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Role of Bifidobacterium pseudocatenulatum in Degradation and
Consumption of Xylan-Derived Carbohydrates

Elizabeth Drey,a,b Car Reen Kok,b,c Robert Hutkinsa,b

aDepartment of Food Science and Technology, Food Innovation Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
bNebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
cComplex Biosystems, University of Nebraska—Lincoln, Lincoln, Nebraska, USA

ABSTRACT Xylans, a family of xylose-based polysaccharides, are dietary fibers resist-
ant to digestion. They therefore reach the large intestine intact; there, they are uti-
lized by members of the gut microbiota. They are initially broken down by primary
degraders that utilize extracellular xylanases to cleave xylan into smaller oligomers. The
resulting xylooligosaccharides (XOS) can either be further metabolized directly by pri-
mary degraders or cross-feed secondary consumers, including Bifidobacterium. While sev-
eral Bifidobacterium species have metabolic systems for XOS, most grow poorly on lon-
ger-chain XOS and xylan substrates. In this study, we isolated strains of Bifidobacterium
pseudocatenulatum and observed that some, including B. pseudocatenulatum ED02, dis-
played growth on XOS with a high degree of polymerization (DP) and straight-chain
xylan, suggesting a primary degrader phenotype that is rare in Bifidobacterium. In silico
analyses revealed that only the genomes of these xylan-fermenting (xylan1) strains con-
tained an extracellular GH10 endo-b-1.4 xylanase, a key enzyme for primary degradation
of xylan. The presence of an extracellular xylanase was confirmed by the appearance of
xylan hydrolysis products in cell-free supernatants. Extracellular xylanolytic activity was
only detected in xylan1 strains, as indicated by the production of XOS fragments with a
DP of 2 to 6, identified by thin-layer chromatography (TLC) and high-performance liquid
chromatography (HPLC). Additionally, in vitro fecal fermentations revealed that strains
with a xylan1 phenotype can persist with xylan supplementation. These results indicate
that xylan1 B. pseudocatenulatum strains may have a competitive advantage in the com-
plex environment of the gastrointestinal tract, due to their ability to act as primary
degraders of xylan through extracellular enzymatic degradation.

IMPORTANCE The beneficial health effects of dietary fiber are now well established.
Moreover, low fiber consumption is associated with increased risks of metabolic and sys-
temic diseases. This so-called “fiber gap” also has a profound impact on the composition
of the gut microbiome, leading to a disrupted or dysbiotic microbiota. Therefore, under-
standing the mechanisms by which keystone bacterial species in the gut utilize xylans
and other dietary fibers may provide a basis for developing strategies to restore gut
microbiome function. The results described here provide biochemical and genetic evi-
dence for primary xylan utilization by human-derived Bifidobacterium pseudocatenulatum
and show also that cooperative utilization of xylans occurs among other members of
this species.

KEYWORDS xylan, xylooligosaccharide, prebiotic, glycoside hydrolase, bifidobacteria,
cooperation, xylanase

Xylans are a class of nondigestible polysaccharides that contain a xylose-based backbone
with b-1,4 glycosyl linkages. Linear homoxylans are uncommon in foods; rather, most

xylans appear in the diet as heteroxylans (1). These heteroxylans are decorated with a variety
of other sugars, including arabinose and glucuronic acid in the case of arabinoxylans and
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glucuronoxylans, respectively. Dietary xylan fibers are found predominantly in monocots,
including cereal grains, although they can also be found at low levels in the peels of fruits
and vegetables (2, 3).

Xylans appear to have evolved as important substrates for fungi and bacteria in a vari-
ety of ecological biospheres, including seawater, alkaline hot springs, and the mammalian
digestive tract (4–6). These microbes employ enzymatic machinery that includes a combi-
nation of xylanases and accessory enzymes that work sequentially to degrade heteroxylan.
Xylanases are enzymes that cleave b-1,4 glycosyl linkages between consecutive xylose
units in the xylan backbone, while accessory enzymes remove side chains (7). Further xylan
degradation requires endoxylanases to cleave the interior regions of the xylan backbone
into xylooligomer fractions. These endoxylanases, identified via the carbohydrate-active
enzyme (CAZy) database, typically are found in the glycoside hydrolase (GH) families GH5,
GH10, GH11, GH30, and GH98 (8, 9).

In humans, xylans are resistant to digestion by digestive enzymes and reach the
large intestine intact; there, they are subject to colonic fermentation by members of
the gut microbiome (10). These fermenters can be broadly categorized as primary
degraders and secondary consumers, based on their ability to degrade xylan and trans-
port and consume xylan hydrolysis products (11, 12). Primary degraders are capable of
direct consumption of xylan; most belong to the phyla Bacteroidetes, Actinobacteria,
and Firmicutes. For primary degradation of xylan, Bacteroidetes express extracellular
xylanases that are anchored to the outer membrane and near a SusC/SusD transport
system (13). This xylanase degrades xylan into small xylooligosaccharide (XOS) species
that are then transported by the SusC/SusD receptor into the periplasm, where further
dismantling of the oligosaccharide occurs. Similarly, primary degradation in Firmicutes
and Actinobacteria also relies on an anchored extracellular xylanase, but these Gram-
positive bacteria utilize substrate binding proteins and ATP-binding cassettes (ABC) or
phosphoenolpyruvate (PEP) phosphotransferase system (PTS) transporters to move
XOS substrates directly into the cytoplasm (9).

