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Over the past few decades communication systems for vehicles have continued to

advance. Communications between these vehicles can be classified into safety related and

non safety related messages. An example of a safety related message would be one

vehicle warning others of an icy road it encountered, where a non safety related

communication would be a passenger streaming a movie. In either case it's important to

secure the communications so that the system continues to behave as expected. In this

thesis we propose a Misbehavior Detection System (MDS), which is a system that

monitors messages sent between vehicles, and detects misbehaviors for possible attacks.

In our approach we use a stacking based machine learning algorithm to determine if

vehicles are misbehaving. We then compare this approach to other MDS to determine if

our approach makes a measurable difference. In the analysis and comparison section of

this thesis, we evaluate the simulation and performance data, showing that our protocol

has an accuracy of 91.8%.
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Chapter 1

Introduction

Vehicular communication networks have the potential to revolutionize the

automotive industry. Communications between vehicles can provide life saving safety

messages, provide passengers with entertainment, and help automatic driving. For

example a vehicle driving over an icy road could send a safety message to other vehicles,

letting drivers know the route is not safe and to take another route. Another example of a

safety message could be a vehicle noticing someone suddenly stopped and informing

other vehicles in the area they will need to stop. This message could prevent a wreck or

allow them to pick another safer route. Using these safety messages will be crucial for

self-driving cars, as they will use the information to help them make decisions about the

route.

Though vehicular networks have lots of potential, a lot of challenges still remain.

In [1] the authors present many of the challenges that remain. They classify them into the

following: physical layer, synchronization, multimedia broadcast multicast service

(MBMS), resource allocation, and security. Issues still remain in the physical layer, as

vehicles struggle to communicate when moving at high speeds and don't support high

carrier frequency. There are also issues keeping vehicles in sync with base stations, as

high speeds cause lots of changes in the topology of the network. MBMS struggles with
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large overlapping areas, and there are issues keeping resources separated between

vehicles and cellular users. Then there are issues with keeping the system secure, as

safety related messages are broadcast to all vehicles and remain unencrypted. As this

thesis is focused on creating a MDS, we will focus on the security challenges in vehicular

networks.

Vehicular networks are susceptible to a variety of attacks layed out in [2]. These

would include the following:

● Bogus message : An attacker can send a false message to vehicles, in an attempt

to modify other vehicle's behavior.

● Message modification : An attacker captures a legitimate message, modifies the

contents, and sends it out in an attempt to also modify other vehicle's behavior

● Sybil attack :  Sybil attack occurs when an attacker attempts to send a false

message from multiple vehicles

● DoS : When an attacker attempts to spam a system with messages to stop a

service, it's known as denial of service or DoS attacks

● Eavesdropping : A passive attack, where an attacker captures messages in order to

steal information from the system

● Impersonate attack : An attacker sends false messages while pretending to be a

legitimate user.

● Replay attack :  Replay attack occurs when an attacker captures a message and

resends it at a later time.

● Black hole attack : Black hole attack occurs when an attacker attempts to drop all

of the messages like a black hole instead of forwarding them
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● Gray hole attack : A gray hole attack occurs when a vehicle drops some packets

selectively

● Location tracking : Where an attacker tracks a legitimate user's location, through

the vehicular network.

In order to prevent some of these attacks we design and study a Misbehavior

Detection System (MDS), which will analyze messages to ensure they act normally. As

discussed in [3], an MDS can be classified into the following categories: signature-based

detection, specification-based detection, and anomaly detection. Signature-based

detection is where patterns for normal and malicious behaviors are stored and compared

to the incoming messages. Specification-based detection is where a set of conditions is

defined and the message has to follow these conditions. Anomaly detection involves the

creation of a model for normal and malicious behaviors. The proposed system will use

anomaly detection, so we will create a model to detect malicious messages.

For the proposed MDS we will need to create a model using a machine learning

algorithm. There are a variety of machine learning algorithms we can choose from,

including the following: :

● K-nearest neighbor (KNN) : Operates under the idea that similar data clumps

together.

● Support vector machine (SVM) : Uses a hyperplane to divide data into two sets.

● Decision tree (DT) : Uses a hierarchical structure similar to a flow chart.

● Naive bayes (NB) : A probabilistic algorithm that gets the probability of all the

features.

● Random forest (RF) : RF uses multiple trees.
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● Artificial neural network (ANN) : Based on how the human brain operates and

makes predictions.

● Logistic regression (LR) :  Uses logistic function to classify data as either true or

false.

To improve upon the machine learning algorithms, we can introduce an ensemble

technique. This is where we combine multiple machine learning algorithms to improve

the overall accuracy of the model. The main techniques are as follows: bagging, boosting,

and stacking. Where bagging averages the results together, boosting is where we keep

applying the machine learning algorithm until it meets an acceptable accuracy, and

stacking is a two layer approach where the outputs of different machine learning

algorithms feed the input of another machine learning algorithm.

We introduce a stacking based MDS, that uses a combination of DT,  RF and

ANN. We compare our algorithm to the one in [16] and [19], looking to see if stacking

can improve the overall accuracy of the model. To do this we set up three different attack

scenarios that we attempt to detect using our MDS. These include the following: message

modification attack, Sybil attack, and DOS attack. We also run our algorithm against

known malicious data, to see if it can detect it from normal data. We get this test data

from the VeReMi dataset.
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Chapter 2

Vehicular Communication Network Model and

Security Architecture

Figure 2.1 Network model

We show the vehicle communication network model and security architecture in

this chapter that will be used in the rest of this thesis. We assume that in a vehicle there

are two main components: the application unit, and the on board unit (OBU). The

application unit is responsible for the sensors and processing of data, while the OBU is

responsible for the communications between the vehicles. Data being sent to the vehicle



6

passes through the OBU, and is processed by the application unit. Data being sent moves

in the opposite direction, going from the application unit to the OBU.

Once data leaves the OBU, it is either sent to a vehicle within range or sent to a

road side unit (RSU). The RSU can either be a base station or another receiver that

connects one cluster of cars to another cluster. This allows any vehicle to communicate

with any other vehicle on the network. Figure 2.1 shows the network model for a

vehicular network. This figure also shows a variety of communication types, including:

Vehicle to network (V2N), Vehicle to infrastructure (V2I), vehicle to pedestrian (V2P),

and vehicle to vehicle (V2V). The more generic term V2X means any of the mentioned

communication types.

Figure 2.2 Security Architecture

Secure vehicular communications must satisfy a variety of requirements. These

requirements would include the following:

● Authentication : Messages must be authenticated before further action is taken.

● Integrity : A message has not been altered.
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● Non-repudiation : The sender/receiver cannot deny a message was sent/received.

● Availability :  The system is up and working whenever needed.

● Anonymity :  Users' real identities are protected.

● Unlinkability : A link cannot be established between a real id and temporary id.

● Conditional traceability : A legitimate user identity remains protected but a

malicious user identity can be traced.

● Efficient revocation : Vehicle revocation is efficient and scalable.

● Location privacy preservation : A user's location cannot be traced.

All these security requirements ensure a vehicular network is secure and ready to

be deployed, even though deploying a security architecture can still be a challenge. In [1]

and [2] a general security architecture is discussed as shown in Figure 2.2. The security

architecture shown in Figure 2.2, adds the following components:

● V2X Control function (VCF) : Responsible for authorization and authentication.

● Temporary ID Management Function (TIMF) : Responsible for issuing temporary

ids and credentials.

● Key Management Service (KMS) :  Responsible for creating and distributing keys.

● Certificate authority (CA) : Responsible for creating and distributing certificates.

The system will deploy a KMS and CA depending on the requirements.

In [2] the authors introduce an additional component to the security architecture,

known as a trust authority (TA). The TA is responsible for keeping track of real IDs,

location of APs, and reputation scores. The reputation is a number that keeps track of

how trustworthy a vehicle is. If this value drops below a certain value it is considered a
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malicious user and added to a revocation list of users. This will keep legitimate users

from talking to known malicious vehicles.

The downside of using a reputation score is ultimately the revocation list, as this

solution does not grow well. It is possible for the revocation list to expand forever, and as

a result the performance of the system will degrade as time goes on. The revocation list

can be updated, but then it's possible for the malicious users to attack the system.

Despite the disadvantage, in [3] the authors successfully implemented a trust

based MBS. This system combines trust with machine learning in a way to detect

malicious users. Machine learning and trust made a powerful combination, as even if one

fails the other technique can catch the malicious user. For example, if the CRL gets

cleared the machine learning technique will still be able to detect the malicious user.
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CHAPTER 3

Background and Literature Reviews

3.1 Machine Learning Algorithms

As mentioned in chapter 1, there are a variety of machine learning algorithms we

can use. In this thesis we will use three different algorithms, and will be focusing on

them. These would include: decision tree (DT), random forest (RF), and artificial neural

network (ANN). Where DT uses a tree to make decisions, RF is an extension of decision

tree, instead of just using one tree they have many. ANN on the other hand is modeled off

the human brain, and looks to replicate its process of thinking and predicting.

Figure 3.1 Example Decision Tree Model
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DT is a type of  ML that partitions training data into groups, based on a set of

rules. These rules are represented as nodes, and these nodes are organized into a tree.

Following nodes down the tree, results in a prediction.

Figure 3.1 shows an example of a DT. In this model they attempt to create a

model to determine if an individual should receive a loan, so they look at credit history

and if they are self employed. Each node has a few different values, these would include:

● Condition: If true go to the right node, otherwise the left node

● Gini: A variable that determines distribution among classes

● Value: The number datasets that belong to one class or the other

● Class: Either yes they get the loan or no they dont.

Figure 3.2 Example Random Forest Model

As mentioned before a RF is a collection of decision trees, making it an ensemble

technique. In [6] the authors compare RF to decision trees, and give a good overview of

the two algorithms. In order to combine the results of these trees together they use a

majority vote, so whichever answer has the most votes will become the prediction. Prior

to combining the results from each tree though, it must first generate all of the trees, thus
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creating the forest. To do this it first collects training data, then each tree selects data at

random, finally constructing a decision tree. Once the decision tree has been constructed

it is free to conduct voting and get the results. Figure 3.2 shows an example of a RF

model.

It concludes in [6] that the RF has a better accuracy when dealing with a large

amount of data and the decision tree is better suited for smaller data sets. It should also be

noted that both algorithms do better when a larger pool of data is available. They use a

variety of data to make these decisions and find that the RF algorithm has an accuracy of

96.13% when the data set has 699 instances of data, but dropped to 69.23% when it has

286 instances of data. On the other hand, the decision tree has an accuracy of 75.52%

when the data set has 286 instances of data, and increased to 94.6 when the data set

increased to 699 instances.

Figure 3.3 Example ANN model

ANN on the other hand is based on the human brain, making decisions and

predictions in a similar manner to humans. As shown in Figure 3.1, the architecture of

this algorithm is divided into three layers: input, hidden, and output. The input layer is

simply the input to the algorithm, the hidden layer is where all the calculations are done,
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and the output layer contains the predictions. The hidden layer can be composed into

multiple layers as well, giving the algorithm more depth. Input through the hidden layer

goes through a variety of transformations that give us the overall output. These

transformations are determined by a weighted value on the links between nodes and

activation function. The weighted values are determined using training data, and passed

into the transformation function.

In [14] the authors give a detailed description of ANN, and show how to use it in

an Intrusion Detection System (IDS). They conclude that their detection system has an

accuracy of 98.31%, out performing all of the other compared algorithms including RF.

This paper gives a practical example of how ANN can be applied to an intrusion

detection system.

Figure 3.4 Example stacking model

As mentioned before, machine learning algorithms can be combined to make a

more accurate algorithm. This combination is known as an ensemble technique, examples
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include: RF, bagging, boosting, stacking, and more. In our proposed MDS we will use

stacking in an attempt to make a more accurate algorithm.

In [8] the authors propose an algorithm to detect misbehaving vehicles that stacks

random forest and xgboost, and shows that the algorithm has an accuracy of 98.44%.

They also give an in-depth breakdown of how stacking works, showing that the algorithm

has two levels: level 0, and level 1. Level 0 involves multiple machine learning

algorithms making predictions, then level 1 takes the predictions and uses them as inputs

to another machine learning algorithm. Figure 3.2 shows an example of this breakdown.

In [16] the authors propose an IDS that uses stacking and feature elimination. The

main difference between this algorithm and [8] is the use of feature elimination, which is

where they remove unneeded data. In this case they attempt to classify data into four

categories, and if it doesn't match these scenarios, it is removed from the data set. This

algorithm has the highest accuracy of 99%.

3.2 Literatures in Misbehavior Detection System and Intrusion

Detection Systems

In [4] the authors propose a machine learning and reputation based MDS. In this

system they use a variety of machine learning algorithms to determine if a vehicle is

misbehaving. These algorithms would include the following: k-nearest neighbor, logistic

regression, decision tree, random forest, and bagging. They also use reputation as a

means of tracking if a vehicle has a history of misbehaving and revokes vehicles that

have a low reputation.

