
the motors, and others, must be executed as a whole in less
than 5ms.

The force-torque matrix A for the vehicle in Fig. 6 is:

A =


−d

2
d
2 d d

2 −d
2 −d

√
3d
2

√
3d
2 0 −

√
3d
2 −

√
3d
2 0

kt −kt kt −kt kt −kt
−1 −1 −1 −1 −1 −1

 (6)

TABLE II: Vehicle technical specs

Variable Value Units

d (arm length) 0.275 m
P (weight) 2.2 kg
fmax (per motor) 0.98 kg
[Jx, Jy, Jz] [0.047, 0.047, 0.109] Nm2

kt 0.03 -

where d is the distance of each motor to the geometric
center, and kt is a constant of the motors that relates the
force exerted to the torque generated in the z axis. The
values for these constants, as well as other characteristics of
the vehicle are summarized in Table II.

Several experiments were carried out to test the perfor-
mance and robustness of the bank of observers, performing
flights where a fault was injected mid-flight in one of the
motors. The residues were recorded in real time, and their
values for some of the flights are shown in Fig. 7. In four
different flights, the vehicle was driven to a hovering state,
remaining in a fixed position, and a fault was injected in
t = 0 s by cutting the power to motor number 3. It is
shown that, for a short time of around 100ms, the residues
show no change, due to the fact that the motor-propeller
set continues spinning due to inertia, and is still producing
thrust. After that, the detection residue r0 that corresponds
to the observer of the nominal plant begins to increase as the
predicted output deviates from the measured output, while
the residue r3 that corresponds to motor 3 tends to zero.
When both r0 is greater than a detection threshold τd = 1.0
and r3 is lower than an isolation threshold τi = 0.75, the
fault is detected and isolated, and the vehicle reconfigures
the control system to cope with it. In the experiments, after
the failure is isolated (where r3 crosses the threshold), the
vehicle changes the orientation of the rotors to deal with the
occurrence of the failure, and all the observers are no longer
consistent with the behavior of the vehicle. This means that
the values of the residues after the failure is detected don’t
have a particular meaning.

From the point of view of processing power, the bank
of observers showed to be very demanding. In Fig. 8, the
recorded execution time of the whole control routine is
shown. This routine comprises sensor reading, filtering and
normalization, the computation of the error with respect
to the desired attitude of the vehicle, the calculation of
the maneuver needed to correct the error, the individual
motor forces needed to produce the desired torque, and the
execution of the bank of observers. During the first 30 s, the
execution of the bank of observers is turned off, which yields
an execution time of around 1129 µs (slight differences
between executions of the control routine are expected due
to interruptions taking place). At t = 30 s, the observer bank
is turned on, and the execution time increases to 1699 µs, a
difference of 570 µs. The execution of the bank of observers,
without considering interruptions, is performed in around
57000 clock cycles with the microcontroller running at
100MHz, as the number of floating point operations remains
constant. As the Cortex-M3 does not have an FPU, floating
point operations are not efficient, and thus it takes a great

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 71 http://elektron.fi.uba.ar



Fig. 7: Residues of the bank of observers, with the detec-
tion residue corresponding to the observer of the nominal
plant (top), and the isolation residues corresponding to the
observers of the faulty plants (bottom) for a hexarotor flight
where a total failure is remotely injected in motor 3 in
t = 0 s. Four different flights are shown, with very similar
behavior.

Fig. 8: Execution time of the control algorithm in the Chori-
board v2, without executing the FDI subsystem (t < 30 s),
and executing it (t > 30 s).

toll on the processing time [22].
In Table III, a summary of the main routines’ execution

time is shown. An important routine to be considered is
the IMU data acquisition and processing, where, while
the reading of the registers is done in negligible time,
the DMP outputs the attitude in quaternion form. As the
control algorithm uses the Euler angles, a conversion must
take place, consisting on several floating point operations,
that results in a considerable execution time. As one IMU
measurement is needed for every control loop execution, this
routine has to be executed inside the 5ms time window. Still,
the Cortex-M3 is able to execute the whole set of routines
in a reasonable amount of time, guaranteeing the periodicity
for the control loop.

