
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

Fall 12-2-2022

An Empirical Study on the Classification of Python Language An Empirical Study on the Classification of Python Language

Features Using Eye-Tracking Features Using Eye-Tracking

Jigyasa Chauhan
University of Nebraska-Lincoln, jchauhan2@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Chauhan, Jigyasa, "An Empirical Study on the Classification of Python Language Features Using Eye-
Tracking" (2022). Computer Science and Engineering: Theses, Dissertations, and Student Research. 230.
https://digitalcommons.unl.edu/computerscidiss/230

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/230?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EMPIRICAL STUDY ON THE CLASSIFICATION OF PYTHON

LANGUAGE FEATURES USING EYE-TRACKING

by

Jigyasa Chauhan

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Robert Dyer

Lincoln, Nebraska

December, 2022

AN EMPIRICAL STUDY ON THE CLASSIFICATION OF PYTHON

LANGUAGE FEATURES USING EYE-TRACKING

Jigyasa Chauhan, M.S.

University of Nebraska, 2022

Adviser: Robert Dyer

Python, currently one of the most popular programming languages, is an object-

oriented language that also provides language feature support for other programming

paradigms, such as functional and procedural. It is not currently understood how

support for multiple paradigms affects the ability of developers to comprehend that

code. Understanding the predominant paradigm in code, and how developers classify

the predominant paradigm, can benefit future research in program comprehension as

the paradigm may factor into how people comprehend that code. Other researchers

may want to look at how the paradigms in the code interact with various code smells.

To investigate how developers classify the predominant paradigm in Python code,

we performed an empirical study while utilizing an eye-tracker. The goal was to

see if developers gaze at specific language features while classifying the predominant

paradigm and debugging code samples. The study includes both qualitative and

quantitative data from 29 Python developers, including their gaze fixations during the

tasks. We observed that participants seem to confuse the functional and procedural

paradigms, possibly due to confusing terminology used in Python, though they do

gaze at specific language features. Overall, participants took more time classifying

functional code. The predominant paradigm did not affect their ability to debug code,

though they gave lower confidence ratings for functional code.

iii

ACKNOWLEDGMENTS

I would like extend my sincere gratitude to my advisor Dr. Robert Dyer for his

consistent and incessant guidance, support, and encouragement to help understand

and explore the field of computer science. I am extremely thankful to him for letting

me be a part of the ESQuaReD lab and accomplish this thesis satisfactorily. I would

thankfully acknowledge my personal thanks to Dr. Bonita Sharif for her guidance

and her relentless efforts to help to pursue my research. Also, I would like to thank

Dr. Rahul Purandare for his valuable feedback on my research and taking the time to

participate on my thesis committee. Lastly, I would thank the University of Nebraska–

Lincoln for accepting me to be a part of there culture and providing resources for our

research. My special thanks to my colleagues and lab mates for their support and

encouragement. I would also like to thank my parents, friends and guardians for their

trust and motivation throughout the journey.

iv

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Related Work 6

2.1 Multi-language Studies . 6

2.2 Code Summarizing . 8

2.3 Code navigation behavior . 10

2.4 Python Paradigms . 10

2.5 Python as a Programming Language 11

3 Background 14

4 Experimental Study 18

4.1 Study Overview . 18

4.2 Task Categories and Questions . 19

4.2.1 Classification Category . 19

4.2.2 Bug Localization Category . 20

4.3 Participants and Grouping . 21

4.4 Eye Tracking Apparatus and Environment 22

v

4.5 Study Variables . 23

4.6 Study Procedure . 23

4.6.1 Participant Training . 23

4.6.2 Quantitative Analysis . 26

4.6.3 Qualitative Analysis . 26

4.6.4 Qualitative data collected . 28

5 Results 30

5.1 Quantitative Results . 32

5.1.1 Task 1: Classification . 33

5.1.1.1 RQ1: How difficult is it for developers to classify the

predominant Python paradigm? 33

5.1.1.2 RQ2: How accurately do developers classify the pre-

dominant paradigm in Python code? 35

5.1.1.3 RQ3: Do developers fixate their gaze on specific

Python language features when classifying predomi-

nant paradigms? . 39

5.1.2 Task 2: Bug localization . 42

5.1.2.1 RQ4: Does the predominant paradigm affect how long

developer’s take to debug logical errors? 43

5.1.2.2 RQ5: Does the predominant paradigm affect a devel-

oper’s ability to debug logical errors? 44

5.2 Qualitative Analysis . 45

5.3 Threats to Validity . 49

5.3.1 Construct Validity . 50

5.3.2 Internal Validity . 50

vi

5.3.3 External Validity . 50

6 Discussion 52

7 Conclusion 57

A Questionnaires 59

A.1 Pre-Questionnaire . 59

A.2 Post-Questionnaire . 59

A.3 Task 1: Sub-Task Post Questionnaire 60

A.4 Task 2: Sub-Task Post Questionnaire 60

A.5 Interview Questions . 61

A.5.1 Task 1 Interview: Classification 61

A.5.2 Task 2 Interview: Bug Localization 61

B Task Code Listings 62

B.1 Task 1 Code Listings: Classification 62

B.1.1 Functional Files . 62

B.1.1.1 small length of code 62

B.1.1.2 medium length of code 63

B.1.1.3 large length of code 64

B.1.2 Object-Oriented Files . 66

B.1.2.1 small length of code 66

B.1.2.2 medium length of code 67

B.1.2.3 large length of code 68

B.1.3 Procedural Files . 69

B.1.3.1 small length of code 69

B.1.3.2 medium length of code 70

vii

B.1.3.3 large length of code 71

B.1.4 Mixed Files . 72

B.1.4.1 small length of code 72

B.1.4.2 medium length of code 73

B.1.4.3 large length of code 74

B.2 Task 2 Code Listings: Bug Localization 76

B.2.1 Cube . 76

B.2.1.1 Cube: Object-Oriented 76

B.2.1.2 Cube: Procedural . 77

B.2.1.3 Cube: Functional . 77

B.2.1.4 Cube: Mixed . 77

B.2.2 Factorial . 78

B.2.2.1 Factorial: Object-Oriented 78

B.2.2.2 Factorial: Procedural 78

B.2.2.3 Factorial: Functional 79

B.2.2.4 Factorial: Mixed . 79

B.2.3 Largest Number . 79

B.2.3.1 Largest Number: Object-Oriented 80

B.2.3.2 Largest Number: Procedural 80

B.2.3.3 Largest Number: Functional 81

B.2.3.4 Largest Number: Mixed 81

B.2.4 Palindrome . 82

B.2.4.1 Palindrome: Object-Oriented 82

B.2.4.2 Palindrome: Procedural 82

B.2.4.3 Palindrome: Functional 83

B.2.4.4 Palindrome: Mixed 83

viii

C Fixation Tables 84

Bibliography 99

ix

List of Figures

4.1 Themes after card sorting . 28

5.1 Survey: Self-reported rating for programming skills in Python 30

5.2 Survey: How often do you code using Python? 31

5.3 Survey: How long have you been coding using Python? 31

5.4 Survey: How important is it to code for you in Python? 32

5.5 Task 1: Time taken for classifying different paradigms 33

5.6 Task 1: Time taken w.r.t different lengths 34

5.7 Task 1: Overall confidence (in percent) 35

5.8 Task 1: Judgment vs confidence level . 36

5.9 Eye-tracking data: Participant gaze for functional paradigm code snippets 39

5.10 Eye-tracking data: Participant gaze for Mixed code snippets 40

5.11 Eye-tracking data: Participant gaze for Object-Oriented code snippets . 41

5.12 Eye-tracking data: Participant gaze for Procedural code snippets 42

5.13 Task 2: Time taken to complete debugging 43

5.14 Task 2: Reported confidence levels . 45

x

List of Tables

3.1 Reference sheet for Python feature classification (from [4]) 16

4.1 Overview of all tasks in this study . 19

4.2 Assigning participants to specific tasks 24

4.3 Methods used for each research question 29

5.1 Task 1: What do you consider the predominant programming paradigm

for the code you read? . 36

5.2 Task1: What percentage of the code falls under the following paradigms? 37

5.3 Task 1: Do you think the code has more than one predominant paradigm?

For example: functional, object-oriented, mixed, procedural 38

5.4 Pearson correlation between different paradigms 38

5.5 SpearmanR and Kendalltau correlations between different paradigms . . 38

5.6 Task 1: Approach with paradigm . 38

5.7 Debugging with respect to task, paradigm and length 44

5.8 Task 2: Correctness with paradigm . 44

5.9 Task 2: Correctness with task . 45

5.10 Audio: Different Card Sorting Categories 46

C.1 Fixation duration and fixation counts for functional small classification tasks 84

xi

C.2 Fixation duration and fixation counts for functional medium classification

tasks . 85

C.3 Fixation duration and fixation counts for functional large classification tasks 86

C.4 Fixation duration and fixation counts for mixed small classification tasks 87

C.5 Fixation duration and fixation counts for mixed meduium classification

tasks . 88

C.6 Fixation duration and fixation counts for mixed large classification tasks 89

C.7 Fixation duration and fixation counts for procedural small classification

tasks . 90

C.8 Fixation duration and fixation counts for procedural medium classification

tasks . 90

C.9 Fixation duration and fixation counts for procedural large classification

tasks . 91

C.10 Fixation duration and fixation counts for object-oriented small classifica-

tion tasks . 92

C.11 Fixation duration and fixation counts for object-oriented medium classifi-

cation tasks . 92

C.12 Fixation duration and fixation counts for object-oriented large classifica-

tion tasks . 93

C.13 Fixation duration and fixation counts for cube functional debugging tasks 93

C.14 Fixation duration and fixation counts for cube mixed debugging tasks . . 94

C.15 Fixation duration and fixation counts for cube procedural debugging tasks 94

C.16 Fixation duration and fixation counts for cube object-oriented debugging

tasks . 94

C.17 Fixation duration and fixation counts for factorial functional classification

tasks . 95

xii

C.18 Fixation duration and fixation counts for factorial mixed classification tasks 95

C.19 Fixation duration and fixation counts for factorial procedural classification

tasks . 95

C.20 Fixation duration and fixation counts for factorial object-oriented classi-

fication tasks . 96

C.21 Fixation duration and fixation counts for largest functional classification

tasks . 96

C.22 Fixation duration and fixation counts for largest mixed classification tasks 96

C.23 Fixation duration and fixation counts for largest procedural classification

tasks . 97

C.24 Fixation duration and fixation counts for largest object-oriented classifi-

cation tasks . 97

C.25 Fixation duration and fixation counts for palindrome functional classifica-

tion tasks . 97

C.26 Fixation duration and fixation counts for classification tasks 98

C.27 Fixation duration and fixation counts for palindrome procedural classifi-

cation tasks . 98

C.28 Fixation duration and fixation counts for palindrome object-oriented clas-

sification tasks . 98

xiii

List of Listings

3.1 Example Python code with each statement classified into paradigm(s) 15

4.1 Training code with paradigms classified (from [4]) 25

4.2 Training code for Task 2, with a bug on line 21 25

5.1 Participant gaze on Functional code 39

5.2 Participant gaze on Mixed code . 40

1

Chapter 1

Introduction

Most modern programming languages have a predominant programming paradigm

they support, where often that paradigm is object-oriented. Yet they are also multi-

paradigm in the sense that they typically also support other programming paradigms,

such as procedural or functional in addition to its predominant paradigm. One ex-

ample of such a language is Python, which is one of the more popular and currently

fastest growing programming languages [1]–[3]. To date, little is known about how

developers utilize the different programming paradigms available to them.

An initial study in this direction [4] investigated how 100k open-source Python

projects utilize procedural, object-oriented, functional, and imperative paradigms in

their source files and at the project level. They manually classified a small sample

of source files and then developed an automated classification script that runs in the

Boa language [5], [6]. During the manual process, they noted that the human judges

did not fully agree on what the predominant paradigm of some files were. It was

not clear how humans even are judging such predominant paradigm. They also did

not go beyond simply classifying the paradigm(s) observed in their dataset to see if

the predominant paradigm of a Python script hinders developers comprehension or

ability to debug that code.

Understanding how developers use different programming paradigms available to

2

them and possible effects of those paradigms on their comprehension is an important

topic. Such knowledge can help guide future researchers who are investigating code

smells in Python [7], [8] as they could correlate paradigm-specific smells or see if new

paradigm-specific smells are occurring and yet to be defined. It has been observed

that the first language taught to students in early courses of computer science affects

their comprehension of programming [9] and developing Python code in a predom-

inant paradigm that is different than their first language could have an affect on

developers. It is important for studies that are looking into dynamic frameworks

using Python functions like lambda, for mapping [10]. Further studies, for example,

researchers exploring pattern matching using functions, first-class objects along with

pre-existing features [11], studies that are using Python packages for analyzing rela-

tionship structure using features definitions, imports and calls [12] demand the need

to understand Python features among the developer community.

Further, Alexandru et al. [13] showed that developers have a loose understand-

ing of terms and definitions related to Python. Also, Python and its features have

been studied for a long time now [14] and the community has been trying to work

on simplifying its paradigms for a long time. Further, when a developer transitions

from an imperative paradigm to other and more recent ones like object-oriented and

functional, it becomes harder for them to grasp new concepts associated with those

features [15]. Python provides a variety of features with respect to each paradigm

especially functional, object-oriented, and procedural.Therefore, it is of utmost im-

portance for Python developers, and students to understand the Pythonic way of

using Python.

These problems inspire us to look into how developers understand Python’s

paradigm-specific language features. In this study, we aim to first see if we can

determine how developers classify the predominant paradigm in Python code, hoping

3

to see if developers are aware of the predominant paradigm and what, if any, language-

level features guide them to that knowledge. Then, we investigate if the choice of a

predominant paradigm in Python affects the ability of developers to localize bugs in

that code.

Eye-tracking has been evolving and is being extensively used within Software Engi-

neering research. The methodology helps in capturing participants’ visual attention

and hence the gaze using certain metrics and practices [16]. There are published

systematic literature reviews that help the research community to calculate and de-

fine the metrics used for eye-tracking [17]. The software engineering community has

been understanding how developers gaze, debug, and read through programming lan-

guages. To understand developer behavior it is essential to understand the eye gaze

and fixations. Studies have shown eye fixations are drivers of human visual cogni-

tion [18].

With this empirical study, we observe and investigate the classification and debug-

ging of predominant paradigms in Python. We collect data using eye-tracking when

the participant reads the source code. To collect data, we gathered 30 participants

who had beginner to expert level of experience with Python. All the participants

were trained on classifying Python features and then were asked to read source code

and answer questions. After each category, the participant was interviewed. For the

interviews, the participant was asked a set of questions and the audio was recorded.

We then used these results to perform a mixed-method analysis. We use the analysis

to understand the correlation between the confidence levels of the participant and

the classification of the paradigm. The analysis also told us about how difficult was

it for the participant to classify each Python paradigm (functional, object-oriented,

procedural, and mixed). Our investigations show that paradigms are important for

developers to understand and debug Python code.

4

In this thesis, we aim to answer the following research questions:

RQ1 How difficult is it for developers to classify the predominant Python paradigm?

RQ2 How accurately do developers classify the predominant paradigm in Python

code?

RQ3 Do developers fixate their gaze on specific Python language features when clas-

sifying predominant paradigms?

RQ4 Does the predominant paradigm affect how long developer’s take to debug log-

ical errors?

RQ5 Does the predominant paradigm affect a developer’s ability to debug logical

errors?

After analyzing data from our participants, we found the following key results:

1. Developers spent longer classifying functional paradigm compared to other

paradigms.

2. We observe that most of the developers were confused between classifying pro-

cedural and functional paradigms.

3. We found that, regardless of paradigm, developers gazed at specific language

features when classifying.

4. Bug localization tasks had lower confidence levels compared to the classification

tasks. Despite that, the accuracy was higher than the classification tasks.

5. We found no relation between paradigm and ability to debug. However, a few

participants claimed that it is difficult to debug in the functional paradigm.

5

We investigate these research questions and provide data and evidence about

developer behaviors while classifying predominant paradigm and localizing bugs in

different paradigms. The contributions of this thesis are summarized as follows:

1. the first eye-tracking study to determine use of Python paradigms and features;

2. a study to observe developer’s eye gaze while reading Python code in different

paradigms;

3. analyzing how accurately do developers determine Python paradigms;

4. potential ways to read/debug a certain paradigm using the qualitative approach

to predict task difficulty;

5. analysis on how developer’s approach to classify changes when provided different

code lengths with different Python paradigms; and

6. discussion on how collected data can help connect to various paradigms and

promote better teaching and training for Python developers.

In the next chapter, we provide some background for this study and discuss some

prior, related works. Then in Chapter 4 we provide the approach for our study. In

Chapter 5 we discuss and analyze the results of the study. We then discuss some of

the implications of those results in Chapter 6 and we conclude in Chapter 7.

