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Spin Hall effect of vorticity

Edward Schwartz, Hamed Vakili, Moaz Ali , and Alexey A. Kovalev
Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience,

University of Nebraska, Lincoln, Nebraska 68588, USA

(Received 15 September 2022; accepted 28 November 2022; published 8 December 2022)

Using mapping between topological defects in an easy-plane magnet and electrical charges, we study interplay
between vorticity and spin currents. We demonstrate that the flow of vorticity is accompanied by the transverse
spin current generation; an effect which can be termed as the spin Hall effect of vorticity. We study this effect
across the BKT transition and establish the role of dissipation and spin nonconservation in the crossover from
spin superfluidity to diffusive spin transport. Our results pave the way for low power computing devices relying
on vorticity and spin flows that can propagate over long distances.

DOI: 10.1103/PhysRevB.106.L220401

Introduction. Experimental realizations of van der Waals
(vdW) magnetic materials such as NiPS3, CrCl3, and
Fe3GeTe2 show unconventional magnetic behavior [1], which
can be of interest for the field of spintronics [2]. As vdW
systems can be realized in a two-dimensional (2D) form, they
possess unique properties and result in unusual physics [3–5].
Possible applications in atomically thin memory and com-
puting devices [6] further motivate research of spin-orbit
torques [7,8], realizations of skyrmions [9], magnetization
switching [10], etc. Achieving low dissipation in devices can
often become possible by employing concepts of topology
and topological protection [11]. Skyrmions, characterized by
a topological charge and proposed as information carriers,
have been observed in vdW magnetic materials [12,13]. Two-
dimensional magnetic systems with easy-plane anisotropy can
host magnetic merons; magnetic defects characterized by a
topological vorticity number [14].

2D vdW magnets can also be used to explore fundamental
questions of magnetism related to magnetic phase transi-
tions [15,16]. The physics associated with the topological
defects can lead to the magnetic Berezinskii-Kosterlitz-
Thouless (BKT) transition, which is a topological phase
transition [17,18]. Bound topological defects appear below
the BKT transition, and they unbind above the BKT tran-
sition, thus, leading to various transport signatures [19–22].
The behavior of topological defects can be further mapped
to electrodynamics in two dimensions where the vorticity
number plays the role of charge while the spin density and
current play the role of magnetic and electric fields [23–26].
The interplay of spin and vorticity currents then results in the
crossover [21,22] from the spin superfluid transport [27–37]
below the BKT transition to the diffusive spin transport above
the BKT transition.

The discovery of the spin Hall effect played an important
role in development of spintronics [38]. The spin Hall effect
and its analogs can be induced by flows of electrons [39],
magnons [40,41], phonons [42,43], etc. In this work, we study
interplay between vorticity and spin currents where topolog-
ical defects behave as positive and negative charges in the

presence of electric and magnetic fields. We show that the
steady state vorticity current induces the spin Hall current
which can be measured by the inverse spin Hall or inverse
magnetic spin Hall effects. We study this effect across the
BKT transition analytically, and numerically using spin dy-
namics simulations.

LLG dynamics. We begin by considering the Hamiltonian
describing a 2D magnetic insulator with the easy-plane mag-
netic anisotropy,

H = −J
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j + λSz

i Sz
j

) − 2Jβ
∑

i

(
Sz

i

)2
, (1)

where J < 0 [44] describes the antiferromagnetic exchange
coupling, λ (0 � λ < 1) describes the exchange anisotropy,
and β describes the single-ion magnetic anisotropy. We as-
sume a square lattice; however, the approach also works for
other lattices. The Hamiltonian (1) can be realized in 2D
vdW magnets [45]. Depending on the strength of anisotropy,
Eq. (1) can lead to realizations of either in-plane vortices or
merons [46]. We concentrate on the small anisotropy case
realizing merons. The dynamical equations corresponding to
the Hamiltonian (1) can be readily obtained. With added dis-
sipation and spin-orbit torque these lead to the discretized
Landau-Lifshitz-Gilbert (LLG) equation,

s(1 + αSi×) ∂t Si = Si × Hi + τso
i . (2)

Here s stands for the spin density, α stands for the Gilbert
damping, τso

i is the spin-orbit torque due to spin Hall or mag-
netic spin Hall effects, the field Hi = Heff

i + Hth
i contains the

effective field Heff
i = J

a2 [
∑

j∈N (i)(S
x
j , Sy

j , λSz
j ) + (0, 0, 4βSz

i )]
with N (i) denoting the nearest neighbors, and the thermal field
Hth

i due to the Langevin force. The out-of-plane component of
Eq. (2) can be rewritten in a form reminiscent of the continuity
equation for spin current,

