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Genome-Scale Metabolic Models (GEMMs) are powerful reconstructions of

biological systems that help metabolic engineers understand and predict growth

conditions subjected to various environmental factors around the cellular

metabolism of an organism in observation, purely in silico. Applications of metabolic

engineering range from perturbation analysis and drug-target discovery to

predicting growth rates of biotechnologically important metabolites and reaction

objectives within di�erent single-cell and multi-cellular organism types. GEMMs

use mathematical frameworks for quantitative estimations of flux distributions

within metabolic networks. The reasons behind why an organism activates, stuns, or

fluctuates between alternative pathways for growth and survival, however, remain

relatively unknown. GEMMs rely on manual intervention during their curation and

annotation process, which can potentially induce substantial experimental bias.

Also, solution spaces that cater to the flux distributions can be sensitive to the

addition, updates, and deletions of metabolites and reactions and

gene-enzyme-reaction rules within the model. Therefore, the quest for optimality

can often be lost due to the number of hyper dimensions represented by these

networks



Recently, Deep Learning (DL) has played a significant role in building

function approximators for highly complex input datasets correlating in extremely

large hyper dimensions. In this thesis, to address the computational costs associated

with the simulations of GEMMs, we use an interpretable learning-driven approach

to build surrogate GEMM models that act as alternatives to existent Flux Balance

Analysis (FBA)-based approaches for predicting intracellular fluxes of reactions. We

exploit the network characteristics of a well-curated input organism and build a

synthetic subset of the flux cone containing thermodynamically feasible reaction

growth rates. We then feed this dataset into a deep generative model capable of

reconstructing intracellular flux values of the input organism. We evaluate its

e�ciency based on time-to-construct, accuracy, and ease of use. To provide a fair

comparative analysis, we explore our learning approach with other traditional

regression-based models and test our pipeline on three di�erent input organisms

subjected to network reduction techniques and di�erent hyperparameters.
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Chapter 1

Introduction

Genome-Scale Metabolic Modeling (GEMM) provides information on metabolic

activity in an organism and is often considered a de-facto standard in modeling

metabolic-based biochemical systems [1]. GEMM typically represents a snapshot of the

overall complex metabolic activity within an organism of interest [2]. A

well-reconstructed GEMM contains a set of reactions and the various metabolites

constituting them, as well as the gene-protein reaction (GPR) interactions governing

the di�erent possible states across the metabolic network [3]. GEMMs can also be used

to simulate and predict the distribution of metabolic fluxes across reactions within an

organism purely in silico [4]. In practice, GEMMs are capable of predicting the metabolic

flux distribution for a given set of stoichiometry- and mass-balanced-based reactions

of a biochemical system using linear optimization techniques such as Flux Balance

Analysis (FBA) [5], thereby predicting the overall growth rate of an organism or the rate

at which a metabolite is produced.

GEMMs have been applied in the field of strain development to produce

biotechnologically important materials and potential drug target discovery against

infectious microorganisms (bacteria, viruses, etc.) [6]. Flux Balance Analysis (FBA), a

popular metabolic analysis method is often used in resolving knowledge gaps
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(gap-filling) within metabolic networks, thereby refining the overall systematic

investigation of the metabolic activity of organisms purely in silico that would otherwise

be time-consuming and hard to validate in vivo [7]. However, one of the biggest

limitations of such a method is that it is only relevant if the genomic reconstruction of

the network is closely similar to that of the actual wild-type observed. This means that

the model is worthwhile for as long as it has been well-curated, thus limiting itself to

generalization and robustness to variational change concerning annotations, conditions,

and constraints [8].

The first ever known GEMM was one of the Haemophilus influenzae RD in 1999 -

constituting 343 metabolites and 488 reactions to interpret phenotypic behavior from its

genotypic information embedded within the model [9]. Currently, there are over 6239

manually and automatically curated GEMMs of various bacteria and eukaryotes across a

vast number of databases [10]. In recent years, cell-type specific GEMMs have been

reconstructed to understand diseases within humans, such as obesity, diabetes, etc.,

thanks to the Human Metabolic Reaction (HMR) series of GEMMs for tissue-specific and

cancer-specific cell types [11]. Accurately predicting objectives leading to a disease,

thereby narrowing the bridge between genotype (the encoded information within

organisms) and its phenotype (distinguished characteristics and functions), remains a

problem in exploration.

1.1 Research Challenges

Even with such limitations, there is still no doubt that GEMMs are extremely

relevant in the field of metabolic engineering of biological systems [12]. However, with

the rise in the number of GEMMs reconstructed (especially in the case of cell-specific
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models of the human genome), there is a dearth need for more e�cient and scalable

analysis to understand and simulate the complexities of single or multi-cell organisms

Figure 1.1. A phylogenetic tree of all of the GEMs reconstructed to date at the family level.

(Source - [10])

system in silico, particularly in understanding the behaviors and e�ects as well as the

outcomes of introducing di�erent pathogens within a multi-tissue and multi-organ

system. When there is a widely accepted well-curated GEMM, reaction flux distributions

predicted using FBA are generally almost consistent with actual lab experimental

conditions [13]. In some cases, such predictions are further enhanced by inducing
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additional information (testing the availability of certain compounds within metabolic

pathways, introducing systematic chemical properties as additional information,

biophysical capabilities, etc.) [14] [15]. As mentioned, although FBA at its core is a form

of mixed integer linear-based optimization, is however limited to the annotated

information provided within the model of interest, i.e., a feasible solution closest to the

actual growth rates within the organism is only replicable if the model in interest has

been qualitatively reconstructed. Therefore, a simple change in the constraint space, be

it internal (gene knockouts) or external (expanding or shrinking bounded solution

space) can heavily a�ect the growth estimates of such models [8]. Although FBA

provides insights into the outcomes of external constraints imposed, it does not

necessarily speak much on behalf of the constraint space itself. When the metabolic

activity of di�erent pathways is highly sensitive even with extraneous conditions,

providing underlying insights into the genotype-phenotype relationship remains

anything but complex. Also, e�cient FBA fundamentally relies on the Moreover, a large

model can present technical limitations in estimating such biological fluxes with an

increase in experimental and environmental parameters. Similarly, simultaneously

simulating a large number of metabolic models (say, a community of models for

instance)  could potentially lead to higher computational resource utilization.