6

Chapter 2

Related Work

In this chapter, we discuss previous studies investigating Python use.

2.1 Multi-language Studies

Eye movement studies are conducted in multiple ways to investigate the developers’

behavior in particular activities such as reading code, seeking information on stack

overflow, and polyglot programming. Peterson et al. [19] introduced an exploratory

study on the information-seeking behavior of developers on stack overflow using an

eye-tracking infrastructure. In this study, developer participants were assigned to the

task which is creating human-readable summaries of methods and classes in large

Java projects. With the eye-tracking data collected from the source codes and stack

overflow documents while developers complete their tasks, the study found that de-

velopers inspect the text more than a title in a stack overflow. Code snippets were

the next frequently observed element. Moreover, when developers switch between the

stack overflow platform and the Eclipse Integrated Development Environment (IDE),

they often checked method signatures and then switched to code and text elements

on stack overflow. As they investigated that developers check the text more than

a title in stack overflow, this study would like to investigate which Python features

7

would get more programmers’ attention when they read the Python source code.

Kochhar et al. [20] performed studies on various languages by building regression

models to observe developer’s behavior while bug fixing. There found most of the

errors occur when the language is used in a multiple-language setting. The languages

they used were C++, Java, and Objective C. There can be an extension to study

and it might be interesting to observe similar results with respect to Python. It

is interesting to observe how developers might think using multi-languages might

simplify the complexity but it might be not the case for all languages.

Brilliant and Wiseman [21] studied three programming language paradigms (pro-

cedural, object-oriented, functional) and programming languages that feature those

paradigms. They wanted to find an optimal first programming language for com-

puter science students. They listed the feature, advantages, and disadvantages of

each paradigm. Eventually, they concluded that there is no strong reason to pick any

of those paradigms as the first programming paradigm for the students. This study

was conducted in 1996, but now, with the aid of eye-tracking, we believe we can

gather more information about how people actually interact with those paradigms

and provide some insight into finding the optimal programming paradigm.

Uesbeck et al. [22] investigated polyglot programming through a randomized con-

trolled trial conducted under the context of database programming. Since the study

is about polyglot programming, coding tasks were given to participants and the tasks

require multiple programming languages which are Java and one of three SQL-like

embedded languages. This research found significant differences in how developers

from different experience levels of coding use polyglot techniques. Their study finds

that programmers with less experience tend to program faster with a hybrid language

approach. Similarly, this study draws comparisons between paradigms and we ob-

serve find Object-Oriented the easiest of all paradigms since they are accurate and

8

take lesser time to classify and comprehend.

Mayer and Bauer [23] analyzed the utilization of multiple programming languages

for open-source projects. The authors discuss how many different languages are used

per open source project and also provide information on how they categorize the

language as domain-specific or general-purpose language. They also implemented

regression analysis after getting an approximate number of co-occurrences. Their

results show that mean of 5 general purpose languages are used in open source projects

and 1/4þof the project is written in a domain-specific language.

Chakraborty et al. [24] discussed different programming languages on Q& A sites.

They majorly focus on Go, Swift, and Rust over Stack Overflow. The authors imple-

mented LDA and Stack Overflow responses for providing more resources to developers

while they were working with a new language. In contrast to these studies we ana-

lyze Python language thoroughly by comparing different paradigms. Much similar to

these studies our work focuses over understanding developers behavior while reading

and debugging.

2.2 Code Summarizing

Abid et al. [25] observed developers’ reading behavior while they summarize Java 5

methods. Unlike prior studies done by Rodeghero et al. [26] which only used short

source codes in isolation, Abid’s study allowed programmers to scroll through the

source code and switch between the files to make a realistic working environment

during the summarizing task. Their results indicate that they tend to focus on the

method body more than the signature. The amount of gaze time and frequency of

revisit were major components of the analysis and other results have been derived

from them in Abid’s study. One of the other results is that experts tend to write their

9

summaries from source code lines that they read the most. Like this study, this study

gives summarizing tasks to participants by enabling scrolling on the source code to

see how they gaze at Python features during their task.

Abid et al. [25] studied how developers summarized methods specifically focusing

on longer code methods that allowed scrolling and switching files.They draw com-

parisons between experts and novices and their approach to revisiting code methods

or control flow. They observed the experts revisited more of the control flow state-

ments. Although experts had major revisits on methods while they increased. Our

study focused on majorly computer science students and we also found most of them

used skimming as their approach and control flow.

Rodeghero et al. [26] investigated how java developers summarized code and wrote

English summarized of methods given. They further utilize the observed techniques to

build a novel automated code summarizing tool. The authors use eye-tracking and use

VSM tf/IDF approach to understand the developer’s gaze on keywords. Whereas we

observe the developer’s gaze using eye-tracking fixations and collecting audio during

the interview and transcribing their responses. There study found that developer’s

used keywords from the source code and used them in their code summaries.

Peterson et al. [19] monitored how developers gazed at Stack Overflow. They

observed developers looked at the titles and the code snippets when tasked to create

human-readable code summaries focusing on code elements and token-wise granular-

ity. Similarly, our study looks at the token-level fixations to understand the devel-

oper’s reading behavior while they focus on keywords or Python features. In contrast,

we look into Python features that have not been investigated before. Therefore, we

think it would be interesting to observe the developer’s behavior with Python lan-

guage.

10

2.3 Code navigation behavior

Kevic et al. [27] provides us with the first-time study performed on open-source code

to understand developer’s behavior while navigating through the code for change

tasks. The authors found out that the developer’s gaze on small parts of methods on

the data flow aspect of it. This study looks into how developers are focused on logic

like the one that has the bug and most of them follow the approach of skimming,

reading line by line, and controlling flow.

Busjahn et al. [28] conducted a study to compare eye movements between novices

and expert programmers when they read and comprehend short natural language

texts and Java programs. This research shows that novices read source code more

linearly than experts, and also read the natural language more linearly than source

code. As one of the novel contributions, this study designed local and global gaze-

based measurements to characterize linearity in reading source code. This study

adopts these measurements to characterize linearity in reading source code from top to

bottom and from left to right. Similarly, our study focuses over developer’s navigation

behavior with respect to the approach. We look into how data flow, control flow, and

skimming. On the contrary we found developers highly depend on skimming through

the code to classify a predominant paradigm.

2.4 Python Paradigms

Floyd [15] talked about the impact of programming paradigms design. He mentions

how there are different phases and defined two stages namely, the top-down design

approach and the second phase followed is known as structured programming also

called by the author as methods of the level of abstraction.

Wells and Kurtz [29] proposed a paradigm general pseudo-code that would help

11

students learn different paradigms. The paper explicitly addresses difficulties in tran-

sitioning from imperative to other paradigms like object-oriented, functional, and

logical problems. The technique provides a pseudo-code in the form of a super-set of

paradigms which can be translated to any target language if needed by a developer

who is new to a certain paradigm.

Bunkerd et al. [30] analyzed how the history of programming affects the code’s

naturalness due to the diverse backgrounds of coders. So they compare two main

parameters consisting of the number of contributors to a project and the diversity

of the project by its contributors. Their results came up with an idea of the re-

lationship between naturalness and contributor’s diversity. They observed less pre-

dictability in code with more contributors. Similarly, our study focuses on Python

paradigms especially on human behavior shuffling between different paradigms like

functional, object-oriented, and procedural. In contrast, we investigate how they clas-

sify paradigms based on Python features rather than addressing just the approach

and reading behavior. We think it is important to study developer behavior on how

certain features affect the paradigm judgment.

2.5 Python as a Programming Language

Shrestha et al. [14] inspected the gap for developers to learn a different language. They

conducted an empirical study in which they went over Stack Overflow and looked for

various buggy instances which could have originated due to a lack of programming

language. Next, they also interview professionals asking a set of questions in which

they relate their prior knowledge to a new programming language. They found most

of the developers had faulty assumptions in relating to a new language. Within

an interview experience, they also found that having prior knowledge may actually

12

hamper their ability to learn a new language.

Peng et al. [31] investigated the common Python features in Python projects. To

understand Python features better the authors propose a tool that would help the

research community in better task building and make code less error-prone. The

results talked about how developers chose testing and safety checks and avoided com-

plex features that are more prone to errors. Further, they also found that gradual

typing and keyword-only arguments have been used less frequently by developers.

Further, they talk about how developers create their decorators and are concerned

about ImportError.

Bafatakis et al. [32] investigates SO compliance issues with Python code. They

studied the projects over Stack Overflow and talk about violations per a statement

on Python code to understand code style compliance. The results show the top 10

violations that are caused during a certain style of code compliance. Most of the

violations exist due to bad white spaces.

Shrestha et al. [14] implemented a tool known as Transfer Tutor to compare

the learning curve between languages developer already knows and don’t know with

Python and R respectively. The tutorial can be a stepping stone for programmers

who want to code in a different language and face difficulties adapting to another

similar language.

Alexandru et al. [13] looked at different code architectures specifically into a

Pythonic way of programming in Python. They observe how some terms have been

loosely related to Python and other modern programming languages like Scala, Ruby

over GitHub, and StackOverflow. They point out wrongly implemented and practiced

terms in the Python ecosystem. Similarly, this study also points out audio snippets

from developers that are confused and have a loose understanding of function defini-

tions.

13

These previous works analyzed Python code from StackOverflow and focused on

one language feature, however, our study pulled out existing code from GitHub and

cover all the Python features necessary for understanding the paradigm classification.

In similarity we focus on coding the Pythonic way and investigate by interviewing

participants about their approach to debug a task.

In the next chapter, we provide background information about paradigms in

Python and how to classify them.

14

Chapter 3

Background

In this chapter, we provide relevant background information about classification of

predominant paradigm in Python.

Python, along with other modern languages, supports multiple programming

paradigms. They can be classified into declarative, which includes functional and logic

paradigms, and imperative programming, which includes object-oriented and proce-

dural. Python is predominantly object-oriented but also supports other paradigms

like procedural and functional. However, there have been discussions on what the

best paradigm to use might be. For example, the Django framework [33] supports

class-based and function-based views. Some articles claim function-based views are

easier to read and understand [34], but the framework provides both and is moving

more toward the class-based paradigm. Both of the approaches have a set of pros and

cons and it is upon the programmer how to use it and when.

Here we briefly describe some of the features Python supports and how we can

classify Python code according to those features. This is based largely on the work of

Dyer and Chauhan [4]. We re-use the running example from their work and show it

in Listing 3.1 and explain how they would classify this particular source code. Their

classification strategy is based on specific features, where they mapped features as

functional based on the Python official documentation’s how-to guide for functional

15

programming [35]. The full feature mapping is shown in Table 3.1.

Listing 3.1: Example Python code with each statement classified into paradigm(s)

1 class MyCounter: # func oo

2 x = 1 # oo imp

3 def val(self): # oo

4 def wrapper(): # oo proc

5 return self.x # oo proc

6 return wrapper # func oo

7 def __iter__(self): # func oo

8 self.x = 1 # oo

9 return self # oo

10 def __next__(self): # func oo

11 if self.x > 50: # oo

12 raise StopIteration # oo

13 tmp = self.x # oo

14 self.x += 1 # oo

15 return tmp # oo

16 print([y for y in MyCounter() if y % 2 == 0]) # func oo proc

If we consider the example code show in Listing 3.1, we can classify the overall

code as object-oriented the majority implements a class and uses the class (on line 16).

Thus every line has an oo classification associated with it. Procedural programming

supports defining functions which are known as procedures. Whenever we define a

function def(): we can pass different arguments. On lines 4 and 5, we classify them

as procedural. There is also a procedural call to the print function on line 16.

Since iteration is considered functional, we also classify the class itself and the

methods providing iteration support (lines 1, 7, and 10) as functional. But the

wrapper function is being returned in the method, on line 6. This is an exam-

16

Table 3.1: Reference sheet for Python feature classification (from [4])

Python Language Feature Imperative Procedural Object-Oriented Functional
if else elif x
while loop x
break x

continue x
assert x
del x

array indexing x
pass (inside loop) x
pass (inside class) x x
pass (inside def) x x

return x
function (def) x

nested function (def) x
class declaration x

inheritance x
method (def) x

with x x
try x x

except x x
finally x x
raise x x
for loop x x

(not) in operator x x
yield x x

function-as-arg x
lambda functions x
list comprehension x

decorators x
generator expressions x

iterators (__next/iter__()) x x x x
send() (into generator) x x

iter() x x
map() x x

sorted() x x
filter() x x
any() x x
all() x x

itertools.*() x x
functools.*() x x
enumerate() x x

zip() x x

ple of a higher-order function and thus we classify line 6 as also being functional.

We can already see that several lines are classified as belonging to multiple

paradigms. Most lines in Python are also imperative by nature, either by referencing

17

names or using assignments. As such, we could potentially mark almost every line as

imperative. Instead, the prior approach states to only mark things as imperative if

they were not already classified as another paradigm. Thus, line 2 is also marked as

imperative because the object-oriented classification of line 2 only came about from

the block structure of the code and not from the line in isolation. In general, very

few lines wind up being classified as imperative and thus very few files are predomi-

nantly imperative, using this prior classification strategy. In this study, we will ignore

the imperative features and focus only on procedural, object-oriented, and functional

features. Finally, the last line is also functional as it contains a list comprehension.

We utilize the Boa script from Dyer and Chauhan [4] in our study to classify each

file. Their script relies on the classifications from the table as well as some heuristics

they discovered during their manual classification process (such as the fact we do

classify line 2 as imperative, but most other lines are not). This script is used to

classify every source file used in the sub-tasks of our study as a ground-truth.

In the next chapter, we provide a detailed outline of our study design, various tasks

designed, the background of participants, and training involved during the process.

Next section would also talk about in detail the approach used to perform qualitative

and quantitative analysis.

18

Chapter 4

Experimental Study

This chapter discusses details of our approach, such as the task definitions, study

procedures, and analysis methods.

4.1 Study Overview

We design our study in two parts: classification and bug localization. The clas-

sification tasks aim to provide support to answer the first three research questions,

while the bug localization tasks provide support to answer the remaining two research

questions. Participants complete four tasks for each part of the study–eight in total.

First, for classification, participants are asked to classify the predominant paradigm

(functional, procedural, or object-oriented) on some example code. Code is provided

in three different lengths (small, medium, and large) to see if code length affects the

classification task. Second, for bug localization, participants are given four codes

(cube, factorial, largest, and palindrome) and asked to debug and identify a logical

error in the code. Each of the four programs has four variants (functional, procedural,

object-oriented, and mixed), where each variant has the same logical error inserted

into it. During all tasks, we use eye tracking hardware to track the developer’s gaze to

see what feature(s) they are looking at. We then perform qualitative and quantitative

19

analysis on the observations.

4.2 Task Categories and Questions

We divided study tasks into two categories, where each category had four tasks. Each

task was allocated a maximum of 10 minutes for participants to complete. A full list

of the code used for each task for both categories is provided in Appendix B.

Table 4.1: Overview of all tasks in this study

Task Categories Questions Tasks
1. Classification A. Functional i. small ii. medium iii. large

B. Mixed i. small ii. medium iii. large
C. Object-oriented i. small ii. medium iii. large
D. Procedural i. small ii. medium iii. large

2. Bug Localization A. Cube i. OO ii. procedural iii. functional iv. mixed
B. Factorial i. OO ii. procedural iii. functional iv. mixed
C. Largest i. OO ii. procedural iii. functional iv. mixed
D. Palindrome i. OO ii. procedural iii. functional iv. mixed

In Table 4.1 we describe all the questions asked on the Google form while per-

forming tasks for categories.

4.2.1 Classification Category

The first task category was designed to support answering RQ1–RQ3. These tasks are

classification tasks, where participants are asked to classify the predominant paradigm

of some code. We obtained real-world Python source file URLs using Boa’s [5] “2021

Aug/Python” dataset. From that dataset, files were chosen in three different length

categories. The lengths were determined using the number of statements in the file.

There were three lengths:

• small: 10-15 statements

• medium: 16-30 statements

20

• large: 31-45 statements

There were a total of four tasks (procedural, object-oriented, functional, and

mixed) and each task had the same questionnaire completed (see Appendix A.3 for

the specific questions). Participants were asked to classify the code examples based

on the predominant paradigm, as well as what percent of the code belonged to each

specific paradigm.

An example of a Task-1 like task can be seen in Listing 3.1, where each state-

ment is classified into paradigm(s). Each task used a different code example (see

Appendix B.1 for all code listings). The code examples were shuffled across partic-

ipants, but each participant was given one code example from each paradigm while

also ensuring they saw code examples of all three lengths.

The code was displayed in the IDE with a font size of 18 points. Each sub-

task was timed with a maximum allowed time of 10 minutes to complete. An eye

tracker started logging at the beginning of each task and stopped at the end, when

participants submitted their questionnaire.