∂tρ
s
i + ∇i · js

〈i, j〉 = −αs z · Si × ∂t Si + z · τso
i , (3)

where ∇i · f〈i, j〉 = 1
a2

∑
j∈N (i)(ri − r j )f〈i, j〉 is the discrete di-

vergence, ρs
i = sSz

i is the out-of-plane spin density, and
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FIG. 1. Two pairs of magnets with opposite charge currents jc

are used to inject opposite spin currents with perpendicular po-
larization into an easy-plane magnet via the magnetic spin Hall
effect [47,48] or the unconventional spin-orbit torque [49,50], estab-
lishing a steady vorticity current. The spin Hall effect of vorticity
can be detected by injection of the spin current into heavy metal
contacts, e.g., Pt contacts. The circuit can also run in reverse, where
the injection of spin current through heavy metal contacts is used
to generate the vorticity current and the inverse magnetic spin Hall
effect is used to detect the spin current.

js
〈i, j〉 = J

a2 (ri − r j )(z · Si × S j ) is the spin current [51] (see
Fig. 2). We can rewrite Eq. (3) in the long wavelength limit as
∂tρ

s + ∇js = −ρs/τ + z · τso for the dynamics in the vicin-
ity of the in-plane configuration as follows from a relation,
z · S × ∂t S ∝ ρs where τ has the meaning of the spin relax-
ation time. The spin density ρs and the spin flux js form a spin
three-current σμ = (ρs, js).

Electrodynamics of vorticity and dissipation. The dynamics
of the easy-plane magnet is influenced by topological defects.
The conserved vorticity topological charge can be defined as

Q =
∑
i∈S

ρv
i a2 = 1

2πJ

‰
∂S

js
〈i, j〉dl, (4)

where ∂S is the boundary defined by a set of bonds forming
a closed path and we introduce the vorticity density ρv

i =∑
〈i, j〉∈P (i)

1
2πa2 (z · Si × S j ) with P (i) describing all edges of

plaquette i with the counterclockwise ordering of edge indices

FIG. 2. The vorticity current in an easy-plane magnet will lead to
transverse spin Hall current that can be detected using a heavy metal
such as Pt where jc is the direction of charge current. For a square
lattice, spin and vorticity currents, and vorticity density are shown
for a single plaquette.

(i, j) (see Fig. 2). The right-hand side of Eq. (4) can be
seen as the consequence of the Stokes theorem. By identi-
fying the spin current with the fictitious electric field [25],
i.e., E = js × z, we can recast Eq. (4) as the Gauss’s law,´

∂S ds · E = 2πJQ. Note that the fictitious electric field, Ec =
−∇V , corresponding to the electrostatic potential V due to the
2D Coulomb interaction of static topological defects [23] will
result in conserved equilibrium spin current. In the following
discussion, we will use the spin current js and the electric field
E interchangeably.

Dissipation associated with the Gilbert damping in Eq. (3)
in the presence of vorticity currents will lead to non-conserved
spin currents. Injection of spin into 2D magnet, e.g., due to
spin-orbit torque term in the right-hand side of Eq. (2),

τso
i ∝ Si × [Si × z], (5)

will also lead to spin nonconservation. Such torques are typ-
ical for Pt contacts but in case of unconventional spin Hall
effect will require materials with lower symmetry [49,50].
The conserved vorticity current is defined for each bond
as [52] jv〈i, j〉 = 1

2πa2 z × (ri − r j )[z · (Si − S j ) × ∂t (Si + S j )]
(see Fig. 2). By direct inspection, we can confirm the follow-
ing relation:

jv〈i, j〉 = 1

2πJ
z × (

∂t js
〈i, j〉 + J∇〈i, j〉[z · S × ∂t S]

)
, (6)

which establishes a relation between the vorticity current
and spin dissipation due to the Gilbert damping in Eq. (3).
Here ∇〈i, j〉 f = ( fi − f j )(ri − r j )/a2 and it can be straightfor-
wardly generalized to ∇ in the long wavelength limit.

The constitutive relations (3), (4), and (6) correspond to
dissipative electrodynamics of vorticity which manifests after
identification of spin three-current with the fictitious mag-
netic, B = ρs, and electric, E = js × z, fields [25] acting on
charged vortices where the charge corresponds to the vorticity
topological number.

Vorticity and spin currents. To drive the spin Hall response,
we assume that a steady vorticity flow is present in the system.
In Fig. 1, the vorticity flow is generated by injection of spin
currents with opposite out-of-plane polarizations via the mag-
netic spin Hall effect [47,48] or the unconventional spin-orbit
torque [49,50], e.g., by using additional layers covering the
two-dimensional magnet through a nonmagnetic spacer. The
vorticity current is maintained by the electric field E = js × z,
i.e.,

jv = σE, (7)

where σ = μn f is the conductivity expressed in terms of the
mobility, μ, and the total density of free topological defects
with positive and negative vorticity, n f .