TABLE III: Execution time of different algorithms

Routine Freq. [Hz] Exec. time [ms]

Estimation + control 200 1.129
Bank of observers 200 0.570
IMU acquisition 200 0.595
Message assembly 200 0.006
Magnetometer read (IRQ) 10 0.006
RC receiver read (IRQ) 600 0.002

However, as more routines are included, such as the
proposed approach in [23] to improve manoeuvrability in
case of failures, which adds around 0.3ms to the control
routine, the processing power of this microcontroller is
pushed further towards its limits. One of the most common
devices in commercial multirotors, both for professional and
recreational applications, is the GPS receiver, that allows for
outdoors positioning, and usually outputs data at a frequency
between 1 and 10Hz. While the frequency at which the
data is received may be low, the additional processing
that this sensor brings is considerable. On one hand, the
NMEA protocol is usually used, which provides latitude,
longitude, height, speed, and other relevant data in an ASCII
string form. This means that a great number of floating
point operations are needed to convert them to float-type
variables, which in this board results in a processing time
of 225 µs, not taking into account the time required for the
interruption produced by each byte received that is stored.
On the other hand, the raw position measurement may not
be useful by itself, due to measurement errors and noise,
so a sensor fusion algorithm that includes the IMU data
is generally implemented by means of a Kalman filter.
Moreover, to obtain good accuracy in this process, double-
precision floating point operations are required, which are
even less efficient in the Cortex-M3.

When implementing all this algorithms together in the
Choriboard v2, timing could no longer be guaranteed, as
the interruptions taking place while the FTCS was execut-
ing would sometimes extend the total execution time well
beyond the 5ms window, and cause the overall system to
be unstable. All these reasons showed that this FC was not
suitable to incorporate this kind of FTCS while still running
the common algorithms of unmanned aerial systems, and
brought forward the need for a new version of the proposed
board that incorporates a processor with more capacity and
better suited for the applications herein considered.

VI. IMPROVED FLIGHT CONTROLLER: CHORIBOARD V3

The third version of the Choriboard was designed with
two main objectives:

1) Reduce the size and weight of the board, for it to be
used in very small air vehicles.

2) Update the microcontroller and sensors, to improve
performance, and to replace obsolete and/or discon-
tinued components.

To increase the processing power of the FC, the micro-
controller was replaced with the STM32F722, a chip from
the ARM Cortex-M7 family, that operates at 216MHz and
has an integrated single precision FPU, 512KB of flash

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 72 http://elektron.fi.uba.ar



Fig. 9: Flight computers Choriboard v2 (right) and Chori-
board v3 (left).

memory and 256kB of RAM; 64kB of the latter are used
to store data for critical real-time tasks and another 16KB
to execute these tasks. This particular chip was chosen to
obtain the best balance between the type and size of the
package (maximize the number of pins used, ease of manual
soldering due to limited resources), computational power,
energy efficiency, manufacturer documentation (Reference
Manual, data sheets, specific manuals of their peripherals ),
availability of low-level libraries and their maintenance, and
support communities.

At the time of designing the new version, the MPU6000
IMU had already been discontinued, so another device
from Invensense was chosen as replacement, the ICM20602,
which presented better specifications in all the relevant
fields, as shown in Table I, for a direct comparison with its
predecessor. An important missing aspect in the new IMU
is that it does not count with the DMP feature, so the pro-
cessing required to obtain attitude from raw accelerometer
and gyroscope data now falls on the microcontroller.

The 2.54mm pin headers were replaced by Hirose’s
DF13 line, surface mount models, and their pinout was
designed to match those used in commercial flight con-
trollers, so that off-the-shelf components (GPS, magnetome-
ter, power source, and others) can be connected directly
to the Choriboard. The BMP280 barometer, was replaced
by the MS5611 from TE Connectivity, an I2C chip with a
24-bit ADC converter that allows to measure height with a
sensitivity of up to 10 cm.

One of the most used peripherals in a FC is the Univer-
sal Asynchronous Receiver Transmitter (UART), which is
why the new version of the Choriboard has five of them.
Typically, a GPS receiver, a communication module for
telemetry, a high-level computer with the capacity to carry
out more demanding tasks and a radio control receiver are
connected using this bus.