In [5] the authors propose a statistical collaborative detection system that uses the

Greenshield model to generate the needed statistics.  This model uses three parameters:
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flow (q) , density (k), and velocity (v), where flow is vehicles per hour, density is

vehicles per kilometer, and velocity is the speed of the vehicle. The IDS is also

collaborative, meaning that data is shared among nodes in the system. This allows the

nodes to collect data on each other and make an educated guess as to what other flow

values should be.

In [12] the authors propose an Intrusion Detection System (IDS) using a

combination of logistic regression and boosting. The IDS is divided into three parts:

input, analysis, and output. The input section involves acquiring data that can be used to

create a model. The analysis part is where it can apply machine learning and create the

model. In this part it starts by doing feature ranking and selection. Where different

features are ranked by occurrence, then passed to the machine learning algorithm. In this

case the authors applied logistic regression and XGBoost to try to evaluate data as

malicious or not. They conclude that XGBoost is more accurate than logistic regression.

In [16] the authors propose an Intrusion Detection System, using an ensemble

technique known as stacking. The algorithm is divided into three stages: data

preprocessing, feature elimination, and stacking. In the first stage training data is

normalized into a common format, so that the algorithms can understand the data and be

trained. In the feature elimination stage, the algorithm attempts to eliminate unneeded

data. This means any data that can’t be classified into the four attacks are eliminated,

along with duplicated data. The final phase is where stacking is applied, and where the

final output is generated. They stack the following algorithms: random forest, adaboost,

GBDT then combine the results using a decision tree. The proposed algorithm always

performs better than other algorithms with an accuracy of 99%.
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In [18] the authors propose an IDS that detects Distributed Denial of Service

(DDOS) attacks, using a combination of machine learning and common feature

extraction. This paper looks at three machine learning algorithms to determine if a data

set is malicious. They compare decision tree, random forest, and gradient boost. They

combine these algorithms with a technique for filtering out the average feature values,

leaving the more discriminative features within the data set. They evaluate the technique

with each of the machine learning algorithms mentioned before, and find which

algorithm is more accurate in different situations. Decision tree and gradient boost

perform worse as the percent error increases. Random forest performs well with only a

little bit of training, so therefore random forest seems to be the more reliable algorithm.

In [19] the authors propose a misuse IDS based on a three layer Recurrent Neural

Network (RNN). The proposed model uses an input layer, 2 hidden layers, and an output

layer. The two hidden layers group the input layer data into different feature categories,

the connection between the two hidden layers is considered partial. The output has five

output neurons, representing the different attack scenarios and the normal condition.  The

paper then evaluates and compares the algorithm to others. In this case they evaluate

detection rate (DR), false alarm rate (FAR), and cost per example (CPE). The proposed

algorithm has a detection rate of 94.1%, a false alert rate of .38%, and a cost of 0.16666.
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CHAPTER 4

The Misbehavior Detection System and

Evaluations

4.1 Proposed Misbehavior Detection System

Figure 4.1 Proposed MDS Architecture

Figure 4.2 Training Proposed MDS
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In Figure 4.1 the proposed architecture of the MDS is shown. This architecture

includes the following parts:

● Input: Is where the user passes in data we want to classify

● Preprocessing: Is where the input data is normalized.

● Stacking: The proposed algorithm that classifies the data.

● Output: The classification, either good or bad.

The proposed system makes use of RF, DT, and ANN. Then stacks the results together in

an attempt to improve the overall accuracy of the system. The general idea of each of

these algorithms have been discussed in chapter 3.1 and will discuss our implementation

further in the chapter.

Figure 4.2 shows how we train the proposed system. The training phase is divided

into the following:

● Input: Where all of the training data is collected from the user

● Preprocessing: Input data is normalized

● Data elimination: Similar data is removed from the training data

● Stacking: Each of the used algorithms are trained with the remaining data

Figure 4.1 and 4.2 are very similar, but details two different processes. In the

input phase we are working with a list of data as opposed to a single data point. We are

also applying data elimination to eliminate data that is too similar to the rest of our data.

Also the Stacking phase is also different, as we are training up each of our algorithms,

instead of using them to classify a single piece of data. The preprocessing section on the

other hand is the same regardless of which phase we are in.
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Figure 4.3 Normalized data

In order to process data it is normalized into a known log class. This class pulls

out the relevant features and converts it into a number that we can then use for

comparison. As shown in Figure 4.3, we are interested in the following features: position,

position noise, speed, and speed noise. Where all features are a vector in the form (x, y,

z).  At this point the data is still a string so we convert each feature into a double, then

add all the features together. This gives us a value that we can then use in the data

elimination phase. Going forward we will call this the normalized value.

The first part of the elimination phase is to organize the data by normalized value.

Once the data is organized, we look to eliminate data that is similar to the average

normalized value. So we calculate the average value and look to eliminate data that is

similar to this average. To do this we run through all the data and compare the normalized

value to the average and see if it's within a threshold, if it is, we remove it from our list.

The next part is to eliminate redundant data, so again we look at the normalized value. As

the list of data is already organized we can assume that similar redundant data will be

next to each other and therefore removed if the previous value is the same.
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Figure 4.4 Proposed Stacking Architecture

Once the data has been entered into the system, we want to run it through the

stacking phase of the proposed MDS. As mentioned in chapter 3.1, stacking is divided

into two different levels. The first level runs data through a couple of different machine

learning algorithms. In our case we are using DT, RF, and ANN. The second level takes

data from the first level and combines it using another machine learning algorithm. Our

proposed system uses random forest to combine the results of the first level. Figure 4.4

shows the proposed stacking architecture.

In order to train the model we split our training data into two different parts, the

first is for level 0 and the second is for level 1. The process of splitting data into multiple

sets is known as folding the data, where each split is a fold. We use the first fold to train

RF, DT, and ANN. So, at this point we have three machine learning models that can be

used to make predictions, but need to train the level 1 algorithm. To do this we run the

level 0 algorithms against the second fold to make predictions, and train the level one

model, another instance of RF with their outputs. At this point the level 0 models are

discarded and we are left with only the level 1 model for making predictions. Figure 4.5

shows how level 0 models are trained and feed the level 1 model.



20

Figure 4.5: Training Stacked based MDS

Once the stacking phase has been completed, we should have a model that is

capable of making predictions. The output phase classifies output from the stacking phase

into two different types. These types are as follows: normal and bad. So if the output

reports this is a normal feature, then it should be safe for a vehicle to use the

corresponding data. If the output reports it as bad, then the data is considered malicious.
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4.2 Random Forest and Decision Tree

Figure 4.6 Tree Split

Figure 4.7 Navigating the tree

As part of the proposed system, we had to implement a version of Decision Tree

and Random Forest. This is because we stacked Random Forest in an attempt to create a

more accurate system. Our implementation of Decision Tree is split into two phases, the

first is training. During this phase an organized set of data is passed into the algorithm
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and is turned into a tree using a recursive algorithm. This tree represents a model that we

can then use in the testing phase. Figure 4.6 shows an example of this process.

Figure 4.8: Random Forest

Once the training phase is complete and we have a working model, we can then

move into the testing phase, where we can classify the testing data into either normal or

into one of the attack scenarios. In this phase of the application, data is passed to the

model and compared to the other nodes.

The data is first compared to the root of the tree, if the testing data is greater than

the tree data it will continue down the right side of the tree. If the training data is smaller

it will go down the left side of the tree. If the data is equal, we can say the training node

and testing data are the same and can classify them the same. We will continue to move

down the tree until either the data is equal, we are on a leaf node, or the next node is not

defined. At this point we will classify the data the same as the node we are on. Figure 4.7

shows an example of this process.

For the next part of the proposed system we had to create a random forest. As

mentioned before a random forest is a combination of many decision trees. For our
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system we created 128 trees, each having 200 nodes. Each node is randomly selected

from training data. Once the forest is created, we need it to make a prediction. For this we

implement voting, where each tree votes if the testing data is good or bad. Figure 4.8

shows an example of a random forest.

4.3 Artificial Neural Network

As mentioned in section 3.1, ANN is a machine learning algorithm based on the

human brain. In our proposed system we implement ANN with the following: input layer,

hidden layer one, hidden layer two, and an output layer. For our system we implement 4

input nodes, 60 nodes within the first hidden layer, 30 for the second hidden layer, and

one output node. For the input layer we pass in the features from section 4.1. These

features will activate nodes in hidden layer one, which in turn will activate nodes in the

hidden layer two, and in turn will activate the output node. We decide if a node is active

or not using the Rectified Linear Activation function. If the output node activates, we

predict the data is bad, otherwise the data is normal. Figure 4.9 shows an example of this

model.

Figure 4.9 ANN model
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Rectified Linear Activation is a simple function we can use to determine if a node

is activated or not. This function simply returns the max of either 0 or the calculated

value of the node. So if the value is zero or below, zero is returned and the node is

considered inactive. On the flip side, if the calculated value is above zero, the value is

returned and the node is considered active. This function has the advantage of being

computationally simple and has a linear relationship.

To train the data we must adjust weights on the links between the nodes. To do

this we first assign random values to each of the weights. First we go through the

feedforward stage, where a prediction is made using the current values of the weights.

Then we go through the feedback stage, where we use the prediction and expected result

to calculate the error. Using this error value, we adjust the weights. From there we keep

adjusting the weight until the algorithm makes the correct prediction.

To calculate the error of a prediction, we use the mean squared error (MSE)

function. The MSE is the following:

(4.1)1
𝑛

𝑖=1

𝑛

∑ (𝑌𝑖 + Ŷ𝑖)2

● n:  is the total number of data points

● Yi: is the expected value

● Ŷi: is the predicted value

● i: is a single data point

Once the error is calculated we can pass it to a function that adjusts the weights.

Once we have the error, we can pass it to a function that adjusts the weight. This

function uses gradient descent. The idea behind this is to find a local minimum of a

function by slowly adjusting the weights. To do this we first assign a random value to the
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weight, then subtract a small value from it. Figure 4.10 shows an example of how the

weights are adjusted.

Figure 4.10: Gradient descent

Gradient descent can be represented as the following:

(4.2)𝑎
𝑛+1

= 𝑎
𝑛

− γ𝐹(𝑥) 

● : is the new weight we can apply𝑎
𝑛+1

● : is the original weight𝑎

● : is the learning rate, a constant used to determine how fast to adjust the weightsγ

● F: is a function, in our case we use tanh

● : is the variable we pass into the equation. In our case its the error𝑥

4.4 Simulation Tools and Evaluation Set Up

To implement and analyze our proposed MDS model we use the following

simulation tools: OMNET++ [5,6], SUMO [6], and Veins [5], where OMNET++ is a

simulator to create and test network applications, SUMO generates vehicle data, and

Veins is built on top of OMNET++ to simulate vehicular networks.
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OMNET++ is an open source, modular application that developers can create

plugins and tools for. The application is built on top of the popular IDE (Integrated

Development Environment) known as eclipse, that many software engineers are familiar

with. OMNET++ allows programmers to define .ned files, which define a network. Using

this file, programmers can create network nodes and link the nodes together to form a

network, then use C++ to define how these nodes will behave. From this a programmer

can define a variety of networks and implement different protocols on that network.

SUMO is a full suite of traffic modeling utilities [6]. This is an open source tool

that anyone can download and contribute to, which makes it popular for mobility

simulation. Road networks can be generated using a tool called “netgen” or importing a

digital road map. Using these road networks, a trip can be calculated using the application

“dfrouter”. One possible application for SUMO is V2X communication networks, as

users can add network scenarios to the modeled vehicles. In [6], the authors introduce

several recent research projects, including the following: iTetris, VABENE, cityMobil.

They demonstrate the extensions to the application scenario, including: Emission and

Noise Modeling, and Person based Intermodal Traffic Simulation. They finally show

add-ons to SUMO, including the following: car-following and lane change API, model

improvements, interoperability, network editor.

Veins is a library built using OMNET++, that defines all of the components of a

vehicular network. Using this library users can interface with SUMO to get data, create

vehicles that can communicate to each other, and through RSUs to ensure groups of

vehicles can communicate to other groups that are out of range. This library acts as the

glue in between OMNET++ and SUMO, creating different vehicular networks.



27

In [5] the authors introduce an alternative to Veins, called VACaMobil. This is a

vehicular communication simulator built on top of OMNET++. They introduce some of

the features that are added to OMNET++, including the following: set number of average

vehicles, the upper bound, and the lower bound. To do this the simulator is given three

tasks: (1). Manages when new vehicles get introduced, (2). Assigns a random route to the

vehicle, (3). Determines the type of vehicle to be added.

4.5 Performance Evaluation Metrics

Most of the projects in the related work section used the same metrics to evaluate

their algorithms. They use the following three metrics to evaluate their algorithms:

accuracy, sensitivity, and true positive rate. Accuracy is a percent value to measure how

often the algorithm successfully detected a malicious message. Sensitivity is how likely

the algorithm is to identify the message is malicious, whether it's true or not. Finally the

true positive rate is the actual number of malicious messages in the experiment.