1.2 Contributions

In this thesis, we examine the use of Deep Learning as a technique for building

growth simulators as surrogates for Genome-Scale Metabolic Models (GEMMs) with a

major goal of addressing the computational cost challenges associated with GEMM

analysis. A state-of-the-art available Deep Learning model was used and enhanced to

develop predictive simulators that accurately estimate and simulate the metabolic flux
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distribution of a finely reconstructed and well-curated GEMM of an organism of interest

to a very high degree of approximation. The generated and evaluated models from our

Deep Learning-based pipeline are instantaneous in runtime compared to currently

available traditional frameworks [5]. This elevates the scale to compute many GEMM

simulations simultaneously and e�ciently, particularly in use cases wherein the closest

system reconstruction to the original biological system is required to achieve a better

understanding of the organism in a given environment (for instance, a digital twin of the

immune system) [16]. It is shown that the proposed pipeline can generate simulated

models within constrained computational time and memory usage and it can mimic

traditional approaches with little to no reconfiguration. Considering such alternative

approaches during perturbation analysis for drug discovery in favor of currently

available methods can enhance the overall pipeline for metabolic-based analysis of

organisms, especially in cases where multiple and parallel flux simulations are expected

to be executed in real-time. The work done within this thesis is available as an

open-sourced package titled “DeepGEMM” for researchers and users to help build

custom surrogates of an input GEMM of choice. It has been released under the GNU

General Public License v3 and is currently being publicly developed and maintained on

GitHub at https://github.com/HelikarLab/DeepGEMM.

https://github.com/achillesrasquinha/DeepGEMM
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1.3 Thesis Organization

In this section, we discuss the various Chapters covered in this thesis.

● Chapter 2 discusses the current trends and related work in Machine and Deep

Learning with Genome-Scale Metabolic Modeling.

● Chapter 3 constructively defines the problem and the details of the

implementation of our proposed framework to predict metabolic fluxes using a

DL approach, experiments conducted to produce our dataset, and simulations to

evaluate flux distributions.

● In Chapter 4, we discuss the details and results of applying our proposed

methodology.

● Chapter 5 concludes the thesis and briefly discusses potential future work.

All chapters have been formatted based on the guidelines provided by the University of

Nebraska-Lincoln. All references have been provided at the end of this thesis.
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Chapter 2

Related Work and Background

2.1 Outline

This thesis is intended for readers from a wide range of backgrounds, especially

those in the biological and computational sciences. As part of Chapter 2, we provide a

comprehensive overview of prior works that have used Machine Learning and Deep

Learning techniques integrated with metabolomics pipelines. Following a brief

background, we outline our motivation by first bringing forward some caveats in

existing works and then addressing them through our approach, thus defining our

objectives. Lastly, we elaborate on some concepts to make sure that the reader

understands specific terminologies, frameworks, and equations used throughout this

thesis.

2.2 Background

Machine Learning (ML) is a field of computer science and mathematics that deals

with algorithmic and statistical techniques for modeling and analyzing data [17]. The

subject is closely related to the study of artificial intelligence (AI), though ML does not
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always have a clear distinction between these two areas. In recent years, ML has turned

out to be a vital tool in elevating flux analysis in GEMMs and helping understand

environmental factors that a�ect cell phenotypes [18]. Giuseppe et al. estimated the

production of lactate in Chinese Hamster Ovary (CHO) cells using linear regression on

gene expression profiles [19]. Wu et al. could predict fluxomics of heterophobic bacteria

based on their kind, types of substrate, aerobic/anaerobic conditions, and cultivation

methods using an ensemble of ML methods, namely SVM, k-NN, and Decision Trees

[20]. Folch-Fortuny et al. applied an unsupervised approach named Multivariate Curve

Resolution - Alternating Least Squares (MCR-ALS) to o�er a more meaningful

representation of metabolic pathways in P. pastoris [21]. Szapannos et al. [22] used

genetic algorithms to help improve the prediction of gene-gene interaction networks to

bridge the gap between empirical and computational studies in yeast metabolism.

Deep Learning (DL) refers to a subset of ML and AI [23]. It is particularly

concerned with large Artificial Neural Networks (ANNs). The primary idea is that

intelligence can be expressed as a set of layers, with each layer using the output from the

previous layer to produce its next output. DL has been successful in a variety of

non-linear problems and unstructured data, especially wherein ANNs help identify such

important features and patterns in data [24]. The ability to find these patterns means DL

can be applied to many di�erent industries, including finance, health care, and even

biological engineering [25].

ANNs are inspired by the human brain, and their structure is similar to that of

human neurons [26]. Each neuron within the ANN constitutes a predefined activation

function that translates the incoming input from each layer to an output signal strength

that validates the input. The larger the scale of the network in terms of the number of

neurons and layers, the "deeper" the network is. Such deep networks can be configured
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for a wide range of tasks ranging from speech recognition, object classification on

images, and text translation [27]. Due to the availability of high-throughput

multi-omics data in modern biology, the data boom has also paved the way for

integrating data reduction, selection, and translation tasks in systems biology with

Machine and Deep Learning [28].

There have been a limited number of papers involved in the integration of Deep

Learning and Systems Biology, especially in the area of Genome-Scale Metabolic Models

(GEMMs) that use a kind of learning technique called Autoencoders (AE). AEs are a type

of deep learning that is self-learning [29]. They can encode data into an e�cient

representation without any human intervention. In the last few years, autoencoders

have produced significant results in image and speech recognition and in the process of

machine translation [30]. As an example, Guo et al. [31] consider an approach titled

‘DeepMetabolism’ which consists of a 5-layered AE wherein the first 2 layers of the

network are connected by Gene-Protein Rules (GPR) annotated within a GEMM model

o�ered in SBML format [32]. Statistical simulations from Flux Balance Analysis (FBA)

were used to connect the 3rd and 4th layers of the autoencoder network. Using

experimentally measured transcriptomic profiles, the decoding layers of the AE were

then expected to reconstruct phenotypic relationships from its genotype with very high

accuracy.

Variational Autoencoders (VAE) are a type of Deep Learning technique that has

been known to be successful in generating new and unseen data which closely resembles

the original input [33]. They work by encoding such data into a latent vector which is

then used to generate new unseen data within the same distribution using an

encoder-decoder network. In their approach, Barsacchi et al. [34] used a paradigm

dubbed GEESE (Gene Expression latEnt Space Encoder) that uses a β-VAE architecture to
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relate gene expression profiles to the regulation of reaction fluxes by generating

synthetic gene expression data.