4.2.2 Bug Localization Category

The second task category was designed to support answering RQ4–RQ5. These tasks

are bug localization tasks to measure how well participants comprehend the given

code. Participants were asked to find and explain a bug in the given source code.

There were four different algorithms provided:

1. cube of a number

2. largest number in a list

3. palindrome of an input string

21

4. factorial of a number

For each, a single logical bug was introduced. We had four variants of each code,

one for each paradigm (see Appendix B.2 for all code listings). Each variant had the

same logical bug applied to it. Each expected the same input and generated the same

output. The code examples were shuffled across participants, but each participant

was given one code example from each paradigm as well as one from each algorithm.

After each task, participants were asked the same questionnaire (see Appendix A.4)

where they were asked to explain what the bug was and the line it occurred on.

The code was displayed in the IDE with a font size of 18 points. Each task was

timed with a maximum allowed time of 10 minutes to complete. An eye tracker started

logging at the beginning of each task and stopped at the end, when participants

submitted their questionnaire.

4.3 Participants and Grouping

The study included a total of 31 participants, including 2 that had to be excluded

because of poor calibration (1) and no prior experience in Python (1). We collected

and analyzed data for the remaining 29 participants. We compared similarities and

differences between populations of the age group of 19 and older. All participants

were students were from the University of Nebraska–Lincoln. The majority of the

students were from a computer science background and others were from biological

system engineering, statistics, computer engineering, and other similar fields. The

participants were not provided any course incentives but were compensated with a

$25 virtual Visa card.

Every participant was provided with guided training and a reference sheet. The

entire study took 1.5 to 2 hours per participant. During the study, all participants

22

filled out the pre-questionnaire at the start and post-questionnaire at the end, where

they rated their level of expertise. Out of all participants, 23.3% rated themselves as

novices, 66.7% as intermediates, and 10% as experts.

Each participant was provided with eight tasks in total, four in each category.

We had two categories: classification and bug localization. For classification, each

participant was given one code from each of the three paradigms and a mixed code.

Each code was also different sizes. For each paradigm, we had three different sizes

(small, medium, large). Tasks were assigned to ensure that roughly one third of

participants saw a small functional code, one third saw medium functional, and one

third saw large functional. This was done for each of the four paradigms. Similarly,

for the bug localization category we had four programs (cube, factorial, largest, and

palindrome). For each program, we had four variants representing the four different

paradigms. Tasks were assigned to ensure roughly equal coverage among each, so

roughly one quarter of participants saw a functional version of Cube, one quarter saw

an object-oriented version of Cube, one quarter saw a procedural version of Cube,

and the remainder saw a mixed version of Cube. This was done for each of the four

programs. Table 4.2 shows an example grouping for five participants.

4.4 Eye Tracking Apparatus and Environment

To track the participants eyes, we used a Tobii TX300 eye-tracker running in 60Hz

frequency. Participants utilized Eclipse as the integrated development environment

(IDE) for viewing all code snippets. An Eclipse plugin called iTrace [36] was used to

map the raw eye coordinates to a line and column in the file as the participant looked

at the source code while performing tasks [37]. The iTrace plugin provides an output

of two XML files containing the full session logs. The files are further analyzed by

23

running fixation filters, such as the Identification by Velocity Threshold (IVT) fixation

filter [38] using default threshold numbers. Next, databases are generated using the

fixation filter to generate a list of identified gazes, per task.

4.5 Study Variables

In this study we have some specific dependent and independent variables. The in-

dependent variables were the correct paradigm and correct bug detection. Some of

the dependent variables were accuracy, confidence levels, and prediction. Another

dependent variable is task duration. The measure of time completion per task gave

us the total time they spent providing answers to the tasks.

4.6 Study Procedure

Participants were allocated up to two hours to complete entire study. After signing a

consent form, participants filled out the pre-questionnaire. They were then given the

training task. Next, each participant had to be calibrated with the eye tracker. Once

the calibration was done, the participant was ready to perform tasks. The partici-

pants were asked to read code in Eclipse and answer the questionnaires provided as

Google forms using an iPad. After each task group, an audio-recorded interview was

performed. At the end of the study, the participants filled out the post-questionnaire.

4.6.1 Participant Training

In order to perform the study tasks, we first trained all participants. Also, they

learned during training how to use properly sit to enable eye tracking. The moder-

ator walked all participants through a reference sheet that consisted of mock code

snippets for Task 1 (classification) and Task 2 (bug localization). Initially, the par-

24

Table 4.2: Assigning participants to specific tasks

1. Classification Tasks
Participant ID A. Functional B. Mixed C. Object-oriented D. Procedural

1 small medium large small
2 medium large small medium
3 large small medium large
4 small medium large small
5 medium large small medium

2. Bug Localization Tasks
Participant ID A. Cube B. Factorial C. Largest D. Palindrome

1 func oo proc mixed
2 oo proc mixed func
3 proc mixed func oob
4 mixed func oo proc
5 func oo proc mixed

ticipants were shown training code as shown in Listing 4.1 to explain how paradigms

(functional, object-oriented, and procedural) using Python features are classified by

each statement. They were also provided with a feature classification table from Dyer

and Chauhan [4], as shown in Table 3.1.

Participants were then asked to classify the predominant paradigm of the code

and could utilize the feature table. Here we introduced the concept of predominant

paradigm, wherein they saw how the training code has a predominant paradigm of

object-oriented since all statements are part of class MyNumbers. While under-

standing every feature-wise classification per statement, they were also made aware of

how one statement can belong to multiple paradigms. They then chose one predomi-

nant paradigm from the three paradigms: functional, procedural, and object-oriented.

If code appeared to have more than one predominant paradigm, they could classify

it as mixed. If someone failed the training, we remove their data from analysis.

For Task 2, participants were given the code example in Listing 4.2. This example

has a bug on line 21, where the answer should be appended to the previous answer

using += instead of -=. Participants were then asked to find the line containing a

25

bug and explain the fix.

Listing 4.1: Training code with paradigms classified (from [4])

1 class MyNumbers: # func oo

2 x = 1 # oo imp

3 def m(self): # oo

4 def m3(): # oo

5 return 1 # oo proc

6 y = m3() # oo proc

7 return y # oo

8 def __iter__(self): # func oo

9 self.x = 1 # oo

10 return self # oo

11 def __next__(self): # func oo

12 y = self.x # oo

13 self.x += 1 # oo

14 return y # oo

15 x = MyNumbers() # oo

Listing 4.2: Training code for Task 2, with a bug on line 21

1 class Solution:

2 def intToRoman(self, num: int) -> str:

3 dic = {

4 1000 : 'M',

5 900 : 'CM',

6 500 : 'D',

7 400 : 'CD',

8 100 : 'C',

9 90 : 'XC',

10 50 : 'L',

11 40 : 'XL',

26

12 10 : 'X',

13 9 : 'IX',

14 5 : 'V',

15 4 : 'IV',

16 1 : 'I',

17 }

18 ans = ""

19 for key in dic.keys():

20 val = num // key

21 ans -= val * dic[key]

22 num -= val * key

23 return ans

4.6.2 Quantitative Analysis

To perform the quantitative analysis we use the iTrace toolkit provided by the iTrace

plugin [36]. Every time the eye-tracking was stopped during the study, we got two

different XML files generated from Eclipse and iTrace itself. We use the iTrace XML

file to get the x- and y-coordinates. Since the toolkit provides only a line-/column-

level mapping, we had to write a query to map to tokens in the source code. The

query outputs the token the participant gazed.

We also extract the questionnaire data from the Google forms by downloading the

data as CSV files and post-processing with Python scripts. We then plot graphs and

generate tables to answer each research question.

4.6.3 Qualitative Analysis

We designed questionnaires to reinforce the qualitative aspect of our study. We

created a pre-questionnaire, a post-questionnaire, as well as questionnaires for each

of the tasks. The pre-/post-questionnaires ask participants about their background

27

and opinions, and the task questionnaires ask participants about their perceptions

toward the code snippets and the particular task. We use this information to aid our

analysis and identify potential threats to validity. Additionally, we also validate our

results and observations through our recorded audio interviews at the end of each

task group.

For the audio interviews, we perform open coding on the individual responses to

attach concepts to them. Open coding has been used previously in software engineer-

ing studies [39]. We include all text from the audio interviews, which we manually

transcribed. Every participant answered a total of 8-10 interview questions for both

tasks 1 and 2 categories. Begel and Zimmermann [39] describe the process divided

into three parts: preparation, execution, and analysis.

Preparation The initial phase for the interview was designing a set of questions for

the participants for each category. The questions were asked in the same order for all

participants, allowing for some variation depending upon their prior responses already

covering the question. Further, each response, along with its respective question, was

printed on small index cards as shown in Figure 4.1.

Execution The next phase was the classification of cards into similar categories

with the same questions. We had 11 different piles of card categories belonging to

each research question and each pile was labeled with a description.

Analysis The last phase of the process was to come up with themes from different

piles and merging piles with similar themes. The author analyzed and classified 315

cards and created 15 different themes. The results are discussed in the next chapter.

28

Figure 4.1: Themes after card sorting

4.6.4 Qualitative data collected

We also designed questionnaires to reinforce the qualitative aspect of our study. We

created a pre-questionnaire, a post-questionnaire, as well as questionnaires for each

of the four tasks. The pre-/post-questionnaire ask the participant about their back-

ground and opinions, and the task questionnaires ask participant about their per-

ception towards the code snippets. We use this information to aid our analysis and

identify potential threats to validity.

We provide Table 4.3 in order to help readers understand how each data source

was used to answer the research questions.

We mainly describe all the data from pre- and post-questionnaires and Tasks as

29

Task 1 questionnaire or Task 2 questionnaire, data from iTrace and eye-tracking

as eye-tracking data, and audio interviews as audio.

Table 4.3: Methods used for each research question

Data Source Used
RQ1 Task 1 questionnaire + eye-tracking data
RQ2 Task 1 questionnaire
RQ3 eye-tracking data
RQ4 Task 2 questionnaire + eye-tracking data
RQ5 Task 2 questionnaire

In the next chapter, we provide the results of our study.

30

Chapter 5

Results

This chapter discusses the quantitative and qualitative results of the study. First, we

look at the demographics of the 29 participants.

Figure 5.1: Survey: Self-reported rating for programming skills in Python

Figure 5.1 shows the ratio of our participants across the study can be split into

different levels of self-reported experience with programming in Python. We asked

this question in the post-questionnaire to avoid priming participants. We observe

that 10.3% indicated they were experts, 69% intermediate, and 20.7% beginners.

31

Figure 5.2: Survey: How often do you code using Python?

We also asked participants how often they code using the Python language. Fig-

ure 5.2 shows more than 42% of the participants code in Python (very) frequently,

40% code occasionally, and 6.6% rarely code in Python. We find there are no par-

ticipants who never code in Python, so all participants included in our results have

Python experience.

Figure 5.3: Survey: How long have you been coding using Python?

Figure 5.3 shows how long the participants have been coding in Python. Almost

32

one quarter of the participants have up to one year of experience. 60% have up to

two years experience. Only 10% of all participants have more than and equal to five

years, which matches up with the number self-reporting as expert.

Figure 5.4: Survey: How important is it to code for you in Python?

We also wanted to see how participants view coding in Python. Figure 5.4 shows

their responses to how important they think it is to code in Python. Almost two-

thirds of participants think it is (very) important to code in Python. Only around

10% indicated it was slightly or not important. This shows the participants value the

language we chose to study.

5.1 Quantitative Results

In this section, we discuss results specific to every task in the two different task

categories.

33

5.1.1 Task 1: Classification

5.1.1.1 RQ1: How difficult is it for developers to classify the

predominant Python paradigm?

Figure 5.5: Task 1: Time taken for classifying different paradigms

Figure 5.5 describes the time taken by participants for each task. The time is

calculated by the duration provided by the iTrace toolkit which is the time taken to

look at the code and answer simultaneously. The participants were asked to notify the

moderator when they were done looking at the code and the eye-tracker was stopped.

The graph shows the similar time taken in terms of functional and Mixed and the

least time taken for procedural tasks. However, we also observe some outliers which

were mostly participants who took longer to classify the task. Especially with the

functional paradigm we observed took longer than the average time.

Further, we take a look in depth at the classification time change with respect to

different lengths of the code snippet. We plot a graph for each different length (small,

34

medium, and large) and the time taken in minutes.

Figure 5.6: Task 1: Time taken w.r.t different lengths

The box-plot in Figure 5.6 shows the time taken with different lengths of various

paradigms (small, medium, and large). We observe participants took longer for pro-

cedural large files and took minimum time for the small and medium size of files. For

functional, the time taken decreases with the size increase of the file. Mixed shows us

a variable result with the medium being the highest with respect to the time taken

by the participant. The last paradigm, Object-Oriented took a long time when the

length was large and comparatively less time if the length was small or medium.

Next, in Figure 5.7 we see how confident were the participants when they marked

their overall confidence.

We plot a pie-chart to show the overall confidence for Classification category. More

than 80% participant throughout the task. However, we do observe participants being

Moderately, Slightly, and Not Confident while classifying files into various paradigms.

35

Figure 5.7: Task 1: Overall confidence (in percent)

In the next research question we discuss about how accurate was developer’s judg-

ment. To measure accuracy we consider two metrics - correct judgment and confi-

dence level provided as Task1 Form. Then we plot the confidence level with respect

to correct judgments.

5.1.1.2 RQ2: How accurately do developers classify the predominant

paradigm in Python code?

Classification into various percentages

Table 5.1 shows the number of judgements made by participants as different per-

centages for each task which was procedural, object-oriented, functional, and mixed.

We use the data provided by survey from Task 1. We observe 24 out of 29 partici-

pants classified the functional paradigm correctly. 25 participants out of 29 classified

object-oriented paradigm correctly, and 16 out of 29 participants classified procedural

paradigm correctly. We find a higher number in correct judgement of paradigms for

functional and object-oriented. Less than half of the participants marked procedural

paradigm incorrectly.

36

Table 5.1: Task 1: What do you consider the predominant programming paradigm
for the code you read?

Judgements
Tasks Functional Object-Oriented Procedural p-value
Functional (small) 9 0 1 0.021
Functional (medium) 5 1 4
Functional (large) 8 0 1
OO (small) 2 8 0 0.108
OO (medium) 0 7 2
OO (large) 0 10 0
Procedural (small) 3 0 7 0.0001
Procedural (medium) 5 0 5
Procedural (large) 2 3 4
Mixed (small) 3 2 4
Mixed (medium) 1 1 8
Mixed (large) 0 6 4

Figure 5.8: Task 1: Judgment vs confidence level

In Table 5.8 we observe that most of the participants were confident with the

judgment of paradigms like functional and Object-Oriented. Whereas they were sig-

nificantly confused with procedural. Half of the participants made an incorrect judg-

ment about procedural paradigm. The interesting observation is that their confidence

levels were equally high as their responses with correct responses for other paradigms.

This was interesting as it indicates that the participants were less aware of pro-

cedural and functional features, therefore they classified them wrong. To validate

these results we also pick audios from the interview stack and understand that the

37

participants were confused and had a hard time classifying def(): and other pro-

cedural/functional features.

The box plot above shows how the classification of paradigms varied across other

paradigms and across different lengths. We see some patterns for paradigms like

functional, that show that the participants took lesser time as the length of the

functional task was increased. We see a reverse pattern in terms of object-oriented

as the time increases as the length of the task increases.

Along with one correct judgment for a predominant, we wanted to observe what do

developers classify the code if it has more than one predominant paradigm. They were

given the option to choose different paradigms and classify in into various percentages.

The developer’s got four choices to classify into less than 25%, 25–50%, 50–75%, and

more than 75%.

Table specific to more than one predominant paradigm code

Table 5.2: Task1: What percentage of the code falls under the following paradigms?

Procedural Functional Object-Oriented
≤ 25 25− 30 50− 75 ≥ 75 ≤ 25 25− 30 50− 75 ≥ 75 ≤ 25 25− 30 50− 75 ≥ 75

Functional 8 10 3 8 16 12 1 0 3 3 4 18
Object-Oriented 8 9 10 2 2 3 3 21 12 9 7 1
Procedural 2 6 5 15 18 6 3 2 6 9 4 9
Mixed 7 5 3 14 4 8 11 6 10 11 5 3

We observe in Table 5.2 that participants were confident on their judgments for

functional and object-oriented paradigms as they classified most of them as more

than 75%. We found a split between multiple paradigms which is true in the case of

mixed paradigm.

Table 5.3 shows how the participants understand ’mixed’ as a paradigm. They

classified most of the tasks as mixed out of the choices for mixed - yes, no, and maybe.

Further, we strengthen these results by providing Pearson’s correlation Table 5.4.

This correlation explains how two paradigms are dependent.