In this version, an input for PPM-type signals is provided
for the RC receiver, and an external PWM to PPM encoder
can be added if required. In addition, an input for DSM
signals for Spektrum RC receivers that operate through a
serial UART channel is included, to directly connect this
brand’s Satellite micro-receivers, which is a feature also
common in commercial flight controllers. All PPM and

PWM related signals, including six PWM outputs for motor
control are found in a single 10-pin connector, that also
provides a 5V output for powering the RC receivers.

The switching power supply was removed from the board,
and replaced with an input connector that is powered by
a 5V direct voltage, which also adds analogue inputs for
measuring battery voltage and current consumption.

An image of the Choriboard v3, together with the previous
version for size comparison, is shown in Fig. 9, and the
details of the hardware layout of the new version is shown
in Fig. 10.

Fig. 10: Choriboard v3 hardware layout.

To compare the performance of the Choriboard v3 in the
execution of the control routine, the same code implemented
in the previous version was used for the control loop, only
changing variables related to the use of specific resources
of the Cortex-M7. As this microcontroller counts with a
single-precision FPU, this kind of floating point operations
are much more efficient, greatly reducing the execution time.
A similar experiment to that depicted in Fig. 8 is carried out
for the Choriboard v3, and is shown in Fig. 11. In the same
way as before, the execution time for the full control loop
is shown, for the first 30 s with the bank of observers turned
off, leading to an execution time of 38 µs, and for the last
30 s with the bank of observers turned on and an execution
time of 92 µs, a 54 µs difference. The bank of observers is
executed in 11530 clock cycles in average, almost 7 times
less than in the Cortex-M3 due to the use of the FPU, which
results in a 14-times reduction in the total execution time
when considering that the clock frequency is now more than
double (216MHz instead of 100MHz).

On the other hand, the same routine for processing an
NMEA message from a GPS receiver showed to be executed
in average in 94.8 µs, 2.37 times less when compared to the
Cortex-M3. The reduction in the execution time in this case
is mainly due to the use of a higher clock frequency (2.16
times), as the conversion of the NMEA sentence to position
variables (latitude, longitude, height) requires mainly the
execution of double-precision floating point operations. As
the FPU in the Cortex-M7 does not support this kind of
operations, they have to be emulated by software in the same
way that is done in the Cortex-M3, so the efficiency in both
cases is quite similar.

Overall, the more efficient implementation of the FTCS
and FDI in the Choriboard v3 greatly reduces the total

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 73 http://elektron.fi.uba.ar



Fig. 11: Execution time of the control algorithm in the
Choriboard v3, without executing the FDI subsystem (t <
30 s), and executing it (t > 30 s).

time required to execute all the algorithms involved, leaving
plenty of room for other common algorithms typically
present in commercial flight computers. This fact opens up
the possibility to modify the design of the bank of observers
to include the effects of the motor inertia that causes a delay
in the failure detection. This extension will be studied in
more detail in the following section. Also, the increased
computing power opens the possibilities to implement FDI
algorithms that are more complex in nature, such as those
based on sliding mode observers [24], [25], or on machine
learning methods [26].

VII. EXTENDED BANK OF OBSERVERS

In Section IV-B, it was shown that the bank of observers
works properly and allows to detect and isolate a failure in
any motor. As stated in Eq. 5, a total failure is considered,
with the assumption that the motor abruptly stops. However,
as can be noticed in Fig 3, there are some types of failures
where the motor remains spinning for a short period of time,
producing force and torque due to the inertia. This effect
causes a delay in the detection, as there is not an immediate
change in the value of the residues.

Then, it is of interest to design a bank of observers that
takes into consideration the possibility of this type of failure,
one where the motor continues spinning after the failure,
which is consistent with a sudden loss of power. That is,
the aim is to design observers that are consistent with the
exponential decay nature of this failure when it occurs.

However, designing a consistent observer for this behavior
would require to meet two conditions. First, a model for the
behavior of the motor is needed, which could be obtained by
means of identification tests, such as the one represented in
Fig. 3. Second, it is required to estimate the exact moment
when the failure occurs, which is very difficult to achieve.