In a steady state, we combine Eqs. (3), (6), and (7) and
obtain

1

2παs
∇(∇ · js − z · τso) = μn f js, (8)

where the total density of free topological defects n f be-
haves differently below and above the BKT transition. As
a result, the system response described by Eq. (8) also
changes across the BKT transition. At T > TBKT, Eq. (8)
is linear in js and the response is dominated by the tem-
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perature dependence of the free topological defect density,
i.e., n f ∝ exp(−2b/

√
T/TBKT − 1) [53]. At T < TBKT, the

free topological defects are absent in equilibrium. The spin
current js breaks some bound pairs of topological defects
as follows from Eq. (7) leading to the finite density [21]
n f ∝ exp(−
F/kBT ) with 
F ≈ πK̃ ln(J s/ js) being the
free energy barrier for unbinding a pair and J s being a
phenomenological parameter [21,54]. This leads to nonlin-
earity with respect to js in the right-hand side of Eq. (8) as
n f ∝ ( js/J s)πK̃/kBT where K̃ is the vortex-renormalized spin
stiffness.

Spin Hall effect. We consider the vorticity flow in Fig. 1,
and show that this results in spin current injection into Pt
contacts. To this end, we consider a region of an easy-plane
magnet in Fig. 2 and assume a steady vorticity current. As
pushing the vorticity through a magnetic film results in trans-
verse winding [55], this should also lead to spin current
pumping into Pt contacts in Fig. 2. Assuming that the Pt
contacts in Fig. 2 are only used as detectors, we arrive at the
following boundary conditions:

js(0) = js
1 + g̃∂x js|x=0, (9)

js(Lx ) = js
2 − g̃∂x js|x=Lx , (10)

where g̃ = aα′/α describes the increased Gilbert damping
α′ (in general different for the left and right boundaries in
Fig. 2) at x = 0 and x = Lx due to contact with the detec-
tor [22]. The parameters js

1 and js
2 describe the spin current

at the boundary due to vorticity flow; for symmetrical setup
js
1 = js

2 = js. Assuming that g̃/Lx is small, we can further ap-
proximate the spin currents injected into heavy metal contacts
in Fig. 2 as js(0) − js

g̃=0 = g̃∂x js
g̃=0|x=0 and js(Lx ) − js

g̃=0 =
−g̃∂x js

g̃=0|x=Lx where js
g̃=0 is the spin current calculated for

boundaries with g̃ = 0 [22].
In the symmetrical setup, the analytical solutions of Eq. (8)

can be obtained using the inverse function j(x) = f −1(|x −
Lx/2|) in terms of the reduced spin current j = js/J s as

f ( j) = − j
√

νλ2

( j0)ν
Im

[
2F 1

(1

2
,

1

2ν
, 1 + 1

2ν
;

j2ν

j2ν
0

)]
, (11)

where 2F 1(. . . ) stands for the hypergeometric function,
ν = 1 + πK̃/2kBT , and λ2 = 2παsμn f ( js/J s)πK̃/kBT . The
boundary condition j(0) = j(Lx ) = js

g̃=0/J s can be used to
find the unknown constant j0 equal to the reduced spin current
density at x = Lx/2. For K̃ > 0, Eq. (11) describes algebraic
decay of spin current from edges up to x = Lx/2. For K̃ = 0,
J s cancels out and Eq. (8) corresponds to the spin diffusion
where the solution in Eq. (11) describes exponential decay
away from the edges. We introduce the averaged vorticity
current according to relation

Jv = 1

Lx

ˆ Lx

0
jvdx. (12)

It is convenient to use js
g̃=0 to characterize the vorticity bias

as follows from its relations to the averaged vorticity current.

FIG. 3. The spin current density in response to a steady vorticity
flow. The spin current can be detected by the inverse spin Hall effect
or the inverse magnetic spin Hall effect in a contact. The temperature
varies across the BKT transition which is reflected by the values
of the spin stiffness K̃ . The lines correspond to analytical results,
and diamond symbols represent numerical calculations using the
spin dynamics simulations with the in-plane magnetic anisotropy
described by β = 0.05.