Other organisms are known to take advantage of the xylooligosaccharide products
produced by primary degraders via cross-feeding (14). These secondary consumers
include Gram-positive bacteria that lack key extracellular xylanolytic activity for direct
degradation of xylan. Two major groups of secondary consumers are Lactobacillaceae
and Bifidobacterium, which utilize highly specialized substrate recognition and trans-
port systems for detection and transport of XOS (9). In vitro and in vivo studies suggest
that XOS is more effective at stimulating growth of Bifidobacterium species than
Lactobacillaceae, and XOS is also considered more selective than other prebiotic oligo-
saccharides (15–17). Even within Bifidobacterium, XOS utilization is highly specific, with
many XOS-metabolizing strains able to grow only on XOS with a low degree of poly-
merization (DP) (18). Therefore, growth on high-DP XOS and xylan fragments appears
to be a rare trait in Bifidobacterium.

Among Bifidobacterium species having such a phenotype are strains of Bifidobacterium
pseudocatenulatum. This species is generally considered an adult-type Bifidobacterium,
although strains have also been isolated from breastfed infants and children (19–21). This
species is clustered in the Bifidobacterium adolescentis phylogenetic group and has been
shown to ferment a diverse array of carbohydrate sources potentially present in the adult
diet (12, 22). Some strains have also been reported to have probiotic or health-promoting
properties (23–25).

We previously identified strains of B. pseudocatenulatum that were enriched in vitro
during growth on XOS (26). Preliminary experiments revealed that several of these
strains also grew well on longer-chain XOSs and xylan, indicating a potentially novel
phenotype in Bifidobacterium. Recently, very similar phenotypes were also described
for strains of this species (12). In this study, we extended these findings by comparing
the abilities of five B. pseudocatenulatum strains to grow on xylan and low-DP and
high-DP XOSs. Growth on these xylose-based substrates was dependent on the pres-
ence of relevant enzymes and corresponding gene clusters in their genomes. However,
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we also observed that strains that were unable to consume large-DP XOSs directly
could still grow on these substrates. This findings suggest that cross-feeding reactions
may provide a basis for cooperative utilization of these substrates within this species.

RESULTS
Growth characteristics of Bifidobacterium strains and isolates.We evaluated the

abilities of five B. pseudocatenulatum strains (ED01, ED02, ED04, ED05, and CR16), previ-
ously isolated from XOS enrichment experiments (see Materials and Methods), to grow
in modified deMan, Rogosa, and Sharpe (mMRS) broth containing xylan and XOS (Table 1).
Glucose was used as the positive control, while medium without added carbohydrates was
used as the negative control. All strains were able to grow on 0.5% XOS (XOS1), with strains
ED02 and ED03 displaying growth comparable to that on glucose (optical density at 600
nm [OD600] after 24 h . 0.45) on both short XOSs (SXOSs; enriched in members with a
DP of#4) and long XOSs (LXOSs; enriched in members with a DP of.4). In contrast, strains
ED01, CR16, and ED05 had moderate growth (arbitrarily assigned when the 0.2 ,

OD, 0.45) on SXOS and weak growth (0.1. OD, 0.2) on LXOS. In addition, strains ED02
and ED03 were also able to grow on xylan (OD600 . 0.30) (xylan1), whereas strains ED01,
CR16, and ED05 demonstrated no growth (xylan2). Additionally, none of the strains grew
on arabinoxylan or in the negative controls. For subsequent experiments, ED01 and ED02
were selected as representative xylan2 and xylan1 strains, respectively (Fig. 1A).

In addition to the five selected strains, 10 additional B. pseudocatenulatum strains
isolated from different subjects and 9 strains of other Bifidobacterium species were
screened for growth on xylan, LXOSs, and xylose. Overall, the B. pseudocatenulatum
strains could be arranged into four phenotypes based on their growth on all three
xylan substrates (see Table S1 in the supplemental material). Interestingly, ED03 was
the only strain that had a xylan1 and XOS1 phenotype but did not grow on xylose.
Furthermore, in some instances, isolates obtained from the same subjects displayed
different growth phenotypes. Based on growth on xylan, LXOS, and xylose, the other
Bifidobacterium species were grouped into one of three additional phenotypes (Table
S1). However, none of these strains grew on xylan, and only three grew well on LXOS.

