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ABSTRACT

A Theoretical Trade-Off Between Wave Drag and Sonic Boom Loudness Due to

Equivalent Area Changes on a Supersonic Body

by

Nolan L. Dixon, Master of Science

Utah State University, 2022

Major Professor: Douglas F. Hunsaker, Ph.D.
Department: Mechanical and Aerospace Engineering

The theoretical trade-off between wave drag and sonic boom loudness is not well un-

derstood for a morphing supersonic geometry. The Sears-Haack body is an axisymmetric

geometry that minimizes wave drag for a given length and volume. The purpose of the

present work is to obtain an axisymmetric geometry that minimizes sonic boom loudness as

perceived from the ground for a given length and volume. Such a geometry can be defined

through an equivalent area representation using a Fourier sine series. By using the equiv-

alent area approach, the perceived loudness and wave drag can be studied simultaneously

to compare solutions. In this work, a tool was developed that accepts a number of Fourier

coefficients and produces the equivalent area distribution, ground pressure signature, per-

ceived loudness, and wave drag for that set of Fourier coefficients. An optimization routine

was used to search for the coefficients that produce the minimum noise. The candidates are

compared against the Sears-Haack’s equivalent area, ground pressure signature, perceived

noise, and wave drag. These methods were used to obtain a Pareto front of solutions to

better understand the theoretical trade-off between wave drag and perceived noise on the

ground.

(61 pages)
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PUBLIC ABSTRACT

A Theoretical Trade-Off Between Wave Drag and Sonic Boom Loudness Due to

Equivalent Area Changes on a Supersonic Body

Nolan L. Dixon

The NASA University Leadership Initiative (ULI) titled ”Adaptive Aerostructures for

Revolutionary Civil Supersonic Transportation” consists of a team of university and indus-

try partners studying the feasibility of reducing the perceived loudness of the sonic boom by

introducing an adaptive geometry at localized regions of an aircraft’s outer-mold line. The

Utah State University AeroLab is a member of this ULI team and has produced low-fidelity

tools to predict the aerodynamic and boom loudness effects from localized changes to the

geometry.

Such changes to the geometry affect both the sonic boom loudness and wave drag;

however, the precise relationship between boom loudness and wave drag is not well under-

stood for a morphing supersonic geometry. The current work utilizes an equivalent area

approach and expresses this equivalent area using a Fourier sine series. An optimization

routine was used to search for the Fourier coefficients that produce a minimum perceived

level of decibels of the sonic boom for an optimized equivalent area distribution. The results

for each candidate are compared against the Sears-Haack’s equivalent area, ground pressure

signature, perceived noise, and wave drag. These tools were used to obtain a Pareto front

of solutions to better understand the theoretical trade-off between wave drag and perceived

noise on the ground as equivalent area changes on a supersonic geometry.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 The Sonic Boom, Wave Drag, and Motivation for Current Work

The implications of generating sonic booms has been an area of research for aerospace

and aviation ever since mankind broke the sound barrier in 1947 [2]. Today, flights at

supersonic speed are commonly achieved by military aircraft; however, the U.S. and other

countries have prohibited commercial aircraft from flying at supersonic speeds over civilized

airspace due to concerns with sonic boom loudness [3]. While civil supersonic transportation

was made available with the Concorde, any supersonic cruising was constrained to oceanic

routes [4]. Interest has increased recently in a revival of supersonic civilian transport, but

the restrictions due to loudness are still in effect and have given rise to investigations into

“quiet” supersonic travel [5].

The flight path restrictions on supersonic flight is largely due to the fact that the sharp

changes in pressure that cause a sonic boom have caused structural damage to buildings,

and produce a sound that is perceived by humans to be within the range of annoying to

painful [6]. If the sonic boom’s perceived level in decibels (PLdB) is reduced, civil supersonic

flight could be permitted over continental routes. A current area of research among the

supersonic community includes altering the outer mold line (OML) of an aircraft in specific

regions to change the aircraft’s geometry during flight. These geometric changes attempt

to influence the shock waves emanating from the aircraft and thereby reduce the PLdB on

the ground as a result [7, 8].