38

Table 5.3: Task 1: Do you think the code has more than one predominant paradigm?
For example: functional, object-oriented, mixed, procedural

Tasks Maybe Yes No
Functional (small) 1 3 6
Functional (medium) 2 4 4
Functional (large) 0 5 5
OO (small) 1 6 4
OO (medium) 1 5 4
OO (large) 0 8 2
Procedural (small) 0 7 3
Procedural (medium) 2 3 5
Procedural (large) 2 7 1
Mixed (small) 1 7 2
Mixed (medium) 2 7 1
Mixed (large) 2 8 0

Table 5.4: Pearson correlation between different paradigms
Statistical Analysis Functional and Object-Oriented Functional and Procedural Object-Oriented and Procedural
Pearson statistic=-0.668, pvalue=0.534 statistic=0.249, pvalue=0.839 statistic=-0.887, pvalue=0.305

We also performed SpearmanR and Kendalltau correlations Table 5.5. In this

relation we observe the monotonic relation between variables. In this aspect our

variables are the three paradigms (functional, object-oriented, and procedural). We

see a stronger relation between functional and object-oriented.

Table 5.5: SpearmanR and Kendalltau correlations between different paradigms
Statistical Analysis Functional and Object-Oriented Functional and Procedural Object-Oriented and Procedural
SpearmanR correlation=-0.866, pvalue=0.333 correlation=0.5, pvalue=0.666 correlation=-0.866, pvalue=0.333
Kendalltau correlation=-0.816, pvalue=0.220 correlation=0.333, pvalue=1.0 correlation=-0.816, pvalue=0.220

Table 5.6: Task 1: Approach with paradigm

Approach Functional Procedural Object-Oriented Mixed
Skim 27 25 28 23
Read line by line 10 11 14 18
Control flow 11 14 13 10
Data flow 5 2 3 4
Trace and execute 4 6 2 3
Trial and Error 0 0 0 1

39

Table 5.6 shows that developers are highly dependent on skimming for classifica-

tion across all paradigms and task lengths.

5.1.1.3 RQ3: Do developers fixate their gaze on specific Python

language features when classifying predominant paradigms?

We observed how developer’s gaze at specific features with respect to every paradigm.

Figure 5.9, Figure 5.11, Figure 5.12, and Figure 5.10 are the graphs that are specific

to each paradigm. functional, mixed, object-oriented, and procedural.

Figure 5.9: Eye-tracking data: Participant gaze for functional paradigm code snippets

We observe that participants look at certain features to classify language features

with respect to paradigm.

Listing 5.1: Participant gaze on Functional code

1 import numpy as np

2 tansig = lambda n: 2 / (1 + np.exp(-2 * n)) - 1

3 sigmoid = lambda n: 1 / (1 + np.exp(-n))

40

Figure 5.10: Eye-tracking data: Participant gaze for Mixed code snippets

4 hardlim = lambda n: 1 if n >= 0 else 0

5 purelin = lambda n: n

6 relu = lambda n: np.fmax(0, n)

7 square_error = lambda x, y: np.sum(0.5 * (x - y)**2)

8 sig_prime = lambda z: sigmoid(z) * (1 - sigmoid(z))

9 relu_prime = lambda z: relu(z) * (1 - relu(z))

10 softmax = lambda n: np.exp(n)/np.sum(np.exp(n))

11 softmax_prime = lambda n: softmax(n) * (1 - softmax(n))

12 cross_entropy = lambda x, y: -np.dot(x, np.log(y))

Further, we observe that each task with a specific paradigm and length for clas-

sification category, has been performed by four participants. Therefore, we manually

highlight different fixations Listing 5.1 in for functional small task. We observe four

different color gazes in red, blue, green, and orange. We see all participants gazed at

lambdas and functions, and classified the paradigm as functional.

Listing 5.2: Participant gaze on Mixed code

41

Figure 5.11: Eye-tracking data: Participant gaze for Object-Oriented code snippets

1 def test_personal_sendTransaction(accounts, rpc_client, password_account, ←↩

account_password):

2 initial_balance = rpc_client('eth_getBalance', [accounts[1]])

3 with pytest.raises (AssertionError):

4 rpc_client('personal_signAndSendTransaction', [{

5 'from': password_account,

6 'to': accounts[1],

7 'value': 1234,

8 }, "incorrect-password"])

9 assert rpc_client('eth_getBalance', [accounts[1]]) == ←↩

initial_balance

10 rpc_client('personal_signAndSendTransaction', [{

11 'from': password_account,

12 'to': accounts[1],

13 'value': 1234,

42

Figure 5.12: Eye-tracking data: Participant gaze for Procedural code snippets

14 }, account_password])

15 after_balance = rpc_client ('eth_getBalance', [accounts[1]])

16 assert after_balance - initial_balance == 1234

Similarly, among others one of the interesting results were from the mixed

paradigms Listing 5.2. We saw the participants gaze at different features across

all paradigms.

5.1.2 Task 2: Bug localization

For Task 2, we try and understand how long does the developer take to debug a

specific file. We also observe if paradigms affect the ability to debug a developer.

Further research questions look into how accurate was the error debugging as per a

specific paradigm. This is checking the judgement on the bug line number and fixing

the bug.

43

5.1.2.1 RQ4: Does the predominant paradigm affect how long

developer’s take to debug logical errors?

Figure 5.13: Task 2: Time taken to complete debugging

In Figure 5.13, we observe the time taken for participants with respect to different

paradigms and tasks. There are four different tasks on the ordinate axis (factorial,

largest number, palindrome, and cube). We see that the factorial task was difficult

for most of the participants, especially when written in a functional paradigm. On

the contrary, the cube was fairly easier than the other 3 tasks and hence participants

took lesser time than other tasks.

In Table 5.7, we tabulate the results obtained from Figure 5.13 and include the

length of the file. In this case the length of the file is the number of statements.

We find that factorial functional takes the maximum time of 28 minutes with 10

statements. In comparison cube mixed took the least time of 10 minutes with 5

statements.

44

Table 5.7: Debugging with respect to task, paradigm and length

task duration length paradigm
cube 13 11 oo
cube 14 8 proc
cube 14 4 func
cube 10 5 mixed

factorial 20 12 oo
factorial 20 7 proc
factorial 28 10 func
factorial 12 8 mixed
largest 14 14 oo
largest 11 11 proc
largest 15 6 func
largest 16 11 mixed

palindrome 21 11 oo
palindrome 13 8 proc
palindrome 21 6 func
palindrome 20 10 mixed

5.1.2.2 RQ5: Does the predominant paradigm affect a developer’s

ability to debug logical errors?

Table 5.8: Task 2: Correctness with paradigm

Paradigm Correct Incorrect
Object-Oriented 21 8
Procedural 27 2
Functional 23 6
Mixed 19 10

Table 5.8 shows us that participants debugged all the tasks with around 85% of

correctness except mixed. We found no impact of paradigm on bug localization by

the participants. Next, we observe their accuracy on basis of task difficulty.

In Table 5.9 we calculate and check the correctness for Task 2 bug localization

by the participants. We observe that the participants were able to debug the cube,

largest, and palindrome code more correctly than the factorial code.

45

Table 5.9: Task 2: Correctness with task

Task Correct Incorrect
Cube 25 4
Factorial 18 11
Largest 22 7
Palindrome 25 4

Figure 5.14: Task 2: Reported confidence levels

Another metric that we use to check the accuracy is the level of confidence of the

participants. We find that more than 50% of the participants were confident in the

bug localization task. However, we find these confidence levels to be lower than the

classification category, where the participants were more than 85% confident.

In the next section, we discuss the limitations and possible threats to our study

and how we mitigate them.

5.2 Qualitative Analysis

To better understand the view and thought process of the participant on how they

classified and debugged the code, we performed two interview sessions. The interview

was conducted after each task category. Once the data was collected, initially, the

46

question and the response were transcribed and printed on flashcards. Next, we

perform card sorting as per different questions. In total, we got 315 cards. We

categorized them into 11 different slots based on 11 different questions.

Table 5.10 are the themes that came up during the process of card sorting. We

filtered the data into 9 categories. Each category had sub-categories ranging from 2

to 7.

Table 5.10: Audio: Different Card Sorting Categories

Category Title Cards Sub-Categories
Approach 54 6

Importance of features 52 7
Code Logic and Description 14 3
Unawareness of functions 15 2
Switching on paradigms 32 5

Supporting Python paradigms 22 3
Unaffected by Python paradigms 5 2

Measure for predominant paradigm 22 4
Paradigm specific classification 57 6

From Table 5.10 we see that most of the programmers were very specific about

the approach they used to read the code in order to perform either classification or

bug localization. It is interesting to see a significant number of participants going

back and forth to classify a predominant paradigm. Especially to classify procedural

paradigms and functional. It is noted that most of the participants who marked a

Procedural wrong tend to classify it as functional and vice-versa. def has been one of

the major features, that confused the participants between procedural and functional

paradigms. Below are a couple of code snippets that show audio responses from a

couple of participants who were confused.

Approach The participants in this category talked about the approach they fol-

lowed to classify and debug the task. Different approaches like skimming through the

47

code, reading line by line, and observing control flow, and data flow were discussed

and used to classify the tasks. Most of the participants were inclined towards skim-

ming through the code regardless of how lengthy was the code. "Typically, it’s a quick

skim to the code to see that it stands out and then going back in line by line depending

on how familiar I was with how the code was written because of my experience level I

would try to run the code in my head and thought we either how the information was

passed or just the execution of individual functions"

Importance of Features The participants in this category talked about the im-

portance of Python features. The responses majorly talked about what particular

features did they use to classify and debug the tasks. For example, the responses

included def, lambda, for loops, and other features. "I believe I did classify procedural

for this task palindrome, I skimmed and looked here how Python is nicely tabbed in

and out. everything was housed in a definition Initial skim and then for loops that

there is nothing inside and something happening multiple times. After skim so I saw

def is a function so procedural. But also, for loops which are more functional, so I

saw a lot of functional going on inside also."

Code Logic and Description The participants in this category talked about the

flow and how they used the logic they followed to classify and debug the task. With

questions related to how they debugged the file, the participants walked us through

the entire control flow and point out the bug. "I actually like read what the task is

supposed to do and then identify the main part like here it’s going to find the largest

number so this is the Max function that does it and then here at clearly like identify

that this sign should be reversed so sometime it just like experience I would say maybe

like a lot of times that’s why"

48

Unawareness of functions The participants in this category talked about how

the participants were confused and curious about to use of some features. One such

example was debugging a palindrome task for a bug and the participants were not

aware of the lower() function. "I will have to do it again, but def I think I chose to

be functional and then it was with and has assert."

Switching on paradigms The participants in this category were extremely con-

fused and most of them had incorrect judgments regarding the classification of the

code. They started explaining paradigm A and they ended with re-considering their

judgments of Paradigm B. "so here this is the function definition and end it goes up

to the end so I consider this entire thing to be a part of procedural OK and then I

have this class definition here and these are the class methods so class is like within

this procedural thing so I consider two predominant things here procedural and object

oriented."

Supporting Python paradigms The participants in this category appreciated

Python and its ability to support various paradigms. For example, using loops helped

them debug the task for the cube. These participants appreciated how developers can

use object-oriented for data analysis and procedural if they need methods. "I didn’t

know the classification myself and I do a lot of Python programming but this official

formal classification I was never familiar with given the study I’ll immediately go

home, and you know try to practice on these things and check where my knowledge

exactly" "I think it’s important because everything doesn’t come under object oriented

and everything doesn’t come under procedural simple program can be written in a

procedural and complex and if you are writing a complex code in a simple terms you

use object oriented program so I think it’s important to do define this paradigms."

49

Unaffected by Python paradigms The participants in this category discussed

they do not pay attention to paradigms while they code in Python. Most of the

participants in this category talked about using Python as needed for the task. They

did not have a preference to choose over a paradigm. "I do so much so simple work

I don’t normally think about more than just a simple one through procedural and

functional kind of basis so I don’t really get to ease object oriented programming to

its fullest"

Measure for predominant paradigm The participants in this category talked

about what methods did they use to measure the predominant paradigm. Methods

like counting statements, estimations, calculating percentages, and skimming through

the code to check for more features specific to the paradigm. "I didn’t do any like

math right I kind of just to the ballpark feel of like how many I saw in this kind of

estimated."

Paradigm specific classification The participants in this category talked about

looking for certain features to judge a specific paradigm. "I would say this is my

functional to me because although the inside definition that is which is procedural but

since it is covered in wrapped up inside a function so that’s why I would say that this

is functional right."

5.3 Threats to Validity

In this section we discuss potential threats to the validity of our study. We classify

these possible threats into three different categories: construct, internal, and external

validity.

50

5.3.1 Construct Validity

Tasks were given to each participant in the same order, and this can cause unintended

ordering effects. We partially mitigated this by randomizing the paradigm orders.

Procedures like task start and stop time might have been less accurate since it

was done manually and we relied on the participants to inform the moderator when

they were finished with each task.

5.3.2 Internal Validity

Given the fact that Python has so many features and each programmer might only

use a subset of them, their reading pattern can be different, and a sample size of 29

might not be enough. In addition, all of our subjects were university students, so this

might not be the best sample set to represent the Python developers community, i.e.

our study might make some faulty generalizations.

Another threat to the validity is the unaddressed linearity. For example, in Python

source code, some features might occur together and thus receive more attention from

the programmer. For example, a functional code example that had a lot of lambdas

on almost every line might have been very simple for some developers. To mitigate

this threat we randomly picked real-world code files from Boa’s 2019 Python dataset.

5.3.3 External Validity

In addition to the first two threats, since we are trying to understand the latent

thought process of the subjects, there is a possibility of misinterpretation. The

thought process is hard to capture, and though eye-tracking, and questionnaires we

can accurately understand. Maybe the interpretation we derived is not how the pro-

grammer comprehends the code.

51

For Task 1, we chose tasks from a curated data set for Python. To mitigate the

threat that dataset does not generalize to the Python population, we randomly pick

the code based on three different lengths. For Task 2, we manually selected and wrote

the code for the problems. This might lead to biases, since all code was written by a

small set of authors. To help mitigate this threat, we ensure that same type of logical

bug is present across all different paradigm for each task problem so the only variance

is the paradigm used.

In the next chapter, we discuss some of the implications of our results.

52

Chapter 6

Discussion

In this chapter we discuss some possible implications of the results of our study.

The study showed that participants tend to take a similar time to classify all

paradigms in Python, at a high (85%) confidence level regardless of paradigm. This

seems to indicate that developers are good at finding paradigm-specific language

features in Python. Peng et al. [31] found that developers chose certain Python

features over others when writing Python code. Our study shows they are aware

of specific features, so may make sense to see if their knowledge and their preferred

choice of features correlate at all.

Our findings also show that the developers took longer to classify as the size of

the file increases in the case of procedural, mixed, and object-oriented paradigms.

However we see a different trend in the case of the functional paradigm, we found

that developers took longer time to classify as the size of the file increased. This

might have been because the functional paradigm is easier to identify as functional

features, such as lambdas, look sufficiently different than non-functional features to

make identifying them faster and easier. Therefore, with the increase in the size of

the file, if they saw more lambdas highlighted in blue, they skimmed through the file

and classified faster.

In detail, we also find developers classified a small mixed paradigm code faster,

53

whereas they took longer to classify a large object-oriented paradigm. Another aspect

to keep in mind is that these responses are not based on their judgments, but just on

the total time, they took to classify the file from a specific paradigm. When we look

into their judgments with respect to object-oriented we find that 86% of participants

classified it accurately. If we take a deeper look at the large object-oriented paradigm,

we might get a correlation in which as the size of the file increased from medium to

large it significantly increases the time to classify, because of more statements of

object-oriented code. We also find interview responses to validate our discussion

regarding object-oriented paradigm. One participant said, "I just skimmed the code

I just looked over the blue highlighted paradigms class def return I looked at those

keywords found out in the list classified."

The study shows some interesting results on how human behavior classifies a

paradigm as mixed when compared to the automated machine classification. Table 5.3

shows participants chose most of the tasks as having more than one predominant

paradigm, except for medium-procedural and small-functional. These results show

that most participants classified more than one paradigm as mixed, regardless of

the specific percentages they classify each paradigm into. Here is one interesting

percentage split a participant talks about - "if I would choose predominant one then I

would generally select 75% and for the others, I would look around and if I felt t that

there were enough of them to define like a mixed one then I would set it somewhere

between 50 to 75 and the other". However, the thresholds to classify as mixed are not

clear, and indeed probably vary across developer. This does show that developers are

aware of the fact Python is multi-paradigm and thus most Python code is, to varying

degrees, mixed. What is not clear is how developers may have to change their mental

model when switching between paradigms in the code, or if, as Peng et al. [31] showed,

when they prefer specific features does that make them switch their mental model if

54

the surrounding code has a paradigm that differs from their preferences.