In this thesis we will use the following metrice, to evaluate the proposed MDS:

(4.3)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

(4.4)𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

(4.5)𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑃
𝐹𝑃+𝑇𝑁

● True Positive (TP) the number of malicious messages successfully detected

● False Positive (FP) the number of normal messages that were said to be positive

● True Negative (TN) the number of normal  messages that were normal

● False Negative (FN) the number of malicious messages that were said to be

normal
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There are other metrics that could be used, for example, in [13] the authors use

the following: Accuracy, Precision, Recal, F1 Score, and Log Loss. Precision is the

percentage of correctly classified data, Recall is the same as sensitivity, F1 Score is a

measure of the accuracy, and log loss is a function used to evaluate the performance of

the algorithm.

In order to calculate the Accuracy, Sensitivity, and False Positive rate we will

need to collect data from a series of experiments. While running these experiments we

will need to keep track of the TP, FP, TN. To do this we use the results that OMNET++

can generate. We can compare our proposed scheme to several existing ones.

4.6 Simulation Evaluation Scenarios

We evaluate a variety of different attack scenarios including: message

modification, Sybil, DoS, blackhole, grayhole, and location tracking. Message

modification attack is where the attacker is altering the content of a message, Sybil attack

sends false messages with a variety of senders, DoS attack attempts to spam a node with

messages to disable it, blackhole drops all packets, grayhole drops some of the packets,

and location tracking attempts to gain the location of a particular vehicle.

In [20] the authors give an in-depth analysis of the Sybil attack in a vehicular

network. This paper defines a Sybil attack, which is where false messages are broadcast

but with different identities. In this way an attacker can pretend to be multiple vehicles

reporting the same issue, thus making the false message more convincing to other

vehicles.
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The authors of [21] explore different DoS attacks in a VANET environment.

There are two types of application layer DoS attack in the paper, one where the attacker

targets a single user and continuously sends safety messages to them. This prevents a

single user from getting a potential safety related message in a timely manner. The other

type is when the attacker focuses on the RSU, in this scenario an attacker sends bad

messages to the RSU preventing it from getting messages from legitimate users in a

timely manner.

The authors of [22] conduct an in depth analysis of man-in-the-middle (MITM)

attacks in VANETs.  They classify MITM attacks into passive attacks where an attacker

captures data in an attempt to gain information about different users on the network. The

example given in the paper is to track law enforcement or emergency services. The other

classification is active, where an attacker purposely attempts to manipulate the behavior

of vehicles by dropping, delaying, or modifying a message.

The authors of [2] cover black hole attacks in vehicular networks. This is a

network layer attack that involves a vehicle dropping all incoming messages. This makes

it so any important safety messages will be dropped. Going back to our initial example at

the beginning of our paper, there could be a slippery road ahead that one vehicle attempts

to notify others about. It could get forwarded to an attacker that has implemented a black

hole, dropping the message and forcing other vehicles onto the slippery road.

The authors of [2] also cover white hole attackers in vehicular networks. This

attack is very similar to black hole, but selectively drops packets. Just like the black hole

attack this is also a type of network layer attack. Looking at our example at the beginning

of our paper, this would functionally work just like the black hole. Where the safety
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message is dropped. The difference is that all other types of messages continue to be

processed as normal. This means the attacker could potentially blend in more with the

other traffic and not blatantly look like a misbehaving vehicle.

The Location Tracking scenario is a passive type of attack, also covered by the

authors in [2]. In this type of attack no modification to the message contents occurs,

nothing is added, nothing is removed. Instead the attacker just listens to incoming

messages in an attempt to find an id and GPS coordinates associated with the id. Then

using the GPS coordinates, the attacker can track a particular vehicle.

Figure 4.11 Message Modification Senario

We use the example project provided by Veins as a starting point for all of our

scenarios. This project simulates 194 cars leaving the University of Erlangen-Nuremberg.

When the wreck occurs, vehicles send out safety messages letting each other know that a

wreck has occurred and to take another route. Looking at the reports generated from the

scenario, we can see that most of the cars stop moving as the velocity of the vehicles is

zero during this time.

Figure 4.11 shows a model of the message modification scenario. In this scenario

the attacker waits for an accident to occur and captures the message, then resends the

message at a later time. This way vehicles moving along the same route will divert,
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thinking an accident has occurred. In reality no accidents have occurred and the attacker

has the road to himself.

In order to simulate Figure 4.11 we add an attacker vehicle to the Veins example.

This attacker vehicle mostly behaves the same as the other vehicles, but stores off any

safety related message. As the only one in this example is an accident, we know what to

expect. Then once the safety related message is stored, we use the position update

function to constantly resend the same safety message. When other vehicles receive this

message they will divert to a different route, clearing the way for the attacker.

Figure 4.12 Attackers velocity for message modification scenario

Figure 4.13 Attacked vehicles velocity for message modification scenario
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Figure 4.12 shows the attackers velocity throughout the scenario. You can see at

time unit 12 the velocity becomes zero, this is because an accident has occurred. At this

time the attacker captures the message, so that he can send it at a later time. Once the

attacker starts sending out the false message the vehicle maintains the max velocity (14

mph).

On the flip side, Figure 4.13 shows the velocity of an attacked vehicle. You can

see that the vehicle reaches the max velocity, right before receiving the malicious

message. Once the message is received the vehicle slows down to about 7 mph for a

significant portion of time. The vehicle never reaches the max velocity again, and does

not reach its destination before the simulation ends. See appendix A for the Message

Modification attack scenario source code.

Figure 4.14 Sybil attack scenario
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Figure 4.14 shows a model of the Sybil attack scenario. In this scenario an

attacker will send out a safety message as both car A and car B. In this way the attacker

attempts to fool other vehicles that a wreck has occurred and to take another route, thus

once again clearing the way for the attacker. Much like the message modification

scenario, we add an attacker to the example veins project. We also add a beacon message

to the simulation, so that vehicles will announce themselves to the network. This allows

the attacker to obtain the identities of two different vehicles. Once the attacker has these

two different identities they send out accident messages as the two different vehicles.

This way it will look like two different vehicles are reporting the accident, that are not the

attacker, making the attack seem more believable.

Figure 4.15 Attackers velocity for sybil attack scenario
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Figure 4.16 Attacked vehicles velocity for Sybil attack scenario

Figure 4.15 shows the velocity of the attackers’ vehicle during the sybil attack

scenario. Looking at this graph we can see that the attacker has small dips in velocity,

indicating that they made a turn, however, for the most part they maintained the max

velocity throughout the simulation.

On the other hand Figure 4.16 shows the speed of an attacked vehicle. This

vehicle received a false safety message, telling it that a wreck was ahead and to divert

along another route. Looking at this graph we can see that there are many small drops in

the vehicle's velocity, indicating that the vehicle had to make many turns. Since the

attacker only had a couple of dips in comparison, we can see that the attacked vehicle

took a different, longer route. The attacked vehicle did not reach its destination before the

simulation ended. See appendix B for the Sybil attack scenario source code.
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Figure 4.17 DoS attack scenario

Figure 4.17 shows a model of the DoS attack scenario. In this scenario, an

attacker floods the network so that other vehicles cannot receive safety related messages.

This scenario is different from the other scenarios, in that it prevents vehicles from

receiving safety related messages at all. In this way when a wreck actually occurs, no one

will redirect and a traffic jam will occur. Though the attacker will not benefit from this

scenario, it is possible that extremists might want to take advantage of this vulnerability.

In order to simulate this scenario, we add an attacker vehicle to the example Veins

project. This attacker vehicle will immediately start spamming the network with beacon

messages, thus each legitimate vehicle will have to spend time processing these worthless

messages.

When the wreck occurs, the majority of the vehicles fail to receive the safety

messages in a timely manner. This means by the time they process the safety related

messages they are already stuck in the traffic jam, and cannot do anything with this

information.
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Figure 4.18 Attacked vehicles velocity for DoS attack

Figure 4.18 shows one of the attacked vehicles during the DoS scenario. We can

see that at around time unit 20, the vehicle's velocity reached zero and was not moving.

This is the same for all of the vehicles in the network, as the attacker is spamming the

network with worthless beacon messages. As a result everyone gets stuck in the traffic

jam and cannot divert. See appendix C for the DoS attack scenario source code.

Figure 4.19 Blackhole attack scenario

Figure 4.19 shows a model of a blackhole attack. In this scenario we have a

vehicle that attempts to send out a safety message, in our case trying to inform others of a

car crash ahead. However when the attacker receives the message he drops it, not

allowing others to know the accident has occurred. This means other drivers would drive



37

to where the accident occurred and caused a traffic jam, and the attacker can divert taking

a shorter path.

In appendix E we have attached the source code to simulate a black hole attack. In

this simulation we utilize the same example project as a starting point as the others. We

then limit the simulation to 3 cars. One that forwards a safety message, a malicious user

that drops all packets, and a victim that does not get the safety message. We limit this

simulation as a means to limit the amount of messages in the system and help us create a

point to point message system. Normally Veins broadcasts the messages to all cars

connected to the RSU.

Figure 4.20 Normal Behavior

Figure 4.21 Blackhole attacked vehicle

In figure 4.20 you see the behavior of a vehicle diverting away from a wreck. At

around time increment 20 the wreck occurs, which is where you see a small dip in its
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velocity indicating a turn. From there its velocity pretty much remains at its max with the

occasional dip, again indicating a turn.

On the other hand if you look at figure 4.21, where the same vehicle is attacked,

you can see that its velocity drops to zero at time increment 20 and remains until around

time increment 40. So looking at figure 4.21 you can see that the vehicle was unable to

divert and got stuck in a traffic jam.

Figure 4.22 Grayhole attack scenario

Figure 4.22 shows a model for a Grayhole attack. In this scenario a vehicle will

send a message out to the system. The attacker will receive this message and check what

kind of message it is. If the message is a safety message it will drop the message.

Otherwise it will continue to work as expected, forwarding the message to the other

vehicles. For us this means it should forward the beacon messages, but drop the message

about the accident.

For the Grayhole attack we start with the same source code as we used in the

blackhole attack, but make it so that the beacon messages are not dropped. As the

blackhole already does everything we need and more, we just removed part of the code

that drops the beacon message, and then simulate the results again.
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Figure 4.23 Normal vehicle

Figure 4.24 White hole attacked vehicle

Figure 4.23 and 4.24 show that the white hole scenarios performed the same as

the black hole attack scenario. It made no difference in terms of the attack if we let other

types of messages through or not. In figure 4.23 you see that the vehicle was able to

divert. In figure 4.24 you see that the vehicle was still unable to divert and got stuck in a

traffic jam.

This shows that it’s possible to let certain messages through, while still dropping

others. An attacker could take advantage of this to fool systems into thinking it's a well

intended user and not malicious.
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Figure 4.25 Location Tracking scenario

Figure 4.25 details how the location tracking scenario works. In this scenario a

vehicle sends out a message, in our case a beacon message.  All the vehicles in the

system will receive this message and act normally, however the attacker will now know

the location of the sender and be able to track the vehicle as a result.

In order to simulate the Location tracking, we again started with the same

example project. We again added a beacon message, just like in many of the other

simulations. In the beacon message we added the coordinates of the vehicle before

sending out the message. Then when the attacker received a beacon message they would

be able to print the message out on the screen, thus simulating location tracking. In

addition to this we added an identifier to the beacon as well, so the attacker could filter

out the beacons to the one they are interested in.

In order to simulate the location tracking scenario, we add an attacking vehicle

that will capture messages from other vehicles and record its location. In this simulation

each vehicle is sending out a beacon that contains its identification and its location. The
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vehicle will then send out the message to anyone interested including the attacker. It's at

this time the attacker captures the message.

In table 4.1 it shows that we captured a total of 19 beacon messages, with the

vehicle's identity and its X and Y coordinate. These coordinates are for the screen

location or in pixels and not the GPS coordinates, however it still shows that we are able

to capture the location of vehicle 5 and track where it is located.

Packet Identity X Y

1 5 2350.16 1639.28

2 5 2420.82 1700.74

3 5 2442.58 1817.28

4 5 2448.43 1956.23

5 5 2437.8 2095.19

6 5 2311.37 2117.66

7 5 2175.03 2096.36

8 5 2086.52 2019.26

9 5 1988.45 1920.25

10 5 1889.83 1821.86

11 5 1791.11 1723.57

12 5 1691.6 1626.05

13 5 1592.52 1528.22

14 5 1488.15 1435.96

15 5 1364.26 1373.99

16 5 1226.78 1352.5

17 5 1088.04 1338.96

18 5 949.24 1327.13
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19 5 810.324 1316.37

Table 4.1 Captured Packets

In the message modification and sybil attack scenarios the proposed system is

able to detect the bad message, and the vehicle is able to ignore it. The attacked vehicles

velocity remains unchanged and looks very similar to the the attackers velocity, and thus

successfully prevents the attack. This being said the data to train the model was derived

from the simulation scenario, and as a result should not be used to make conclusions

about the proposed MDS. For this we will use data readily available to the community.