2.3 Motivation

In this thesis, we thoroughly examine and build upon prior works of integrating

Machine and Deep-Learning-based methods to experimentally generate GEMMs

emulators and validate whether the proposed approach is both e�ective and e�cient in

terms of introducing it within metabolic engineering analysis pipelines. Even though

Barsacchi et. al [34] works have introduced the possibility of such an approach, almost

all prior works rely on a multi-omics strategy by introducing at least some form of

experimentally conducted knowledge generated within laboratory experiments (gene

expressions, transcriptomic profiles, etc.). Thus, the need for such experimental data

limits the overall scope of expansion of such approaches to GEMMs for other organisms

or cell types. In addition, steps to perform a systematic comparison of Deep

Learning-based methods with other approaches have not been taken in the case of

leveraging FBA. Moreover, advanced modeling approaches in Deep Learning have risen

exponentially in recent years with the introduction of new and updated sophisticated

networks that significantly overcome many drawbacks (training time, better data

representation, etc.) of its predecessor networks [35]. In this thesis, we consider using a

Wasserstein Conditional Generative Adversarial Network (with Gradient Penalty)

(WCGAN-GP)-based approach [36] by using pure synthetic data generated using Monte

Carlo simulations from reconstructed GEMMs available in standardized formats. This

eradicates the need for additional multi-omics data by only using the refined truth

embedded within gene-protein reaction (GPR) links available within the annotated

model of interest. Conditional Generative Adversarial Networks (CGANs) have recently
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been shown to be powerful semi-supervised alternatives to regression modeling

techniques and generate novel data points [37]. To the best of our knowledge, this work

would be the first to utilize WCGAN-GP as an alternative to standard regression models

and validate its usage for even other regression-based problems.

The primary objective of such an approach is to

1. Validate whether such a ‘black-box’ model is capable of generating unseen

genotype-phenotype relationships.

2. Reduce the computational time to perform FBA (by initially training the network

with a considerable amount of data points in a constraint space subset).

3. Produce possible feasible solutions for constraints that were initially

thermodynamically unfeasible.

To compare our approach, we consider a popular regression-based machine

learning technique - Linear Regression [38] concerning a WCGAN-GP-based approach.

Each method has its own learning and prediction times that are considered evaluation

variables for our comparisons. At the same time, we also compare our

WCGAN-GP-based approach across 3 GEMMs representing di�erent organisms in

nature - ranging from non-pathogenic prokaryotes to parasites to organisms of varying

sizes (as observed in nature).

To keep compliance with FAIR research [39], we implement a high-throughput

pipeline named ‘DeepGEMM’ using a customized self-implemented version of cobrapy

[40] and the standard o�-the-shelf available Deep Learning library - TensorFlow [41]

as governing frameworks for reproducible analysis of this work and recreation of

DL-based GEMM emulators. Our implementation of the DL pipeline is written in the

Python language with ‘convention over configuration’ in mind. The choice of language

and frameworks was based on using only the most recently advanced methods, ease of
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use, and widely-available access, as well as the interpretability of software across all

platforms. In terms of training and analysis, we use the Holland Computing Center’s

high-performance computing resources o�ered at the University of Nebraska-Lincoln

to generate synthetic datasets and learning weights of the model emulators. This was

done to ensure a standardized comparison across all methods concerning the proposed

WCGAN-GP-based model.

2.4 Genome-Scale Metabolic Models

Synthetic Biology is a science that seeks to design and create new organisms and

synthetic pathways by manipulating genomes resulting in new phenotypes [42]. In their

eight-year-long project, Beyer et. al published their scientific insights into - the Golden

Rice, created by introducing the β-carotene (a vitamin A precursor) biosynthetic

pathway into Oryza sativa (traditional Asian Rice) [43]. Mehta et al. helped improve the

juice quality, vine life, and lycopene in tomatoes [44] by using genetic modifications

that resulted in an increase in polyamine, spermidine, and spermine accumulation

during ripening. Systems Biology has the potential to reimagine how biologists design

and apply genetic mutations in silico, leading to the discovery of new biological

phenomena without the need to conduct experiments in vivo [45]. The domain consists

of various mathematical and computational frameworks for modeling, simulation, and

analysis of various biological systems, be it uni-, multicellular, or even a community of

organisms interacting within an environment. Systems Biology has heavy applications

in a variety of problems, such as cancer research and drug development [46]. In this

thesis, we focus on a particular kind of computational modeling technique in Systems

Biology that deals with the metabolism of biological systems called Genome-Scale

Metabolic Models (GEMMs). Genome-Scale Metabolic Models (GEMMs) are a powerful
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tool for understanding the metabolism within organisms and the fundamental processes

and relationships that allow cells to grow, divide, and produce energy [47].

Note that such models are larger in size and can often contain more than

thousands of species, reactions, and enzyme information for even small

micro-organisms [10]. To reconstruct an organism of interest to its genome-scale,

several algorithms have been developed to provide a well-curated reconstructed draft to

a refined level of detail by extracting annotated genes from raw RNA sequence data [48]

[49]. While we assume the availability of a well-reconstructed GEMM during our

analysis, the work done within this thesis is not limited to the same. In the following

section, we elaborate on the mathematical framework governing GEMMs - Flux Balance

Analysis.

Figure 2.1 Genome-Scale Metabolic Model reconstruction of Z mobilis. and analysis using a classical

metabolic engineering pipeline. (Source - [50])
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2.5 Flux Balance Analysis

Flux Balance Analysis (FBA) is a well-known technique for modeling the

metabolism of living systems. It is used to understand and predict the levels of metabolic

intermediates, enzyme activity, and fluxes [5]. In this technique, constraints are

imposed on a model to reduce the number of free parameters and also constrain the

model to be consistent with experimental data. FBA then uses mathematical

optimization frameworks that use linear equations to help maximize the growth of

living cell populations [3].

As a result, such a technique helps modelers explore and understand the e�ects

of small changes in nutrient concentration or other factors on the rapid growth of cells

[51]. In this thesis, we are interested in devising a surrogate model for a given organism

that is also capable of approximating growth rates within the organism subjected to

certain environmental conditions by substituting a traditional FBA framework with a

Deep Learning surrogate. The objective is not to completely replace traditional FBA but

rather elevate the overall process of modeling biochemical metabolic pathways and, at

the same time, e�ectively reduce computational costs.

At the core of FBA is a mathematical representation of the Genome-Scale

Metabolic Model (GEMM) in a matrix format, often called the Stoichiometric Matrix (S)

[52]. S represents the stoichiometry of each biochemical reaction interacting within the

biochemical network of an organism. Generally, the stoichiometric matrix of a typical

GEMM can be represented as follows:
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Here, it represents the th metabolite and the th reaction in the metabolic

network. and represents the cardinality of the metabolite and reaction sets

respectively. Typically, the stoichiometric matrix of even the smallest of all organisms

would be represented as a sparse matrix. In fact, the GEMM reconstruction of the

smallest genome available - M. genitalium (iPS189) - consists of at least 274 metabolites

and 262 reactions [53]. In addition, a GEMM also consists of a set of Gene-Protein

Reactions (GPR) rules that can be represented by independent regulatory networks

determining the potential activation states of reactions associated with it. Gene-Protein

Reaction (GPR) rules represent the possibility of a reaction to achieve metabolism based

on proteins produced by an organism, i.e., the e�ect of a gene on growth rates of

metabolic reactions [5].

