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Abstract: Analysing complex datasets while maintaining the interpretability and explainability of
outcomes for clinicians and patients is challenging, not only in viral infections. These datasets often
include a variety of heterogeneous clinical, demographic, laboratory, and personal data, and it is
not a single factor but a combination of multiple factors that contribute to patient characterisation
and host response. Therefore, multivariate approaches are needed to analyse these complex patient
datasets, which are impossible to analyse with univariate comparisons (e.g., one immune cell subset
versus one clinical factor). Using a SARS-CoV-2 infection as an example, we employed a patient
similarity network (PSN) approach to assess the relationship between host immune factors and
the clinical course of infection and performed visualisation and data interpretation. A PSN analysis
of ~85 immunological (cellular and humoral) and ~70 clinical factors in 250 recruited patients with
coronavirus disease (COVID-19) who were sampled four to eight weeks after a PCR-confirmed SARS-
CoV-2 infection identified a minimal immune signature, as well as clinical and laboratory factors
strongly associated with disease severity. Our study demonstrates the benefits of implementing
multivariate network approaches to identify relevant factors and visualise their relationships in a
SARS-CoV-2 infection, but the model is generally applicable to any complex dataset.

Keywords: patient similarity network; multivariate data analysis; COVID-19 severity; minimal
immune signature; data visualisation; IgM and IgG levels

1. Introduction

The analysis of complex datasets is a major challenge in all branches of medicine,
as these datasets often include diverse clinical, demographic, laboratory, and personal
data. In addition, there is considerable heterogeneity between patients in terms of clini-
cal manifestations, the presence or absence of multiple individual factors contributing to
clinical symptoms, and longitudinal changes in multiple factors throughout the disease
course. Univariate analysis (e.g., one laboratory factor versus one clinical factor) is still
commonly used in this context, as shown, for example, by studies analysing the relation-
ship between the host immune response and clinical factors in a severe acute respiratory
syndrome 2 (SARS-CoV-2) infection [1–5]. However, univariate analysis cannot reveal
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information about the complex relationships among multiple factors. Moreover, it violates
the independence assumption for correlated factors.

Therefore, multivariate analyses are a preferable approach when analysing complex
datasets, providing a more realistic basis for robust and accurate clinical decisions [6].
Moreover, multivariate analysis enables the assessment of the contribution of multiple
factors concerning one or more clinical factors to reflect reality, reveal relationships between
the factors analysed, and reduce the bias of univariate patient characteristics across stud-
ies [6–9]. Nowadays, several multivariate approaches are available that consider complex,
multidimensional relationships between factors. These approaches can be divided into four
groups according to the objectives of the analysis [10]: (i) comparison of treatment groups
influenced by experimental treatment structure using multivariate analysis of variance
(MANOVA); (ii) dimensionality reduction techniques such as principal component analysis
(PCA); (iii) discriminate techniques such as canonical discriminant analysis (CDA); and (iv)
cluster analysis—there are many different algorithms that produce different-sized clusters.

However, these traditional multivariate approaches have several limitations in analysing
complex datasets [11], particularly in terms of interpreting the data and visualising the contribu-
tion of individual factors. the interpretation of the results of multivariate analysis is generally a
difficult task. Examples include the interpretation of derived factors and the number of compo-
nents obtained by PCA or the interpretation of clusters and their number and size produced
by one of the many cluster analysis techniques. There are also limitations in the visualisation
options, as complex datasets usually work with many factors (dozens or more are common).
For visualisation, however, two or three factors are needed at most. the multidimensional data
space must, therefore, be transformed into 2D or 3D so that the result is understandable to
the observer. This problem is then solved by dimension reduction, either by feature extraction,
where PCA is an example, or by feature selection, i.e., choosing two or three factors. This is
followed by visualisation in 2D (e.g., scatter plots) or 3D. Although the result is usually clear,
it can be somewhat confusing. In both cases, the observer loses some information, the lack of
which is most evident when studying the details of individual points in the data space, in our
case, patient profiles.

One innovative multivariate approach to analyse complex biomedical datasets is a net-
work approach, which is based on the realisation that the similarities of the patient profiles
are essential for a reasonable interpretation for us as observers [12–16]. This relationship
is pairwise, and traditional visualisations lack an exact representation of it. In traditional
visualisation, we perceive this relationship as a metric distance of points in the visual form.
However, when reducing the dimension, this distance may not represent what describes
reality and what we deduce from the visualisation [12,17,18]. As explained later, in this
approach, networks in which a sufficiently high similarity of a pair of patients (more pre-
cisely, their profiles) is expressed straightforwardly by their ties in the visualisation, and
the strength of this tie represent the degree of this similarity. In this respect, networks are a
tool that allows visualisation of what is missing in traditional approaches. the main and
major advantage of multivariate network analysis is its depth of insight due to the visuali-
sation, allowing us to interpret the data and extract meaning from it, regardless of the type
of data.

Here, we investigated the applicability of network analysis for uncovering the rela-
tionship between the host immune response and clinical and laboratory factors of virus
infections using a SARS-CoV-2 infection as an example. Despite the growing number of
studies on coronavirus disease (COVID-19), interpreting the data and drawing meaningful
conclusions from the data are challenging. We evaluated a comprehensive dataset from
patients infected with the SARS-CoV-2 virus during the first and second COVID-19 waves
(period from March to November 2020) of the pandemic in the Czech Republic, enabling us
to compare obtained data with published studies. the main objective of this study was to
compare the results obtained from univariate analysis and multivariate network analysis,
which provides visualisation as an analytical approach to help interpret complex data
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and identify minimal immune signals useful as a potential predictor of disease severity or
persistence of complications.