Genomic evidence for the presence of GH10 xylanases in Bifidobacterium. In sil-
ico analysis of carbohydrate-active gene clusters (CGCs) in the sequenced B. pseudoca-
tenulatum genomes revealed the presence of three major clusters associated with XOS
utilization (Fig. 1B; Fig. S1). These three clusters contain substrate binding proteins,
transporters, and key glycosyl hydrolases that were shown to act on xylose-based sub-
strates, as described in the CAZy database. First, we observed that the genomes of all
five strains contained all genes within XOS-active cluster III. This cluster includes genes
for a substrate binding protein, two ABC transporter permeases, a transcriptional regu-
lator, and two GH43 glycosyl hydrolases. However, cluster I and cluster II were not
entirely conserved between the xylan1 and xylan2 strains. Compared to the case with
xylan1 strains ED02 and ED03, XOS active cluster I in strains ED01 and CR16 lacked

TABLE 1 Growth of five sequenced Bifidobacterium pseudocatenulatum strains on various
xylose-based carbohydrates

Substrate

Growth of indicated straina

ED01 ED02 ED03 CR16 ED05
Glucose 111 111 111 111 111
Xylose 2 11 2 2 2
Xylan 2 11 11 2 2
Short XOS (enriched in DPs of#4) 11 111 111 11 11
Long XOS (enriched in DPs of.4) 1 111 111 1 1
Arabinoxylan 2 2 2 2 2
Basal 2 2 2 2 2
aGrowth phenotypes were based on optical density at 600 nm after 24 h of incubation in basal MRS containing
0.5% of the indicated carbohydrates.2, growth at OD of,0.1;1, growth at 0.1. OD, 0.2;11, growth at
0.2. OD, 0.45;111, growth at OD of.0.45.
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genes that were orthologous to the substrate binding protein, multiple transporter
genes, and one glycosyl hydrolase gene (GH43).

Additionally, cluster II was found to be present only in the xylan2 strains ED01 and
CR16 and absent in ED05, while the xylan1 strains ED02 and ED03 harbor a homolo-
gous reducing-end xylose-releasing exo-oligoxylanase gene (GH8). Interestingly, a pu-
tative extracellular GH10 endo-b-1,4- xylanase gene was located adjacent to the GH8
xylanase gene present in the ED02 and ED03 genomes. Collectively, these results sug-
gest that the extracellular GH10 gene is important for xylan metabolism and confirm
that the presence or absence of key glycosyl hydrolases and transport systems is con-
sistent with the observed phenotypes.

A pangenome analysis with 86 B. pseudocatenulatum genomes from the NCBI data-
base and 5 genomes from this study was conducted to further investigate the preva-
lence of these XOS-associated genes and CGCs in the B. pseudocatenulatum species.
This analysis revealed the presence of 5,620 genes consisting of 1,227 core genes (pres-
ent in all 86 genomes), 2,965 shell genes (present in 2 to 85 genomes), and 1,428 cloud
genes (present in only one genome). Among these genomes, only 19 contained a
GH10-encoding gene, including the two xylan1 strains in this study (Fig. S2). In addi-
tion, these results indicated differences in the prevalence of each XOS-active gene clus-
ter in B. pseudocatenulatum species. For example, cluster III was highly conserved and
was found to be present in all strains. Cluster I was the second most prevalent, with 64
of 86 genomes containing the complete cluster, followed by cluster II, which was
found to be complete in 33 of the 86 genomes (Fig. S2A). However, the GH8 reducing-
end xylose-releasing exo-oligoxylanase gene was found to be present in 50 of the 86

FIG 1 Differences in growth phenotypes and XOS-active gene clusters between xylan1 ED02 and xylan2 ED01 B. pseudocatenulatum strains. (A) Growth of
B. pseudocatenulatum xylan1 strain ED02 (purple) and xylan2 strain ED01 (gray) on various xylose-based carbohydrates. Cells were grown in modified deMan,
Rogosa, and Sharpe (mMRS) medium supplemented with 0.5% carbohydrate. Basal medium, with no added carbohydrate, was used as a negative control, and
glucose was used as a positive control. Other carbohydrate treatments included xylose, short-chain XOS (enriched in DP less than 4), long-chain XOS (enriched
in DP greater than 4), xylan, and arabinoxylan. (B) Presence of XOS-active gene clusters between xylan1 and xylan2 phenotypes. Genes encoding XOS-active
clusters I, II, and III are aligned according to their phenotype and are color-coded for relevant carbohydrate-active functions.
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genomes. This includes all 19 genomes where the GH10-encoding gene was present as
observed in the xylan1 ED02 and ED03 strains (Fig. S2B).

To investigate the prevalence of GH10 in other Bifidobacterium genomes, 1,355
Bifidobacterium genomes from NCBI RefSeq were screened for the presence of GH10
xylanases. This analysis revealed that a GH10 xylanase-encoding gene was found to be
present in only 29 genomes (2.14%), including 17 B. pseudocatenulatum, 4 B. catenula-
tum, 3 B. pullorum, and 2 B. adolescentis strains. Single genomes from B. reuteri,
Bifidobacterium animalis subsp. lactis, and one Bifidobacterium species were also found
to contain a GH10 xylanase gene (Fig. S3).

Biochemical evidence of xylan utilization and cross-feeding. Both in vitro growth
experiments and in silico genome analysis indicated that the xylan1 phenotype was
dependent on a putative extracellular xylanolytic system. To confirm the presence of
an extracellular xylanase, cell-free supernatants were obtained from all five representa-
tive strains. When MRS broth containing LXOS was supplemented with these superna-
tants and assessed by thin-layer chromatography (TLC), hydrolysis products ranging
from DP2 to D4 were observed only for the ED02 or ED03 supernatants (Fig. 2A). The
same activity was also observed on xylan, where only the xylan medium inoculated
with the xylan1 supernatant resulted in xylan hydrolysis products (Fig. 2B). When the
supernatant was heat treated, no hydrolysis products were formed, confirming that hy-
drolysis was due to the presence of extracellular xylanases.