Table 5.1 shows us results about how developers classify different paradigms and

we see an interesting relation between procedural and functional paradigm classifi-

cation. We observe that the participants were specifically confused about medium

functional and medium procedural paradigms. As we observe, under functional out

of 10 participants that performed that task, half of them classify it as functional but

out of the other half, four classified it as procedural. It is interesting to see a similar

trend under the procedural paradigm the participants classify half of it as procedu-

ral and another half as functional. There definitely seems to be confusion among

developers about what procedural and functional mean in Python, most likely due

to the terminology used by the language. This result shows there may be a need to

better train new developers and clarify what these terminologies mean, especially in

relation to specific paradigms. This might explain why Alexandru et al. [13] found

that developers have a lack of understanding of Python definitions as they loosely

term them over GitHub and StackOverflow.

Future studies can investigate in depth about there awareness and accuracy of

features with respect to coding and simple natural text. We find most of our partici-

pants were specifically confused by the def() method. def() is a method in Python

but often used as def() function. This confusion might be a result of the difference

between the word function and functional. We find our one of participant explaining

that "...def() function I think I chose to be functional ...". We might infer that as

human there can be some confusion because of the word function implied to belong

to a functional paradigm. Another interesting aspect of our results is the confidence

level of the participant with respect to correct and incorrect judgments. We observe

that confidence levels increase with correct judgments across all paradigms. On the

contrary, confidence still rises with incorrect judgments. This result is significantly

55

high with the procedural paradigm. These findings are interesting and we think the

confidence levels per task might have increased due to performing similar tasks in se-

quence since procedural was not the first task in order to perform by any participant.

There might be some effect of an increase in confidence with task performance in

general. But it would be a great avenue to conduct a human study using procedural

as a paradigm across languages and observe the developer’s confidence and accuracy.

Further, the card sorting category helped us come up with different themes we see

a maximum number of cards under the theme of approach. We found that skimming

through the code was the top approach used by participants to classify the predomi-

nant paradigm. These results are similar to what we see in [28]. The participants also

followed reading line by line, control flow, data flow, and trace and execute across all

different paradigms. We show that there was no correlation between the self-identified

approach by participants and the paradigm. With our findings tool, designers can

use a particular way of code highlighting so that while skimming through new code,

the developer can get the most about the code.

We notice that participants use the approach of reading line by line higher in

mixed in comparison to other paradigms. One of the reasons this might be true is

because a mixed paradigm has a combination of two or more paradigms, hence the

participant considers looking at multiple features from different paradigms as we saw

before. We also validate these results since reading line by line took longer time and

this might be a reason why medium and large mixed paradigms took longer to classify.

For the bug localization category, we looked into the effect of paradigm on the

developer’s accuracy to debug a logical error. We also investigated the developer’s

debugging ability with the effect of different paradigms. We found no correlation

between paradigm and bug localization for the largest, palindrome, and cube tasks.

However, we see that the participants take a longer time to debug functional factorial

56

tasks. This makes us turn towards the interview data and one of the participants talks

about how they like to code the functional paradigm but find it harder to debug, “The

functional paradigms are harder for me to understand when I’m debugging because

functional paradigms quickly change objects so fast” . This makes us question that

is there a trend with functional paradigms being hard to code. Functional paradigm

has been significantly used lesser than procedural and object-oriented [4].

In the next chapter, we conclude and summarize our findings of this study.

57

Chapter 7

Conclusion

Despite the large and growing popularity of the Python language, little has been

studied about how the language supports multiple paradigms and what affect those

multiple paradigms might have on the ability to isolate bugs in the language. In this

study, we used eye-tracking to first see if particular language features are used by

developers when attempting to classify the predominant paradigm in Python code,

and second, if language features played a role in isolating bugs.

We found that developers tend to take longer to classify code written in a func-

tional paradigm and have lower confidence of that classification, compared to other

paradigms. They also incorrectly classified procedural and functional code and found

themselves confused between those two paradigms. Next, we observed that the de-

velopers gaze at paradigm-specific language features while classifying, regardless of

the paradigm. We also found that predominant paradigm has no relation with the

ability to isolate bugs, though participants rated their confidence in the task as lower.

However, participants stated that code written in a functional paradigm was more

difficult to debug.

In the future, we hope to investigate why participants found it harder to debug

the functional code. We also want to investigate the boundaries where developers

stop seeing the code as having a predominant paradigm and start viewing it as more

58

mixed, so we can better understand when their mindset might change while reading

or debugging mixed code. We also hope to survey some developers to get a better

feeling for why specifically they seem to confuse procedural and functional paradigms

in Python.

59

Appendix A

Questionnaires

In this chapter, we list all of the questionnaires or audio interview questions asked of

each participant.

A.1 Pre-Questionnaire

The pre-questionnaire was given to each participant at the start of the study. The

questions included:

1. What is the highest degree you have completed?

2. How often do you program in Python?

3. Which of the following programming languages can you read and comprehend?

4. How many years of experience do you have programming in Python?

A.2 Post-Questionnaire

The post-questionnaire was given to each participant at the end of the study. The

questions included:

1. List any difficulties you had performing this study, if any.

60

2. How important is it for you to code in a specific programming paradigm?

3. How would you rate your programming in Python?

4. How was your overall experience during the study?

5. Please list any other comments that you have.

A.3 Task 1: Sub-Task Post Questionnaire

After each Task 1 sub-task, participants were asked these questions:

1. What is the most predominant paradigm for this code?

2. What is your confidence level for above classification?

3. Do you think the code has more than one predominant paradigm?

4. What are the various percentages for specific paradigm?

5. Check mark all various high-level constructs you see in the code above.

A.4 Task 2: Sub-Task Post Questionnaire

After each Task 2 sub-task, participants were asked these questions:

1. What is the paradigm of the code?

2. Do you think there is more than one predominant paradigm?

3. What line number is the bug on?

4. Explain how would you fix the bug?

5. What is your confidence level for your solution above?

61

6. Mention any additional comments for task-2.

A.5 Interview Questions

In this section, we list all interview questions asked at the end of each task group.

A.5.1 Task 1 Interview: Classification

1. What approach did you follow in order to classify the programming paradigms?

2. Did your approach change with the change in length of the file?

3. Pick a task and navigate us how did you classify this task?

4. How do you define predominant paradigm?

5. Which keywords did you gaze the most?

A.5.2 Task 2 Interview: Bug Localization

1. Pick a task and navigate us how did you debug this task?

2. What approach did you use to debug this file?

3. How do you think study can impact lives of Python developers?

4. Do you think it’s important for you to code in different paradigms?

5. Were you forced to provide a solution?

62

Appendix B

Task Code Listings

In this appendix, we list all code listings used for every sub-task in the study.

B.1 Task 1 Code Listings: Classification

In this section we list all sub-task code for the classification Task 1. The code is

real-world code from GitHub, as identified by our Boa query.

B.1.1 Functional Files

B.1.1.1 small length of code

Source: https://github.com/alexvlis/Shape-Recognition/blob/

cc979394c4a2864c9a9b4a21b17e14880a6c6ae2/nnmath.py

1 import numpy as np

2 tansig = lambda n: 2 / (1 + np.exp(-2 * n)) - 1

3 sigmoid = lambda n: 1 / (1 + np.exp(-n))

4 hardlim = lambda n: 1 if n >= 0 else 0

5 purelin = lambda n: n

6 relu = lambda n: np.fmax(0, n)

7 square_error = lambda x, y: np.sum(0.5 * (x - y)**2)

8 sig_prime = lambda z: sigmoid(z) * (1 - sigmoid(z))

9 relu_prime = lambda z: relu(z) * (1 - relu(z))

10 softmax = lambda n: np.exp(n)/np.sum(np.exp(n))

https://github.com/alexvlis/Shape-Recognition/blob/cc979394c4a2864c9a9b4a21b17e14880a6c6ae2/nnmath.py
https://github.com/alexvlis/Shape-Recognition/blob/cc979394c4a2864c9a9b4a21b17e14880a6c6ae2/nnmath.py

63

11 softmax_prime = lambda n: softmax(n) * (1 - softmax(n))

12 cross_entropy = lambda x, y: -np.dot(x, np.log(y))

B.1.1.2 medium length of code

Source: https://github.com/laixintao/iredis/blob/

4d93a1fb7736052e894ad54aeb4c2c4ef4fb5614/tests/unittests/

command_parse/test_set_parse.py

1 def test_sadd(judge_command):

2 judge_command(

3 "SADD foo m1 m2 m3", {"command": "SADD", "key": "foo", "members": "m1←↩

m2 m3"}

4)

5 judge_command("SADD foo m1", {"command": "SADD", "key": "foo", "members":←↩

"m1"})

6 judge_command("SADD foo", None)

7 def test_sdiffstore(judge_command):

8 judge_command(

9 "SDIFFSTORE foo m1 m2 m3",

10 {"command": "SDIFFSTORE", "destination": "foo", "keys": "m1 m2 m3"},

11)

12 judge_command(

13 "SDIFFSTORE foo m1",

14 {"command": "SDIFFSTORE", "destination": "foo", "keys": "m1"},

15)

16 judge_command("SDIFFSTORE foo", None)

17 def test_is_member(judge_command):

18 judge_command("SISMEMBER foo m1 m2 m3", None)

19 judge_command(

20 "SISMEMBER foo m1", {"command": "SISMEMBER", "key": "foo", "member": ←↩

"m1"}

https://github.com/laixintao/iredis/blob/4d93a1fb7736052e894ad54aeb4c2c4ef4fb5614/tests/unittests/command_parse/test_set_parse.py
https://github.com/laixintao/iredis/blob/4d93a1fb7736052e894ad54aeb4c2c4ef4fb5614/tests/unittests/command_parse/test_set_parse.py
https://github.com/laixintao/iredis/blob/4d93a1fb7736052e894ad54aeb4c2c4ef4fb5614/tests/unittests/command_parse/test_set_parse.py

64

21)

22 judge_command("SISMEMBER foo", None)

23 def test_smove(judge_command):

24 judge_command(

25 "SMOVE foo bar m2",

26 {"command": "SMOVE", "key": "foo", "newkey": "bar", "member": "m2"},

27)

28 judge_command("SMOVE foo m1", None)

29 judge_command("SMOVE foo", None)

30 def test_spop(judge_command):

31 judge_command("SPOP set", {"command": "SPOP", "key": "set"})

32 judge_command("SPOP set 3", {"command": "SPOP", "key": "set", "count": "3←↩

"})

B.1.1.3 large length of code

Source: https://github.com/frankhjwx/osu-storyboard-engine/

blob/78cf4e928f342398b08948e0f61ff4a04a38f8bc/Storyboard%

20Engine/tools/easingFuncs.py

1 Reverse = lambda func, value: 1 - func(1 - value)

2 ToInOut = lambda func, value: 0.5 * (func(2 * value) if value < 0.5 else 2 - ←↩

func(2 - 2 * value))

3 Linear = lambda x: x

4 QuadIn = lambda x: x*x

5 QuadOut = lambda x: Reverse(QuadIn, x)

6 QuadInOut = lambda x: ToInOut(QuadIn, x)

7 CubicIn = lambda x: x**3

8 CubicOut = lambda x: Reverse(CubicIn, x)

9 CubicInOut = lambda x: ToInOut(CubicIn, x)

10 QuartIn = lambda x: x**4

11 QuartOut = lambda x: Reverse(QuartIn, x)

https://github.com/frankhjwx/osu-storyboard-engine/blob/78cf4e928f342398b08948e0f61ff4a04a38f8bc/Storyboard%20Engine/tools/easingFuncs.py
https://github.com/frankhjwx/osu-storyboard-engine/blob/78cf4e928f342398b08948e0f61ff4a04a38f8bc/Storyboard%20Engine/tools/easingFuncs.py
https://github.com/frankhjwx/osu-storyboard-engine/blob/78cf4e928f342398b08948e0f61ff4a04a38f8bc/Storyboard%20Engine/tools/easingFuncs.py

65

12 QuartInOut = lambda x: ToInOut(QuartIn, x)

13 QuintIn = lambda x: x**5

14 QuintOut = lambda x: Reverse(QuintIn, x)

15 QuintInOut = lambda x: ToInOut(QuintIn, x)

16 SineIn = lambda x: 1 - math.cos(x * math.pi / 2)

17 SineOut = lambda x: Reverse(SineIn, x)

18 SineInOut = lambda x: ToInOut(SineIn, x)

19 ExpoIn = lambda x: math.pow(2, 10 * (x - 1))

20 ExpoOut = lambda x: Reverse(ExpoIn, x)

21 ExpoInOut = lambda x: ToInOut(ExpoIn, x)

22 CircIn = lambda x: 1 - math.sqrt(1 - x * x)

23 CircOut = lambda x: Reverse(CircIn, x)

24 CircInOut = lambda x: ToInOut(CircIn, x)

25 BackIn = lambda x: x * x * ((1.70158 + 1) * x - 1.70158)

26 BackOut = lambda x: Reverse(BackIn, x)

27 BackInOut = lambda x: ToInOut(lambda y: y * y * ((1.70158 * 1.525 + 1) * y - ←↩

1.70158 * 1.525), x)

28 BounceOut = lambda x: 7.5625 * x**2 if x < 1 / 2.75 else 7.5625 * (x - (1.5 /←↩

2.75))**2 + 0.75 if x < 2 / 2.75 \

29 else 7.5625 * (x - (2.25 / 2.75))**2 + 0.9375 if x < 2.5 / 2.75 else ←↩

7.5625 * (x - (2.625 / 2.75))**2 + 0.984375

30 BounceIn = lambda x: Reverse(BounceOut, x)

31 BounceInOut = lambda x: ToInOut(BounceIn, x)

32 ElasticOut = lambda x: math.pow(2, -10 * x) * math.sin((x * 0.075) * (2 * ←↩

math.pi) / 0.3) + 1

33 ElasticIn = lambda x: Reverse(ElasticOut, x)

34 ElasticOutHalf = lambda x: math.pow(2, -10 * x) * math.sin((0.5 * x - 0.075) ←↩

* (2 * math.pi) / 0.3) + 1

35 ElasticOutQuarter = lambda x: math.pow(2, -10 * x) * math.sin((0.025 * x - ←↩

0.075) * (2 * math.pi) / 0.3) + 1

36 ElasticInOut = lambda x: ToInOut(ElasticIn, x)

66

37 numToEasing = {

38 0: Linear,

39 1: QuadIn, 2: QuadOut,

40 3: QuadIn, 4: QuadOut, 5: QuadInOut,

41 6: CubicIn, 7: CubicOut, 8: CubicInOut,

42 9: QuartIn, 10: QuartOut, 11: QuartInOut,

43 12: QuintIn, 13: QuintOut, 14: QuintInOut,

44 15: SineIn, 16: SineOut, 17: SineInOut,

45 18: ExpoIn, 19: ExpoOut, 20: ExpoInOut,

46 21: CircIn, 22: CircOut, 23: CircInOut,

47 24: ElasticIn, 25: ElasticOut, 26: ElasticOutHalf, 27: ElasticOutQuarter,←↩

28: ElasticInOut,

48 29: BackIn, 30: BackOut, 31: BackInOut,

49 32: BounceIn, 33: BounceOut, 34: BounceInOut

50 }

B.1.2 Object-Oriented Files

B.1.2.1 small length of code

Source: https://github.com/storborg/packagetrack/blob/

e1e5417565b8e2a919936713e1939db5aa895e56/packagetrack/usps.

py

1 class USPSInterface(object):

2 def identify(self, tracking_number):

3 return (tracking_number.startswith('91') or

4 tracking_number.startswith('94'))

5 def url(self, tracking_number):

6 return ('http://trkcnfrm1.smi.usps.com/PTSInternetWeb/'

7 'InterLabelInquiry.do?origTrackNum=%s' % tracking_number)

8 def validate(self, tracking_number):

9 tracking_num = tracking_number[:-1].replace(' ', '')

https://github.com/storborg/packagetrack/blob/e1e5417565b8e2a919936713e1939db5aa895e56/packagetrack/usps.py
https://github.com/storborg/packagetrack/blob/e1e5417565b8e2a919936713e1939db5aa895e56/packagetrack/usps.py
https://github.com/storborg/packagetrack/blob/e1e5417565b8e2a919936713e1939db5aa895e56/packagetrack/usps.py

67

10 odd_total = 0

11 even_total = 0

12 for ii, digit in enumerate(tracking_num):

13 if ii % 2:

14 odd_total += int(digit)

15 else:

16 even_total += int(digit)

17 total = odd_total + even_total * 3

18 check = ((total - (total % 10) + 10) - total) % 10

19 return (check == int(tracking_number[-1:]))

B.1.2.2 medium length of code

Source: https://github.com/angr/angr-management/blob/

b53e85f6f4bcc84c408e56f5cc41efcbfd2496c7/angrmanagement/

utils/block_objects.py

1 class FunctionHeader:

2 __slots__ = ('name', 'prototype', 'args',)