A GEMM consists of an objective function (or many) to be either maximized or

minimized. In a biological sense, this is typically associated with the maximization of a

biotechnologically important metabolite or reaction or minimizing its nutrient uptake.

For most organisms, the primary objective for survival is to maximize their biomass

production [54]. This is achieved by breaking down external compounds (oxygen, sugar,

etc.) to multiply. Hence, one can derive a set of system equations from a GEMM

containing a considerable number of distinct variables and a set of ordinary di�erential

equations (ODEs). These equations represent the rate at which a chemical reaction

occurs within the biochemical pathways of the organism, subject to a vast number of

constraints. Ideally, the state of the system can be defined as follows:

https://www.codecogs.com/eqnedit.php?latex=S_%7B(i%2Cj)%7D#0
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Here, represents the growth rate of a chemical reaction (or simply, the metabolic

flux), whereas here, represents the concentration of a metabolite . and

represent the lower and upper bounds of the solution space. Notice that the vector has

been transposed to fit the equation correctly.

The flux through a chemical reaction is generally expressed as where

is millimole, which is the dry weight of the organism. In the case wherein

the objective is to maximize biomass production, we are specifically interested in the

doubling rate of the organism. Hence, the unit for the same can be expressed as

, where represents the organism’s doubling rate per hour. Flux Balance Analysis

assumes a Pseudo Steady State Hypothesis (PSSH) of the biological system [56], i.e., it

assumes that the concentration of each metabolite does not change over time, thus

eliminating information related to enzyme kinetics. Therefore, the system can be

minimized as a set of pure linear equations as follows:
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We narrow down the system as a pure mixed integer linear programming (MILP)

problem subjected to other constraints (in a biological sense, this generally relates to

either limiting the growth rate of reactions or important nutrients). Figure 2.2 denotes

the narrowing of the convex polytope solution space based on constraints imposed. In

the case of biological systems subject to a large number of chemical reactions, such a

polytope is hard to visualize in an dimensional space.

The applications of Flux Balance Analysis in Systems Biology have been endless.

Japhalekar et. al. were able to use FBA as a means to prove the overproduction of organic

acids in Cyanobacteria (Synechocystis sp. PCC 6803) in dark anoxic conditions [56].

Figure 2.2 Narrowing Solution Space due to constraints imposed by metabolic reaction bounds

in Flux Balance Analysis (Source - [5])

Da Veiga Moreira et al. were capable of optimizing citrate overproduction in yeast

(Yarrowia liplytica - iYali4) using dynamic Flux Balance Analysis (an extension to FBA)

https://www.codecogs.com/eqnedit.php?latex=n#0
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[57]. There is therefore no doubt that Flux Balance Analysis (FBA) has been a vital tool in

Systems Biology having a wide range of applications [58]. In the next section, we will

elaborate on the Deep Learning methodology used to help us build GEMMs emulators for

organisms.

2.6 Wasserstein Conditional GANs (with Gradient Penalty)

Generative Adversarial Networks (GANs) are a class of Deep Learning algorithms

that can create new unseen or modified data points by learning low dimensional

representations of an input dataset. These neural networks use two deep learning

models: a generative model that creates data and a discriminative model that evaluates

data created by the generative network [59]. GANs have recently made tremendous

progress in the field of bioinformatics, ranging from medical image analysis and

processing to the realistic generation of single-cell RNAseq data [60]. Ghahramani et. al.

were able to use a WGAN-GP to achieve a universal representation of the Epidermal

Di�erentiation Complex (EDC) and predict cell state perturbations on gene expression

profiles [61]. Recently, Cao et. al. used string-based Simplified Molecular-Input Line

Entry System (SMILES) representations of compounds as input data into a GAN that

generates new unknown valid molecules [62].

Traditionally, the two feed-forward neural networks act against each other like a

zero-sum non-competitive minimax game to minimize the independent errors fed back

into the network for learning. Ideally, the objective of a generator is to trick the

discriminator by o�ering fake samples, whereas the objective of the discriminator is

to not be cheated during its critiquing process. If represents a real sample and is the

data distribution over , then the critical decision made by over must be accurate

by maximizing . In the case of a fake sample over an input noise ,
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the discriminator must estimate a probability , closer to zero by maximizing

. Hence, the overall loss function to be optimized by the GAN

would be:

Note that the term does not cater to the generator during

training. Due to this, GANs generally su�er from convergence instability as they attempt

to find the Nash Equilibrium during convergence. This generally occurs when the

distributions and are disjointed from each other.

2.6.1 Wasserstein Metric and K-Lipschitz Continuity

Movement from one distribution to the other can be intuitively thought of as

moving a unit of dirt from the earth from one pile to the other. Therefore, the minimum

energy cost it takes to transfer such a pile can be thought of as the distance between

these distributions where the cost would be the amount of dirt moved times the mean

distance between the piles. In the case of our GAN, the Wasserstein Metric between the

data distributions and is given as follows:

Here, represents a set of all possible joint probability distributions

between and . Arjovsky et. al [63] provides a modified formula to the above

equation to compute the distance between discrete distributions as follows:
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Here, is the supremum  (opposite to , the infimum). is expected to satisfy the

term to be K-Lipschitz continuous.

2.6.2 Wasserstein Loss Function

The GAN’s discriminator is now trained to learn a K-Lipschitz continuous

function to calculate the Wasserstein distance between the real and fake sample

distributions. With a decrease in discriminator loss, the generator is then expected to

produce fake samples closer to the actual distribution of the input dataset. If is a

K-Lipschitz continuous function subjected to parameters , then the

discriminator is expected to learn in order to find the best fit for with a loss

function as follows:

The weights are then clipped within a pre-defined bounded region in order to

enforce K-Lipschitz continuity of the function . However, this might be a poor

approach towards restricting the function from being K-Lipschitz continuous. To

overcome this, Gulrajani et. al o�ered an alternative solution by penalizing the gradient

weights during the training process. On doing so, it promises a faster means for

convergence of the two distributions being within proximity [36].
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Figure 2.3 Wasserstein Conditional GAN Architecture for DeepGEMM

2.6.3 Conditional GANs

Conditional Generative Adversarial Networks (CGANs) are a type of GAN that can

generate data conditioned on an input. The idea of CGANs is to have a generator model

that outputs fake data given some signal and a discriminator model that tells the

generator whether its output is real or fake based on that signal. Conditional GANs are

considered to be a kind of semi-supervised learning approach since both the networks

are conditioned to generate input closely resembling the one provided. We utilize this

crucial feature of Conditional GANs to help the learning model approximate the flux

value of a reaction based on input constraints. Figure 2.3 shows an architecture diagram

of the proposed WCGAN-GP network with respect to our flux predictor.