2. Materials and Methods
2.1. Patients

The study cohort consisted of 250 patients (124 men and 126 women; mean age ±SD:
53.5 ± 14.0 years) infected with the SARS-CoV-2 virus between March and November
2020. the predominant SARS-CoV-2 variants detected during this period, corresponding
to the first and second waves of COVID-19 in the Czech Republic, were B.1, B.1.1.266
and B.1.258 [18]. None of the patients enrolled in this study were vaccinated at the time
of the SARS-CoV-2 infection and sampling. of the patients, 83 (33%) had been admitted
to the hospital; 80 (32%) had anosmia/ageusia, and 111 (44%) had pneumonia. Clinical
evaluation, lung function data, and samplings (peripheral blood) were performed four
to eight weeks after a positive SARS-CoV-2 diagnostic PCR test. Fourteen patients were
excluded from analyses because of missing specimens for flow cytometry. For more details
on clinical characteristics, see Table 1.

Table 1. Basic characteristics of enrolled patients with COVID-19.

Factors No of the Patients (%)

Gender (men/women) 124/126
Age, median years (min-max) 55 (19–87)

Serum IgG, median (min-max) (AU/mL) 118 (6.21–390)
Serum IgM, median (min-max) (AU/mL) 5.65 (0.06–111)

Comorbidities
Pulmonary arterial embolisation 10 (4%)

Diabetes mellitus 31 (12%)
Ischemic heart disease 12 (5%)

Medical history related to COVID-19
Hospitalisation 82 (33%)

Pneumonia 111 (44%)
Anosmia/ageusia 80 (32%)

Pulmonary interstitial changes 29 (12%)
Systemic glucocorticoid therapy 23 (9%)

Persistent dyspnoea 89 (36%)
Persistent cough 61 (24%)

Pulmonary Function Tests Measured±SD Percentage of
Predicted Values±SD

VC (l) 3.91 ± 1.10 101.3 ± 16.81
FVC (l) 3.88 ± 1.10 104.19 ± 17.28
FEV1 (l) 3.12 ± 0.89 101.89 ± 17.15

FEV1/VC - 80.06 ± 6.37
PEF (l/min) 7.30 ± 1.99 96.88 ± 19.33

TLC (l) 6.33 ± 1.34 104.77 ± 15.95
DLCO (l/s) 7.43 ± 2.33 80.55 ± 17.21
KCO (l/s) 1.33 ± 0.25 88.19 ± 15.37

VC—vital capacity, FVC—forced vital capacity, FEV1—forced expiratory volume in 1 s, FEV1/VC forced expiratory
flow/vital capacity ratio, PEF—peak exploratory flow, TLC—total lung capacity, DLCO—carbon monoxide
diffusing capacity, KCO—carbon monoxide transfer coefficient, SD—standard deviations.

2.2. Characteristics of Analysed Data

For enrolled COVID-19 patients, ~85 immunological (cellular and humoral) and ~70
clinical factors available at the date of sampling were analysed.

All patients underwent a chest X-ray and pulmonary function tests, including vital
capacity, forced vital capacity, forced expiratory volume in 1 s, forced expiratory flow/vital
capacity ratio, peak exploratory flow, total lung capacity, carbon monoxide diffusing
capacity (DLCO), and carbon monoxide transfer coefficient. In the case of residual findings
on chest X-rays indicating the persistence of lung interstitial changes, high-resolution
chest computed tomography was subsequently performed. In addition, clinically relevant
medical history data related to COVID-19, e.g., history of hospitalisation, pneumonia,
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persistent dyspnoea, symptoms, and anosmia/ageusia (partial/complete), were collected
in all patients.

Among immunological factors, the main immune cell populations and subpopulations
and their activation in peripheral blood were determined using flow cytometry. Whole
blood samples were prepared for eight-colour flow cytometry as previously described [19].
Isotype-matched conjugated irrelevant antibodies and fluorescence minus one controls were
used. All antibodies and isotype controls used were purchased from BioLegend (San Diego,
CA, USA). For flow cytometry analysis, BD FACSCanto II (BD Biosciences, San José, CA,
USA) was used. For data evaluation, FlowJo v10.8.1 (BD Biosciences, Franklin Lakes, NJ,
USA) was used. the main blood cell populations were identified using the sequential
gating strategy after exclusion of doublets (FSC-A/FSC-H) as follows: main immune cell
populations (lymphocytes, LYM; monocytes, MON; neutrophils, NEU) were identified by
FSC-A/SSC-A, T-lymphocytes (T-LYM; CD3+ LYM), NK cells (CD3− /CD16+ CD56+ LYM);
B-LYM (CD19+ /CD3− LYM), immature B-cells (CD19+ /CD27− /CD38+), eosinophils
(EOS; CD49d+ /CD16− /CD15+), and basophils (BAS; CD203c+ /CD123+ /FcεRIα+).
A minimum of 10,000 events were collected. A cut-off of 500 events was used to evaluate
activation markers and immune checkpoint molecules (CD69, HLA-DR, PD-1, and CTLA-4).
the data are presented either as percentages of immune cell singlets (LYM, MON, NEU,
EOS, and BAS) or percentages of parental populations (T-LYM, B-LYM, and NK cells from
LYM; immature B-LYM from B-LYM).