For the DOS scenario this is a different story, as the attacker is spamming the

network with worthless packets. As a result of this, the vehicle's message buffer gets

filled before it can access a legitimate message. Once pulled out of the buffer the vehicle

can detect the bad message, but at this point it is too late. For a DOS attack, another

system is needed.

Attempting to detect the blackhole, whitehole, and location tracking scenarios

with our MDS proved to not be possible. This is because these attacks don't send out

messages of their own. The blackhole and whitehole make no modification, instead they

just drop packets and in the location tracking attack just records data. As a result of this

there is nothing for our MDS to detect, and shows that more is needed to prevent these

types of attack.
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4.7 Performance Analysis

Figure 4.26 Ground of truth

Figure 4.27 JSONlog.json

In order to train our algorithm and compare it with other implementations, we

used the popular VeReMi dataset. The dataset is readily available on github and can be

pulled down and used by anybody. This dataset contains many different scenarios that we

can use to test our system, in this case we used attack type one which is a location based

attack. In this type of attack scenario the attacker modifies their GPS coordinates,

pretending to be somewhere else.

There are two types of log files we are interested in from VeReMi. The

GroundTruthlog.json, which tells us what messages are good and which are bad. Figure

4.26 shows the ground of truth data. In addition to this they provide us the JSONlog.json

file, which has all of the vehicle logs. Figure 4.27 shows the features within the

JSONlog.json file. Within these logs, there is a combination of good and bad data. These

logs contain the features from section 4.6, we need as input for the proposed system. It is

the job of our system to decide if a log is normal or bad.
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In order to train our model we combined several JSONlog.json files, giving us a

total of 100,290 data points. This gave us a very large data set to train our model up and

get the best results possible. Once the model was trained we needed data to test it against,

so we took a different JSONlog.json file with 4726 data points to test against.

While building up the proposed system we created a few different variants we

could use to compare against. The first was an implementation utilizing DT. Testing our

Decision Tree implementation with the VeReMi dataset, we found the following:

● Accuracy = 0.925

● TP rate = 1.00

● FP rate = 0.0836

This implementation has the highest accuracy and true positive rate of all our

implementations. In fact it was able to detect all of the bad log messages, however it also

had the highest false positive rate. So it was more likely than the other models to say a

message is bad, even when it's not. The next implementation utilized random forest. The

first of our ensemble methods. Implementing random forest improves the false positive

rate, but at the cost of our accuray and true positive rate. We found the following:

● accuracy = 0.913

● true positive rate = 0.821

● FP rate = 0.0743

Testing our implementation of ANN we found the following:

● Accuracy = 0.909

● TP rate = 0.561

● FP rate = 0.0148
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Comparing this to random forest and decision tree, we see a good improvement in the

false positive rate, but at a high hit to the true positive rate.

Testing the proposed system we found the following:

● Accuracy = 0.918

● TP rate = .820

● FP rate = 0.0685

So our proposed system had the second highest accuracy of the different

implementations, and the second lowest false positive rate. Stacking the different

machine learning algorithms seems to have given us a balance between the extremes of

DT and ANN.
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CHAPTER 5

Future Work

Though we were able to simulate multiple attacks on vehicular networks and

successfully detect the attacks with the proposed system, improvements could be made.

[16] implemented a stacked based IDS that had an accuracy of .99. This IDS

implemented a technique known as feature elimination, as well as using a variety of

different ML algorithms.

Feature elimination is a technique where irrelevant features are removed from the

system and not used to train the data. Doing this has two advantages: A higher accuracy,

and faster processing times. Accuracy is improved as the model does not make

corrections based on irrelevant data, and the processing time is improved as we no longer

have to process all of the data.

Another useful technique known as feature selection chooses the most relevant or

useful features from the data. In this situation the best features would be selected and

passed as inputs to our machine learning algorithms, thus automatically selecting the

inputs instead of the designer hard coding the inputs. This would also have the advantage

of keeping all of the data for training. In this situation our implementation of DT would

still need to eliminate data as it needs the data to be unique, but this could be handled as

part of the DT training phase.

A useful improvement to the proposed system would be to replace our data

elimination phase, with either the feature elimination or feature selection. Where the data
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elimination phase did seem to help speed up the application, it also seemed to hurt the

accuracy of some of our ML algorithms using ensemble techniques. This is a result of

looking at the entire piece of data and eliminating data that is too similar, instead of

looking at the individual features within the data and either eliminating or deciding which

would be better to use.

Another way we could increase the performance would be to increase the number

of folds when training the stack. For our implementation we used two folds: one to train

the first layer, and another to train the second. Increasing the number of folds means our

models would be more diverse, giving the level 0 and 1 models a chance to have different

results. In [16] they utilized a total of 5 folds, but do not offer any insight into how many

folds are optimal. More research is needed to determine this.

[16] also utilized different ML algorithms then we did. In layer 0 they used the

following: RF, adaboost, and GBDT. For their layer 1 ML algorithm they used DT. It may

be that this combination of ML is ideal, but more experimentation would be needed. In

our case we utilized DT, RF, and ANN for layer 0 and RF for layer 1.

[3] looked into using DT and RF for an MDS. They found that DT had a TP rate

of .96 and RF had a TP rate of .98. This would seem to indicate that these algorithms are

well suited for an MDS. [19] looked into using a variety of different ML algorithms for

an IDS, including Neural Networks. They found that ANN had a TP rate of .741 and an

FP rate of .379. The FP rate is high in comparison to other algorithms, such as DT or RF

that are consistently under .1. The system also had a lower TP rate in comparison to DT

or RF, that were consistently achieving a TP rate above .9. This would seem to indicate

that ANN is probably not the best choice to use for an IDS or MDS.
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In addition to increasing the performance of our system, future work is needed to

look into different types of systems that could complement our own. This is because our

system is unable to detect attacks that do not send a message. When we ran simulations

of the blackhole attack, whitehole, and location tracking our system was unable to detect

the attack. In the blackhole and whitehole attack, the malicious vehicle just drops the

message, meaning there was nothing for us to detect. In the location tracking attack,

everything worked as normal, the attacker just took note of a vehicle's coordinates, so

again nothing else to detect.

One system that might complement our system well is a reputation system. In this

type of system, each vehicle is assigned a reputation. This reputation goes up whenever

they send a good message, and it goes down when they either don't respond, or the

message is determined to be bad. This would prevent an attacker from ignoring messages

as they need a decent reputation to have messages sent to them, and they need to continue

to send good messages to maintain that reputation. This in theory should be able to

prevent a blackhole and white hole attack.

A reputation system would not help with the location tracking though as the

vehicle continues to work as normal, but using a pudo id that is changing could

potentially prevent this type of attack. This changing id could prevent location tracking

because an attacker needs to know a vehicle's id to determine what vehicle they are

tracking. If this id changes occasionally then an attacker might be able to get a vehicle's

coordinates, but would not know which vehicle was there.
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CHAPTER 6

Conclusion

Vehicular networks have the potential to revolutionize the automotive industry.

They are the backbone of self-driving cars, provide life saving data, and can entertain the

passengers. For example, say it's raining and the road is slippery. When one car goes over

the slippery road, it can relay a message to the other cars letting them know the road is

unsafe and to take another route. This service has the potential to prevent accidents, but

without security it could be misused.

One possibility is that an attacker could want a clear road, so they could reach

their destination before other drivers. So they send a false safety message saying an

accident has occurred ahead. This would cause the other vehicles to divert and take

another route, in an attempt to avoid the accident. However there was no accident and

now the attacker has the road to themselves. This is one of many examples of how an

attacker could manipulate the system to their advantage showing the importance of data

security in a vehicular network.

In this thesis we proposed a stacking based MDS that utilized a combination of

DT, RF, and ANN at level 0 and RF at level 0. We also implemented a variety of different

simulations, showing how a malicious user could attack the system and how our MDS

could detect these attacks. We also showed the limitations of a MDS, as it was unable to
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detect malicious users that were not modifying messages. This means we were able to

detect the message modification, DoS, and sybil attacks. However we were unable to

detect the blackhole, whitehole, and location tracking attacks.

We also ran our algorithm against the VeReMi dataset, to determine the accuracy

of our system. We ran it against four different versions of our system. We found that the

proposed system had an accuracy of .918, the ANN had an accuracy of .909, RF had an

accuracy of .913, and DT had an accuracy of .925.

We had six different scenarios: message modification, sybil, denial of service,

blackhole, whitehole, and location tracking. We created a simulation for each of these

using OMNET++ and the Veins library. These simulations showed how an attacker could

potentially manipulate the system without some sort of network security. In both the

message modification and Sybil simulations, the attacker was able to change the route of

an attacked vehicle. In the DoS simulation, the attacker was able to prevent the users

from changing routes when needed.

For both the message modification and Sybil attack simulation, the proposed

system was able to detect and prevent the attack. It did this by detecting a bad message,

and ignoring it if the message was bad. In these attacks the prevention is simple as we

only need to ignore the message.

On the other hand our system was able to detect the DoS attack, but we could not

simply ignore the message in this case. That is because in this kind of attack, the message

buffer is filled with bad messages. So the attacked vehicle can't get to the message in a

timely manner, even though it knows that the messages are bad. Another system is

needed for this kind of attack.
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For the blackhole, whitehole, and location tracking attack simulations, the

proposed system was unable to detect the attack. This is because these attacks do not

modify a message, as a result there is nothing for our MDS to detect. This means another

system is needed to detect this type of attack.
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Appendix A

Message Modification Attack Source

#pragma once

#include "veins/veins.h"

#include "veins/modules/application/ieee80211p/DemoBaseApplLayer.h"

#include "veins/modules/application/traci/TraCIDemo11pMessage_m.h"

using namespace omnetpp;

namespace veins {

static bool badGuy = true;

static int nodes = 0;

class VEINS_API MessageModificatoinSenario : public DemoBaseApplLayer {

public:

void initialize(int stage) override;

void finish() override;

protected:

simtime_t lastDroveAt;

bool sentMessage;

int currentSubscribedServiceId;

void onBSM(DemoSafetyMessage* bsm) override;

void onWSM(BaseFrame1609_4* frame) override;

void onWSA(DemoServiceAdvertisment* wsa) override;

void handleSelfMsg(cMessage* msg) override;

void handlePositionUpdate(cObject* obj) override;

private:

bool bad = false;

bool hasMessage = false;

TraCIDemo11pMessage capturedMessage;

int wait = 0;

};

} // namespace veins
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#include "veins/modules/application/MessageModificationSenario/MessageModificationSenario.h"

#include "veins/modules/application/traci/TraCIDemo11pMessage_m.h"

using namespace veins;

Define_Module(veins::MessageModificatoinSenario);

void MessageModificatoinSenario::initialize(int stage)

{

DemoBaseApplLayer::initialize(stage);

if (stage == 0) {

sentMessage = false;

lastDroveAt = simTime();

currentSubscribedServiceId = -1;

}

++nodes;

if(badGuy && nodes%2 == 0) {

bad = true;

badGuy = false;

}

}

void MessageModificatoinSenario::finish()

{

DemoBaseApplLayer::finish();

// statistics recording goes here

if(bad) {

badGuy = true;

}

}

void MessageModificatoinSenario::onBSM(DemoSafetyMessage* bsm)

{

// Your application has received a beacon message from another car or RSU

// code for handling the message goes here

}

void MessageModificatoinSenario::onWSM(BaseFrame1609_4* frame)

{

TraCIDemo11pMessage* wsm = check_and_cast<TraCIDemo11pMessage*>(frame);

if(bad) {

hasMessage = true;

capturedMessage = *wsm;
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}

findHost()->getDisplayString().setTagArg("i", 1, "green");

if (mobility->getRoadId()[0] != ':') traciVehicle->changeRoute(wsm->getDemoData(), 9999);

if (!sentMessage) {

sentMessage = true;

// repeat the received traffic update once in 2 seconds plus some random delay

wsm->setSenderAddress(myId);

wsm->setSerial(3);

scheduleAt(simTime() + 2 + uniform(0.01, 0.2), wsm->dup());

}

}

void MessageModificatoinSenario::onWSA(DemoServiceAdvertisment* wsa)

{

if (currentSubscribedServiceId == -1) {

mac->changeServiceChannel(static_cast<Channel>(wsa->getTargetChannel()));

currentSubscribedServiceId = wsa->getPsid();

if (currentOfferedServiceId != wsa->getPsid()) {

stopService();

startService(static_cast<Channel>(wsa->getTargetChannel()), wsa->getPsid(), "Mirrored Traffic

Service");

}

}

}

void MessageModificatoinSenario::handleSelfMsg(cMessage* msg)

{

if (TraCIDemo11pMessage* wsm = dynamic_cast<TraCIDemo11pMessage*>(msg)) {

// send this message on the service channel until the counter is 3 or higher.