The presence of an ED02 xylanase and its activity on XOS and xylan were also dem-
onstrated by high-performance liquid chromatography (HPLC) analysis of hydrolysis
products. The results indicated an increase in the concentration of DP2 -4 XOS prod-
ucts, similar to the TLC results. In addition, HPLC revealed a decrease in DP5 -13 XOS
fragments from the xylanase-treated LXOS, as well as production of DP2 -6 products
from xylan (Fig. 2C; Fig. S4). When this medium was then inoculated with the xylan2

strain ED01, enhanced growth on both substrates was observed (Fig. 2D).
Persistence of strains in fecal fermentation is consistent with phenotypes in

pure culture. Fecal fermentations across all three xylose-based substrates combined
with either strain ED01 or ED02 were performed to test for strain persistence within a
complex fecal community. Persistence of strains during these stepwise fecal fermenta-
tions containing five different donor samples was consistent with their xylan and LXOS
phenotypes. Xylan1 strain ED02 persisted on LXOS for all five donor samples (Fig. 3D)
and on xylan for four of the five donor samples (Fig. 3F) but was displaced during
growth in basal medium (Fig. 3B). In contrast, strain ED01 was displaced in fermenta-
tions containing LXOS or xylan as well as the basal fermentations (Fig. 3A, C, and E).

Samples at baseline and at the 72-h time point for the five fecal-fermentation sam-
ples were sequenced via 16S rRNA amplicon sequencing to assess changes in the mi-
crobial community. For all samples at 72 h, significant decreases in alpha diversity
(Shannon index) were observed compared to baseline samples (P , 0.05) (Fig. 4A).
Similarly, alpha diversity of all substrate-only fermentations was significantly different
from baseline, presumably because the method also selects for taxa resistant to dilu-
tion pressure (Fig. 4B). Additionally, the XOS treatment was significantly less diverse
than the basal treatment. (P , 0.01). Beta diversity was evaluated using principal-coor-
dinate analysis (PCoA) based on Jaccard distance to compare differences in community
composition between substrate treatments (Fig. 4C). As expected, the fecal baseline
clustered distinctly from the substrate treatments. Interestingly, the XOS-treated fer-
mentation samples also clustered separately from the basal treatment, while the xylan-
treated samples overlap between the two.

Bifidobacterium was detected in all five fecal baseline samples and was initially pres-
ent at greater than 5% relative abundance in subjects A33 and A35 (Fig. S5). After 72 h
of stepwise growth in basal fecal-fermentation medium with no added carbohydrates,
the relative abundance of Bifidobacterium decreased for both ED01 and ED02 treat-
ments, as well as fermentations with no added strain. Based on differential analysis com-
paring basal fecal-fermentation samples at baseline to those at 72 h, a method effect
was apparent. Specifically, there were consistent increases in various fast-growing taxa,
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including amplicon sequence variants (ASVs) from the genera Escherichia-Shigella,
Enterococcus, Streptococcus, and Fusobacterium (Fig. S5 and S6). Other method effects
included significant decreases in several fiber-associated bacteria, including Roseburia,
Akkermansia, and Prevotella (Fig. S6).

Bifidobacterium was enriched with XOS supplementation for two (A33 and A35) of
the five donor samples even in the absence of an inoculated strain (Fig. S5). Relative
abundances of Bifidobacterium also increased in all subjects when fecal fermentations
were inoculated with strains ED01 and ED02. Three Bifidobacterium ASVs were identified
from the fecal fermentations and were assigned as B. pseudocatenulatum, B. adolescentis,

FIG 2 Production of endoxylanase and extracellular xylanase in B. pseudocatenulatum ED02 supports cross-feeding relationships between xylan1 and
xylan2 strains. Shown are thin-layer chromatography (TLC) results of supernatant inoculated media containing either LXOS (lane 1, LXOS medium; lanes 2
to 6, LXOS media inoculated with respective strain supernatant; lane 7, 15 mM XOS standards DP1 to DP6; lane 8, basal medium) (A) or xylan (lane 1,
xylose; lane 2, 15 mM XOS standards DP1 to DP6; lane 3, xylan medium; lane 4, xylan medium inoculated with ED02 supernatant; lane 5, xylan medium
inoculated with heat-treated ED02 supernatant) (B). The chromatograms are composite of lanes from the same TLC plate. (C) Growth of xylan2 strain ED01
in the presence (red) or absence (gray) of ED02 supernatant-inoculated LXOS (dashed line) and xylan (solid line). (D) High-performance liquid
chromatography (HPLC) indicates endoxylanase activity by ED02 producing small XOS fractions. Degradation products by ED02 supernatants after 48 h of
incubation with XOS were separated and quantified by HPLC. In the XOS media, DP2 to -4 increased and DP5 to -13 decreased. Trends are indicated by
arrows, displaying change in area under the curve from time zero to 48 h.
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and B. longum according to sequence similarity and the number of species-specific taxo-
nomic hits against the NCBI nonredundant (nr) database (Table S3). The B. pseudocatenu-
latum ASV increased significantly in both ED01 and ED02 supplemented XOS media,
while significant increases in the other two Bifidobacterium ASVs were not observed in
the presence of XOS.