The serum levels of IgG and IgM were assessed by ELISA using the recombinant
SARS-CoV-2 RBD Wuhan variant. In addition, 96-well plates (Nunc) were coated with RBD
(50 ng/well) overnight at 4 ◦C, washed, and blocked with 1% BSA/PBS/Tween-20 for three
hours at room temperature (RT). Sera were diluted 1:1000 in blocking buffer (in triplicates),
incubated overnight at 4 ◦C, washed, and incubated with secondary rabbit anti-human IgG
and IgM antibodies conjugated with horseradish peroxidase (Sigma-Aldrich, Saint-Louis,
MO, USA) diluted 1:10,000 in blocking buffer for three hours at RT. the signal developed
with OPD-H2O2 was measured at 492 nm and expressed as optical density. the threshold of
positivity was based on a comparison with a cohort of noninfected subjects sampled before
the SARS-CoV-2 pandemic.

2.3. Patient Similarity Network (PSN)

To visually study and assess the relationships between patient profiles and groups of
similar patients, we need to convert the patient data into a patient similarity network (PSN).
This conversion must work with multiple aspects. the first is the selection of small combinations
of such (immunological and clinical) factors that are relevant for similarity assessment. For
example, if we have measured 150 factors, we can expect that most of them are noise for
the problem we intend to solve. the second aspect is the method of measuring similarity,
which must be chosen based on domain knowledge; we use a so-called Gaussian function
that converts a distance metric to a similarity metric from an interval [0, 1], as in approaches
similar to ours; before applying the Gaussian function, the values of each factor were re-scaled
to the same interval. the third aspect is the application of a method that constructs a network
from the selected factor in the patient profile; here, we use the LRNet method [17, LRNet
application: https://homel.vsb.cz/~kud007/lrnet_files (accessed on 30 October 2022)], which
both preserves the essence of the relationships in the original data and reveals not-so-obvious
features hidden in the data. the last two aspects are the assessment of the quality of the network
in terms of its density (degree of connectivity) and the separation of the parts into clusters of
different sizes; here, we use a method to detect clusters in the network (Louvain modularity [20]).
In particular, we measure the quality of the separation between clusters using two characteristics,
which are the Louvain modularity from interval [−0.5, 1] and silhouette from interval [−1, 1].
Simply put, the higher the modularity, the better clusters of similar patients are separated in
the network. the higher the silhouette (positive values), the more reliably individual patients
belong to the cluster to which they have been automatically assigned.

https://homel.vsb.cz/~kud007/lrnet_files
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Other descriptive characteristics are based on the measurement of univariate statistics
within clusters. Here, we assume that patients should have similar values in each factor
in a particular cluster, and at least for some factors, their values should differ between
clusters. Arithmetic means, standard deviations, and confidence intervals are computed
for all factors in the clusters to assess the satisfaction of both assumptions.

Using computers makes it possible to work with all of the above aspects at the same
time by having a computer program automatically generating networks for small but
varying combinations of factors. the quality of the generated networks is automatically
measured based on the abovementioned characteristics. As a result, the combination of
factors and networks proposed by the computer program are of the highest quality con-
cerning all mentioned aspects. From these proposals, a network is then manually selected
that captures the domain knowledge and, thus, also meets the requirements for clinical
applicability. In our case, we considered and investigated combinations of 3–5 factors
out of 85 immunological factors and the best combination based on the network quality
measures and clinical relevance was nominated. the modularity of the nominated network
was 0.616, and 82.6% of patients had a positive silhouette expressing their unambiguous
placement in one of the clusters. In addition, a selection from 70 clinical factors was used
for visualisation within the network.

2.4. Statistics

The Kruskal–Wallis one-way ANOVA test in three or more groups and the Wilcoxon–
Mann–Whitney test between the two groups were used to compare the distribution of immune
cells, their activation, IgG/IgM levels, and clinical factors. the achieved levels of statistical
significance (p-values) were carried out using the R language (3.6.1) in the R-Studio 1.2× pro-
gramming environment (http://www.r-project.org/ accessed on 1 October 2022). p-values
of <0.05 were considered significant. the data are presented as a mean and 95% confidence
interval (CI).

3. Results
3.1. Univariate Analysis of Obtained Data

We first examined changes in circulating immune cells and other factors associated
with SARS-CoV-2 infections in patients with mild and severe disease manifestations, de-
fined by the presence of pneumonia (Figure 1a) and hospitalisation history (Figure 1b),
using univariate analysis.

In addition, we assessed the distribution of circulating immune cells in patients sub-
grouped according to persistent dyspnoea at the post-COVID-19 check-up (Figure 1c),
anosmia/ageusia (Figure 1d), serum IgG levels at post-COVID sampling (Figure 1e), serum
IgM levels at post-COVID sampling (Figure 1e), DLCO (%predicted) at post-COVID sam-
pling (Figure 1g), and gender (Figure 1h). the data are also presented in the table format
with a corresponding p-value and 95%CI (Table 2).

http://www.r-project.org/
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Figure 1. Profile of circulating immune cells four to eight weeks post-COVID-19 in patients subdi-
vided according to: (a) pneumonia, (b) hospitalisation history, (c) persistent dyspnoea at the post-
COVID-19 check-up, (d) anosmia/ageusia, (e) positive serum IgG levels at post-COVID sampling,
(f) positive serum IgM levels at post-COVID sampling, (g) DLCO (%predicted) at post-COVID sam-
pling, and (h) gender. Factors (c) to (g) refer to a period of four to eight weeks post-COVID-19. LYM:
lymphocytes; MON: monocytes; NEU: neutrophils; EOS: eosinophils; BAS: basophils; DLCO: carbon
monoxide diffusing capacity. Bars show the mean value, and whiskers the 95% confidence interval.
* p < 0.05; ** p < 0.01; *** p < 0.001.