In the next section, we provide a detailed outline of the proposed pipeline to

output model surrogates of the input metabolism. We also exploit the network
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characteristics of the input GEMM to minimize the number of feature dimensions

required during GAN training and evaluate the validity of our approach in detail.
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Chapter 3

Approach

3.1 Outline

In our approach, we first define our problem at hand and then outline an

overview of the various modules that constitute our pipeline. Next, we describe how

Monte Carlo sampling was used to create a synthetic dataset to be fed into our deep

generative model. Following that, we use the original input metabolic network and

consider the idea of dimensionality reduction through the minimization of its reactome.

Finally, we outline the internal workings and configuration (hyperparameters and

training) of our WCGAN-GP network.

3.2 Problem Definition

The main problem that we aim to resolve in this research is defined as follows:

Given a Genome-Scale Metabolic Model (GEMM) of an organism , where represents

, is a set of metabolites, is a set of reactions and is a set of boolean-based

gene-protein reaction (GPR) rules, train a Deep Generative Model to predict the corresponding

flux distribution of (say ) by minimizing the error loss from its actual flux distribution

https://www.codecogs.com/eqnedit.php?latex=M#0
https://www.codecogs.com/eqnedit.php?latex=M#0
https://www.codecogs.com/eqnedit.php?latex=(m%2C%20r%2C%20g)#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=g#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=J'#0
https://www.codecogs.com/eqnedit.php?latex=J#0


33

of and at the same time, performing it e�ciently in terms of computational time and

resource utilization.

3.3 Pipeline Overview

Our DeepGEMM pipeline can be bifurcated into di�erent modules as follows:

● Synthetic Data Generation: A Monte Carlo sampling of the convex polytope

hyperspace was considered to generate reaction flux distributions of the input

metabolic network across various constraints.

● Dimensionality Reduction (minimization of network): We reduce the genome-scale

metabolic network to a minimal network by removing non-functional metabolic

reactions that do not hinder target growth conditions yet maintaining the overall

functionality of the base network.

● Parameterization and Training: We format our WCGAN-GP network corresponding to

the dimensionality of the reduced metabolic network, feeding in our synthetic data

for eventual training of our conditional GAN and its hyper-parameterization,

thereby attempting to minimize the loss between the original flux distribution and

the reaction fluxes generated from the GAN network.

3.4 Synthetic Data Generation

We propose a methodology to synthetically generate reaction flux distributions

subjected to di�erent kinds of model mutations and constraint limitations. Figure 3.1

illustrates the detailed workflow of generating such a synthetic dataset. In this

approach, a Monte Carlo scheme of flux sampling random points from the solution

space was considered as sample data points for the dataset.

https://www.codecogs.com/eqnedit.php?latex=r#0
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Figure 3.1 Monte Carlo Flux Sampling for Synthetic Data Generation of a given Metabolic Network
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Monte Carlo simulations of the e�ective solution space of a GEMM has proven to

be a useful approach in extracting important properties of the metabolic network - like

the hypervolume of the convex polytope flux distribution space [64], topological and

subsystem information of the network [65], thereby remaining robust to variations in

constraints.

Given (the number of sample points to be generated), we first consider an

input metabolic model from a model repository (BiGG, BioModels, EMBL GEMs, etc.).

[66] [67] [48] and randomly (uniformly) pick a mutation strategy to be applied to the

model. Note that throughout the course of performing mutations or

constraint-restrictions, unless undefined, we consider the pseudo reaction - wild-type

biomass to be the defined objective for the input organism. The

mutation/constraint-limitation strategies devised for this approach are as follows:

1. Reaction knockout (Mutation): An in silico reaction knockout is achieved by

limiting the growth rate bounds to 0 of the reaction in the metabolic

network. Under in vivo conditions, it is feasible to perform up to triple reaction

knockouts for a given organism [68]. Thus, we consider random subsampling

(uniform) of up to 3 reactions in this stage that performs a single, double or

triple knockout analysis.

2. Gene knockout (Mutation): Similar to the approach mentioned in 1., we subsample

up to three genes (random uniform) that perform a single or multi-knockout

mutagenic simulation. A metabolic network generally contains

gene-protein-reaction links as regulatory rules which indicate the relations

between activation states of gene products and the corresponding enzyme

catalyzation of reactions. Gene knockout mutations also o�er Gene Coupling

(dependence of the activation state of a single gene a�ects multiple reactions

https://www.codecogs.com/eqnedit.php?latex=N#0
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across the metabolic pathway), information regarding essential genes and

genetic robustness of the organism [69] [70].

3. Altering Reaction Bounds (Constraint-Alterations): In the biological sense,

alteration of reaction constraints typically correspond to altering growth

conditions of reactions or nutrient uptake. We consider subsampling (randomly

uniform) a subset of reactions and alter its lower and upper bounds (random

uniform) within the range:

● -1000 and 1000 if the reaction is reversible.

● 0 and 1000 otherwise.

The artificially induced ranges generally cover the di�usion limits for many

reactions since the di�usion rates for even the largest metabolites are approximately

100 .

We consider the dataset to comprise both natural and perturbed state

information of the organism of interest [71]. Such mutation strategies are also viable to

infer the minimization of metabolic adjustments (MOMA) required for the organism to

survive and grow, thereby providing a diverse representation of the flux distribution

cone within our dataset. We perform an FBA over the perturbed/altered metabolic model

and predict the uptake rates of all reactions within the network using Linear

Programming (LP). A simulation is considered successful with a sample point generated

if the solution is feasible else it is disregarded from the synthetic dataset. Finally, a

sample point consists of the lower and upper bounds of each reaction, the mutation

strategy used to generate the corresponding flux distribution, and the solution fluxes

itself, based on the constraints imposed through such mutation. The matrix dimensions

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bmmol%7D%7BgDW%7D#0
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of the resultant dataset is where denotes the cardinality of the reaction

set of the input metabolic network.

We implement our synthetic data generator script in Python and parallelly

perform perturbations for each strategy. For a sample model, e_coli_core comprising

72 metabolites and 95 reactions, the average time it took to generate 1 million sample

points with 8 processors was approximately 9 hours. Figure 3.2 visualizes a plot between

the size (metabolites and reactions) of 1213 GEMM networks over the time it takes to

generate 1000 feasible synthetic data points.

Figure 3.2 Synthetic Data Generation of 1213 GEMMs over Time (seconds) (1000 samples)

The networks were randomly selected from a large collection of GEMMs available

from various model repositories. As a result, we conclude that the size of an annotated

GEMM network, and the time necessary to generate feasible sample points follow a

https://www.codecogs.com/eqnedit.php?latex=(3%7Cr%7C%20%2B%201%2C%20N)#0
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linear relationship. This is natively trivial since larger networks contain sparser matrices

to derive possible solutions.