// this code only runs when channel switching is enabled

sendDown(wsm->dup());

wsm->setSerial(wsm->getSerial() + 1);

if (wsm->getSerial() >= 3) {

// stop service advertisements

stopService();

delete (wsm);

}

else {

scheduleAt(simTime() + 1, wsm);

}

}

else {

DemoBaseApplLayer::handleSelfMsg(msg);

}
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}

void MessageModificatoinSenario::handlePositionUpdate(cObject* obj)

{

if (mobility->getSpeed() < 1 && !bad) {

if (simTime() - lastDroveAt >= 10 && sentMessage == false) {

findHost()->getDisplayString().setTagArg("i", 1, "red");

sentMessage = true;

TraCIDemo11pMessage* wsm = new TraCIDemo11pMessage();

populateWSM(wsm);

wsm->setDemoData(mobility->getRoadId().c_str());

// host is standing still due to crash

if (dataOnSch) {

startService(Channel::sch2, 42, "Traffic Information Service");

// started service and server advertising, schedule message to self to send later

scheduleAt(computeAsynchronousSendingTime(1, ChannelType::service), wsm);

}

else {

// send right away on CCH, because channel switching is disabled

sendDown(wsm);

}

}

} else if(bad && hasMessage){

if(wait < 20) {

++wait;

} else {

TraCIDemo11pMessage* wsm = new TraCIDemo11pMessage();

populateWSM(wsm);

wsm->setDemoData(mobility->getRoadId().c_str());

wsm->setSentFrom(capturedMessage.getSenderModule(),

capturedMessage.getSenderGate()->getBaseId(),

capturedMessage.getSendingTime());

sendDown(wsm);

wait = 0;

}

}

}
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Appendix B

Sybil Attack Scenario Source

#pragma once

#include "veins/veins.h"

#include "veins/modules/application/ieee80211p/DemoBaseApplLayer.h"

using namespace omnetpp;

namespace veins {

static bool badGuy = true;

class VEINS_API SybilSenario : public DemoBaseApplLayer {

public:

void initialize(int stage) override;

void finish() override;

protected:

simtime_t lastDroveAt;

bool sentMessage;

int currentSubscribedServiceId;

void onBSM(DemoSafetyMessage* bsm) override;

void onWSM(BaseFrame1609_4* frame) override;

void onWSA(DemoServiceAdvertisment* wsa) override;

void handleSelfMsg(cMessage* msg) override;

void handlePositionUpdate(cObject* obj) override;

private:

bool bad = false;

bool captured1Becon = false;

DemoSafetyMessage capturedBecon1;

bool captured2Becon = false;

DemoSafetyMessage capturedBecon2;

};

} // namespace veins
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#include "veins/modules/application/sybilSenario/SybilSenario.h"

#include "veins/modules/application/traci/TraCIDemo11pMessage_m.h"

using namespace veins;

Define_Module(veins::SybilSenario);

void SybilSenario::initialize(int stage)

{

DemoBaseApplLayer::initialize(stage);

if (stage == 0) {

sentMessage = false;

lastDroveAt = simTime();

currentSubscribedServiceId = -1;

}

if(badGuy) {

bad = true;

badGuy = false;

}

}

void SybilSenario::finish()

{

DemoBaseApplLayer::finish();

// statistics recording goes here

if(bad) {

badGuy = true;

}

}

void SybilSenario::onBSM(DemoSafetyMessage* bsm)

{

// Your application has received a beacon message from another car or RSU

// code for handling the message goes here

if(bad) {

if(!captured1Becon) {

captured1Becon = true;

capturedBecon1 = *bsm;

} else if (!captured2Becon) {

captured2Becon = true;

capturedBecon2 = *bsm;

}

}

}
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void SybilSenario::onWSM(BaseFrame1609_4* frame)

{

TraCIDemo11pMessage* wsm = check_and_cast<TraCIDemo11pMessage*>(frame);

findHost()->getDisplayString().setTagArg("i", 1, "green");

if (mobility->getRoadId()[0] != ':') traciVehicle->changeRoute(wsm->getDemoData(), 9999);

if (!sentMessage) {

sentMessage = true;

// repeat the received traffic update once in 2 seconds plus some random delay

wsm->setSenderAddress(myId);

wsm->setSerial(3);

scheduleAt(simTime() + 2 + uniform(0.01, 0.2), wsm->dup());

}

}

void SybilSenario::onWSA(DemoServiceAdvertisment* wsa)

{

if (currentSubscribedServiceId == -1) {

mac->changeServiceChannel(static_cast<Channel>(wsa->getTargetChannel()));

currentSubscribedServiceId = wsa->getPsid();

if (currentOfferedServiceId != wsa->getPsid()) {

stopService();

startService(static_cast<Channel>(wsa->getTargetChannel()), wsa->getPsid(), "Mirrored Traffic

Service");

}

}

}

void SybilSenario::handleSelfMsg(cMessage* msg)

{

if (TraCIDemo11pMessage* wsm = dynamic_cast<TraCIDemo11pMessage*>(msg)) {

// send this message on the service channel until the counter is 3 or higher.

// this code only runs when channel switching is enabled

sendDown(wsm->dup());

wsm->setSerial(wsm->getSerial() + 1);

if (wsm->getSerial() >= 3) {

// stop service advertisements

stopService();

delete (wsm);

}

else {

scheduleAt(simTime() + 1, wsm);

}

}
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else {

DemoBaseApplLayer::handleSelfMsg(msg);

}

}

void SybilSenario::handlePositionUpdate(cObject* obj)

{

if (mobility->getSpeed() < 1) {

if (simTime() - lastDroveAt >= 10 && sentMessage == false) {

findHost()->getDisplayString().setTagArg("i", 1, "red");

sentMessage = true;

TraCIDemo11pMessage* wsm = new TraCIDemo11pMessage();

populateWSM(wsm);

wsm->setDemoData(mobility->getRoadId().c_str());

// host is standing still due to crash

if (dataOnSch) {

startService(Channel::sch2, 42, "Traffic Information Service");

// started service and server advertising, schedule message to self to send later

scheduleAt(computeAsynchronousSendingTime(1, ChannelType::service), wsm);

}

else {

// send right away on CCH, because channel switching is disabled

sendDown(wsm);

}

}

}

else {

lastDroveAt = simTime();

DemoSafetyMessage* becon = new DemoSafetyMessage();

populateWSM(becon);

BaseApplLayer::sendDown(becon);

if(bad && captured1Becon && captured2Becon) {

findHost()->getDisplayString().setTagArg("i", 1, "red");

sentMessage = true;

TraCIDemo11pMessage* wsm = new TraCIDemo11pMessage();

populateWSM(wsm);

wsm->setDemoData(mobility->getRoadId().c_str());

wsm->setSentFrom(capturedBecon1.getSenderModule(),

capturedBecon1.getSenderGate()->getBaseId(),

capturedBecon1.getSendingTime());

sendDown(wsm);
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TraCIDemo11pMessage* wsm2 = new TraCIDemo11pMessage();

populateWSM(wsm2);

wsm2->setDemoData(mobility->getRoadId().c_str());

wsm2->setSentFrom(capturedBecon2.getSenderModule(),

capturedBecon2.getSenderGate()->getBaseId(),

capturedBecon2.getSendingTime());

sendDown(wsm2);

}

}

}
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Appendix C

DOS Attack Scenario Source

#pragma once

#include "veins/veins.h"

#include "veins/modules/application/ieee80211p/DemoBaseApplLayer.h"

#include "veins/modules/application/traci/TraCIDemo11pMessage_m.h"

using namespace omnetpp;

namespace veins {

static bool badGuy = true;

static int nodes = 0;

class VEINS_API DosSenario : public DemoBaseApplLayer {

public:

void initialize(int stage) override;

void finish() override;

protected:

simtime_t lastDroveAt;

bool sentMessage;

int currentSubscribedServiceId;

void onBSM(DemoSafetyMessage* bsm) override;

void onWSM(BaseFrame1609_4* frame) override;

void onWSA(DemoServiceAdvertisment* wsa) override;

void handleSelfMsg(cMessage* msg) override;

void handlePositionUpdate(cObject* obj) override;

private:

bool bad = false;

};

} // namespace veins
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#include "veins/modules/application/DosSenario/DosSenario.h"

#include "veins/modules/application/traci/TraCIDemo11pMessage_m.h"

using namespace veins;

Define_Module(veins::DosSenario);

void DosSenario::initialize(int stage)

{

DemoBaseApplLayer::initialize(stage);

if (stage == 0) {

sentMessage = false;

lastDroveAt = simTime();

currentSubscribedServiceId = -1;

}

++nodes;

if(badGuy && nodes%2 == 0) {

bad = true;

badGuy = false;

}

}

void DosSenario::finish()

{

DemoBaseApplLayer::finish();

// statistics recording goes here

if(bad) {

badGuy = true;

}

}

void DosSenario::onBSM(DemoSafetyMessage* bsm)

{

// Your application has received a beacon message from another car or RSU

// code for handling the message goes here

}

void DosSenario::onWSM(BaseFrame1609_4* frame)

{

TraCIDemo11pMessage* wsm = check_and_cast<TraCIDemo11pMessage*>(frame);

findHost()->getDisplayString().setTagArg("i", 1, "green");

if (mobility->getRoadId()[0] != ':') traciVehicle->changeRoute(wsm->getDemoData(), 9999);
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if (!sentMessage) {

sentMessage = true;

// repeat the received traffic update once in 2 seconds plus some random delay

wsm->setSenderAddress(myId);

wsm->setSerial(3);

scheduleAt(simTime() + 2 + uniform(0.01, 0.2), wsm->dup());

}

}

void DosSenario::onWSA(DemoServiceAdvertisment* wsa)

{

if (currentSubscribedServiceId == -1) {

mac->changeServiceChannel(static_cast<Channel>(wsa->getTargetChannel()));

currentSubscribedServiceId = wsa->getPsid();

if (currentOfferedServiceId != wsa->getPsid()) {

stopService();

startService(static_cast<Channel>(wsa->getTargetChannel()), wsa->getPsid(), "Mirrored Traffic

Service");

}

}

}

void DosSenario::handleSelfMsg(cMessage* msg)

{

if (TraCIDemo11pMessage* wsm = dynamic_cast<TraCIDemo11pMessage*>(msg)) {

// send this message on the service channel until the counter is 3 or higher.

// this code only runs when channel switching is enabled

sendDown(wsm->dup());

wsm->setSerial(wsm->getSerial() + 1);

if (wsm->getSerial() >= 3) {

// stop service advertisements

stopService();

delete (wsm);

}

else {

scheduleAt(simTime() + 1, wsm);

}

}

else {

DemoBaseApplLayer::handleSelfMsg(msg);

}

}

void DosSenario::handlePositionUpdate(cObject* obj)

{

if (mobility->getSpeed() < 1 && !bad) {
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if (simTime() - lastDroveAt >= 10 && sentMessage == false) {

findHost()->getDisplayString().setTagArg("i", 1, "red");

sentMessage = true;

TraCIDemo11pMessage* wsm = new TraCIDemo11pMessage();

populateWSM(wsm);

wsm->setDemoData(mobility->getRoadId().c_str());

// host is standing still due to crash

if (dataOnSch) {

startService(Channel::sch2, 42, "Traffic Information Service");

// started service and server advertising, schedule message to self to send later

scheduleAt(computeAsynchronousSendingTime(1, ChannelType::service), wsm);

}

else {

// send right away on CCH, because channel switching is disabled

sendDown(wsm);

}

}

} else if(bad){

for (int i = 0; i<1000; i++) {

DemoSafetyMessage* becon = new DemoSafetyMessage();

populateWSM(becon);

BaseApplLayer::sendDown(becon);

}

}

}
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Appendix D

Blackhole/Whitehole Attack Scenario Source

#pragma once
#include "veins/veins.h"
#include "veins/modules/application/ieee80211p/DemoBaseApplLayer.h"
#include "greenMds/api_include/api/FeatureFactory.h"
#using namespace omnetpp;
namespace veins {
static bool badGuy = true;
static int cars = 0;
//static api::FeatureFactory sybilFactory;
class VEINS_API WhiteHoleSenario : public DemoBaseApplLayer {
public:

void initialize(int stage) override;
void finish() override;

protected:
simtime_t lastDroveAt;
bool sentMessage;
bool beconSent;
int currentSubscribedServiceId;
void onBSM(DemoSafetyMessage* bsm) override;
void onWSM(BaseFrame1609_4* frame) override;
void onWSA(DemoServiceAdvertisment* wsa) override;
void handleSelfMsg(cMessage* msg) override;
void handlePositionUpdate(cObject* obj) override;

private:
bool bad = false;
int id=0;
int steps=0;

};
} // namespace veins

#include "veins/modules/application/WhiteHoleSenario/WhiteHoleSenario.h"

#include "veins/modules/application/traci/TraCIDemo11pMessage_m.h"

using namespace veins;

Define_Module(veins::WhiteHoleSenario);

void WhiteHoleSenario::initialize(int stage)

{

DemoBaseApplLayer::initialize(stage);

if (stage == 0) {

sentMessage = false;

lastDroveAt = simTime();

currentSubscribedServiceId = -1;

}

beconSent = false;

id = cars;
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++cars;

if(id == 3) {

std::cout << "Bad Guy Set! " << std::endl;

bad = true;