For each condition/clinical factor of interest from the comprehensive dataset, statistical
significance is calculated and reported as the difference in the value of a given factor
(higher, lower, or no difference) between the subgroups of patients studied. For example,
our patients with COVID-19 who had confirmed pneumonia had elevated percentages
of activated CD8+ T-lymphocytes, activated CD4+ T-lymphocytes, NK cells, monocytes,
and eosinophils but lower percentages of B-lymphocytes and immature B-lymphocytes as
well as lower percentages of T-lymphocytes expressing checkpoint molecules PD-1 and
CTLA-4 at post-COVID sampling compared to patients without pneumonia. No difference
in CD8+ T-lymphocytes, CD4+ T-lymphocytes, neutrophils, and basophils was detected
between these two studied groups (Table 2c, Figure 1c). Regarding another example
of COVID-19 patients with anosmia/ageusia, elevated percentages of B-lymphocytes
and immature B-lymphocytes but lower percentages of activated CD8+ T-lymphocytes,
activated CD4+ T-lymphocytes, and monocytes were detected when compared to patients
without anosmia/ageusia. No difference in the distribution of lymphocytes, CTLA-4+
T-lymphocytes, neutrophils, eosinophils, and basophils was detected between patients
with and without anosmia/ageusia. In addition, a trend to higher percentages of CD4+ T-
lymphocytes, PD-1+ T-lymphocytes, and lower NK cells was detected in patients reporting
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anosmia/ageusia; however, the difference did not reach significance. All other conditions
and factors could be evaluated in the same manner.

Table 2. Distribution of circulating immune cells four to eight weeks post-COVID-19 in patients
subdivided according to (a) pneumonia, (b) hospitalisation history, (c) persistent dyspnoea at the post-
COVID-19 check-up, (d) anosmia/ageusia, (e) positive serum IgG levels at post-COVID sampling,
(f) positive serum IgM levels at post-COVID sampling, (g) DLCO (%predicted) at post-COVID
sampling, and (h) gender. Factors (c) to (g) refer to a period of four to eight weeks post-COVID-19.
Significant p-values are marked in bold.

(a) Pneumonia (b) Hospitalisation

Distribution of Immune Cells
[%]

No Yes p-Value No Yes p-ValueMean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

Lymphocytes (LYM) 30.8 (29.4–32.3) 30.3 (28.9–31.8) 0.856 30.4 (29.2–31.6) 31.1 (29.3–33.0) 0.534
CD4+ T-LYM 44.4 (43.0–45.9) 44.2 (42.3–46.1) 0.746 45.1 (43.7–46.4) 42.8 (40.6–44.9) 0.127

CD69+ CD4+ T-LYM 5.38 (4.66–6.11) 7.77 (6.85–8.70) <0.001 5.77 (5.12–6.42) 7.75 (6.57–8.93) 0.004
HLA-DR+ CD4+ T-LYM 6.58 (5.87–7.29) 9.39 (8.27–10.5) <0.001 6.78 (6.15–7.41) 9.89 (8.49–11.3) <0.001

CD8+ T-LYM 28.2 (26.6–29.7) 29.1 (27.1–31.1) 0.638 27.5 (26.2–28.9) 30.8 (28.3–33.3) 0.051
CD69+ CD8+ T-LYM 6.63 (6.00–7.26) 7.00 (6.44–7.57) 0.140 6.68 (6.13–7.23) 7.01 (6.34–7.69) 0.221

HLA-DR+ CD8+ T-LYM 15.8 (13.9–17.7) 26.6 (23.5–29.6) <0.001 16.8 (15.0–18.6) 28.0 (24.4–31.7) <0.001
PD-1+ T-LYM 48.3 (46.0–50.6) 41.1 (39.2–43.0) <0.001 46.9 (44.8–49.0) 41.6 (39.4–43.8) 0.008

CTLA-4+ T-LYM 1.56 (0.95–2.17) 0.29 (0.20–0.39) 0.001 1.35 (0.83–1.87) 0.33 (0.19–0.46) 0.007
B-LYM 10.5 (9.77– 11.2) 7.72 (7.05–8.40) <0.001 10.2 (9.51–10.8) 7.50 (6.71–8.28) <0.001

Immature B-LYM 6.39 (5.69–7.09) 3.20 (2.45–3.94) <0.001 6.03 (5.38–6.68) 2.91 (2.06–3.76) <0.001
NK cells 13.4 (12.3–14.5) 15.2 (13.9–16.5) 0.036 13.8 (12.8–14.8) 15.0 (13.4–16.5) 0.221

Monocytes (MON) 7.34 (6.96–7.73) 8.80 (8.30–9.30) <0.001 7.49 (7.14–7.84) 8.97 (8.37–9.58) <0.001
Neutrophils (NEU) 58.6 (57.0–60.2) 56.8 (55.1–58.5) 0.148 58.8 (57.4–60.2) 55.9 (53.7–58.1) 0.042
Eosinophils (EOS) 2.19 (1.91–2.47) 3.21 (2.67–3.75) 0.001 2.42 (2.13–2.71) 3.07 (2.43–3.72) 0.082
Basophils (BAS) 0.69 (0.64–0.74) 0.75 (0.68–0.82) 0.124 0.68 (0.63–0.73) 0.79 (0.71–0.86) 0.005

(c) Persistent Dyspnoea (d) Anosmia/Ageusia

Distribution of Immune Cells No Yes p-Value No Yes p-Value[%] Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

Lymphocytes (LYM) 30.4 (29.0–31.7) 31.1 (29.5–32.7) 0.589 30.1 (28.9–31.4) 31.7 (30.0–33.4) 0.295
CD4+ T-LYM 44.5 (43.1–46.0) 44.0 (42.0–45.9) 0.908 43.4 (41.9–44.9) 46.1 (44.5–47.8) 0.077