Similarly, much can be said about the number of infeasible solutions generated

using our Synthetic Data Generator with respect to the size of the metabolic network.

Figure 3.3 visualizes the relationship between the size (reactions and genes) of 1213

GEMM networks over the number of infeasible solutions generated when .

Figure 3.3 Number of Infeasible Solutions of 1213 GEMMs w.r.t. size of the network (1000 samples)

Based on our above plot, we observe the following:

● A tiny concentrated purple cluster towards the right of the large blob indicates

the di�erent strains of annotated E. coli by generating infeasible solutions

through these strains. Thus, we conclude that random

https://www.codecogs.com/eqnedit.php?latex=N%20%3D%201000#0
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mutations/constraint-limitations generated by our Monte Carlo simulations that

cause lethal damage to organisms are generally consistent.

● Also, there is an inverse correlation between the number of infeasible solutions

and the size of the network (particularly with respect to the number of reactions

annotated within the model). This indicates that synthetic lethal damages to the

network or performing any form of constraint restrictions limits the organism to

opt for alternate pathways in order to survive. Furthermore, we observe that

larger metabolic networks contain a large number of non-essential genes and

reactions (since the number of infeasible solutions generated is lower even with a

consistent number of random reaction-gene-knockouts or limiting flux

boundaries).

● Chinese Hamster (iCHOv1_DG44), Common House Mouse (iMM1415) and the

Phaeodactylum tricornutum (iLb1027_lipid) hold low survival rates even with

su�cient mutations and a large annotated model.

In the next section, we consider the idea of dimensionality reduction using

reactome minimization of the metabolic network.

3.5 Reactome Minimization

Dimensionality Reduction is the idea of reducing the number of dimensions

within a dataset to reduce complexity, for instance by converting -dimensional

vectors into -dimensional vectors. In Genome-Scale Metabolic Models,

dimensionality refers to the size of the metabolic network in terms of the number of

metabolites, reactions, and genes annotated within it.

The presence of a considerable amount of functional redundancy has been

well-studied in the case of GEMMs. For instance, about 37-47% of reactions within the

https://www.codecogs.com/eqnedit.php?latex=n#0
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metabolic networks of E. coli and yeast can be removed without hindering the organism's

growth rate under any environment [72]. Even after multiple genetic variations,

evolution has helped many organisms to consider alternative pathways in order to

sustain lethal damage and maintain survivability [73] [74]. Almaas et. al. identified the

existence of a metabolic core consisting of active reactions that have highly correlated

flux variations irrespective of the growth conditions within the model [75].

Burgard et. al. were the first to identify a method to find the minimal reactome in

an E. coli metabolic network [76] using a MILP approach. In addition, there are other

approaches that take advantage of the characteristics of the underlying structure of the

GEMM network. For instance, Jonnalagadda et. al used a graph-theory + MILP-based

approach to reduce an organism’s GEMM to a minimal required metabolism [77].

Recently, Lugar et. al was capable of utilizing matrix manipulation of the sparse

stoichiometric matrix as an alternative to find a minimal reactome [78].

For our approach, we utilize the MinREACT algorithm o�ered by Sambamoorthy

et al. [79] and study it in detail with respect to our pipeline. Unlike other approaches, the

MinREACT algorithm leverages the very structure of the network by analyzing the

reaction classes identified by performing a parsimonious FBA [80]. The MinREACT

algorithm also results in a smaller reactome of the input metabolic network as compared

to other prior approaches.

As an example, we perform the MinREACT algorithm on 50 GEMMs chosen

randomly from each model repository. Figure 3.4 visualizes a plot between the size

(metabolites and reactions) of 50 GEMM networks over the time it takes to produce a

minimal reactome.
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Figure 3.4 Minimal Reactome Generation (using MinREACT) of 50 GEMMs over Time (seconds)

Evidently, the network size increases the overall execution time of the

MinREACT algorithm exponentially, directly correlating to the time it takes to achieve

‘single lethals’ (single reaction deletions) that ought to be discarded from the network.

There also exists a metabolic core for almost all tested GEMMs that contains up to 1000

reactions within the compressed network irrespective of the size of the original input

graph. Figure 3.5 confirms the above statement by depicting the size of the input

metabolic network (metabolites and reactions) with respect to the number of reactions

in its minimal reactome.
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Figure 3.5 Number of reactions within the minimized network w.r.t. size of original network (50 GEMs)
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Chapter 4

Results and Analysis

4.1 Outline

The experiments conducted for our results and analysis evaluate across multiple

dimensions to answer many research-related questions. For our first dimension, we

consider a comparative study of di�erent models chosen based on time, accuracy, and

feasibility. The next dimension considers a breadth-based analysis of the composition

and nature of our input dataset based on our model choice. Finally, the third dimension

caters to the e�ects of various hyperparameters introduced into our workflow pipeline.

As mentioned, we consider a comparative evaluation across 3 well-annotated GEMMs

namely - e_coli_core (E. coli), iIS312_Amastigote (Trypanosoma cruzi), and iAB_RBC_283

(Homo sapiens).

4.2 Configuration

To ensure unbiased comparison, we consider universally predefined

hyperparameters across all our learning models. The Adam optimizer [81] was our

primary choice for performing gradient-based optimization with a constant learning

http://bigg.ucsd.edu/models/iIS312_Amastigote
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rate of 0.001. For all our deep networks, we place a dropout layer after each dense hidden

layer with a penalty rate of 0.2 (i.e., we penalize the weights of 20% of neurons in the

preceding layer during training). This is to ensure that our models attempt to generalize

well and avoid su�ering from overfitting our synthetic dataset [82]. To ensure that the

model achieves a neat yet diverse overview of the solution space, we consider a K-Fold

cross-validation of 20% of the training set per epoch. We also consider performing an

early stopping during training when the (coe�cient of determination) of our

validation set does not change after 10 epochs (training iteration) by a factor of 0.01;

50-100 epochs otherwise. We generate a dataset of over 1 million observations for each

of our organisms and split each dataset into 80%-20% training-testing sets

respectively. Prior to training, we normalize both the reaction bounds and the flux rates

within the range [0, 1] as a preprocessing step. To avoid overfitting, we consider feeding

our learning models a batch of our dataset (512 samples) during a forward feed.

In the case of our global states, we use MAE (Mean Absolute Error) as our global

loss function across all gradient-based learning models (since MAE is a lot less sensitive

towards outliers than estimating the Mean-Squared Errors). The MAE of an actual

versus the predicted flux can be given as follows:

Here, represents the predicted flux value of reaction whereas represents its actual

rate in . In the case of our WCGAN-GP-based model, we use the cumulative losses

collected from the individual generator and discriminator losses.