}

}

void WhiteHoleSenario::finish()

{

DemoBaseApplLayer::finish();

// statistics recording goes here

}

void WhiteHoleSenario::onBSM(DemoSafetyMessage* bsm)

{

// Your application has received a beacon message from another car or RSU

// code for handling the message goes here

if(id == 3 && beconSent == false) { // Add && !bad to make blackhole attack

std::cout << "Received becon at " << id << std::endl;

//forward becon message

DemoSafetyMessage* dup = new DemoSafetyMessage(*bsm);

dup->setPsid(5);

scheduleAt(simTime(), dup);

beconSent = true;

}

}

void WhiteHoleSenario::onWSM(BaseFrame1609_4* frame)

{

TraCIDemo11pMessage* wsm = check_and_cast<TraCIDemo11pMessage*>(frame);

std::cout << "Safety message: " << wsm->getPsid() << "My Id: " << id << std::endl;

if(wsm->getPsid() == id) {

findHost()->getDisplayString().setTagArg("i", 1, "green");

if (mobility->getRoadId()[0] != ':') {

traciVehicle->changeRoute(wsm->getDemoData(), 9999);

}

if (!sentMessage && !bad) {

sentMessage = true;

// repeat the received traffic update once in 2 seconds plus some random delay

wsm->setSenderAddress(myId);

wsm->setPsid(5);

wsm->setSerial(3);

scheduleAt(simTime(), wsm->dup());

}

}

}

void WhiteHoleSenario::onWSA(DemoServiceAdvertisment* wsa)

{
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if (currentSubscribedServiceId == -1) {

mac->changeServiceChannel(static_cast<Channel>(wsa->getTargetChannel()));

currentSubscribedServiceId = wsa->getPsid();

if (currentOfferedServiceId != wsa->getPsid()) {

stopService();

startService(static_cast<Channel>(wsa->getTargetChannel()), wsa->getPsid(), "Mirrored Traffic

Service");

}

}

}

void WhiteHoleSenario::handleSelfMsg(cMessage* msg)

{

if (TraCIDemo11pMessage* wsm = dynamic_cast<TraCIDemo11pMessage*>(msg)) {

// send this message on the service channel until the counter is 3 or higher.

// this code only runs when channel switching is enabled

sendDown(wsm->dup());

wsm->setSerial(wsm->getSerial() + 1);

if (wsm->getSerial() >= 3) {

// stop service advertisements

stopService();

delete (wsm);

}

else {

scheduleAt(simTime() + 1, wsm);

}

}

else {

DemoBaseApplLayer::handleSelfMsg(msg);

}

}

void WhiteHoleSenario::handlePositionUpdate(cObject* obj)

{

if (mobility->getSpeed() < 1) {

if (simTime() - lastDroveAt >= 2 && sentMessage == false) {

findHost()->getDisplayString().setTagArg("i", 1, "red");

sentMessage = true;

TraCIDemo11pMessage* wsm = new TraCIDemo11pMessage();

populateWSM(wsm);

wsm->setDemoData(mobility->getRoadId().c_str());

wsm->setPsid(3);

std::cout << "Sending Safety message: " << id << std::endl;

// host is standing still due to crash

if (dataOnSch) {

startService(Channel::sch2, 42, "Traffic Information Service");

// started service and server advertising, schedule message to self to send later
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scheduleAt(computeAsynchronousSendingTime(1, ChannelType::service), wsm);

}

else {

// send right away on CCH, because channel switching is disabled

sendDown(wsm);

}

}

}

++steps;

if(steps == 30 && beconSent == false) {

std::cout << "Sending Becon message to 3" << std::endl;

lastDroveAt = simTime();

DemoSafetyMessage* becon = new DemoSafetyMessage();

populateWSM(becon);

ChannelMobilityPtrType const mobility = check_and_cast<ChannelMobilityPtrType>(obj);

Coord pos = mobility->getPositionAt(simTime());

becon->setSenderPos(pos);

becon->setPsid(3);

BaseApplLayer::sendDown(becon);

steps = 0;

beconSent = true;

}

}
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Appendix E

Location Tracking Attack Source

#pragma once

#include "veins/veins.h"

#include "veins/modules/application/ieee80211p/DemoBaseApplLayer.h"

#include "greenMds/api_include/api/FeatureFactory.h"

using namespace omnetpp;

namespace veins {

static bool badGuy = true;

static int cars = 0;

//static api::FeatureFactory sybilFactory;

class VEINS_API LocationTrackingSenario : public DemoBaseApplLayer {

public:

void initialize(int stage) override;

void finish() override;

protected:

simtime_t lastDroveAt;

bool sentMessage;

int currentSubscribedServiceId;

void onBSM(DemoSafetyMessage* bsm) override;

void onWSM(BaseFrame1609_4* frame) override;

void onWSA(DemoServiceAdvertisment* wsa) override;

void handleSelfMsg(cMessage* msg) override;

void handlePositionUpdate(cObject* obj) override;

private:

bool bad = false;

int id=0;

int steps=0;

};

} // namespace veins

#include "veins/modules/application/LocationTrackingSenario/LocationTrackingSenario.h"

#include "veins/modules/application/traci/TraCIDemo11pMessage_m.h"

using namespace veins;

Define_Module(veins::LocationTrackingSenario);

void LocationTrackingSenario::initialize(int stage)

{

DemoBaseApplLayer::initialize(stage);

if (stage == 0) {

sentMessage = false;
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lastDroveAt = simTime();

currentSubscribedServiceId = -1;

}

id = cars;

++cars;

if(badGuy) {

std::cout << "Bad Guy Set! " << std::endl;

bad = true;

badGuy = false;

}

}

void LocationTrackingSenario::finish()

{

DemoBaseApplLayer::finish();

// statistics recording goes here

if(bad) {

badGuy = true;

}

}

void LocationTrackingSenario::onBSM(DemoSafetyMessage* bsm)

{

// Your application has received a beacon message from another car or RSU

// code for handling the message goes here

if(bad && bsm->getPsid() == 5) {

std::cout << "psid: " << bsm->getPsid() << std::endl;

std::cout << "x: " << bsm->getSenderPos().x << std::endl;

std::cout << "y: " << bsm->getSenderPos().y << std::endl;

std::cout << "z: " << bsm->getSenderPos().z << std::endl;

}

}

void LocationTrackingSenario::onWSM(BaseFrame1609_4* frame)

{

TraCIDemo11pMessage* wsm = check_and_cast<TraCIDemo11pMessage*>(frame);

findHost()->getDisplayString().setTagArg("i", 1, "green");

if (mobility->getRoadId()[0] != ':') {

traciVehicle->changeRoute(wsm->getDemoData(), 9999);

}
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if (!sentMessage) {

sentMessage = true;

// repeat the received traffic update once in 2 seconds plus some random delay

wsm->setSenderAddress(myId);

wsm->setSerial(3);

scheduleAt(simTime() + 2 + uniform(0.01, 0.2), wsm->dup());

}

}

void LocationTrackingSenario::onWSA(DemoServiceAdvertisment* wsa)

{

if (currentSubscribedServiceId == -1) {

mac->changeServiceChannel(static_cast<Channel>(wsa->getTargetChannel()));

currentSubscribedServiceId = wsa->getPsid();

if (currentOfferedServiceId != wsa->getPsid()) {

stopService();

startService(static_cast<Channel>(wsa->getTargetChannel()), wsa->getPsid(), "Mirrored Traffic

Service");

}

}

}

void LocationTrackingSenario::handleSelfMsg(cMessage* msg)

{

if (TraCIDemo11pMessage* wsm = dynamic_cast<TraCIDemo11pMessage*>(msg)) {

// send this message on the service channel until the counter is 3 or higher.

// this code only runs when channel switching is enabled

sendDown(wsm->dup());

wsm->setSerial(wsm->getSerial() + 1);

if (wsm->getSerial() >= 3) {

// stop service advertisements

stopService();

delete (wsm);

}

else {

scheduleAt(simTime() + 1, wsm);

}

}

else {

DemoBaseApplLayer::handleSelfMsg(msg);

}

}

void LocationTrackingSenario::handlePositionUpdate(cObject* obj)

{

++steps;
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if(steps == 10) {

std::cout << "sending becon" << std::endl;

lastDroveAt = simTime();

DemoSafetyMessage* becon = new DemoSafetyMessage();

populateWSM(becon);

ChannelMobilityPtrType const mobility = check_and_cast<ChannelMobilityPtrType>(obj);

Coord pos = mobility->getPositionAt(simTime());

becon->setSenderPos(pos);

becon->setPsid(id);

BaseApplLayer::sendDown(becon);

steps = 0;

}

}
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Appendix F

GreenMDS Source

/*

* FeatureFactory.h

*

*  Created on: Feb 23, 2022

*      Author: tmgreen

*/

#ifndef API_INCLUDE_FEATUREFACTORY_H_

#define API_INCLUDE_FEATUREFACTORY_H_

#include "greenMds/include/data/Training.h"

#include "greenMds/include/data/Testing.h"

#include "greenMds/include/data/TrainingManager.h"

#include "greenMds/include/features/features.h"

#include "greenMds/include/dt/Rf.h"

#include "greenMds/include/data/Log.h"

#include "greenMds/include/dt/Ann.h"

#include "greenMds/include/dt/Stack.h"

namespace api {

class FeatureFactory {

public:

FeatureFactory();

void addTraningData(std::string, features::feature dataType);

void generateModel();

features::feature getFeature(std::string data);

private:

ml::Stack* stack;

};

}

#endif /* API_INCLUDE_FEATUREFACTORY_H_ */
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/*

* Log.h

*

*  Created on: Mar 7, 2022

*      Author: tmgreen

*/

#ifndef LOG_H

#define LOG_H

#include <string>

#include <regex>

namespace data {

const std::string TYPE_MATCH = "\"type\":(.*?),\"";

const std::string REC_TIME_MATCH = "\"rcvTime\":(.*?),\"";

const std::string TIME_MATCH = "\"time\":(.*?),\"";

const std::string SEND_TIME_MATCH = "\"sendTime\":(.*?),\"";

const std::string SENDER_MATCH = "\"sender\":(.*?),\"";

const std::string SENDER_PUDO_MATCH = "\"senderPseudo\":(.*?),\"";

const std::string MSG_ID_MATCH = "\"messageID\":(.*?),\"";

const std::string POS_MATCH = "\"pos\":\\[(.*?)\\]";

const std::string POS_NOISE_MATCH = "\"pos_noise\":\\[(.*?)\\]";

const std::string SPEED_MATCH = "\"spd\":\\[(.*?)\\]";

const std::string SPEED_NOISE_MATCH = "\"spd_noise\":\\[(.*?)\\]";

const std::string ACL_MATCH = "\"acl\":\\[(.*?)\\]";

const std::string ACL_NOISE_MATCH = "\"acl_noise\":\\[(.*?)\\]";

const std::string HED_MATCH = "\"hed\":\\[(.*?)\\]";

const std::string HED_NOISE_MATCH = "\"hed_noise\":\\[(.*?)\\]";

class Log {

public:

Log(){};

Log(std::string log);

virtual ~Log() = default;

std::string minLog();

std::string getRecTime();

std::string getType();

std::string getPos();

std::string getPosNoise();

std::string getSpeed();

std::string getSpeedNoise();
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private:

std::string type;

std::string recTime;

std::string time;

std::string sendTime;

std::string sender;

std::string senderPudo;

std::string msgId;

std::string pos;

std::string posNoise;

std::string speed;

std::string speedNoise;

std::string acl;

std::string aclNoise;

std::string hed;

std::string hedNoise;

};

}

#endif /* LOG_H */
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/*

* Testing.h

*

*  Created on: Feb 21, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DATA_TESTING_H_

#define INCLUDE_DATA_TESTING_H_

#include <string>

#include "Log.h"

namespace data {

class Testing {

public:

Testing();

Testing(const Log& data);

virtual ~Testing();

Log getData();

long getNormalizedData() const;

static long getNormalizedData(const std::string& data);

private:

Log data;

long normalizedData;

};

}

#endif /* INCLUDE_DATA_TESTING_H_ *
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/*

* Testing.h

*

*  Created on: Feb 21, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DATA_TRAINING_H_

#define INCLUDE_DATA_TRAINING_H_

#include "Testing.h"

#include "greenMds/include/features/features.h"

namespace data {

class Training : public Testing {

public:

Training();

Training(Log data, features::feature dataType);

virtual ~Training();

void setDataType(features::feature dataType);

features::feature getDataType();

bool operator==(const data::Training& other);

bool operator<(const Training& other);

private:

features::feature dataType;

};

}

#endif /* INCLUDE_DATA_TRAINING_H_ */
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/*

* TrainingManager.h

*

*  Created on: Feb 21, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DATA_TRAINING_MANAGER_H_