3 def __init__(self, name, prototype=None, args=None):

4 self.name = name

5 self.prototype = prototype

6 self.args = args

7 class Variables:

8 __slots__ = ['variables']

9 def __init__(self, variables):

10 self.variables = variables

11 class PhiVariable(Variables):

12 __slots__ = ['variable']

https://github.com/angr/angr-management/blob/b53e85f6f4bcc84c408e56f5cc41efcbfd2496c7/angrmanagement/utils/block_objects.py
https://github.com/angr/angr-management/blob/b53e85f6f4bcc84c408e56f5cc41efcbfd2496c7/angrmanagement/utils/block_objects.py
https://github.com/angr/angr-management/blob/b53e85f6f4bcc84c408e56f5cc41efcbfd2496c7/angrmanagement/utils/block_objects.py

68

13 def __init__(self, variable, variables):

14 super().__init__(variables)

15 self.variable = variable

16 class Label:

17 __slots__ = ['addr', 'text']

18 def __init__(self, addr, text):

19 self.addr = addr

20 self.text = text

B.1.2.3 large length of code

Source: https://github.com/geemaple/leetcode/blob/

68bc5032e1ee52c22ef2f2e608053484c487af54/leetcode/131.

palindrome-partitioning.py

1 class Solution(object):

2 def __init__(self):

3 self.is_palindrome = None

4 def pre_build(self, s):

5 size = len(s)

6 self.is_palindrome = [[False for _ in range(size)] for _ in range(←↩

size)]

7 for t in range(size):

8 i = j = t

9 while i >= 0 and j < size and s[i] == s[j]:

10 self.is_palindrome[i][j] = True

11 i -= 1

12 j += 1

13 i = t

14 j = t + 1

https://github.com/geemaple/leetcode/blob/68bc5032e1ee52c22ef2f2e608053484c487af54/leetcode/131.palindrome-partitioning.py
https://github.com/geemaple/leetcode/blob/68bc5032e1ee52c22ef2f2e608053484c487af54/leetcode/131.palindrome-partitioning.py
https://github.com/geemaple/leetcode/blob/68bc5032e1ee52c22ef2f2e608053484c487af54/leetcode/131.palindrome-partitioning.py

69

15 while i >= 0 and j < size and s[i] == s[j]:

16 self.is_palindrome[i][j] = True

17 i -= 1

18 j += 1

19 def partition(self, s):

20 self.pre_build(s)

21 results = []

22 ans = []

23 self.helper(s, 0, ans, results)

24 return results

25 def helper(self, s, start, ans, results):

26 if start == len(s):

27 results.append(list(ans))

28 for i in range(start, len(s)):

29 if not self.is_palindrome[start][i]:

30 continue

31 ans.append(s[start: i + 1])

32 self.helper(s, i + 1, ans, results)

33 ans.pop()

B.1.3 Procedural Files

B.1.3.1 small length of code

Source: https://github.com/blackbuntu/blackbuntu/blob/

23e7ca77dc659c16345af55b7d75c6f430221f98/opt/blackbuntu/

vulnerability-analysis/inguma/lib/libasciienc.py

1 def encrypt(string):

2 a = string

3 new_string = ''

4 for x in a:

https://github.com/blackbuntu/blackbuntu/blob/23e7ca77dc659c16345af55b7d75c6f430221f98/opt/blackbuntu/vulnerability-analysis/inguma/lib/libasciienc.py
https://github.com/blackbuntu/blackbuntu/blob/23e7ca77dc659c16345af55b7d75c6f430221f98/opt/blackbuntu/vulnerability-analysis/inguma/lib/libasciienc.py
https://github.com/blackbuntu/blackbuntu/blob/23e7ca77dc659c16345af55b7d75c6f430221f98/opt/blackbuntu/vulnerability-analysis/inguma/lib/libasciienc.py

70

5 new_string = new_string+str(ord(x))+' '

6 return new_string

7 def unencrypt(string):

8 a = string

9 new_string = ''

10 b = a.split()

11 for x in b:

12 new_string = new_string+chr(int(x))

13 return new_string

B.1.3.2 medium length of code

Source: https://github.com/fanping9540/zefeng/blob/

77481b3106830bd1560ce7e7de096324f0a617e7/exercises/change/

example.py

1 def find_fewest_coins(coins, target):

2 if target < 0:

3 raise ValueError("cannot find negative change values")

4 min_coins_required = [1e9] * (target + 1)

5 last_coin = [0]*(target + 1)

6 min_coins_required[0] = 0

7 last_coin[0] = -1

8 for change in range(1, target + 1):

9 final_result = min_coins_required[change]

10 for coin in coins:

11 if coin <= change:

12 result = min_coins_required[change - coin] + 1

13 if result < final_result:

14 final_result = result

15 last_coin[change] = change - coin

16 min_coins_required[change] = final_result

17 if min_coins_required[target] == 1e9:

18 raise ValueError("no combination can add up to target")

https://github.com/fanping9540/zefeng/blob/77481b3106830bd1560ce7e7de096324f0a617e7/exercises/change/example.py
https://github.com/fanping9540/zefeng/blob/77481b3106830bd1560ce7e7de096324f0a617e7/exercises/change/example.py
https://github.com/fanping9540/zefeng/blob/77481b3106830bd1560ce7e7de096324f0a617e7/exercises/change/example.py

71

19 else:

20 last_coin_value = target

21 array = []

22 while(last_coin[last_coin_value] != -1):

23 array.append(last_coin_value-last_coin[last_coin_value])

24 last_coin_value = last_coin[last_coin_value]

25 return array

B.1.3.3 large length of code

Source: https://github.com/IBM-Security/ibmsecurity/blob/

22606e5d51bc45808a431f33ec4d2878d7506cb4/ibmsecurity/isam/

aac/api_protection/grants_user.py

1 logger = logging.getLogger(__name__)

2 def get(isamAppliance, userid, check_mode=False, force=False):

3 return isamAppliance.invoke_get("Get grants by userid",

4 "/iam/access/v8/grants/userIds/{0}".←↩

format(userid))

5 def get_recent(isamAppliance, userid, timestamp, token_type='refresh_token', ←↩

check_mode=False, force=False):

6 ret_obj = get(isamAppliance=isamAppliance, userid=userid)

7 recent_tokens = []

8 other_tokens = []

9 for attrbs in ret_obj['data']:

10 for tok in attrbs['tokens']:

11 if tok['dateCreated'] > timestamp and (tok['subType'] == ←↩

token_type or token_type is None):

12 recent_tokens.append(tok)

13 else:

14 other_tokens.append(tok)

https://github.com/IBM-Security/ibmsecurity/blob/22606e5d51bc45808a431f33ec4d2878d7506cb4/ibmsecurity/isam/aac/api_protection/grants_user.py
https://github.com/IBM-Security/ibmsecurity/blob/22606e5d51bc45808a431f33ec4d2878d7506cb4/ibmsecurity/isam/aac/api_protection/grants_user.py
https://github.com/IBM-Security/ibmsecurity/blob/22606e5d51bc45808a431f33ec4d2878d7506cb4/ibmsecurity/isam/aac/api_protection/grants_user.py

72

15 new_ret_obj = isamAppliance.create_return_object()

16 new_ret_obj['data']['recent'] = recent_tokens

17 new_ret_obj['data']['other'] = other_tokens

18 return new_ret_obj

19 def delete(isamAppliance, userid, check_mode=False, force=False):

20 if force is True or _check(isamAppliance, userid) is True:

21 if check_mode is True:

22 return isamAppliance.create_return_object(changed=True)

23 else:

24 return isamAppliance.invoke_delete("Delete grants by userid",

25 "/iam/access/v8/grants/userIds←↩

/{0}".format(userid))

26 return isamAppliance.create_return_object()

27 def _check(isamAppliance, userid):

28 try:

29 ret_obj = get(isamAppliance, userid)

30 if len(ret_obj['data']) > 0:

31 return True

32 except:

33 pass

34 return False

B.1.4 Mixed Files

B.1.4.1 small length of code

Source: https://github.com/pipermerriam/eth-testrpc/blob/

328e1ba3dfce6273527773505701522febef79a0/tests/endpoints/

https://github.com/pipermerriam/eth-testrpc/blob/328e1ba3dfce6273527773505701522febef79a0/tests/endpoints/test_personal_sendTransaction.py
https://github.com/pipermerriam/eth-testrpc/blob/328e1ba3dfce6273527773505701522febef79a0/tests/endpoints/test_personal_sendTransaction.py
https://github.com/pipermerriam/eth-testrpc/blob/328e1ba3dfce6273527773505701522febef79a0/tests/endpoints/test_personal_sendTransaction.py

73

test_personal_sendTransaction.py

1 def test_personal_sendTransaction(accounts, rpc_client, password_account, ←↩

account_password):

2 initial_balance = rpc_client('eth_getBalance', [accounts[1]])

3 with pytest.raises(AssertionError):

4 rpc_client('personal_signAndSendTransaction', [{

5 'from': password_account,

6 'to': accounts[1],

7 'value': 1234,

8 }, "incorrect-password"])

9 assert rpc_client('eth_getBalance', [accounts[1]]) == initial_balance

10 rpc_client('personal_signAndSendTransaction', [{

11 'from': password_account,

12 'to': accounts[1],

13 'value': 1234,

14 }, account_password])

15 after_balance = rpc_client('eth_getBalance', [accounts[1]])

16 assert after_balance - initial_balance == 1234

B.1.4.2 medium length of code

Source: https://github.com/asottile/babi/blob/

a10ae3c3faed4c4726187caeb4e19f425ab23df3/tests/features/

open_test.py

1 def test_open_cancelled(run, tmpdir):

2 f = tmpdir.join('f')

3 f.write('hello world')

4 with run(str(f)) as h, and_exit(h):

5 h.await_text('hello world')

6 h.press('^P')

https://github.com/pipermerriam/eth-testrpc/blob/328e1ba3dfce6273527773505701522febef79a0/tests/endpoints/test_personal_sendTransaction.py
https://github.com/pipermerriam/eth-testrpc/blob/328e1ba3dfce6273527773505701522febef79a0/tests/endpoints/test_personal_sendTransaction.py
https://github.com/pipermerriam/eth-testrpc/blob/328e1ba3dfce6273527773505701522febef79a0/tests/endpoints/test_personal_sendTransaction.py
https://github.com/asottile/babi/blob/a10ae3c3faed4c4726187caeb4e19f425ab23df3/tests/features/open_test.py
https://github.com/asottile/babi/blob/a10ae3c3faed4c4726187caeb4e19f425ab23df3/tests/features/open_test.py
https://github.com/asottile/babi/blob/a10ae3c3faed4c4726187caeb4e19f425ab23df3/tests/features/open_test.py

74

7 h.await_text('enter filename:')

8 h.press('^C')

9 h.await_text('cancelled')

10 h.await_text('hello world')

11 def test_open(run, tmpdir):

12 f = tmpdir.join('f')

13 f.write('hello world')

14 g = tmpdir.join('g')

15 g.write('goodbye world')

16 with run(str(f)) as h:

17 h.await_text('hello world')

18 h.press('^P')

19 h.press_and_enter(str(g))

20 h.await_text('[2/2]')

21 h.await_text('goodbye world')

22 h.press('^X')

23 h.await_text('hello world')

24 h.press('^X')

25 h.await_exit()

B.1.4.3 large length of code

Source: https://github.com/D0WN3D/gobyteman/blob/

bb0682669b6b464efd77649c1c4cb1190220b486/lib/pycoin/pycoin/

ecdsa/native/bignum.py

1 def bignum_type_for_library(library):

2 ULONG_FACTOR = 1 << (8 * ctypes.sizeof(ctypes.c_ulong))

https://github.com/D0WN3D/gobyteman/blob/bb0682669b6b464efd77649c1c4cb1190220b486/lib/pycoin/pycoin/ecdsa/native/bignum.py
https://github.com/D0WN3D/gobyteman/blob/bb0682669b6b464efd77649c1c4cb1190220b486/lib/pycoin/pycoin/ecdsa/native/bignum.py
https://github.com/D0WN3D/gobyteman/blob/bb0682669b6b464efd77649c1c4cb1190220b486/lib/pycoin/pycoin/ecdsa/native/bignum.py

75

3 class BignumType(ctypes.Structure):

4 _fields_ = [

5 ('d', ctypes.POINTER(ctypes.c_ulong)),

6 ('top', ctypes.c_int),

7 ('dmax', ctypes.c_int),

8 ('neg', ctypes.c_int),

9 ('flags', ctypes.c_int),

10]

11 def __init__(self, n=0):

12 negative = (n < 0)

13 if negative:

14 n = -n

15 the_len = (n.bit_length() + 7)//8

16 sign = b'\x80' if negative else b'\0'

17 the_bytes = struct.pack(">L", the_len+1) + sign + to_bytes(n, ←↩

the_len, "big")

18 library.BN_mpi2bn(the_bytes, the_len + 5, self)

19 def __del__(self):

20 library.BN_clear_free(self)

21 def __int__(self):

22 "cast to int"

23 return self.as_int()

24 def to_int(self):

25 value, factor = 0, 1

26 for w in self.datawords():

27 value += w * factor

28 factor *= ULONG_FACTOR

29 if self.neg:

30 value = -value

31 return value

32 def datawords(self):

76

33 return (self.d[k] for k in range(self.top))

34 def __repr__(self):

35 return "BignumType(%d)" % self.to_int()

36 return BignumType

B.2 Task 2 Code Listings: Bug Localization

In this section we list all sub-task code for the bug localization Task 2. Note that these

codes were hand-created by the authors, and the bugs were artificially introduced.

The bug is the same for a given program, regardless of paradigm.

B.2.1 Cube

The bug is where the value is properly multiplied three times (to compute the cube of

the value), but it also then multiplies the result by the constant 3 resulting in 3 ∗ x3

instead of x3.

B.2.1.1 Cube: Object-Oriented

1 # Find a logical bug in the code below

2 # The following code prints an output for a cube of a list of numbers.

3 items = [1, 2, 3, 4]

4 class Cuber:

5 def __init__(self, x):

6 self.x = x

7 def cube(self):

8 print(self.x * self.x * self.x * 3)

77

9 for number in items:

10 c = Cuber(number)

11 c.cube()

B.2.1.2 Cube: Procedural

1 # Find a logical bug in the code below

2 # The following code prints an output for a cube of a list of numbers.

3 items = [1, 2, 3, 4]

4 def cube(x):

5 return x * x * x * 3

6 for number in items:

7 res = cube(number)

8 print(res)

B.2.1.3 Cube: Functional

1 # Find a logical bug in the code below

2 # The following code prints an output for a cube of a list of numbers.

3 items = [1, 2, 3, 4]

4 _ = list(map(print, [x * x * x * 3 for x in items]))

B.2.1.4 Cube: Mixed

1 # Find a logical bug in the code below

2 # The following code prints an output for a cube of a list of numbers.

3 items = [1, 2, 3, 4]

4 for i in items:

5 print(i * i * i * 3)

78

B.2.2 Factorial

The bug was that the value returned in the base case was 0 when it should be 1.

B.2.2.1 Factorial: Object-Oriented

1 # Find a logical bug in the code below

2 # The following code provides a factorial of a number

3 import sys

4 n = int(sys.argv[1])

5 class Number:

6 def __init__(self, n):

7 self.n = n

8 def factorial(self):

9 f = 0

10 for i in range(1, self.n + 1):

11 f = f * i

12 return f

13 factorial = Number(n).factorial()

14 print(f'The factorial of {n} is {factorial}')

B.2.2.2 Factorial: Procedural

1 # Find a logical bug in the code below

2 # The following code provides a factorial of a number

3 import sys

4 n = int(sys.argv[1])

5 def factorial(n):

6 return 0 if n <= 1 else n * factorial(n - 1)

7 print(f'The factorial of {n} is {factorial(n)}')

79

B.2.2.3 Factorial: Functional

1 # Find a logical bug in the code below

2 # The following code provides a factorial of a number

3 import sys

4 n = int(sys.argv[1])

5 def recursive_lambda(func):

6 def ret(*args):

7 return func(ret, *args)

8 return ret

9 factorial = recursive_lambda(lambda factorial, n: n * factorial(n - 1) if n >←↩

1 else 0)(n)

10 print(f'The factorial of {n} is {factorial}')

B.2.2.4 Factorial: Mixed

1 # Find a logical bug in the code below

2 # The following code provides a factorial of a number

3 import sys

4 n = int(sys.argv[1])

5 factorial = 0

6 for i in range(1, n + 1):

7 factorial = factorial * i

8 print(f'The factorial of {n} is {factorial}')

B.2.3 Largest Number

The bug is that when finding the maximum number, the comparison is greater than

when it should be less than.

80

B.2.3.1 Largest Number: Object-Oriented

1 # Find a logical bug in the code below

2 #This code finds the largest number from a list in Python.