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
https://www.codecogs.com/eqnedit.php?latex=MAE%20%3D%20%5Csum_%7Bi%3D0%7D%5E%7BN%7D%20%5Cfrac%7B%7CJ'_%7Bi%7D%20-%20J_%7Bi%7D%7C%7D%7BN%7D#0
https://www.codecogs.com/eqnedit.php?latex=J'_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=J_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bmmol%7D%7BgDW%7D#0
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4.3 A DL emulator for Escherichia coli strain K-12

substrain MG1655 in silico

Escherichia coli is a genus of Gram-negative, rod-shaped bacteria that are mainly

found in the lower intestine of warm-blooded organisms. E. coli can be pathogenic and

cause disease by producing Shiga toxin, causing colitis and hemolytic uremic syndrome,

and by contributing to the development of hemorrhagic fever with renal syndrome. The

E. coli MG1655 has been a well-studied genome with a well-curated Genome-Scale

Metabolic Model which will be used as our test organism for analyzing our pipeline [83].

To explain in depth our approach, we consider the wild-type E. coli str. K-12 substrain

MG1655 genome-scale metabolic model [84] as a case study to run through our pipeline.

4.3.1 Baseline Model

In predicting biomass growth rate within an in silico E. coli GEMM, we consider

Linear Regression as our initial model to benchmark our performance. Our Linear

Regression model can be considered a simplified version of the McCulloch-Pitts Neuron

[26] model with no activation function. Figure 4.1. Illustrates the layer configuration of

our Linear Regression model. Note, the DenseBlock layer denotes an intermediate layer

containing 190 neurons and 1 unit worth of a bias neuron.

Figure 4.1 Model Configuration of our Linear Regression Model for e_coli_core
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Even with its limitations, Simple Linear Regression performs well with a testing

score of 0.7715 in the case when the input dataset comprises information associated

with only the perturbed state of the GEMM model. We also noticed an early stopping at

around 37 epochs. We achieved a validation loss of MAE of 0.0543 and an MSE of 0.0302

respectively. The average training time up to 38 epochs was 12.27 minutes, a

comparatively impressive Time-to-Train (ToT) as compared to other learning-based

models.

Figure 4.2 illustrates the actual versus predicted growth rates for the biomass

objective in an E. coli GEMM specifically associated with the lethally damaged states of

the model. A good reason as to why our baseline model works well in the case of

predicting perturbed states is due to the fact that a GEMM model of small size generally

lacks more insights into the organism’s metabolic states, therefore stunting growth

quicker than a well-annotated model.

Figure 4.2  Actual versus Predicted flux rates of the biomass objective in E. coli. GEMM
(perturbed, baseline)

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
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In continuation, we consider predicting the objective based on the healthy state

of the input organism. Our baseline model took up to 46 epochs with a quicker training

time clocking at 8.36 minutes. However, the testing score stabilized at only 0.3795. A

validation loss of 0.0485 (MAE) and 0.0159 (MSE) were achieved respectively. Figures 4.3

and 4.4 visualizes the training and validation losses and an improving score over

each epoch for our healthy (with restricted nutrient uptake), perturbed, and combined

model.

Figure 4.3 Training and Validation Losses (baseline)

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
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Figure 4.4 Coe�cient of Determination scores (baseline)

In terms of the actual versus predicted growth rates for our objective

pseudo-reaction, the model shows a relatively linear trend in Figure 4.5. For the sake of

clarity, we visualize only 10,000 randomly chosen samples from our testing set

containing 200,000 samples.
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Figure 4.5 Actual versus Predicted flux rates of the biomass objective in E. coli. GEMM
(healthy, baseline)

We combine both the healthy and perturbed states of the organism as our input

dataset to check whether the lethally damaged states of the model penalize the

capabilities of function approximation by our learning model. Our learning models can

distinguish a healthy versus a perturbed state of the GEMM with a testing score of

0.3938. However, no early stopping was observed with the model completing within 50

epochs and with a validation loss of 0.0227 (MAE) and 0.00535 (MSE). Figure 4.6

visualizes the actual versus predicted flux in the case of the biomass pseudo reaction as

our objective function.

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
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Figure 4.6 Actual versus Predicted flux rates of the biomass objective in E. coli. GEMM
(overall, baseline)

4.3.2 WCGAN-GP Model

The WCGAN-GP-based model achieves a testing score of 0.9558 in just 14

epochs by helping predict the corresponding objective flux based on synthetic lethal

reactions and gene knockouts. Clearly, our DL approach stands out learning essential

from non-essential gene sets by observing the probability distribution of the flux vector

cone. A validation loss of 0.0221 (GAN loss) was achieved by our model. Figures 4.7 and

4.8 visualizes the training and validation losses and improving scores over each

epoch for our WCGAN-GP-based approach. Both, training and validation losses for each

of our models drop significantly within 10 epochs worth of training with a gradual and

smooth increase in its coe�cient of determination. However, our DL approach tends to

be slower in terms of training time as compared to our baseline model by an average

factor of 3 clocking at 30 minutes (average) until halt.

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
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Figure 4.7 Training and Validation Losses (WCGAN-GP)

Figure 4.8 Coe�cient of Determination scores (WCGAN-GP)

On combining both the healthy and perturbed states of the organism as our input

dataset, our DL model achieves an score of 0.7335 on the testing set and a validation

loss of 0.01536 halting at 32 epochs. Figure 4.9 represents the best fit estimation of

predicted fluxes of of the E. coli GEMM.

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
https://www.codecogs.com/eqnedit.php?latex=v_%7Bobjective%7D#0


52

Figure 4.9 Actual versus Predicted flux rates of the biomass objective in E. coli. GEMM
(healthy, WCGAN-GP)

Evidently, the plot follows a higher degree of linearity as compared to our

baseline model. A noteworthy limitation within FBA’s SIMPLEX approach is that it is

generally hard to estimate whether a combination of given constraints leads to

multi-optimal states of growth within the model and if so, the values of all possible sets

of values of such states. This also holds true in the case of our DL-based pipeline when

unaware of whether a prediction is part of a multi-optimal solution set. Figure 4.10

represents the best fit estimation of predicted fluxes of of the E. coli GEMM for

our complete input dataset. This relationship portrays the capability of our DL model to

approximate biologically relevant growth estimates based on di�erent and distinct

https://www.codecogs.com/eqnedit.php?latex=v_%7Bobjective%7D#0
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distributions of the convex polytope solution space. It o�ers a linear relationship trend

between the actual versus predicted flux values irrespective of the model state.