On xylan, the relative abundance of Bifidobacterium for all five subjects in both the
control treatment and ED01 treatment decreased by the 72-h time point, accompanied
by an observed decrease in two Bifidobacterium ASVs (B. adolescentis and B. longum)
from the differential abundance analysis (Fig. S5 and S6). In the ED02 treatment with
xylan, there was an increase in relative abundance of Bifidobacterium in subjects A31,
A33, A34, and B39 but a decrease in subject A35. However, no significant change in
any B. pseudocatenulatum-associated ASV was observed from the differential-abundance
analysis (Fig. S6). Instead, a significant reduction was observed for a Bifidobacterium ASV (B.
adolescentis) that was present at baseline.

DISCUSSION

The importance of xylans as dietary substrates for gut microbes has led researchers
to identify and characterize strains having the biochemical and genetic means to
metabolize these carbohydrates (14, 19, 27). In this study, two major xylan phenotypes
were observed among strains of the human gut-residential species B. pseudocatenula-
tum. Strains having a xylan1 phenotype were considered primary degraders, hydrolyz-
ing xylan via an extracellular GH10 xylanase and forming XOS fractions of various DPs.
This is consistent with the activity of GH10 xylanases described previously (28–30).
Furthermore, growth of the xylan1 strain ED02 directly on xylan, as well as LXOS, indi-
cated this strain could also consume small- and large-DP hydrolysis products. Comparative
genome analysis of the B. pseudocatenulatum strains revealed the presence of three XOS-

FIG 3 Test of persistence of B. pseudocatenulatum strains in fecal fermentations. Shown is qPCR quantification
of strains ED01 and ED02 on basal medium (A and B), XOS (C and D), and xylan (E and F) in fecal
fermentations with samples from 5 subjects. Persistence in individual fecal samples is shown as solid lines
with colored circles, and averages are shown as dashed lines with square symbols. Significant differences
between 24 h and 72 h were determined using a repeated-measure mixed model (*, P , 0.05; **, P , 0.01;
***, P , 0.001).
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associated clusters, consistent with those described previously (27). In this study, both clus-
ter I and cluster III were present in xylan1 strains and contained substrate binding proteins
with predicted affinities for LXOS and SXOS, respectively. In addition, the GH8, GH43, and
GH120 glycoside hydrolases present in these XOS-active clusters are likely used to degrade
intracellular XOS into xylose.

In contrast to ED02, which was a primary degrader as well as consumer of xylan,
other strains had a xylan2 phenotype but could still grow on XOS. These strains were
considered secondary consumers. Thus, in complex communities where xylans are
hydrolyzed by primary degraders, secondary consumers obtain substrates via cross-
feeding (Fig. 5) (11, 14). This was demonstrated by enhanced growth of strain ED01 on
LXOS and xylan in the presence of the extracellular xylanase produced by ED02. These
xylan2 strains likely employ the same XOS transport systems encoded in cluster III as
xylan1 strains, since this cluster is highly conserved in Bifidobacterium (27). Moreover,
the possibility that exchange of these genes occurs more frequently among popula-
tions who frequently consume xylan or other nondigestible carbohydrates has recently
been proposed (31).

Interestingly, we observed that all strains examined in this study grew better on
XOS than on xylose. Bifidobacterium organisms are well known to have adapted to the
gut environment, where simple sugars are absent and oligosaccharides, including XOS,
are more abundant. For example, B. adolescentis was shown to have higher specific
growth rates on fructooligosaccharides than on fructose (32). Likewise, a strain of
Bifidobacterium longum subsp. infantis was shown to grow better on human milk oligo-
saccharides than on glucose (33). These findings strongly support the evolutionary ad-
aptation of Bifidobacterium to grow on a range of oligosaccharides which is reflected
by the presence of relevant transporters and associated transport machinery in their
genomes (34–36).

FIG 4 Analysis of microbial diversity and community composition through 16S rRNA sequencing of fecal
fermentations at baseline and 72 h. (A and B) Shannon index was used to measure alpha diversity, and
comparisons were made between strain (A) and substrate (B) treatments with baseline and respective
controls. Significant differences are indicated by asterisks (Wilcoxon rank sum test with false-discovery rate
[FDR] correction; *, P , 0.05; **, P , 0.01; ***, P , 0.001). (C) Beta diversity between substrates was
visualized by principal-coordinate analysis (PCoA) based on Jaccard Index. Ellipses indicate 95% confidence
intervals.
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Recently, other investigators reported the presence of a XOS cluster containing GH8
and GH10 xylanases in B. pseudocatenulatum, although as in our study, this cluster was
only present in a portion of the strains examined (12, 37). In one study (37), which sur-
veyed a total of 217 strains of Bifidobacterium from six human-origin species, the GH10
xylanase was found in only 9 of 30 B. pseudocatenulatum strains and was absent in all
other Bifidobacterium strains. Moreover, in another recent study, despite the presence
of 30 glycoside hydrolase families, GH10 xylanases were not detected in any of the 88
strains of B. pseudocatenulatum examined (38). From our in silico analyses, putative GH10
xylan-containing species also include B. catenulatum, B. adolescentis, B. pullorum,
B. animalis subsp. lactis, and B. reuteri. In particular, B. catenulatum and B. adolescentis, along
with B. pseudocatenulatum, belong to the B. adolescentis phylogenetic group that are con-
sidered adult-type bifidobacteria (39). Thus, the ability of these strains to metabolize xylan
would be consistent with the consumption of dietary fiber in the adult human diet (18, 19).