CD69+ CD4+ T-LYM 5.57 (4.84–6.31) 7.88 (6.96–8.81) <0.001 6.78 (6.03–7.52) 5.65 (4.70–6.60) 0.093
HLA-DR+ CD4+ T-LYM 7.34 (6.61–8.07) 8.57 (7.33–9.80) 0.120 8.51 (7.67–9.35) 6.30 (5.41–7.19) 0.005

CD8+ T-LYM 27.4 (25.8–28.9) 30.7 (28.7–32.7) 0.010 29.2 (27.6–30.7) 27.4 (25.5–29.2) 0.286
CD69+ CD8+ T-LYM 6.89 (6.29–7.49) 6.60 (6.03–7.18) 0.908 7.12 (6.54–7.70) 6.12 (5.55–6.69) 0.093

HLA-DR+ CD8+ T-LYM 18.8 (16.8–20.8) 23.3 (19.7–26.8) 0.097 22.8 (20.5–25.2) 15.5 (13.2–17.8) 0.004
PD-1+ T-LYM 47.7 (45.5–49.8) 40.8 (38.8–42.9) <0.001 44.0 (42.1–45.9) 47.7 (44.8–50.5) 0.077

CTLA-4+ T-LYM 1.39 (0.84–1.94) 0.36 (0.21–0.50) <0.001 0.85 (0.44–1.25) 1.37 (0.65–2.08) 0.173
B-LYM 10.0 (9.31–10.7) 8.06 (7.32–8.80) 0.002 8.88 (8.23–9.54) 10.1 (9.29–11.0) 0.032

Immature B-LYM 5.63 (4.96–6.30) 3.95 (3.03–4.87) <0.001 4.62 (3.97–5.27) 5.85 (4.85–6.84) 0.035
NK cells 14.4 (13.3–15.4) 13.9 (12.5–15.2) 0.615 14.8 (13.7–15.8) 13.0 (11.6–14.4) 0.077

Monocytes (MON) 7.72 (7.31–8.12) 8.41 (7.90–8.93) 0.034 8.23 (7.84–8.61) 7.44 (6.90–7.99) 0.037
Neutrophils (NEU) 58.5 (57.0–60.1) 56.6 (54.9–58.4) 0.141 58.1 (56.6–59.6) 57.4 (55.4–59.4) 0.711
Eosinophils (EOS) 2.41 (2.07–2.75) 3.01 (2.50–3.53) 0.034 2.68 (2.34–3.02) 2.52 (1.98–3.06) 0.286
Basophils (BAS) 0.69 (0.64–0.74) 0.76 (0.70–0.83) 0.069 0.72 (0.67–0.77) 0.72 (0.64–0.79) 0.628

(e) Positive Serum IgG (f) Positive Serum IgM

Distribution of Immune Cells No Yes p-Value No Yes p-Value[%] Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

Lymphocytes (LYM) 31.6 (28.6–34.6) 30.4 (29.3–31.5) 0.814 31.2 (29.5–32.9) 30.1 (28.8–31.5) 0.850
CD4+ T-LYM 43.6 (40.5–46.7) 44.4 (43.1–45.7) 0.831 43.0 (41.2–44.8) 45.0 (43.5–46.6) 0.084

CD69+ CD4+ T-LYM 4.54 (2.90–6.18) 6.82 (6.18–7.46) 0.002 4.50 (3.69–5.31) 7.70 (6.91–8.48) <0.001
HLA-DR+ CD4+ T-LYM 5.88 (4.15–7.61) 8.23 (7.52–8.94) 0.002 6.74 (5.83–7.65) 8.55 (7.65–9.45) 0.009

CD8+ T-LYM 28.5 (25.1–32.0) 28.5 (27.2–29.9) 0.983 28.8 (26.9–30.7) 28.4 (26.8–30.1) 0.662
CD69+ CD8+ T-LYM 6.61 (5.51–7.71) 6.86 (6.38–7.35) 0.983 6.26 (5.65–6.88) 7.15 (6.54–7.75) 0.072

HLA-DR+ CD8+ T-LYM 12.9 (8.42–17.5) 22.0 (20.0–24.0) <0.001 16.7 (14.1–19.3) 23.2 (20.7–25.6) 0.001
PD-1+ T-LYM 51.7 (47.1–56.4) 44.2 (42.5–46.0) 0.005 49.8 (46.9–52.7) 41.8 (40.0–43.6) <0.001

CTLA-4+ T-LYM 1.85 (-0.08–3.78) 0.87 (0.55–1.18) 0.798 1.64 (0.77–2.50) 0.59 (0.31–0.86) <0.001
B-LYM 9.55 (8.10–11.0) 9.26 (8.67–9.84) 0.937 10.1 (9.27–11.0) 8.76 (8.07–9.44) 0.009
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Table 2. Cont.