One way to approximate the time when a failure is
produced is to incorporate a finite set of new observers. A
new observer is initialized every δt; at that moment, it takes
the current value of the force applied to its corresponding
motor and considers that it goes to zero following the
characterized exponential decay. The proposition here is to
place these observers in a circular queue, resetting each one
a given time Tc after they are initialized, when it can be
considered that the observers are not being consistent with
the behavior of the vehicle. This time Tc may be defined

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

F
o
rc

e
 [
k
g
]

Commanded

Sim - 
t
=0ms

Sim - 
t
=100ms

Sim - 
t
=200ms

Sim - 
t
=300ms

Sim - 
t
=400ms

Fig. 12: Motor 3 input force in five of the observers
corresponding to that failure. Every Tc = 1 s, and with a
separation of δt = 100ms, each observer takes the current
force commanded to motor 3 and supposes a failure occurs
at that instant, with an exponential decay in the force and
torque produced.

from Fig. 3, considering the time for the motor to get to
zero speed, or using practical considerations, such as a time
limit to detect a failure. Moreover, in order for the circular
queue to work properly, the sampling time Tc must be an
integer multiple of δt.

The selection of Tc and δt imposes a trade-off between
the precision in the fault detection, and the load imposed
on the microcontroller. For a fixed δt, a longer Tc allows to
evaluate the evolution of the residues over a larger interval
of time, while it increases the number of observers that
simultaneously run. On the other hand, for a fixed Tc, a
smaller δt also means an increased number of observers,
but enables for a more precise detection of the moment of
occurrence of the failure.

In what follows, consider Tc = 1 s and δt = 100ms,
leading to ten new observers per motor. In Fig. 12 it is
shown the input force for motor 3, where only the first five
observers are shown for a clearer picture. Every time an
observer is triggered, the current force commanded to motor
3 is registered, and an exponential decay is simulated from
that point on. Fig 13 shows the detection (top) and the new
failure residues along with the original total failure residue
(bottom). Moreover, Fig. 14 shows in detail what happens
around tf = 12.33 s when the failure occurs. The green
and cyan residues, that correspond to the observers triggered
closer to tf , decay more quickly than the others. It can be
noticed that for any threshold in the range [0.04, 0.07] a
detection time between 100ms and 200ms can be achieved.
Therefore, the use of this solution would allow us to detect a
failure in less than half the time required by the total failure
observer (blue residue) used in Section IV-B.

This new bank of observers is composed of ten additional
observers for each of the motors in failure, meaning that it
would require a total of sixty new observers. This would be
impossible to run in the Choriboard v2, as it was already
very limited, however, the Choriboard v3 has plenty of re-
sources to take care of the additional load. As the execution
time of the original bank of seven observers (nominal plus
six total failures) was about 54 µs, the total load when adding
the new ones would be of around 516 µs.

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 74 http://elektron.fi.uba.ar



0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.05

0.1

0.15
Detection residue

Detection

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.05

0.1

0.15
Identification residues

Total failure

Decay - +0ms

Decay - +100ms

Decay - +200ms

Decay - +300ms

Decay - +400ms

Fig. 13: Detection residue (top) and identification residues
of motor 3 in the different observers (bottom), for a vehicle
in which a failure occurs at t = 12.33 s.

12 12.1 12.2 12.3 12.4 12.5 12.6 12.7

Time [s]

0

0.05

0.1

0.15

D
e

te
c
ti
o

n
 R

e
s
id

u
e

Total failure

Decay - +0ms

Decay - +100ms

Decay - +200ms

Decay - +300ms

Decay - +400ms

Fig. 14: Detail of the identification residues of motor 3 in the
different observers, for a vehicle in which a failure occurs
at t = 12.33 s.

VIII. CONCLUDING REMARKS AND FUTURE WORK

A comparative study was conducted on the implemen-
tation of a fault tolerant control system running on two
flight computers, one based in a middle-rated Cortex-M3
and a high-rated M7. This study reveals the minimum
processing requirements needed to perform a flight control
robust against a single rotor failure for a multirotor-type
unmanned aerial vehicle.