In another recent study, 12 of 35 B. pseudocatenulatum strains harbored a GH10
xylanase and also grew on long-chain xylan as well as wheat arabinoxylan as a carbo-
hydrate substrate (12). This arabinoxylan growth phenotype was not observed in our
study, which may be attributed to the use of corn arabinoxylan, a more complex sub-
strate than wheat arabinoxylan. Previous studies suggest that corn arabinoxylans are
indeed more resistant to xylanase hydrolysis (40, 41). Thus, it is possible that the strains
used in our study may have had a similar phenotype on wheat arabinoxylans as the
strains used in the previous study (12).

The ability of B. pseudocatenulatum ED02 to grow on xylan or LXOS likely provides a

FIG 5 Model for xylan and XOS utilization by B. pseudocatenulatum. The xylan1 phenotype is implicated as a primary degrader due to the secretion of an
extracellular xylanase that degrades xylan into smaller oligomers. The latter are available for transport by the primary degrader, or they can cross-feed
other organisms. In contrast, strains having a xylan2 phenotype may still be secondary consumers. Such strains do not have the extracellular enzymatic
machinery or transporters to consumer larger XOS and xylan molecules; they instead rely on other members of the microbial community to degrade xylans
into smaller oligosaccharides that can serve as substrates for relevant transporters.
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competitive advantage in mixed cultures or complex environments containing XOS as
the carbohydrate source. However, xylan2 strains also benefitted from the activity of
xylan1 strains. That one strain supports growth of another strain within the same eco-
system by degrading xylan-rich substrates suggests that cross-feeding and cooperation
exist within the B. pseudocatenulatum group, similar to what has been described for
Bacteroides during growth on glucose and fructose polysaccharides as well as xylan-
type polysaccharides (14, 42). In our study, the observation of within-species coopera-
tion was further supported by the in vitro stepwise fecal fermentations. Although ED01
failed to persist with xylan as a substrate, this strain persisted on XOS, suggesting that
if primary xylan degraders were present, secondary XOS consumers would have suffi-
cient substrate to grow and persist.

Collectively, our findings extend previous reports on the role of B. pseudocatenulatum
in the degradation and utilization of xylan and xylan-derived oligosaccharides. We provide
biochemical evidence for a GH10 xylanase produced by human-origin Bifidobacterium and
showed that these strains can cross-feed non-GH10-producing strains of the same species.
Thus, cooperative utilization of xylan among different strains of B. pseudocatenulatum sug-
gests that resource sharing, a trait common to bifidobacterial communities (43), can also
occur within a single species.

MATERIALS ANDMETHODS
Isolation and identification of Bifidobacterium isolates. Fifteen putatively unique Bifidobacterium

isolates from five adult subjects were used in this study. These isolates had been previously obtained
(26) from in vitro fecal enrichment fermentations with 1% XOS (Prenexus Health, USA) and presump-
tively identified as B. pseudocatenulatum by 16S rRNA sequencing. To confirm species identity, DNA was
extracted with a QIAamp DNA minikit (Qiagen, USA), and quantitative PCR (qPCR) was performed using
B. pseudocatenulatum-specific primers (44). One isolate from each subject was selected as the represen-
tative strain for further genomic and functional analysis. These strains were renamed ED01, ED02, ED03,
CR16, and ED05. In addition to the B. pseudocatenulatum isolates, 11 other Bifidobacterium strains were
assessed for their ability to utilize xylose-based glycans.

Growth characteristics of Bifidobacterium strains and isolates. To characterize the ability of B.
pseudocatenulatum strains to utilize xylose-based glycans, growth studies were performed in modified
de Man, Rogosa, and Sharpe media (mMRS) in which glucose was replaced with various carbohydrates
(Table 2). Strains were first grown on MRS plates for 48 h, and single colonies were inoculated into MRS
broth and incubated anaerobically at 37°C for 24 h in a Sheldon Bactron IV-900 anaerobic chamber
(Cornelius, OR, USA). Cells were then transferred into MRS, and overnight cultures were used to inoculate
mMRS containing 0.5% carbohydrate. Growth experiments were performed in quadruplicate, with a final
volume of 200 mL, in 96-well microplates. Plates were incubated anaerobically, and optical density meas-
urements (600 nm) were obtained every 20 min using a Tecan (Männedorf, Switzerland) Sunrise micro-
plate reader until stationary phase was reached.

Growth phenotypes of other Bifidobacterium species on xylose-based substrates were determined
by growth in mMRS containing xylan, LXOS, or xylose at a 1% concentration. Experiments were per-
formed, in triplicate, in 200-mL microwell volumes, and phenotypes were based on growth and pH.
Xylan and XOS DP2 to -6 standards were obtained from Neogen Megazyme (USA), and SXOS and LXOS
were obtained from Prenexus Health.