Immature B-LYM 5.84 (4.11–7.56) 4.83 (4.24–5.43) 0.273 6.57 (5.55–7.60) 3.99 (3.38–4.60) <0.001
NK cells 14.7 (11.7–17.8) 14.1 (13.2–15.0) 0.983 14.3 (12.8–15.8) 14.2 (13.1–15.3) 0.999

Monocytes (MON) 7.61 (6.45–8.77) 8.08 (7.74–8.41) 0.273 7.29 (6.76–7.81) 8.43 (8.02–8.84) 0.001
Neutrophils (NEU) 57.7 (54.1–61.2) 57.9 (56.6–59.2) 0.983 58.1 (56.2–60.0) 57.8 (56.2–59.4) 0.662
Eosinophils (EOS) 2.05 (1.34–2.77) 2.74 (2.42–3.06) 0.067 2.34 (1.80–2.88) 2.82 (2.48–3.17) 0.010
Basophils (BAS) 0.63 (0.55–0.71) 0.72 (0.68–0.77) 0.451 0.73 (0.66–0.79) 0.71 (0.65–0.76) 0.666

(g) DLCO <80% (g) Gender

Distribution of Immune Cells No Yes p-Value Male Female p-Value[%] Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

Lymphocytes (LYM) 31.6 (30.3–32.9) 29.6 (27.9–31.2) 0.284 30.5 (29.0–32.0) 30.8 (29.4–32.2) 0.692
CD4+ T-LYM 44.6 (43.1–46.1) 44.1 (42.2–46.0) 0.952 42.1 (40.5–43.6) 46.8 (45.2–48.4) 0.002

CD69+ CD4+ T-LYM 5.46 (4.69–6.23) 7.27 (6.41–8.13) <0.001 6.46 (5.65–7.27) 6.35 (5.47–7.22) 0.783
HLA-DR+ CD4+ T-LYM 6.59 (5.86–7.32) 9.04 (7.97–10.1) <0.001 8.30 (7.33–9.26) 7.22 (6.37–8.07) 0.218

CD8+ T-LYM 27.8 (26.3–29.4) 29.2 (27.2–31.1) 0.697 29.5 (27.6–31.3) 27.6 (26.1–29.1) 0.594
CD69+ CD8+ T-LYM 6.23 (5.79–6.67) 7.40 (6.63–8.18) 0.078 6.36 (5.85–6.87) 7.25 (6.54–7.97) 0.186

HLA-DR+ CD8+ T-LYM 16.3 (14.3–18.2) 24.8 (21.8–27.8) <0.001 21.2 (18.6–23.9) 19.5 (17.0–22.0) 0.692
PD-1+ T-LYM 47.6 (45.2–49.9) 42.9 (40.7–45.0) 0.018 43.8 (41.6–45.9) 46.8 (44.5–49.2) 0.186

CTLA-4+ T-LYM 1.32 (0.72–1.93) 0.71 (0.33–1.08) 0.039 1.06 (0.52–1.59) 0.98 (0.49–1.46) 0.770
B-LYM 9.90 (9.25–10.5) 8.75 (7.91–9.60) 0.012 8.88 (8.16–9.59) 9.7 (8.98–10.5) 0.285

Immature B-LYM 5.93 (5.15–6.70) 4.13 (3.38–4.88) <0.001 4.81 (4.08–5.54) 5.26 (4.43–6.08) 0.692
NK cells 14.2 (13.0–15.3) 14.2 (12.9–15.5) 0.839 15.8 (14.5–17.0) 12.5 (11.4–13.6) 0.002

Monocytes (MON) 7.66 (7.25–8.07) 8.28 (7.78–8.79) 0.194 8.51 (8.03–8.99) 7.38 (6.99–7.76) 0.007
Neutrophils (NEU) 57.3 (55.9–58.8) 58.5 (56.5–60.4) 0.790 57.5 (55.7–59.2) 58.3 (56.7–59.8) 0.783
Eosinophils (EOS) 2.38 (2.06–2.71) 2.81 (2.32–3.29) 0.346 2.64 (2.28–3.00) 2.61 (2.16–3.06) 0.654
Basophils (BAS) 0.70 (0.64–0.76) 0.74 (0.68–0.81) 0.219 0.71 (0.65–0.77) 0.72 (0.66–0.78) 0.783

LYM: lymphocytes; MON: monocytes; NEU: neutrophils; EOS: eosinophils; BAS: basophils; DLCO: carbon
monoxide diffusing capacity. the data are presented as the mean values and the 95% CI (in brackets).

3.2. Multivariate Patient Similarity Network Analysis (PSN)

In the next step, we applied a multivariate unsupervised PSNs approach utilising
the clustering based on the similarity in the distribution of circulating immune cells,
their immunophenotypes, and clinical, functional, and laboratory factors within patients,
creating a network and subsequent visualisation of other factors of interest (Figure 2). In it,
we can see the top left panel containing colour-coded clusters of patients that are similar
to each other (connected by a tie) in three factors that proved crucial when converting
the dataset into the network. As additional information, the averages of the patient profiles
in each cluster are shown here in the bottom left panel as a bar chart. Due to the different
colouring of the network on the right panel, we have the same network in several variants
providing different information. What is particularly evident in the visualisations is that
the data are heterogeneous, and the trends captured in the data are more important than
the statistical values.

Despite numerous deregulated immune populations and their activation markers
across the cohort (Figure 1), clustering based on a percentage of activated (CD69+) CD4+
T-lymphocytes, CTLA-4+ T-lymphocytes, and immature B-lymphocytes (CD19+ CD27−
CD38+(bright)) revealed the best subdivision of patients based on COVID-19 severity and
lung function status four to eight weeks after initial infection (Figure 2).