It was shown that the additional burden imposed by the
implementation of an active fault tolerant control algorithm
in an existing flight computer running on the Cortex-M3
is possible, but might bring it dangerously close to control
overruns. The implementation of the FDI subsystem in the
custom-made flight computer consumes an additional 12%
of a Cortex-M3 microcontroller resources, as it does not
have an FPU. This fact pushes its processing capabilities to
the limit, resulting in lack of guarantees for the algorithms
to be executed with precise timing. Thus the Choriboard v2
imposes a limitation in the kind and size of algorithms for
the FDI.

To overcome these issues, a new version of the flight
computer is presented: the Choriboard v3, which features
a Cortex-M7 microcontroller with a single-precision FPU.
This unit, along with a higher clock speed, reduces the
processing times of the AFCTS algorithms, allowing them
to run together with all the common navigation and control
algorithms present in multirotor systems.

With this upgraded version of the Choriboard, it was
feasible to incorporate the knowledge about the motor
dynamics in the FDI algorithm, leading to a reduction in the
detection time to almost half its previous value. This fact is
encouraging to continue exploring on other variations of the
bank of observers.

Future development directions include studying different
alternatives of the fault tolerance control routines and fault
detection algorithms. Innovative AFTCs techniques based on
machine-learning principles are usually expensive in terms
of resources, and therefore they were prohibitive in the
previous versions of the Choriboard flight controller based
on a Cortex-M3, since these techniques are prone to starve
available processing resources. However, the capabilities
provided by the Cortex-M7 in the Choriboard v3 leaves
room to consider the implementation of some of these
algorithms to perform fault-tolerance control of unmanned
aerial vehicles. Furthermore, a supervisory controller, with
an overall view of the tasks being run on the microcon-
troller, could be used to solve the aforementioned trade-off
between the number of observers (and consequently their
corresponding computing resources) and the time needed to
detect a failure.

ACKNOWLEDGMENTS

This research was partially supported by PICT-2019-2371
and PICT-2019-0373 projects from Agencia Nacional de
Investigaciones Científicas y Tecnológicas, and UBACyT
0421 project from the Universidad de Buenos Aires (UBA),
Argentina.

REFERENCES

[1] H. Huang, A. V. Savkin, and C. Huang, “When drones take public
transport: Towards low cost and large range parcel delivery*,” in
2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), vol. 1, 2019, pp. 1657–1660.

[2] E. D’Amato, M. Mattei, A. Mele, I. Notaro, and V. Scordamaglia,
“Fault tolerant low cost IMUS for UAVs,” in 2017 IEEE International
Workshop on Measurement and Networking (M N), 2017, pp. 1–6.

[3] A. Marks, J. F. Whidborne, and I. Yamamoto, “Control allocation for
fault tolerant control of a VTOL octorotor,” in Proceedings of 2012
UKACC International Conference on Control, 2012, pp. 357–362.

[4] M. Saied, B. Lussier, I. Fantoni, C. Francis, H. Shraim, and
G. Sanahuja, “Fault diagnosis and fault-tolerant control strategy for
rotor failure in an octorotor,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 5266–5271.

[5] M. Saied, B. Lussier, I. Fantoni, C. Francis, and H. Shraim, “Fault
tolerant control for multiple successive failures in an octorotor: Archi-
tecture and experiments,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2015, pp. 40–45.

[6] J. I. Giribet, R. S. Sanchez-Pena, and A. S. Ghersin, “Analysis
and design of a tilted rotor hexacopter for fault tolerance,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 52, no. 4,
pp. 1555–1567, 2016.

[7] M. W. Mueller and R. D’Andrea, “Stability and control of a quadro-
copter despite the complete loss of one, two, or three propellers,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 45–52.

[8] D. Vey and J. Lunze, “Structural reconfigurability analysis of mul-
tirotor UAVs after actuator failures,” in 2015 54th IEEE Conference
on Decision and Control (CDC), 2015, pp. 5097–5104.

[9] ——, “Experimental evaluation of an active fault-tolerant control
scheme for multirotor uavs,” in 2016 3rd Conference on Control and
Fault-Tolerant Systems (SysTol), 2016, pp. 125–132.