DNA extraction. Genomic DNA from isolated strains and for pure culture experiments was extracted
with the QIAamp DNA minikit using the manufacturer’s protocol for Gram-positive bacteria (Qiagen,
Hilden, Germany). For fecal-culture experiments, DNA was extracted using BioSprint 96 One-For-All Vet
kits (Qiagen) according to the manufacturer’s protocol, with modifications as described previously (45).
Sample concentrations were quantified using a NanoDrop ND-1000 spectrophotometer.

Whole-genome sequencing, assembly, and annotation. Whole-genome sequencing of the five
selected B. pseudocatenulatum strains was performed by the Microbial Genome Sequencing Center (MiGS).

TABLE 2 Substrates used in this study

Substrate Label Supplier Composition
SXOS XOS-NUSR Prenexus Health Short-chain XOS; enriched in DPs of,4
LXOS XOS-NUSP Prenexus Health Long-chain XOS; enriched in DPs of.4
PreneXOS PreneXOS Prenexus Health Mixture of XOS and xylan
Xylan Xylan (Beechwood) Megazyme Glucuronoxylan from beechwood
Arabinoxylan AgriFiber BFG AgriFiber Soluble prebiotic corn bran fiber; DP17

to -24
Xylose D-(1)-xylose Sigma Xylose
Glucose D-(1)-glucose Sigma-Aldrich Glucose
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Raw read sequences were checked for read quality using FastQC (46), and the sequences were trimmed
using Sickle to remove low-quality reads (47). The reads were assembled into contigs and scaffolds using
SPAdes (48). Scaffolds were aligned using Mauve against the reference genome B. pseudocatenulatum 12
retrieved from the NCBI database (49). The assembled genomes were annotated using Prokka (50). A sum-
mary of features for each strain is shown in Table S2. Additional annotations against the carbohydrate-
active enzyme (CAZy) database were obtained using dbCAN2 to identify CAZy clusters (51).

B. pseudocatenulatum pangenome analysis. Pangenome analysis was performed using 86 B. pseu-
docatenulatum genomes. The genomes included those of the 5 strains reported here and 81 additional
B. pseudocatenulatum genomes from the Prokaryotic RefSeq Genomes database in NCBI (52).
Pangenomic analyses were performed with anvi’o with the MCL (Markov cluster) algorithm using an
inflation parameter of 10 to identify and cluster amino acid sequences between genomes (53, 54).
Further annotations were performed using dbCAN2 to identify prevalence of XOS active clusters in the
B. pseudocatenulatum pangenome (51).

Prevalence of GH10 xylanase in Bifidobacterium. To determine the prevalence of GH10 xylanases
in Bifidobacterium, 1355 nonredundant Bifidobacterium genomes were obtained from the Prokaryotic
RefSeq Genomes database from NCBI (52). These genomes were annotated with three CAZy databases,
HMMER, DIAMOND, and Hotpep, using the dbCAN2 metaserver (51, 55–57). A genome was considered
to contain GH10 if at least two CAZy databases concurred. Species level associations were then
assigned.

Assessing enzymatic activities. To determine if extracellular enzymes capable of hydrolyzing XOS
or xylan were secreted, cell-free supernatants were obtained from spent XOS cultures. Strains were
grown anaerobically at 37°C in mMRS supplemented with 1% LXOS in 10-mL volumes for 24 h. Cultures
were centrifuged (Eppendorf AG, Hamburg, Germany) at 3,100 � g for 10 min. Supernatants were col-
lected, filter sterilized through a 0.22-mm filter, and divided into aliquots. One aliquot was used directly
(see below), and the second was heat treated at 95°C for 5 min to inactivate enzymes.

Identification of hydrolysis products. Basal mMRS containing 1% xylan or 1% LXOS was supple-
mented with 20% supernatant that was either heat treated or not heat treated. Samples were obtained
at time zero and after 48 h of incubation at 37°C. All samples were then heat treated, as described
above, to halt further enzymatic activity and then stored at 220°C. Identification of hydrolysis products
was done using high-performance thin-layer chromatography silica gel 60 (Sigma-Aldrich, St. Louis, MO),
as described previously (26). Briefly, plates were spotted with 8.5 mL of medium and supernatant-inocu-
lated medium and 5 mL of standards, including 2% xylose and 10 mM XOS DP1 to -6 standards (Neogen
Megazyme). Plates were developed in solvent containing 1-butanol–2-propanol–H2O (3:12:4), sprayed
with 0.5% a-naphthol and 5% H2SO4, and heated at 80°C for 30 min.

Selected samples were also analyzed by high-performance liquid chromatography (HPLC) at the
National Renewable Energy Laboratory (NREL). The HPLC system included a Waters Acquity ultraper-
formance LC (Waters Co., Milford, MA, USA) coupled with a mass spectrometer (MS) and an evaporative
light scattering detector. The system ran with a Shodex sugar SZ5532 (zinc) column (Showa Denko K.K.,
Japan) at 6 by 150 (mm), 6-mm particle size, using a ramped mobile phase of acetonitrile and water with
0.1% formic acid with a flow rate of 0.9 mL min21 and a column temperature of 60°C. DP fractions were
identified via molecular weight and retention time from standards. Detector responses recorded enzy-
matic action observed by changes in area under the chromatogram curves from baseline to 48 h.