3 heights = [10, 20, 4, 45, 99]

4 class MyList:

5 def __init__(self, lst):

6 self.lst = lst

7 def max(self):

8 maximum = self.lst[0]

9 for x in self.lst:

10 if maximum > x:

11 maximum = x

12 return maximum

13 max_height = MyList(heights).max()

14 print('Largest element is:', max_height)

B.2.3.2 Largest Number: Procedural

1 # Find a logical bug in the code below

2 #This code finds the largest number from a list in Python.

3 heights = [10, 20, 4, 45, 99]

4 def myMax(list1):

5 maximum = list1[0]

6 for x in list1:

7 if maximum > x:

8 maximum = x

9 return maximum

81

10 max_height = myMax(heights)

11 print('Largest element is:', max_height)

B.2.3.3 Largest Number: Functional

1 #Find a logical bug in the code below

2 #This code finds the largest number from a list in Python.

3 from functools import reduce

4 heights = [10, 20, 4, 45, 99]

5 max_height = reduce(lambda x, y: x if x < y else y, heights)

6 print('Largest element is:', max_height)

B.2.3.4 Largest Number: Mixed

1 # Find a logical bug in the code below

2 #This code finds the largest number from a list in Python.

3 import sys

4 heights = [10, 20, 4, 45, 99]

5 def bigger(x, y):

6 return y > x

7 max_height = -sys.maxsize - 1

8 for x in heights:

9 if bigger(x, max_height):

10 max_height = x

11 print('Largest element is:', max_height)

82

B.2.4 Palindrome

The bug was the use of an assignment operator (=) when a comparison operator

(==) was intended.

B.2.4.1 Palindrome: Object-Oriented

1 # Find a logical bug in the code below

2 # The following code takes an input string and checks for Palindrome.

3 import sys

4 word = sys.argv[1]

5 class Palindrome:

6 def __init__(self, word):

7 self.word = word.lower()

8 def check(self):

9 word = self.word.replace(' ', '')

10 return word = word[::-1]

11 print(Palindrome(word).check())

B.2.4.2 Palindrome: Procedural

1 # Find a logical bug in the code below

2 # The following code takes an input string and checks for Palindrome.

3 import sys

4 word = sys.argv[1]

5 def palindrome(word):

6 word = word.lower().replace(' ', '')

7 return word = word[::-1]

8 print(palindrome(word))

83

B.2.4.3 Palindrome: Functional

1 # Find a logical bug in the code below

2 # The following code takes an input string and checks for Palindrome.

3 import sys

4 word = sys.argv[1]

5 palindrome = lambda some_str: some_str.lower().replace(' ', '') = some_str.←↩

lower().replace(' ', '')[::-1]

6 print(palindrome(word))

B.2.4.4 Palindrome: Mixed

1 # Find a logical bug in the code below

2 # The following code takes an input string and checks for Palindrome.

3 import sys

4 word = sys.argv[1]

5 word = word.lower().replace(' ', '')

6 rev = reversed(word.casefold())

7 if list(word) = list(rev):

8 print('True')

9 else:

10 print('False')

84

Appendix C

Fixation Tables

In this appendix, we list all fixation counts and durations for every line of code in

each of the sub-tasks.

Table C.1: Fixation duration and fixation counts for functional small classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Functional (small) 1 39,145 36

func,proc 3 98,708 108
func,proc 5 94,424 91

func 7 79,896 117
func,proc 9 45,206 64

func,oo 11 94,281 93
func,proc 13 78,930 139
func,proc 15 133,236 116
func,proc 17 51,331 71

func,oo 19 79,936 74
func,proc 21 52,510 51

func,oo 23 57,326 47

85

Table C.2: Fixation duration and fixation counts for functional medium classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Functional (medium) proc 1 49,660 67

proc 2 68,579 77
imp 3 79,088 109
proc 4 567 1
proc 5 27,047 43
proc 6 68,744 79
proc 9 55,356 63
proc 10 68,636 79
imp 11 53,761 80
imp 12 26,608 52
proc 14 13,504 22
proc 15 37,449 27
imp 16 19,409 37
imp 17 834 1
imp 18 29,821 29
proc 21 30,429 56
proc 22 46,634 62
proc 23 28,873 32
proc 24 26,966 46
proc 26 23,565 32
proc 29 45,186 38
proc 30 29,051 43
proc 31 22,964 36
proc 32 123,572 25
proc 34 13,998 31
proc 35 7,897 17
proc 38 116,286 52
proc 39 157,837 84
proc 40 44,492 6

86

Table C.3: Fixation duration and fixation counts for functional large classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Functional (large) func 1 14,650 24

func, proc 2 38,280 50
func 3 7,716 14
func 4 13,629 23

func, proc 5 7,817 15
func 6 3,717 6
func 7 5,552 13

func, proc 8 3,783 6
func, proc 9 10,314 19

func 10 4,415 8
func, proc 11 5,988 13
func, proc 12 6,299 13

func 13 3,018 9
func, proc 14 55,430 7

func 15 8,109 17
func, oo 17 12,866 24

func, proc 18 10,483 24
func 19 65,791 13

func, oo 21 4,444 9
func, proc 22 6,696 12
func, proc 23 5,568 12
func, proc 25 114,000 7

func 26 9,245 19
func, proc 27 14,084 18

func 29 21,266 9
func, proc 30 8,736 17

func 31 9,683 10
func, oo 33 11,994 21

func 34 31,522 29
func 35 6,249 13

func, proc 36 8,815 15
func, oo 38 13,131 26

func 39 80,044 32
func, oo 40 21,982 46

func 41 66,359 56
func 42 36,494 51
func 44 91,116 65
func 45 69,369 54
func 46 22,568 44
func 47 21,292 35
func 48 52,131 17
func 49 12,280 25
func 50 9,247 14
func 51 5,977 14
func 52 8,337 22
func 53 5,550 16
func 54 8,416 24
func 55 9,254 27
func 56 10,048 13

87

Table C.4: Fixation duration and fixation counts for mixed small classification tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Mixed small proc 1 77,738 86

proc 2 125,824 136
proc 4 60,969 73
proc 5 95,568 109
proc 6 37,070 79
proc 7 16,666 35

oo 8 20,012 26
oo 9 12,972 29
oo 10 118,823 92
oo 12 156,203 69

proc 13 28,198 54
proc 14 40,505 32

oo 15 3,650 7
proc 16 16,298 36
proc 17 153,006 69
proc 19 42,060 44

88

Table C.5: Fixation duration and fixation counts for mixed meduium classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Mixed medium oo 1 81,728 102

proc 2 102,710 148
proc 3 77,297 131

oo 5 81,240 105
func 6 96,822 136
proc 8 69,728 59
proc 9 56,196 60
proc 10 37,990 50
proc 12 45,362 48

oo 13 30,600 54
oo 16 154,630 94
oo 17 91,279 100
oo 18 57,098 107
oo 19 36,573 69
oo 20 44,756 67
oo 22 120,542 81
oo 23 51,905 88
oo 25 35,377 56

proc 26 33,144 59
proc 28 20,784 43
proc 29 18,643 30
proc 31 9,650 17
proc 32 16,440 30

oo 34 13,896 29
proc 35 27,781 37

89

Table C.6: Fixation duration and fixation counts for mixed large classification tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Mixed large proc 1 65,797 96

oo 2 75,971 138
proc 4 49,216 86
proc 5 65,313 76

proc, oo 6 46,389 70
proc, oo 7 26,350 45
proc, oo 8 13,876 26
proc, oo 9 10,917 22
proc, oo 10 14,502 33
proc, oo 11 466 1

proc 13 29,416 56
oo 14 29,912 50

proc 15 27,066 54
proc 16 21,986 34
proc 17 18,520 43
proc 18 27,347 67
proc 19 22,318 50
proc 20 20,531 40

proc, oo 22 27,644 46
proc, oo 23 48,701 46
proc, oo 25 52,434 43
proc, oo 26 31,916 42
proc, oo 27 30,217 41
proc, oo 29 19,779 32
proc, oo 30 81,008 45
proc, oo 31 27,016 53
proc, oo 32 14,563 27
proc, oo 33 14,501 27
proc, oo 34 13,599 23
proc, oo 35 13,432 17
proc, oo 36 5,813 14
proc, oo 38 59,460 63
proc, oo 39 31,620 30
proc, oo 41 24,382 30
proc, oo 42 23,709 39
proc, oo 44 18,636 29

90

Table C.7: Fixation duration and fixation counts for procedural small classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Procedural small proc 1 91,376 44

proc 2 82,691 81
proc 3 47,093 77
proc 4 56,281 70
proc 5 175,313 115
proc 6 69,151 63
proc 9 45,238 62
proc 10 117,756 64
proc 11 64,204 51
proc 12 147,441 55
proc 13 79,372 38
proc 14 68,057 63
proc 15 61,275 30

Table C.8: Fixation duration and fixation counts for procedural medium classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Procedural medium proc 1 74,351 82

proc 2 48,303 80
proc 3 47,096 76
proc 4 41,201 65
proc 5 45,137 57
proc 6 27,413 59
proc 7 16,829 34
proc 8 35,107 64
proc 9 53,138 76
proc 10 25,994 49
proc 11 32,125 48
proc 12 49,487 75
proc 13 16,103 34
proc 14 83,725 27
proc 15 34,044 48
proc 16 32,466 61
proc 17 49,323 84
proc 18 62,885 61
proc 19 18,354 21
proc 20 38,492 35
proc 21 58,490 32
proc 22 30,249 35
proc 23 19,430 35
proc 24 40,584 32
proc 25 8,419 15

91

Table C.9: Fixation duration and fixation counts for procedural large classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Procedural large proc 1 30,450 39

proc 4 104,289 48
proc 5 61,827 120
proc 6 56,588 97
proc 9 31,062 49
proc 10 54,685 100
proc 12 11,484 27
proc 13 11,919 20
proc 14 32,324 52
proc 15 108,531 72
proc 16 50,480 104
proc 17 25,470 38
proc 18 4,635 14
proc 19 10,515 25
proc 21 22,920 36
proc 22 41,989 59
proc 23 17,435 32
proc 25 16,737 29
proc 28 33,210 64
proc 29 63,460 72
proc 30 29,125 48
proc 31 29,246 63
proc 32 12,217 23
proc 33 21,471 42
proc 34 10,832 28
proc 36 13,262 28
proc 39 80,934 55
proc 40 20,670 30
proc 41 19,066 42
proc 42 115,046 42
proc 43 20,657 45
proc 44 82,597 35
proc 45 63,593 32
proc 47 20,529 26

92

Table C.10: Fixation duration and fixation counts for object-oriented small classifi-
cation tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Object-oriented small oo 1 51,938 55

oo 2 79,537 139
oo 3 67,790 109
oo 4 72,314 77
oo 6 68,267 75
oo 7 39,087 76
oo 8 63,460 53
oo 10 60,810 85
oo 11 64,467 92
oo 12 15,512 34
oo 13 28,810 44
oo 14 41,925 74
oo 15 55,976 37
oo 16 22,284 36
oo 17 13,814 18
oo 18 30,098 44
oo 19 24,977 46
oo 20 55,952 49
oo 21 48,941 38

Table C.11: Fixation duration and fixation counts for object-oriented medium classi-
fication tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Object-oriented medium oo 1 32,558 22

oo 2 34,446 48
oo 4 47,225 48
oo 5 74,723 47
oo 6 15,391 31
oo 7 10,930 19
oo 10 17,335 26
oo 11 27,761 47
oo 13 130,349 46
oo 14 78,601 45
oo 17 47,834 52
oo 18 21,551 27
oo 20 43,440 47
oo 21 19,869 40
oo 22 13,196 12
oo 25 124,646 41
oo 26 68,821 37
oo 28 20,703 26
oo 29 17,647 14
oo 30 37,846 10

93

Table C.12: Fixation duration and fixation counts for object-oriented large classifica-
tion tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Object-oriented large oo 1 8,317 19

oo 2 40,024 64
oo 3 65,502 99
oo 5 34,660 65
oo 6 50,542 98
oo 7 87,024 168
oo 9 53,310 70
oo 10 33,493 55
oo 11 60,588 110
oo 12 57,813 78
oo 13 37,882 40
oo 14 38,933 27
oo 16 2,597 9
oo 17 14,080 31
oo 18 66,895 88
oo 19 33,581 48
oo 20 24,981 25
oo 21 10,818 21
oo 23 81,647 88
oo 24 36,806 85
oo 25 23,492 34
oo 26 34,116 46
oo 27 50,327 64
oo 28 21,447 29
oo 30 54,549 76
oo 31 77,761 49
oo 32 30,294 37
oo 34 97,186 50
oo 35 17,997 43
oo 36 6,448 15
oo 38 72,710 22
oo 39 17,201 31
oo 40 14,747 12

Table C.13: Fixation duration and fixation counts for cube functional debugging tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Cube Functional func 1 6,922 19

func 2 42,563 45
func 4 52,643 56
func 6 455,755 223

94

Table C.14: Fixation duration and fixation counts for cube mixed debugging tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Cube Mixed 1 10,735 23

2 26,730 43
func 4 121,655 109

proc, oo 6 107,728 76
proc 7 231,416 110

Table C.15: Fixation duration and fixation counts for cube procedural debugging
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Cube Procedural proc 1 6,015 10

proc 2 16,394 29
proc 4 28,258 30
proc 6 97,207 48
proc 7 265,332 140
proc 9 115,660 64
proc 10 83,201 101
proc 11 42,416 29

Table C.16: Fixation duration and fixation counts for cube object-oriented debugging
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Cube Object-oriented oo 1 3,918 9

oo 2 17,636 28
oo 4 19,097 24
oo 6 8,696 17
oo 7 55,848 51
oo 8 38,002 43
oo 10 15,347 24
oo 11 167,782 118
oo 13 20,365 38
oo 14 42,176 48
oo 15 53,228 19

95

Table C.17: Fixation duration and fixation counts for factorial functional classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Factorial Functional func 1 6,301 15

func 2 20,029 44
func 4 12,184 13
func 5 77,856 88
func 7 135,303 191
func 8 193,672 259
func 9 215,683 271
func 10 91,626 77
func 12 771,319 1041
func 14 107,341 157

Table C.18: Fixation duration and fixation counts for factorial mixed classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Factorial Mixed 1 4,549 11

2 13,451 24
4 15,449 11
5 37,713 38

proc 7 63,242 58
func, proc 8 156,134 132

func 9 198,696 209
proc 11 114,225 95

Table C.19: Fixation duration and fixation counts for factorial procedural classifica-
tion tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Factorial Procedural proc 1 3,149 4

proc 2 11,369 11
proc 4 9,082 19
proc 5 78,358 83
proc 7 102,462 60
proc 8 379,710 287
proc 10 223,018 135

96

Table C.20: Fixation duration and fixation counts for factorial object-oriented clas-
sification tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Factorial Object-oriented oo 1 8,095 16

oo 2 16,164 28
oo 4 12,790 17
oo 5 40,831 45
oo 7 24,076 41
oo 8 72,786 76
oo 9 55,666 79
oo 11 61,556 94
oo 12 69,015 59
oo 13 233,094 279
oo 14 185,162 121
oo 15 21,508 35
oo 17 55,245 81
oo 19 51,433 53

Table C.21: Fixation duration and fixation counts for largest functional classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Largest Functional func 1 7,383 14

func 2 9,901 22
func 4 83,775 47
func 6 51,296 60
func 7 225,864 296
func 8 402,576 343

Table C.22: Fixation duration and fixation counts for largest mixed classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Largest Mixed 1 10,644 19

2 18,521 36
4 601 2
6 48,770 63
8 80,286 76

proc 9 126,921 117
proc, oo 11 214,230 239

proc,func 13 95,887 97
proc 14 134,878 184

15 43,512 63
proc 17 33,601 28

97

Table C.23: Fixation duration and fixation counts for largest procedural classification
tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Largest Procedural proc 1 3,701 10

proc 2 5,952 12
proc 4 31,031 55
proc 6 34,098 58
proc 7 98,721 138
proc 9 98,312 109
proc 10 180,853 130
proc 11 100,413 49
proc 13 21,043 23
proc 15 17,478 27
proc 16 19,115 6

Table C.24: Fixation duration and fixation counts for largest object-oriented classifi-
cation tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Largest Object-oriented oo 1 6,249 12

oo 2 13,648 26
oo 4 9,916 19
oo 6 15,389 19
oo 7 38,761 57
oo 8 43,260 65
oo 10 28,578 40
oo 11 61,069 88
oo 13 182,037 226
oo 14 206,295 191
oo 15 102,959 102
oo 17 64,212 37
oo 19 38,761 66
oo 20 35,482 43

Table C.25: Fixation duration and fixation counts for palindrome functional classifi-
cation tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Palindrome Functional func 1 5,501 16

func 2 39,729 65
func 4 31,442 27
func 5 71,708 68
func 7 653,840 726
func 9 53,843 72

98

Table C.26: Fixation duration and fixation counts for classification tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Palindrome Mixed 1 1,267 5

2 24,503 26
4 8,547 15
5 47,339 54

func 7 109,676 118
func 8 279,678 330
proc 10 233,610 177
proc 11 109,420 118
proc 12 27,507 9

13 20,898 11

Table C.27: Fixation duration and fixation counts for palindrome procedural classi-
fication tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Palindrome Procedural proc 1 1,699 4

proc 2 7,565 17
proc 4 6,013 7
proc 5 28,929 28
proc 7 81,360 71
proc 8 128,966 156
proc 9 312,792 274
proc 11 192,826 63

Table C.28: Fixation duration and fixation counts for palindrome object-oriented
classification tasks

Task classification Line Number Fixation Duration (ms) Fixation Counts
Palindrome Object-oriented oo 1 2,231 5

oo 2 19,083 39
oo 4 4,249 9
oo 5 36,988 50
oo 7 21,614 36
oo 8 60,544 89
oo 9 180,410 183
oo 11 82,309 64
oo 12 327,521 316
oo 13 303,864 263
oo 15 129,416 108

99

Bibliography

[1] TIOBE Software BV, TIOBE Index for August 2021, https://tiobe.com/

tiobe-index/, 2021.