As visualised in Figure 2, a majority of patients with a high percentage of activated
CD4+ T-lymphocytes and low percentages of CTLA-4+ T-lymphocytes and immature B-
lymphocytes had pneumonia, a history of hospitalisation, impaired lung function, and
persistent dyspnoea at the post-COVID-19 check-up. In addition, PSNs allow multiple
factors to be displayed simultaneously in the network, as demonstrated, for example,
in a subanalysis of anosmia/ageusia in women and men who had moderate and severe
manifestations of COVID-19 (Figure 2, lower part).
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Figure 2. PSN analysis. the PSN identified five patient clusters (C1–C5) associated with COVID-19
severity based on a minimal immune signature (CD69+ CD4+ T-lymphocytes, CTLA-4+ CD4+ T-
lymphocytes, and immature B-LYM; for their distribution within clusters, see the bar chart). Cluster 1
(C1, dark green), cluster 2 (C2, green), and cluster 3 (C3, blue) were predominantly associated with
mild disease; cluster 4 (C4, violet) and cluster 5 (C5, orange) with severe disease. Dark red/green
network vertices represent individual patients with/without a history of pneumonia, hospitalisation,
persistent dyspnoea, and anosmia/ageusia (red/green = women/men; light red/green were patients
not suffering from anosmia/ageusia; dark red/green were patients suffering from anosmia/ageusia).
Pulmonary function and serum IgM and IgG levels in individual patients four to eight weeks post-
COVID-19 are indicated by the intensity of red (light for the lowest values and dark for the highest
values). C: cluster; LYM: lymphocytes; DLCO: diffusing capacity from carbon monoxide in the lungs.

4. Discussion

The healthcare system generates a significant amount of data. In addition, a large
amount of omics data has been collected in the literature and public databases. However,
we often need to better understand these data, extract the meaning from them, and make
the most rational use of their potential to generate the knowledge we need. This is also
important for uncovering relationships between many laboratory, clinical, and personal
factors in complex diseases/conditions, which can help in data interpretation and better
management of patients. the situation is also similar for the host response to individual
pathogens, where not a single factor but a combination of multiple factors contributes.

This study focused on uncovering the host response to the SARS-CoV-2 virus as an
example of a complex condition. We studied the relationship between a hundred clinical,
demographic, laboratory, and personal factors available from 250 patients with COVID-19
by applying both univariate analyses and multivariate network analyses. All patients were
sampled during the first and second COVID-19 waves of the SARS-CoV-2 pandemic. At
that time, patients were monitored thoroughly, with very good communication between
physicians and patients, and none of the patients had been vaccinated. the advantage
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of the patient cohort used is also the significant amount of published data from different
populations that are currently available for comparison.

The majority of published studies on patients with COVID-19 still rely on univariate
analysis [1–5]. This type of analysis enables us to understand the distribution of values
for a single condition, but it cannot understand the relationship between two and more
variables. As shown by our study, the visualisation of univariate analysis is easy for
the observer to understand; they can see the average ranking of the laboratory factors for
each pair of clinical factors/conditions being compared, as well as which patient subgroup
has the higher average value. Additional information here is the CIs of the significance
of the differences. the first problem is that if we want to study a single patient and its
similarity to another, we will not find a solution in this visualisation. the second issue is
the overall view of the patient dataset, which raises many questions. For example, how can
we see whether one or more factors cluster patients in one place? How large is a subset of
factors sufficient to translate the patient dataset into an understandable visual form so that
we can look for answers to multiple similar questions? Although the profiles of immune
cells vary between comparisons, it is impossible to identify the most significant combination
of factors (here, immune cell subpopulations) associated with disease manifestations.
As shown in our dataset, the univariate analysis revealed factors associated with a particular
condition, such as pneumonia, anosmia/ageusia, or hospitalisation, but, for example, such
analysis does not answer questions about whether patients with pneumonia also had
anosmia/ageusia or were hospitalised, and which combination of factors are associated
with particular patient subgroups. Generally, the results of univariate analysis lack deeper
insight into the relationships between the spectrum of factors and their relevance to reality,
as well as they are not being suitable for patient groups that are very heterogeneous in
terms of phenotypes, immune responses, and clinical manifestations.

Therefore, we introduced in this study an innovative multivariate network analysis to
assess the relationship between host response and SARS-CoV-2 infection. Over the years,
there has been increasing evidence of the benefits of multivariate analysis in complex
diseases [14], as the outcome may be caused by multiple factors, and there may be several
different disease phenotypes with different factors/mechanisms involved. We applied a
network analysis called PSN that constructs a network from vector data and then clusters
the patients based on the similarity in their factors [12,21]. It is suitable for any data (clin-
ical, laboratory, demographic, and functional) of any type (binary and continuous) and
cohort size. This makes it highly suitable for the analysis of biomedical datasets [12–16,22].
the advantage of using a PSN network and its visualisation also helps to study and identify
the relevant factors for the given conditions, which allow for the subgrouping of patients.
Indeed, this multivariate analysis of our real-world cohort identified a minimal immune
signature consisting of a high percentage of activated CD4+ T-lymphocytes and low per-
centages of CTLA-4+ T-lymphocytes and immature B-lymphocytes that were strongly
associated with disease severity and manifested even four to eight weeks after COVID-19.
Other immune features showed high variability across the cohort, indicating significant
heterogeneity in the immune response in individual patients.

Our data are in line with other studies in which a higher representation of activated
(CD69+) interferon-γ-producing CD4+ T-lymphocytes was detected in hospitalised COVID-19
patients with pneumonia [23]. Dysregulation in circulating B-cell subpopulations, particularly
a reduced number of immature B-cells and normalisation within three to six months of
convalescence, has been recently reported in patients with severe COVID-19 [24,25]. Our
data indicates that the B-cell disturbance observed in acute severe COVID-19 is extended
for at least four to eight weeks after acute infection. This appears to be a response similar
to the forced maturation of B-cells towards plasmablasts, achieving up to 30% of the total
peripheral blood B-cells, reported in a subgroup of COVID-19 patients [26]. A patient subset
(8%) with the mild disease had high levels of checkpoint inhibitor CTLA-4 on T-cells, probably
involved in the downregulation of immune activation during COVID-19-related cytokine
storms. In the presented study, the patients with severe disease had lower CTLA-4 expression
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on T-cells, allowing us to hypothesise that in such patients, less controlled activation of T-cells
could support the development of severe inflammation in the lungs. In contrast, other authors
hypothesised the inhibition of CTLA-4 as the potential therapeutic approach supporting
antiviral T-cell activity and inhibiting T-cell exhaustion [27].