Figure 4.10  Actual versus Predicted flux rates of the biomass objective in E. coli. GEMM
(overall, WCGAN-GP)
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4.4 DL emulators for Trypanosoma cruzi and Homo

sapiens in silico

For general-purpose use-cases, we consider two additional well-curated GEMMs

iIS312_Amastigote and iAB_RBC_283 and evaluate each of them with respect to our

DL-based pipeline.

Trypanosoma cruzi is a parasite that causes Chagas disease. The parasite lives in

the blood, heart, and digestive tract of an infected person. It is transmitted by the bite of

an infected bug called a “kissing bug”. The most common symptoms of Chagas disease

are fever, fatigue, body aches, or swelling around the bite wound. The infection can

cause serious complications such as heart disease and intestinal inflammation that can

lead to death. Interestingly, this parasite is also a well-studied organism in the sphere of

metabolic engineering [85] [86] [87].

We use a similar configuration of the DL pipeline as described in Section 4.2.

However, the metabolic network is significantly larger as compared to our previous

study with 609 metabolites and 519 reactions. To reduce its dimensionality, we perform

a reactome minimization of the network by knocking out the set of reactions that are not

part of the minimized network. On performing the MinREACT algorithm over

iIS312_Amastigote, we get a minimized reactome containing 89 biologically relevant

reactions. Our input data feed is then a subset corresponding to this minimized reaction

set of the network. To improve training time, we use transfer learning [88] by using

trained weights on the diseased state with other types. This encourages a quicker

learning curve since adjustments to the hyperspace of the convex polytope has been

viewed before by the learning model. Unlike E. coli., the parasitic GEMM shows an inverse

trend with respect to learning our input dataset.

http://bigg.ucsd.edu/models/iIS312_Amastigote
http://bigg.ucsd.edu/models/iIS312_Amastigote
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Figure 4.11 Training and Validation Losses (iIS312_Amastigote, WCGAN-GP)

Figure 4.12 Coe�cient of Determination scores (iIS312_Amastigote, WCGAN-GP)

Figures 4.11 and 4.12 visualizes the training and validation losses and improving

scores over each epoch for our WCGAN-GP-based approach in the case of

iIS312_Amastigote genome. We achieve a relative score of approximately 0.6 for all

our data types at an average of 40 epochs. Interestingly, our diseased model states

perform poorer as compared to a normal counterpart. Another interesting thing to

http://bigg.ucsd.edu/models/iIS312_Amastigote
http://bigg.ucsd.edu/models/iIS312_Amastigote
https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
http://bigg.ucsd.edu/models/iIS312_Amastigote
https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
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notice is that our learning models are capable of estimating the flux cone’s outer

boundaries. Figure 4.13 represents the best fit estimation of predicted fluxes of

of Trypanosoma cruzi.

Figure 4.13 Actual versus Predicted flux rates of the biomass objective iIS312_Amastigote in GEMM
(overall, WCGAN-GP)

In the case of our Homo sapiens (iAB_RBC_283) model, we minimize the reactome

from 342 metabolites and 469 reactions to a metabolic core consisting of 71 reactions.

Generally, the target objective in the case of humans (primarily in the case of animal cell

neurons) is the transportation of Na+/K+-ATPase across the cell membrane. Figures

4.14. and 4.15. visualizes the training and validation losses and improving scores over

each epoch for our WCGAN-GP-based approach in the case of iAB_RBC_283 GEMM.

https://www.codecogs.com/eqnedit.php?latex=v_%7Bobjective%7D#0
http://bigg.ucsd.edu/models/iIS312_Amastigote
https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
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Figure 4.14 Training and Validation Losses (iAB_RBC_283, WCGAN-GP)

Figure 4.15 Coe�cient of Determination scores (iAB_RBC_283, WCGAN-GP)

Impressively, iAB_RBC_283 achieves with a testing score of 0.8615 for

perturbed-based predictions. This is promising since the parameterized model is

capable of learning the gene lethality of the input organism. On combining both the

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
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healthy and perturbed states of the organism as our input dataset, our DL model

achieves an score of 0.6240 on the testing set and a validation loss of 0.0295 halting

at 78 epochs. Figure 4.16 represents the best fit estimation of predicted fluxes of

for the Homo sapiens GEMM.

Figure 4.16 Actual versus Predicted flux rates of iAB_RBC_283 - Na+/K+ ATPase

https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
https://www.codecogs.com/eqnedit.php?latex=v_%7Bobjective%7D#0
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4.5 Computational E�ciency

While the time taken to train a surrogate GEMM is certainly incomparable

with respect to current traditional frameworks, we consider the time it takes to

alter/mutate and compute its objective. Figure 4.17 explores this relationship

with a benchmark graph. We use the open-source MILP solver - GLPK as our

default solver to compute the objective flux of an e_coli_core model. The

benchmark was performed on a Macbook Air 2021 (M1) on a single thread.

GLPK works comparatively better than our DeepGEMM framework with

up to 100 alterations but, however, shows a lack of scalability as the number of

alterations/mutations increase and diverge over time. Meanwhile, our

DeepGEMM framework exhibits flux computations in almost constant time

irrespective of the number of models required to compute. This is due to the fact

that models, once trained, can e�ciently compute solutions for multiple

instances irrespective of the number of instances itself. This significantly boosts

the processing time it takes to compute multiple instances of model mutations

simultaneously.
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Figure 4.17 number of alterations/mutations versus time to compute flux.
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Chapter 5

Summary and Future Work

Unwinding the facts within the genotype-phenotype relationship helps us get

closer to understanding what makes biological systems behave the way they do.

Genome-Scale Metabolic Models (GEMMs) o�er us a snapshot of the metabolic activity

within the biochemical pathways of a given organism under certain constraints.

Accurately predicting the growth of wild-type reactions subjected to environmental

constraints purely in silico is an improvement process in the field of Systems Biology. In

this thesis, we used a Wasserstein Conditional GAN (with Gradient Penalty) (WCGAN-GP)

to help learn and generate flux distributions of interacting reactions within metabolic

pathways by using annotated Genome-Scale Metabolic Models and purely synthetic data

generated using Monte-Carlo-based simulations and Flux Balance Analysis (FBA). First,

we trained our WCGAN-GP using synthetically generated data from 3 GEMMs

representing di�erent organisms.

In this thesis, we have limited our research to certain assumptions. First,

wild-type growth in the real biological world is directly correlated with respect to time.

FBA, in its purest form, is also limited to the organism being observed in steady-state

alone. In our future work, we consider broadening the applications of DeepGEMM to
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more modeling paradigms - namely kinetic models, PBPK (physiologically-based

pharmacokinetic) models, agent-based and multi-scale models.
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