The averaged vorticity current for T < TBKT becomes

Jv = J s

παs

√(
js
g̃=0/J s

)2ν − ( j0)2ν

√
νλLx

jLx
λ

	1
≈ J s

παs

(
js
g̃=0/J s

)ν

√
νλLx

, (13)

jLx
λ


1
≈ J s

παs

(
js
g̃=0/J s

)2ν−1

2(λ)2
, (14)

and for T > TBKT,

Jv = js
g̃=0

παs

1

λLx coth(Lx/2λ)

Lx
λ

	1
≈ 1

παs

js
g̃=0

λLx
, (15)

Lx
λ


1
≈ 1

παs

js
g̃=0

2(λ)2
. (16)

The above relations show that the averaged vorticity current
scales linearly with js

g̃=0 above the BKT transition. Below the
BKT transition, the scaling will be nonlinear with the power
factors given in Eqs. (13) and (14).

Using results for the vorticity current, we can write the spin
currents injected into heavy metal contacts as

js(0) − js
g̃=0 = js(Lx ) − js

g̃=0 = (a2s)θshJv, (17)

where θsh = −πα′(Lx/a) has the meaning of the spin Hall
angle. This response is detectable by heavy metal contacts via
inverse spin Hall effect as shown in Fig. 2.

Numerical results. We performed spin dynamics simula-
tions of lattice described by Hamiltonian (1) with 1600 × 200
sites and periodic boundary conditions. Calculated quantities
are averaged over time as well as 100 initial configurations.
We consider the in-plane magnetic anisotropy induced either
by anisotropic exchange or by single-ion magnetic anisotropy
and obtain similar results for both cases. The Gilbert damping
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FIG. 4. The distribution of the vorticity current density expressed
in units of jv0 = J/(2παsa3). The temperature varies across the BKT
transition which is reflected by the values of the spin stiffness K̃ . We
use the in-plane magnetic anisotropy described by β = 0.05.

and the Langevin random force are calculated for α = 0.0005.
We obtain averaged quantities 〈 js〉av and 〈ρs〉av after the
steady state is established. We use the feedback-optimized
parallel tempering Monte Carlo [22,56] with 106 metropolis
updates per spin to obtain 100 initial configurations for spin
dynamics simulations.

The spin is injected at x = 0 and absorbed at x = Lx to
mimic the effect of js

g̃=0 in boundary conditions in Eqs. (9)
and (10). We take g̃ = 0 as this term does not lead to substan-
tial changes when it is small. In Fig. 3, we plot the profile
of spin current density along the x axis as the temperature is
varied across the BKT transition, which is indicated by the
values of the spin stiffness. Note that for an infinite system one
expects the spin stiffness jump from K̃ = 2kBTBKT/π to zero
at the BKT transition while finite size effects can lead to more
gradual changes in the spin stiffness [22,57]. We observe good
agreement between the fitted analytical results of Eq. (11) and
the numerical results shown by diamond symbols. For smaller
spin stiffness, we observe faster (but still algebraic corre-
sponding to spin superfluidity) decay of spin current in the
vicinity of boundaries. At high enough temperature, K̃ = 0
and the decay becomes exponential (not shown). In Fig. 4, we
plot the profile of the vorticity current density obtained from
the fitted spin current in Fig. 3. The averaged vorticity current
given by Eq. (12) increases as the spin stiffness decreases to
zero around kBT/JS ≈ 0.68. At the same time the vorticity
current density decays faster in the vicinity of edges as the
spin stiffness decreases. The exponential decay is recovered
when K̃ = 0. In Fig. 5, we plot the spin current response in
Eq. (17) obtained by spin dynamics simulations. The increase

FIG. 5. The diamond symbols represent the measurable spin Hall
response in Eq. (17) obtained by the spin dynamics simulations.

in the spin current is consistent with the behavior of the
free topological defect density above the BKT transition, i.e.,
n f ∝ exp(−2b/

√
T/TBKT − 1) [53].

Conclusions. We studied the interplay of spin and vorticity
currents where topological defects play a role of positive and
negatie charges in the presence of fictitious electric and mag-
netic fields. We showed that the steady state vorticity current
can induce the spin Hall current which can be measured by
the inverse spin Hall or inverse magnetic spin Hall effects.
The proposed effect is opposite to spin injection induced vor-
ticity flow discussed in Ref. [55]. We studied the effect across
the BKT transition analytically, and numerically using spin
dynamics simulations. We point out that to define vorticity
circuit one can use an easy-plane magnet below the BKT tran-
sition while the conducting channel can be realized via p or
n-doping (excess of positive or negative vorticity), e.g., using
the fieldlike torque suggested in Ref. [52], τ = γ Sz(j · ∇)S,
induced by current j in perpendicularly magnetized magnet
which is in contact with an easy-plane magnet. Note that the
same torque can also be represented as the Dzyaloshinskii-
Moriya interaction (DMI) with the DMI vector pointing out
of plane. Our results demonstrate possibilities for low power
computing and logic devices relying on vorticity and spin
flows.
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