[2] P. Carbonnelle, PYPL PopularitY of Programming Language, https : / /

pypl.github.io/, 2021.

[3] Github, The top programming languages, https://octoverse.github.

com/2022/top-programming-languages/, 2022.

[4] R. Dyer and J. Chauhan, “An exploratory study on the predominant program-

ming paradigms in Python code,” in Proceedings of the 30th ACM Joint Euro-

pean Software Engineering Conference and Symposium on the Foundations of

Software Engineering, ACM, Nov. 2022. doi: 10.1145/3540250.3549158.

[5] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language and in-

frastructure for analyzing ultra-large-scale software repositories,” in Proceedings

of the 2013 International Conference on Software Engineering, ser. ICSE ’13,

San Francisco, CA, USA: IEEE Press, 2013, pp. 422–431, isbn: 9781467330763.

[6] H. Rajan, T. N. Nguyen, R. Dyer, and H. A. Nguyen, Boa website, http:

//boa.cs.iastate.edu/boa/, 2021.

[7] Z. Chen, L. Chen, W. Ma, and B. Xu, “Detecting code smells in Python pro-

grams,” in 2016 International Conference on Software Analysis, Testing and

Evolution (SATE), 2016, pp. 18–23. doi: 10.1109/SATE.2016.10.

https://tiobe.com/tiobe-index/
https://tiobe.com/tiobe-index/
https://pypl.github.io/
https://pypl.github.io/
https://octoverse.github.com/2022/top-programming-languages/
https://octoverse.github.com/2022/top-programming-languages/
https://doi.org/10.1145/3540250.3549158
http://boa.cs.iastate.edu/boa/
http://boa.cs.iastate.edu/boa/
https://doi.org/10.1109/SATE.2016.10

100

[8] M. R. Rahman, A. Rahman, and L. Williams, “Share, but be aware: Security

smells in Python gists,” in 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2019, pp. 536–540. doi: 10.1109/

ICSME.2019.00087.

[9] R. M. Siegfried, D. Liporace, and K. G. Herbert-Berger, “What can the reid

list of first programming languages teach us about teaching cs1?” In Proceed-

ings of the 50th ACM Technical Symposium on Computer Science Education,

ser. SIGCSE ’19, Minneapolis, MN, USA: Association for Computing Machin-

ery, 2019, pp. 1256–1257, isbn: 9781450358903. doi: 10.1145/3287324.

3293830.

[10] A. Eghbali and M. Pradel, “Dynapyt: A dynamic analysis framework for

Python,” in Proceedings of the 30th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering,

ser. ESEC/FSE 2022, Singapore, Singapore: Association for Computing Ma-

chinery, 2022, pp. 760–771, isbn: 9781450394130. doi: 10.1145/3540250.

3549126.

[11] T. Kohn, G. van Rossum, G. B. Bucher II, Talin, and I. Levkivskyi, “Dynamic

pattern matching with Python,” in Proceedings of the 16th ACM SIGPLAN

International Symposium on Dynamic Languages, ser. DLS 2020, Virtual, USA:

Association for Computing Machinery, 2020, pp. 85–98, isbn: 9781450381758.

doi: 10.1145/3426422.3426983.

[12] V. Romanov, “Evaluating importance of edge types when using graph neural

network for predicting return types of Python functions,” in Companion Pro-

ceedings of the 2020 ACM SIGPLAN International Conference on Systems, Pro-

gramming, Languages, and Applications: Software for Humanity, ser. SPLASH

https://doi.org/10.1109/ICSME.2019.00087
https://doi.org/10.1109/ICSME.2019.00087
https://doi.org/10.1145/3287324.3293830
https://doi.org/10.1145/3287324.3293830
https://doi.org/10.1145/3540250.3549126
https://doi.org/10.1145/3540250.3549126
https://doi.org/10.1145/3426422.3426983

101

Companion 2020, Virtual, USA: Association for Computing Machinery, 2020,

pp. 25–27, isbn: 9781450381796. doi: 10.1145/3426430.3428135.

[13] C. V. Alexandru, J. J. Merchante, S. Panichella, S. Proksch, H. C. Gall, and

G. Robles, “On the usage of Pythonic idioms,” in Proceedings of the 2018 ACM

SIGPLAN International Symposium on New Ideas, New Paradigms, and Re-

flections on Programming and Software, ser. Onward! 2018, Boston, MA, USA:

Association for Computing Machinery, 2018, pp. 1–11, isbn: 9781450360319.

doi: 10.1145/3276954.3276960.

[14] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: Why is

it difficult for developers to learn another programming language?” In Proceed-

ings of the ACM/IEEE 42nd International Conference on Software Engineering,

ser. ICSE ’20, Seoul, South Korea: Association for Computing Machinery, 2020,

pp. 691–701, isbn: 9781450371216. doi: 10.1145/3377811.3380352.

[15] R. W. Floyd, “The paradigms of programming,” Commun. ACM, vol. 22, no. 8,

pp. 455–460, Aug. 1979, issn: 0001-0782. doi: 10.1145/359138.359140.

[16] A. T. Duchowski and A. T. Duchowski, Eye tracking methodology: Theory and

practice. Springer, 2017.

[17] Z. Sharafi, T. Shaffer, B. Sharif, and Y.-G. Guéhéneuc, “Eye-tracking metrics

in software engineering,” in 2015 Asia-Pacific Software Engineering Conference

(APSEC), Dec. 2015, pp. 96–103. doi: 10.1109/APSEC.2015.53.

[18] M. A. Just and P. A. Carpenter, “A theory of reading: From eye fixations to

comprehension.,” Psychological review, vol. 87, no. 4, p. 329, 1980.

[19] C. S. Peterson, J. A. Saddler, N. M. Halavick, and B. Sharif, “A gaze-based

exploratory study on the information seeking behavior of developers on stack

overflow,” in Extended Abstracts of the 2019 CHI Conference on Human Factors

https://doi.org/10.1145/3426430.3428135
https://doi.org/10.1145/3276954.3276960
https://doi.org/10.1145/3377811.3380352
https://doi.org/10.1145/359138.359140
https://doi.org/10.1109/APSEC.2015.53

102

in Computing Systems, ser. CHI EA ’19, Glasgow, Scotland Uk: Association for

Computing Machinery, 2019, pp. 1–6, isbn: 9781450359719. doi: 10.1145/

3290607.3312801.

[20] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple program-

ming languages and code quality,” in 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, IEEE,

2016, pp. 563–573. doi: 10.1109/SANER.2016.112.

[21] S. S. Brilliant and T. R. Wiseman, “The first programming paradigm and

language dilemma,” in Proceedings of the 27th SIGCSE Technical Symposium

on Computer Science Education, ser. SIGCSE ’96, Philadelphia, Pennsylva-

nia, USA: Association for Computing Machinery, 1996, pp. 338–342, isbn:

089791757X. doi: 10.1145/236452.236572.

[22] P. M. Uesbeck, C. S. Peterson, B. Sharif, and A. Stefik, “A randomized con-

trolled trial on the effects of embedded computer language switching,” in

Proceedings of the 28th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering,

ser. ESEC/FSE 2020, Virtual Event, USA: Association for Computing Ma-

chinery, 2020, pp. 410–420, isbn: 9781450370431. doi: 10.1145/3368089.

3409701.

[23] P. Mayer and A. Bauer, “An empirical analysis of the utilization of multiple

programming languages in open source projects,” in Proceedings of the 19th In-

ternational Conference on Evaluation and Assessment in Software Engineering,

ser. EASE ’15, Nanjing, China: Association for Computing Machinery, 2015,

isbn: 9781450333504. doi: 10.1145/2745802.2745805.

https://doi.org/10.1145/3290607.3312801
https://doi.org/10.1145/3290607.3312801
https://doi.org/10.1109/SANER.2016.112
https://doi.org/10.1145/236452.236572
https://doi.org/10.1145/3368089.3409701
https://doi.org/10.1145/3368089.3409701
https://doi.org/10.1145/2745802.2745805

103

[24] P. Chakraborty, R. Shahriyar, A. Iqbal, and G. Uddin, “How do developers dis-

cuss and support new programming languages in technical q&a site? an empir-

ical study of Go, Swift, and Rust in Stack Overflow,” Information and Software

Technology, vol. 137, p. 106 603, 2021, issn: 0950-5849. doi: 10.1016/j.

infsof.2021.106603.

[25] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic, “Devel-

oper reading behavior while summarizing java methods: Size and context mat-

ters,” 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pp. 384–395, 2019.

[26] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. K. D’Mello,

“Improving automated source code summarization via an eye-tracking study of

programmers,” Proceedings of the 36th International Conference on Software

Engineering, 2014.

[27] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and T. Fritz,

“Tracing software developers’ eyes and interactions for change tasks,” in Proceed-

ings of the 2015 10th Joint Meeting on Foundations of Software Engineering,

ser. ESEC/FSE 2015, Bergamo, Italy: Association for Computing Machinery,

2015, pp. 202–213, isbn: 9781450336758. doi: 10.1145/2786805.2786864.

[28] T. Busjahn, R. Bednarik, A. Begel, et al., “Eye movements in code reading:

Relaxing the linear order,” in Proceedings of the 2015 IEEE 23rd International

Conference on Program Comprehension, ser. ICPC ’15, Florence, Italy: IEEE

Press, 2015, pp. 255–265.

[29] M. B. Wells and B. L. Kurtz, “Teaching multiple programming paradigms: A

proposal for a paradigm general pseudocode,” in Proceedings of the Twentieth

SIGCSE Technical Symposium on Computer Science Education, ser. SIGCSE

https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1145/2786805.2786864

104

’89, Louisville, Kentucky, USA: Association for Computing Machinery, 1989,

pp. 246–251, isbn: 0897912985. doi: 10.1145/65293.71222.

[30] T. Bunkerd, D. Wang, R. G. Kula, et al., “How do contributors impact code

naturalness? an exploratory study of 50 Python projects,” in 2019 10th Inter-

national Workshop on Empirical Software Engineering in Practice (IWESEP),

2019, pp. 7–75. doi: 10.1109/IWESEP49350.2019.00010.

[31] Y. Peng, Y. Zhang, and M. Hu, “An empirical study for common language

features used in Python projects,” in 2021 IEEE International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2021, pp. 24–35.

doi: 10.1109/SANER50967.2021.00012.

[32] N. Bafatakis, N. Boecker, W. Boon, et al., “Python coding style compliance on

Stack Overflow,” in 2019 IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR), 2019, pp. 210–214. doi: 10.1109/MSR.2019.

00042.

[33] D. S. Foundation, Django: The web framework for perfectionists with deadlines.

https://www.djangoproject.com/, 2021.

[34] V. Freitas, Class-based views vs. function-based views, https : / /

simpleisbetterthancomplex.com/article/2017/03/21/class-

based-views-vs-function-based-views.html, 2021.

[35] A. M. Kuchling, Functional Programming HOWTO, https : / / docs .

python.org/3/howto/functional.html, 2021.

[36] V. Zyrianov, D. T. Guarnera, C. S. Peterson, B. Sharif, and J. I. Maletic,

“Automated recording and semantics-aware replaying of high-speed eye tracking

and interaction data to support cognitive studies of software engineering tasks,”

https://doi.org/10.1145/65293.71222
https://doi.org/10.1109/IWESEP49350.2019.00010
https://doi.org/10.1109/SANER50967.2021.00012
https://doi.org/10.1109/MSR.2019.00042
https://doi.org/10.1109/MSR.2019.00042
https://www.djangoproject.com/
https://simpleisbetterthancomplex.com/article/2017/03/21/class-based-views-vs-function-based-views.html
https://simpleisbetterthancomplex.com/article/2017/03/21/class-based-views-vs-function-based-views.html
https://simpleisbetterthancomplex.com/article/2017/03/21/class-based-views-vs-function-based-views.html
https://docs.python.org/3/howto/functional.html
https://docs.python.org/3/howto/functional.html

105

in 2020 IEEE International Conference on Software Maintenance and Evolution

(ICSME), 2020, pp. 464–475. doi: 10.1109/ICSME46990.2020.00051.

[37] B. Walters, T. Shaffer, B. Sharif, and H. Kagdi, “Capturing software traceabil-

ity links from developers’ eye gazes,” in Proceedings of the 22nd International

Conference on Program Comprehension, ser. ICPC 2014, Hyderabad, India: As-

sociation for Computing Machinery, 2014, pp. 201–204, isbn: 9781450328791.

doi: 10.1145/2597008.2597795.

[38] R. Andersson, L. Larsson, K. Holmqvist, M. Stridh, and M. Nyström, “One

algorithm to rule them all? an evaluation and discussion of ten eye movement

event-detection algorithms,” Behavior research methods, vol. 49, no. 2, pp. 616–

637, 2017. doi: 10.3758/s13428-016-0738-9.

[39] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data scientists

in software engineering,” in Proceedings of the 36th International Conference

on Software Engineering, ser. ICSE 2014, Hyderabad, India: Association for

Computing Machinery, 2014, pp. 12–23, isbn: 9781450327565. doi: 10.1145/

2568225.2568233.

https://doi.org/10.1109/ICSME46990.2020.00051
https://doi.org/10.1145/2597008.2597795
https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/2568225.2568233

	An Empirical Study on the Classification of Python Language Features Using Eye-Tracking
	

	List of Figures
	List of Tables
	Introduction
	Related Work
	Multi-language Studies
	Code Summarizing
	Code navigation behavior
	Python Paradigms
	Python as a Programming Language

	Background
	Experimental Study
	Study Overview
	Task Categories and Questions
	Classification Category
	Bug Localization Category

	Participants and Grouping
	Eye Tracking Apparatus and Environment
	Study Variables
	Study Procedure
	Participant Training
	Quantitative Analysis
	Qualitative Analysis
	Qualitative data collected

	Results
	Quantitative Results
	Task 1: Classification
	RQ1: How difficult is it for developers to classify the predominant Python paradigm?
	RQ2: How accurately do developers classify the predominant paradigm in Python code?
	RQ3: Do developers fixate their gaze on specific Python language features when classifying predominant paradigms?

	Task 2: Bug localization
	RQ4: Does the predominant paradigm affect how long developer’s take to debug logical errors?
	RQ5: Does the predominant paradigm affect a developer’s ability to debug logical errors?

	Qualitative Analysis
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Discussion
	Conclusion
	Questionnaires
	Pre-Questionnaire
	Post-Questionnaire
	Task 1: Sub-Task Post Questionnaire
	Task 2: Sub-Task Post Questionnaire
	Interview Questions
	Task 1 Interview: Classification
	Task 2 Interview: Bug Localization

	Task Code Listings
	Task 1 Code Listings: Classification
	Functional Files
	small length of code
	medium length of code
	large length of code

	Object-Oriented Files
	small length of code
	medium length of code
	large length of code

	Procedural Files
	small length of code
	medium length of code
	large length of code

	Mixed Files
	small length of code
	medium length of code
	large length of code

	Task 2 Code Listings: Bug Localization
	Cube
	Cube: Object-Oriented
	Cube: Procedural
	Cube: Functional
	Cube: Mixed

	Factorial
	Factorial: Object-Oriented
	Factorial: Procedural
	Factorial: Functional
	Factorial: Mixed

	Largest Number
	Largest Number: Object-Oriented
	Largest Number: Procedural
	Largest Number: Functional
	Largest Number: Mixed

	Palindrome
	Palindrome: Object-Oriented
	Palindrome: Procedural
	Palindrome: Functional
	Palindrome: Mixed

	Fixation Tables
	Bibliography