Coculture simulation of B. pseudocatenulatum strains. To assess if cross-feeding was occurring
between strains, growth curves were performed using the enzymatic supernatants described above.
Supernatants were added at 20% to fresh medium containing 1% LXOS or xylan. The medium was then
inoculated with xylan-non-fermenting strains and incubated for 48 h.

In vitro establishment of B. pseudocatenulatum strains. Fecal samples were obtained from five
volunteers following UNL institutional board review (IRB) protocols (no. 20160616139). Inclusion criteria
included the following: age of at least 19 years, no known history of gastrointestinal diseases, no con-
sumption of antibiotics or probiotics in the previous 6 months, and no regular consumption of yogurt.
The fecal samples were then homogenized and stored in phosphate-buffered saline (PBS; pH 7.0), as pre-
viously described (26).

Sterile fecal-fermentation medium containing 0.5% LXOS or xylan or no added carbohydrate was
made as described previously (58). The test of persistence was performed in stepwise fecal fermentations
as described previously (21). Briefly, fecal slurries were diluted in PBS in a 1:10 ratio and added to the fer-
mentation medium in a 3:6 (vol/vol) ratio in a total volume of 9.0 mL. Then, B. pseudocatenulatum strains
ED01 and ED02, grown as previously described, were inoculated at 107 CFU/mL into the fecal-fermentation
medium. The fermentations were incubated anaerobically at 37°C, with subsequent dilutions performed in
microplate format by transferring 10mL into 990mL of fresh fermentation medium every 24 h. This process
was repeated three times, with samples collected at time zero and 24, 48, and 72 h. DNA was extracted to
assess persistence by qPCR. Samples were also used for 16S rRNA sequencing.

Design of strain-specific primers. Strain-specific primers were designed using RUCS (rapid identifi-
cation of PCR primers for unique core sequences) (59). All five isolated B. pseudocatenulatum genomes
and two complete B. pseudocatenulatum genomes from the NCBI genome database were used to iden-
tify unique target sequences. Primer specificity was confirmed using NCBI Primer BLAST against the
NCBI RefSeq representative genome database for bacteria. No primers were accepted that gave hits for
species present in human fecal samples. Primer annealing temperatures were identified using a gradient
PCR program, and primer specificity was confirmed by performing qPCR against all other B. pseudocate-
nulatum strains isolated.
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Quantification using quantitative real-time PCR. To determine persistence of specific strains and
total Bifidobacterium in fecal fermentations on different substrates, qPCR was performed using strain-
specific and genus-specific primers (Table 3). Quantitative PCR was performed using these primers with
the Mastercycler Realplex2 (Eppendorf AG, Hamburg, Germany). The qPCR master mix contained 12.5
mL of SYBR green (Thermo Fisher Scientific, MA, USA), 0.5 mL of forward primer, 0.5 mL of reverse primer,
10.5 mL of DNA-grade water, and 1 mL of sample, in a total volume of 25 mL per reaction. The qPCR con-
ditions were as previously described (44).

Persistence of strains on respective substrates was analyzed using a repeated-measure mixed model.
This model relegates subject as the random effect, while prebiotic and time are fixed effects. Persistence
was measured as the log10 difference in CFU per milliliter of strains between the 24- and 72-h samples.
Calibration curves for strain-specific growth were obtained using diluted DNA samples collected from
pure culture growth on modified MRS of ED01 and ED02, respectively. Analysis was performed using
SAS v.9.4, and P values were adjusted with Tukey adjustment.

16S rRNA amplicon sequencing and analysis. Sequencing of the V4 region of the 16S rRNA gene
was carried out as described previously on an Illumina MiSeq platform with paired-end sequencing of
250 bp (26, 60). Fecal-fermentation samples at the 72-h time point and the five fecal baselines were
selected for analysis. A total of 1,292,111 sequences were obtained, with a mean of 25,335 sequences
per sample (maximum, 73,706; minimum, 7,061).

Sequence processing was performed using the DADA2 pipeline within QIIME2 2017.4 (61, 62). Raw
sequence data were demultiplexed and denoised to remove chimeric sequences, and forward and
reverse reads were trimmed to 220 bp and 160 bp, respectively. Amplicon sequence variants (ASVs)
were inferred and taxonomy was assigned using the SILVA 16S database (63). To further refine output,
samples with fewer than 1,500 reads and ASVs with fewer than 15 reads were removed.

Statistical analysis and visualization of community sequencing data were done in QIIME2 2017.4 and
RStudio (v.4.0.0). Alpha diversity was measured via the Shannon index and compared via a Wilcoxon
rank sum test. Beta diversity was visualized using a principal-coordinate analysis (PCoA) plot of the
Jaccard index with 95% confidence interval ellipses for the respective treatments. Changes in microbial
composition from baseline to 72 h were visualized by log2 fold change of specific ASVs with a signifi-
cance cutoff of P value ,0.05 using DESeq2.

Data availability. Whole-genome sequences and 16S rRNA sequences have been submitted to
GenBank under BioProject PRJNA820700.
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