#define INCLUDE_DATA_TRAINING_MANAGER_H_

#include <algorithm>

#include <list>

#include <iterator>

#include "Training.h"

namespace data {

class TrainingManager {

public:

static TrainingManager* getInstance();

void addData(data::Training data);

data::Training getData(int index);

void removeData(data::Training data);

void sort();

void eliminate();

int getCount();

private:

std::list<data::Training> dataList;

TrainingManager();

};

}

#endif /* INCLUDE_DATA_TRAINING_MANAGER_H_ */
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/*

* Ann.h

*

*  Created on: Mar 24, 2022

*      Author: tmgreen

*/

#ifndef SRC_DT_ANN_H_

#define SRC_DT_ANN_H_

#include "greenMds/include/dt/MlNode.h"

#include "greenMds/include/data/Training.h"

#include "greenMds/include/features/features.h"

namespace ml {

class Ann {

public:

Ann(data::Training* data, int numData);

~Ann() = default;

features::feature getFeature(data::Testing data);

private:

MlNode* input;

MlNode* output;

int numLayerOne;

int numLayerTwo;

MlNode* hLayerTwo;

MlNode* hLayerOne;

};

}

#endif /* SRC_DT_ANN_H_ */
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/*

* DtNode.h

*

*  Created on: Feb 24, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DT_DTNODE_H_

#define INCLUDE_DT_DTNODE_H_

#include "greenMds/include/data/Training.h"

namespace dt {

class DtNode {

public:

DtNode();

virtual ~DtNode() = default;

bool operator==(DtNode& other);

bool operator<(DtNode& other);

void setParent(DtNode* parent);

void setLeftChild(DtNode* leftChild);

void setRightChild(DtNode* rightChild);

DtNode* getParent();

DtNode* getLeftChild();

DtNode* getRightChild();

void setData(data::Training data);

data::Training getData();

bool isLeaf();

int good;

int bad;

private:

DtNode* parent;

DtNode* leftChild;

DtNode* rightChild;

data::Training data;

bool leaf = false;

};

}

#endif /* INCLUDE_DT_DTNODE_H_ */
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/*

* DtTree.h

*

*  Created on: Feb 24, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DT_DTTREE_H_

#define INCLUDE_DT_DTTREE_H_

#include "greenMds/include/dt/DtNode.h"

#include "greenMds/include/features/features.h"

#include "greenMds/include/data/Testing.h"

namespace dt {

class DtTree {

public:

DtTree(){}

DtTree(DtNode* nodes, uint32_t numNodes);

virtual ~DtTree() = default;

features::feature getFeature(data::Testing data);

DtNode getRoot();

private:

DtNode root;

DtNode* splitTree(DtNode* nodeList,

int index,

int lowerBound,

int upperBound,

bool starting,

bool leftSplit,

bool rightSplit);

};

}

#endif /* INCLUDE_DT_DTTREE_H_ */
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/*

* MlNode.h

*

*  Created on: Mar 24, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DT_MLNODE_H_

#define INCLUDE_DT_MLNODE_H_

#include <math.h>

#include <time.h>

namespace ml {

class MlNode {

public:

MlNode();

~MlNode() = default;

//Hidden LayerNode

void setInNode(MlNode* inNodes, int numInNodes, int numLayerNodes);

float getValue();

void setValue(float value);

void calValue(bool isLayerOne);

int getError();

void setError(int error);

bool activate();

void adjutWeight(float value);

private:

struct InLink {

MlNode* node;

float weight;

float error;

float weightOld;

};

InLink* inNodes;

int numInNodes;

float value;

float error;

};
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}

#endif /* INCLUDE_DT_MLNODE_H_ */
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/*

* DtTree.h

*

*  Created on: Feb 24, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DT_RF_H_

#define INCLUDE_DT_RF_H_

#include "greenMds/include/dt/DtTree.h"

#include "greenMds/include/dt/DtNode.h"

#include "greenMds/include/features/features.h"

#include "greenMds/include/data/Testing.h"

#include <stdlib.h>

#include <time.h>

#include <list>

namespace dt {

class Rf {

public:

Rf(dt::DtNode* nodes, uint32_t numNodes);

virtual ~Rf() = default;

features::feature getFeature(data::Testing data);

private:

const int NUM_TREES = 128;

const int NODES_PER_TREE = 200;

DtTree* trees;

DtNode** nodes;

};

}

#endif /* INCLUDE_DT_RF_H_ */
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/*

* Stack.h

*

*  Created on: Apr 6, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_DT_STACK_H_

#define INCLUDE_DT_STACK_H_

#include "greenMds/include/dt/Ann.h"

#include "greenMds/include/dt/Rf.h"

#include "greenMds/include/data/TrainingManager.h"

namespace ml {

class Stack {

public:

Stack();

~Stack() = default;

features::feature getFeature(data::Testing data);

private:

Ann* ann0;

data::Training* annNodes0;

dt::Rf* rf0;

dt::DtNode* rfNodes0;

dt::DtTree* tree;

dt::DtNode* dtNodes0;

dt::Rf* rf1;

dt::DtNode* rfNodes1;

};

}

#endif /* INCLUDE_DT_STACK_H_ */
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/*

* features.h

*

*  Created on: Feb 21, 2022

*      Author: tmgreen

*/

#ifndef INCLUDE_FEATURES_FEATURES_H_

#define INCLUDE_FEATURES_FEATURES_H_

namespace features {

enum feature {

NORMAL,

BAD

};

}

#endif /* INCLUDE_FEATURES_FEATURES_H_ */



91

#include "greenMds/api_include/api/FeatureFactory.h"

api::FeatureFactory::FeatureFactory() {

}

void api::FeatureFactory::addTraningData(std::string data, features::feature dataType) {

data::Log log(data);

data::Training trainingData(log, dataType);

data::TrainingManager::getInstance()->addData(trainingData);

}

void api::FeatureFactory::generateModel() {

//Sort list and apply feature elimination

data::TrainingManager::getInstance()->sort();

data::TrainingManager::getInstance()->eliminate();

stack = new ml::Stack();

}

features::feature api::FeatureFactory::getFeature(std::string data) {

data::Log log(data);

data::Testing testing(log);

return stack->getFeature(testing);

}
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/*

* Log.cpp

*

*  Created on: Mar 7, 2022

*      Author: tmgreen

*/

#include "greenMds/include/data/Log.h"

data::Log::Log(std::string log) {

std::smatch typeMatch;

std::smatch recTimeMatch;

std::smatch timeMatch;

std::smatch sendTimeMatch;

std::smatch senderMatch;

std::smatch senderPudoMatch;

std::smatch msgIdMatch;

std::smatch posMatch;

std::smatch posNoiseMatch;

std::smatch speedMatch;

std::smatch speedNoiseMatch;

std::smatch aclMatch;

std::smatch aclNoiseMatch;

std::smatch hedMatch;

std::smatch hedNoiseMatch;

std::regex_search(log, typeMatch, std::regex(TYPE_MATCH));

std::regex_search(log, recTimeMatch, std::regex(REC_TIME_MATCH));

std::regex_search(log, timeMatch, std::regex(TIME_MATCH));

std::regex_search(log, sendTimeMatch, std::regex(SEND_TIME_MATCH));

std::regex_search(log, senderMatch, std::regex(SENDER_MATCH));

std::regex_search(log, senderPudoMatch, std::regex(SENDER_PUDO_MATCH));

std::regex_search(log, msgIdMatch, std::regex(MSG_ID_MATCH));

std::regex_search(log, posMatch, std::regex(POS_MATCH));

std::regex_search(log, posNoiseMatch, std::regex(POS_NOISE_MATCH));

std::regex_search(log, speedMatch, std::regex(SPEED_MATCH));

std::regex_search(log, speedNoiseMatch, std::regex(SPEED_NOISE_MATCH));

std::regex_search(log, aclMatch, std::regex(ACL_MATCH));

std::regex_search(log, aclNoiseMatch, std::regex(ACL_NOISE_MATCH));

std::regex_search(log, hedMatch, std::regex(HED_MATCH));

std::regex_search(log, hedNoiseMatch, std::regex(HED_NOISE_MATCH));

type = typeMatch[1];

recTime = recTimeMatch[1];

time = timeMatch[1];

sendTime = sendTimeMatch[1];
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sender = senderMatch[1];

senderPudo = senderPudoMatch[1];

msgId = msgIdMatch[1];

pos = posMatch[1];

posNoise = posNoiseMatch[1];

speed = speedMatch[1];

speedNoise = speedNoiseMatch[1];

acl = aclMatch[1];

aclNoise = aclNoiseMatch[1];

hed = hedMatch[1];

hedNoise = hedNoiseMatch[1];

if(time != "" && recTime == "") {

recTime = time;

}

}

std::string data::Log::minLog() {

return type

+ pos

+ posNoise

+ speed

+ speedNoise;

}

std::string data::Log::getType() {

return type;

}

std::string data::Log::getPos() {

return pos;

}

std::string data::Log::getPosNoise() {

return posNoise;

}

std::string data::Log::getSpeed() {

return speed;

}

std::string data::Log::getSpeedNoise() {

return speedNoise;

}

std::string data::Log::getRecTime() {
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return recTime;

}
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/*

* Testing.cpp

*

*  Created on: Feb 21, 2022

*      Author: tmgreen

*/

#include "greenMds/include/data/Testing.h"

data::Testing::Testing() {

}

data::Testing::Testing(const Log& data) {

this->data = data;

std::string logStr = this->data.minLog();

this->normalizedData = getNormalizedData(logStr);

}

data::Testing::~Testing() {

}

data::Log data::Testing::getData() {

return this->data;

}

long data::Testing::getNormalizedData() const {

return this->normalizedData;

}

long data::Testing::getNormalizedData(const std::string& data) {

//Only allow alphanumeric numbers. Ignore everything else.

std::string allowedLetters =

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,";

int normalizedData = 0;

for(unsigned int ii=0; ii<data.length(); ++ii) {

if(allowedLetters.find(data.c_str()[ii]) == std::string::npos) {

continue;

} else {

normalizedData += data.c_str()[ii];

}

}

return normalizedData;

}
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/*

* Training.cpp

*

*  Created on: Feb 21, 2022

*      Author: tmgreen

*/

#include "greenMds/include/data/Training.h"

data::Training::Training() : data::Testing() {

}

data::Training::Training(Log data, features::feature dataType) :

data::Testing(data){

this->dataType = dataType;

}

data::Training::~Training() {

}

void data::Training::setDataType(features::feature dataType) {

this->dataType = dataType;

}

features::feature data::Training::getDataType() {

return this->dataType;

}

bool data::Training::operator==(const data::Training& other) {

return getNormalizedData() == other.getNormalizedData();

}

bool data::Training::operator<(const Training& other) {

return getNormalizedData() < other.getNormalizedData();

}
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/*

* TrainingManager.cpp

*

*  Created on: Feb 21, 2022

*      Author: tmgreen

*/

#include "greenMds/include/data/TrainingManager.h"

data::TrainingManager* data::TrainingManager::getInstance() {

static data::TrainingManager manager;

return &manager;

}

void data::TrainingManager::addData(data::Training data) {

dataList.push_front(data);

}

data::Training data::TrainingManager::getData(int index) {

return *std::next(dataList.begin(), index);

}

void data::TrainingManager::removeData(data::Training data) {

this->dataList.remove(data);

}

void data::TrainingManager::sort() {

dataList.sort();

}

int data::TrainingManager::getCount() {

return dataList.size();

}

void data::TrainingManager::eliminate() {

long long average = 0;

for(data::Training data : dataList) {

average += data.getNormalizedData();

}

std::list<data::Training>::iterator itr = dataList.begin();

std::list<data::Training>::iterator last;

int badVote = 0;

int goodVote = 0;
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itr = dataList.begin();

last = itr;

++itr;

while(itr != dataList.end()) {

if(itr->getNormalizedData() == last->getNormalizedData()) {

if(itr->getDataType() == features::BAD) {

++badVote;

} else {

++goodVote;

}

itr = dataList.erase(itr);

continue;

} else {

if(goodVote > badVote) {

last->setDataType(features::NORMAL);

} else {

last->setDataType(features::BAD);

}

badVote = 0;

goodVote = 0;

}

last = itr;

++itr;

}

}

data::TrainingManager::TrainingManager() {

}
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/*

* Ann.cpp

*

*  Created on: Mar 24, 2022

*      Author: tmgreen

*/

#include "greenMds/include/dt/Ann.h"

ml::Ann::Ann(data::Training* data, int numData) {

//Build the model

numLayerOne = 60;

numLayerTwo = 30;

this->input = new MlNode[5];

this->output = new MlNode();

hLayerTwo = new MlNode[numLayerTwo];

hLayerOne = new MlNode[numLayerOne];

for(int index=0; index<numLayerOne; ++index) {

MlNode* node = &this->hLayerOne[index];

node->setInNode(this->input, 5, numLayerOne);

}

for(int index=0; index<numLayerTwo; ++index) {

MlNode* node = &this->hLayerTwo[index];

node->setInNode(hLayerOne, numLayerOne, numLayerTwo);

}

this->output->setInNode(hLayerTwo, numLayerTwo, 1);

for(int index=0; index<numData; ++index) {

data::Training training = data[index];