[10] G. M. Mancuso, E. Bini, and G. Pannocchia, “Optimal
priority assignment to control tasks,” ACM Trans. Embed.
Comput. Syst., vol. 13, no. 5s, Oct. 2014. [Online]. Available:
https://doi.org/10.1145/2660496

[11] W. Koch, R. Mancuso, and A. Bestavros, “Neuroflight: Next genera-
tion flight control firmware,” arXiv preprint arXiv:1901.06553, 2019.

[12] M. Hofer, M. Muehlebach, and R. D’Andrea, “Application of an
approximate model predictive control scheme on an unmanned aerial
vehicle,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 2952–2957.

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 75 http://elektron.fi.uba.ar



[13] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. White-
house, “Reactive control of autonomous drones,” in Proceedings
of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 207–219.

[14] E. Pecker-Marcosig, J. I. Giribet, and R. Castro, “Hybrid adaptive
control for UAV data collection: A simulation-based design to trade-
off resources between stability and communication,” in 2017 Winter
Simulation Conference (WSC), 2017, pp. 1704–1715.

[15] A. Fekih, “Fault diagnosis and fault tolerant control design for
aerospace systems: A bibliographical review,” in 2014 American
Control Conference, 2014, pp. 1286–1291.

[16] G. Michieletto, M. Ryll, and A. Franchi, “Control of statically
hoverable multi-rotor aerial vehicles and application to rotor-failure
robustness for hexarotors,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 2747–2752.

[17] J. I. Giribet, C. D. Pose, A. S. Ghersin, and I. Mas, “Experi-
mental validation of a fault tolerant hexacopter with tilted rotors,”
International Journal of Electrical and Electronic Engineering and
Telecommunications, vol. 7, no. 2, pp. 58–65, 2018.

[18] D. Vey, K. Schenk, and J. Lunze, “Simultaneous control reconfigura-
tion of systems with non-isolable actuator failures,” in 2016 American
Control Conference (ACC), 2016, pp. 7541–7548.

[19] D. Wolfram, F. Vogel, and D. Stauder, “Condition monitoring for
flight performance estimation of small multirotor unmanned aerial
vehicles,” in 2018 IEEE Aerospace Conference, 2018, pp. 1–17.

[20] O. Zandi and J. Poshtan, “Fault diagnosis of brushless dc motors
using built-in hall sensors,” IEEE Sensors Journal, vol. 19, no. 18,
pp. 8183–8190, 2019.

[21] C. D. Pose, J. I. Giribet, and I. Mas, “Fault tolerance analysis
for a class of reconfigurable aerial hexarotor vehicles,” IEEE/ASME
Transactions on Mechatronics, vol. 25, no. 4, pp. 1851–1858, 2020.

[22] H. Smeets, M. Ceriotti, and P. J. Marrón, “Adapting recursive
sinusoidal software oscillators for low-power fixed-point processors,”
ACM Trans. Embed. Comput. Syst., vol. 19, no. 3, May 2020.
[Online]. Available: https://doi.org/10.1145/3378559

[23] C. D. Pose, J. I. Giribet, and A. S. Ghersin, “Hexacopter fault tolerant
actuator allocation analysis for optimal thrust,” in 2017 International
Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 663–
671.

[24] M. Saied, H. Shraim, C. Francis, I. Fantoni, and B. Lussier, “Actuator
fault diagnosis in an octorotor UAV using sliding modes technique:
Theory and experimentation,” in 2015 European Control Conference
(ECC), 2015, pp. 1639–1644.

[25] F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, “Robust Back-
stepping Sliding-Mode Control and Observer-Based Fault Estimation
for a Quadrotor UAV,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 8, pp. 5044–5056, 2016.

[26] C. D. Pose, A. Giusti, and J. I. Giribet, “Actuator fault detection in
a hexacopter using machine learning,” in 2018 Argentine Conference
on Automatic Control (AADECA), 2018, pp. 1–6.

Revista elektron, Vol. 6, No. 2, pp. 65-76 (2022)

ISSN 2525-0159 76 http://elektron.fi.uba.ar