Furthermore, the PSN multivariate analysis indicated that anosmia/ageusia was
more frequent with mild disease, consistent with previous studies [28]. Moreover, in our
cohort, more women than men suffered from olfactory and taste dysfunction. This may be
because women are more sensitive to altered olfactory perception than men, as evidenced
in a recent meta-analysis [29]. Nevertheless, our knowledge of sex-related differences in
the expression of ACE2 and TMPRSS2, two key receptors required for SARS-CoV-2 entry,
on non-neural-type sustentacular cells in the olfactory epithelium, which are responsible
for SARS-CoV-2-related taste and smell impairments, is very limited and is largely based
on animal models [30].

In addition, visualisation of clinical and laboratory factors in patient clusters detected
by PSN showed that a history of severe COVID-19 was associated with higher levels
of IgM and IgG compared with mild disease. There is evidence that both IgM and IgG
can be detected around the same time (~2 weeks) after a SARS-CoV-2 infection, with
the development of the class-switched, high-affinity IgG response for long-term immunity
and immunological memory [31]. Recent findings have demonstrated a significant cor-
relation of memory B-cells with both IgG1 and IgM responses to the SARS-CoV-2 spike
protein receptor-binding domain in most seropositive subjects [32]. IgM+ memory cells are
detectable over three months together with switched memory cells with somatic hypermu-
tations, which increase in frequency for several months after the onset of symptoms and
persist stably for at least six to eight months [33]. This may explain the high levels of IgM
and IgG in our patients with severe disease two months post-COVID-19. Our observation
of low levels of immature B-cells in severe disease agrees with the report that patients with
IgM memory B-cell depletion died [32] and further highlights the statement that B-cells,
particularly memory IgM B-cells, are a critical indicator of disease severity and resolution.

Our study showed several advantages of PSN in a clinically well-characterised real-
world cohort of Caucasian patients with the full spectrum of clinical variability of a SARS-
CoV-2 infection. Moreover, our study shows that the PSN approach allows for the visuali-
sation and interpretation of relevant information in complex datasets while maintaining
the interpretability and explainability of outcomes for clinicians and patients, which is
impossible in binary comparisons. In comparison to traditional multivariate approaches,
the presented PSN has a big advantage of independence on a pre-set number and size
of the clusters (=patients with similar profiles); it allows the integration of diverse data types
and handling of sparse data, selection of the most relevant combinations of factors, the pos-
sibility to reanalyse each patient cluster, and excellent model interpretability [12,22,34].
Moreover, this approach allows the comparison of datasets obtained for other pathogen
strains/time points/conditions. Finally, the obtained models may be improved by adding
novel patients and/or factors that may lead to a more precise model. However, we do not
consider using networks as the only option and rather see it as an alternative or important
complement to traditional visualisation methods.

This study also has limitations. First, we analysed only a group of patients from
the first and second waves of the COVID-19 pandemic who were not vaccinated. Currently,
immune profiles and other analysed factors may be affected by the vaccination, which has
been performed in approximately two-thirds of the population [35,36], reinfections with
SARS-CoV-2, and the emergence of other virus strains [37]. Second, our study focused
mainly on patients with severe disease manifestations, which does not allow us to compare
with patients infected with the current Omicron variant, because most patients have
mild to moderate disease manifestations that do not require hospitalisation. Hospitalised
patients infected with the Omicron variant are mainly those with comorbidities or who
are at risk or those who refuse vaccination and participation in clinical and research
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studies [35,38,39]. However, the used cohort of patients enabled us to compare the obtained
data with previously published studies from the same period.

5. Conclusions

By exploring and visualising multiple variables from our SARS-CoV-2 real-world
dataset using an unsupervised network analysis approach PSN, we have shown that
it is possible to obtain (i) a detailed model of the relationships among multiple factors
and (ii) actionable and interpretable observations in real-world datasets. Specifically, we
identified a minimal immune signature consisting of three parameters: a high percentage
of activated CD4+ T-lymphocytes, a low percentage of CTLA-4+ T-lymphocytes, and a
low percentage of immature B-lymphocytes, that were strongly associated with COVID-19
severity expressed as the need for hospitalisation, pneumonia, impaired lung functions,
and a persistent dyspnoea four to eight weeks after the COVID-19 diagnostic PCR test.
In addition, visualisation of clinical and laboratory factors in patient clusters detected
by PSN showed that the minimal immune signature associated with a history of severe
COVID-19 disease also associated with higher levels of IgG and IgM and impaired lung
function four to eight weeks after COVID-19. Furthermore, anosmia/ageusia in the first
and second waves of COVID-19 was more frequently associated with a mild course of
disease, and more women than men had olfactory and gustatory dysfunction. Based on
results consistent with published findings from the first and second waves of COVID-19,
we have shown that it is possible to find a model that can be translated into a visual and
easily interpretable form.

Taken together, this study demonstrates the advantages of using multivariate analysis
over univariate analysis when studying complex datasets. Although we have presented
the advantages of network analysis to study the host response to a SARS-CoV-2 infection,
the model is generally applicable to any complex dataset. Therefore, network analysis
may be important for uncovering the relationship between many laboratory, clinical, and
personal factors in complex diseases/conditions, as extracting meaning from complex
datasets can help with data interpretation and better patient management.
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