//We were right dont bother adjusting

if(getFeature((data::Testing)training) == training.getDataType()) {

continue;

}

int actualValue = 0;

if(training.getDataType() == features::BAD) {

actualValue = 1;

}

input[0].setValue(data::Training::getNormalizedData(training.getData().getType()));
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input[1].setValue(data::Training::getNormalizedData(training.getData().getPos()));

input[2].setValue(data::Training::getNormalizedData(training.getData().getPosNoise()));

input[3].setValue(data::Training::getNormalizedData(training.getData().getSpeed()));

input[4].setValue(data::Training::getNormalizedData(training.getData().getSpeedNoise()));

for(int itr=0; itr<1000 && getFeature((data::Testing)training) != training.getDataType(); ++itr) {

float guessValue = 0;

//feed forward

for(int index=0; index<numLayerOne; ++index) {

MlNode* node = &this->hLayerOne[index];

node->calValue(true);

guessValue += pow((node->getValue() - actualValue), 2);

}

for(int index=0; index<numLayerTwo; ++index) {

MlNode* node = &this->hLayerTwo[index];

node->calValue(false);

guessValue += pow((node->getValue() - actualValue), 2);

}

output->calValue(false);

guessValue += pow((output->getValue() - actualValue), 2);

guessValue = guessValue / (numLayerOne + numLayerTwo + 1 + 5);

//back propagate

output->adjutWeight(guessValue);

for(int index=0; index<numLayerTwo; ++index) {

MlNode* node = &this->hLayerTwo[index];

node->adjutWeight(guessValue);

}

for(int index=0; index<numLayerOne; ++index) {

MlNode* node = &this->hLayerOne[index];

node->adjutWeight(guessValue);

}

}

}

}

features::feature ml::Ann::getFeature(data::Testing data) {
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features::feature guess = features::NORMAL;

input[0].setValue(data::Training::getNormalizedData(data.getData().getType()));

input[1].setValue(data::Training::getNormalizedData(data.getData().getPos()));

input[2].setValue(data::Training::getNormalizedData(data.getData().getPosNoise()));

input[3].setValue(data::Training::getNormalizedData(data.getData().getSpeed()));

input[4].setValue(data::Training::getNormalizedData(data.getData().getSpeedNoise()));

for(int index=0; index<numLayerOne; ++index) {

MlNode* node = &this->hLayerOne[index];

node->calValue(true);

}

for(int index=0; index<numLayerTwo; ++index) {

MlNode* node = &this->hLayerTwo[index];

node->calValue(false);

}

this->output[0].calValue(false);

if(this->output[0].activate()) {

guess = features::BAD;

}

return guess;

}
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/*

* DtNode.cpp

*

*  Created on: Feb 24, 2022

*      Author: tmgreen

*/

#include "greenMds/include/dt/DtNode.h"

dt::DtNode::DtNode() :

parent(NULL),

leftChild(NULL),

rightChild(NULL),

data(data::Training(data::Log("{\"type\":4,\"time\":25299.986984130697,\"sender\":1429,\"atta

ckerType\":1,\"messageID\":6403019,\"pos\":[4431.179821821522,5322.041109381504,1.895],\

"pos_noise\":[0.0,0.0,0.0],\"spd\":[-5.390899823618186,-2.0799435132659438,0.0],\"spd_noise

\":[0.0,0.0,0.0]}"), features::NORMAL)),

leaf(true) {

}

bool dt::DtNode::operator==(DtNode& other) {

return this->getData() == other.getData();

}

bool dt::DtNode::operator<(DtNode& other) {

return this->getData() < other.getData();

}

void dt::DtNode::setParent(DtNode* parent) {

this->parent = parent;

}

void dt::DtNode::setLeftChild(DtNode* leftChild) {

this->leftChild = leftChild;

if(this->leftChild == NULL && this->rightChild == NULL) {

leaf = true;

} else {

leaf = false;

}

}

void dt::DtNode::setRightChild(DtNode* rightChild) {

this->rightChild = rightChild;

if(this->leftChild == NULL && this->rightChild == NULL) {
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leaf = true;

} else {

leaf = false;

}

}

dt::DtNode* dt::DtNode::getParent() {

return parent;

}

dt::DtNode* dt::DtNode::getLeftChild() {

return leftChild;

}

dt::DtNode* dt::DtNode::getRightChild() {

return rightChild;

}

void dt::DtNode::setData(data::Training data) {

this->data = data;

}

data::Training dt::DtNode::getData() {

return data;

}

bool dt::DtNode::isLeaf() {

return leaf;

}
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/*

* DtTree.cpp

*

*  Created on: Feb 24, 2022

*      Author: tmgreen

*/

#include "greenMds/include/dt/DtTree.h"

dt::DtTree::DtTree(DtNode* nodes, uint32_t numNodes) {

root = *splitTree(nodes, -1, 0, numNodes-1, true, false, false);

}

features::feature dt::DtTree::getFeature(data::Testing data) {

dt::DtNode* runningNode = &root;

dt::DtNode* lastNode = NULL;

while(runningNode != NULL) {

lastNode = runningNode;

if(data.getNormalizedData() > runningNode->getData().getNormalizedData()) {

runningNode = runningNode->getRightChild();

} else if(data.getNormalizedData() < runningNode->getData().getNormalizedData()) {

runningNode = runningNode->getLeftChild();

} else {

break; //Exact match, exit loop

}

}

return lastNode->getData().getDataType();

}

/***********************************

*            5

*          /   \

*         2     7

*        / \   / \

*       1   3 6   8

*            \     \

*             4     9

*                    \

*                    10

*/

dt::DtNode* dt::DtTree::splitTree(DtNode* nodeList,

int index,

int lowerBound,

int upperBound,
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bool starting,

bool leftSplit,

bool rightSplit) {

DtNode* node;

if(starting) {

index = upperBound;

}

if(!starting && ((leftSplit && index == lowerBound) || (rightSplit && index == upperBound))) {

node = nodeList+index; //Last node in tree

} else if((!starting && ((leftSplit && index < lowerBound) || (rightSplit && index > upperBound)))) {

node = NULL; //End of tree

} else { //Otherwise continue creating tree

int newIndex = (upperBound + lowerBound - 1) / 2;

node = nodeList + newIndex;

//Split list between left and right

node->setLeftChild(splitTree(nodeList, newIndex-1, lowerBound, newIndex-1, false, true, false));

node->setRightChild(splitTree(nodeList, newIndex+1, newIndex+1, upperBound, false, false, true));

}

return node;

}

dt::DtNode dt::DtTree::getRoot() {

return root;

}
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/*

* MlNode.cpp

*

*  Created on: Mar 24, 2022

*      Author: tmgreen

*/

#include "greenMds/include/dt/MlNode.h"

#include <math.h>

ml::MlNode::MlNode() {

}

void ml::MlNode::setInNode(MlNode* inNodes, int numInNodes, int numLayerNodes) {

srand( (unsigned)time( NULL ) );

this->numInNodes = numInNodes;

this->inNodes = new InLink[numInNodes];

for(int index=0; index<numInNodes; ++index) {

this->inNodes[index].node = &inNodes[index];

float randVal = rand();

float factor = (float)sqrt((float)2/(float)numLayerNodes);

this->inNodes[index].weight = ((float)randVal * (float)factor)/(float)RAND_MAX;

}

error = 0;

}

float ml::MlNode::getValue() {

return this->value;

}

void ml::MlNode::setValue(float value) {

this->value = value;

}

void ml::MlNode::calValue(bool isLayerOne) {

const int BIAS = 0;

this->value = 0;

for(int index=0; index<numInNodes; ++index) {

if(isLayerOne || inNodes[index].node->activate()) {

this->value += inNodes[index].weight * inNodes[index].node->getValue();

}

}
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this->value += BIAS;

int temp = this->value;

if(temp < 0) {

temp = 0;

}

}

int ml::MlNode::getError() {

return this->error;

}

void ml::MlNode::setError(int error) {

this->error = error;

}

// Rectified Linear Activation

bool ml::MlNode::activate() {

return this->value > 0;

}

void ml::MlNode::adjutWeight(float value) {

const float LEARNING_RATE = .01; //.00135

const float MC = 0;

//Calulate total weight

float totalWeight = 0;

for(int index=0; index<numInNodes; ++index) {

totalWeight += inNodes[index].weight;

}

for(int index=0; index<numInNodes; ++index) {

inNodes[index].error = inNodes[index].weight/totalWeight;

}

for(int index=0; index<numInNodes; ++index) {

float dWeight = (MC*inNodes[index].weightOld) - (LEARNING_RATE*(tanh(inNodes[index].error)));

inNodes[index].weight += dWeight;

inNodes[index].weightOld = dWeight;

}

}
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#include "greenMds/include/dt/Rf.h"

dt::Rf::Rf(dt::DtNode* nodes, uint32_t numNodes) {

trees = new DtTree[NUM_TREES];

this->nodes = new DtNode*[NUM_TREES];

srand (time(NULL));

for(int tree=0; tree<NUM_TREES; ++tree) {

std::list<DtNode> treeNodes;

for(int node=0; node<NODES_PER_TREE; ++node) {

treeNodes.push_front(nodes[rand()%(numNodes-1)]);

}

treeNodes.sort();

std::list<DtNode>::iterator last;

int badVote = 0;

int goodVote = 0;

std::list<DtNode>::iterator itr = treeNodes.begin();

last = itr;

++itr;

while(itr != treeNodes.end()) {

if(itr->getData().getNormalizedData() == last->getData().getNormalizedData()) {

if(itr->getData().getDataType() == features::BAD) {

++badVote;

} else {

++goodVote;

}

itr = treeNodes.erase(itr);

continue;

} else {

if(goodVote > badVote) {

last->getData().setDataType(features::NORMAL);

} else {

last->getData().setDataType(features::BAD);

}

badVote = 0;

goodVote = 0;

}

last = itr;

++itr;

}

this->nodes[tree] = new DtNode[NODES_PER_TREE];

std::copy(treeNodes.begin(), treeNodes.end(), this->nodes[tree]);

trees[tree] = dt::DtTree(this->nodes[tree], NODES_PER_TREE);

}
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}

features::feature dt::Rf::getFeature(data::Testing data) {

int normal = 0;

int bad = 0;

for(int tree=0; tree<NUM_TREES; ++tree) {

switch(trees[0].getFeature(data)) {

case features::NORMAL:

++normal;

break;

case features::BAD:

++bad;

break;

}

}

features::feature guess;

if(bad > normal) {

guess = features::BAD;

} else {

guess = features::NORMAL;

}

return guess;

}
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/*

* Stack.h

*

*  Created on: Apr 6, 2022

*      Author: tmgreen

*/

#include "greenMds/include/dt/Stack.h"

ml::Stack::Stack() {

int numData = data::TrainingManager::getInstance()->getCount();

const int NUM_FOLDS = 1;

const int NODES_PER_FOLD = numData/NUM_FOLDS;

annNodes0 = new data::Training[numData];

for(int nodeIndex=0; nodeIndex<numData; nodeIndex+=NUM_FOLDS) {

annNodes0[nodeIndex] = data::TrainingManager::getInstance()->getData(nodeIndex);

}

ann0 = new ml::Ann(annNodes0, NODES_PER_FOLD);

rfNodes0 = new dt::DtNode[numData];

for(int nodeIndex=0; nodeIndex<numData; nodeIndex+=NUM_FOLDS) {

rfNodes0[nodeIndex] = dt::DtNode();

rfNodes0[nodeIndex].setData(data::TrainingManager::getInstance()->getData(nodeIndex));

}

rf0 = new dt::Rf(rfNodes0, NODES_PER_FOLD);

dtNodes0 = new dt::DtNode[numData];

for(int nodeIndex=0; nodeIndex<numData; nodeIndex+=NUM_FOLDS) {

dtNodes0[nodeIndex] = dt::DtNode();

dtNodes0[nodeIndex].setData(data::TrainingManager::getInstance()->getData(nodeIndex));

}

tree = new dt::DtTree(dtNodes0, NODES_PER_FOLD);

int secondIndex=0;

rfNodes1 = new dt::DtNode[3*NODES_PER_FOLD];

for(int nodeIndex=0; nodeIndex<numData; nodeIndex+=NUM_FOLDS) {

data::Training trainingData = data::TrainingManager::getInstance()->getData(nodeIndex);

rfNodes1[secondIndex].setData(data::Training(trainingData.getData(),

ann0->getFeature((data::Testing) trainingData)));

++secondIndex;

rfNodes1[secondIndex].setData(data::Training(trainingData.getData(),

rf0->getFeature((data::Testing) trainingData)));

++secondIndex;
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rfNodes1[secondIndex].setData(data::Training(trainingData.getData(),

tree->getFeature((data::Testing) trainingData)));

++secondIndex;

}

rf1 = new dt::Rf(rfNodes1, 3*NODES_PER_FOLD);

}

features::feature ml::Stack::getFeature(data::Testing data) {

return rf1->getFeature(data);

}
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