Since high-efficiency air travel is becoming more and more important in the public eye,

sonic boom loudness research must necessarily be coupled with understanding its effects on

wave drag. Wave drag is a form of aerodynamic drag resulting from the changes in pressure

induced by shock [9]. This form of drag is only present in supersonic and transonic flow, yet
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it heavily influences the top speed and overall efficiency of aircraft that cruise in these flow

regimes. Wave drag is directly related to the total cross sectional area of an aircraft and its

spatial derivative along the length of the aircraft [10]. Any change to the OML geometry

will likely produce a noticeable change in area and pressure distribution on the aircraft,

affecting both PLdB and wave drag [11].Herein lies a trade-off that must be considered

when changing the OML geometry of a supersonic body. This work seeks to understand

this trade-off by studying how changes in area simultaneously affect sonic boom loudness

and wave drag.

1.2 The NASA University Leadership Initiative - Adaptive Aerostructures for

Revolutionary Civil Supersonic Transportation

The current work is part of a collaboration with a five-year NASA University Lead-

ership Initiative (ULI) titled “Adaptive Aerostructures for Revolutionary Civil Supersonic

Transportation”. The ULI consists of a team of universities and industry partners study-

ing the feasibility of reducing the perceived loudness of the sonic boom by introducing an

adaptive geometry at localized regions of an aircraft’s OML.

Utah State University has been a part of this ULI for five years and was tasked with

developing low-fidelity aerodynamic and sonic boom prediction tools to study the effect of

geometric changes on PLdB. The early analysis in this effort focused on a “low-boom” su-

personic aircraft concept developed by NASA [12–14]. In the program’s first year, Giblette

used a panel-method code developed by Boeing, titled PANAIR, in an effort to predict aero-

dynamic performance and generate a near-field pressure signatures [15]. Giblette noticed

limitations to the number of panels PANAIR could use and saw violations of a number of

linear supersonic assumptions when using more complex geometries. This resulted in large,

non-physical shock patterns in the near-field pressure signature [16]. As an extension of

Giblette’s work, Carpenter et al. showed that regions of the low-boom concept aircraft pro-

duced widely-varying near-field pressure signatures even when analyzed using higher-fidelity

CFD methods [17]. Bolander attempted to leverage the benefits of the low-fidelity tool by

splicing low-fidelity near-field signatures with the high-fidelity results from Carpenter et al.
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to create a single solution without the uncharacteristic shock issue [18].

Abraham used PANAIR early on in his study of boom mitigation but changed to using

an equivalent area approach to bypass the limitations mentioned previously and to connect

the high and low-fidelity methods being used in the ULI [1]. Other studies from the ULI

transitioned to using an equivalent area approach and showed that altering the rate of change

in equivalent area can influence the pressure signature towards a more desirable outcome for

reducing PLdB [19, 20]. Additionally, this equivalent area approach allows the equivalent

area to be used directly by the NASA atmospheric propagation tool, sBOOM, instead of

providing the tool a near-field pressure signature [21]. Abraham’s work focused on changing

the equivalent area input and observing the influence on the resulting PLdB. Furthermore,

Abraham studied which axial locations and magnitudes of the equivalent area changes would

have the greatest affect in minimizing PLdB on the NASA 25D aircraft. Abraham has also

conducted a study comparing wave drag prediction methods using axisymmetric bodies,

which is relevant to the scope of this work [22].

1.3 Review of Drag in Supersonic Flow

There are three sources of drag in supersonic flight, namely: viscous drag, vortex drag,

and wave drag. Viscous drag is directly related to the viscosity of the fluid surrounding the

body and is affected by temperature and air density [23].

Vortex drag is due to the direction of flow above and below the wings. As air moves

over a wing, the air on the lower surface of the wing is at a higher pressure than the the

air on the upper surface of the wing. Eventually, the air on both surfaces reaches the wing

tip and attempts to return to equilibrium. This creates a vortex on the end of each wing

circling from the lower surface to the upper surface. The vorticity induces a change in angle

of attack across the wing, which results in the lift force being rotated into the direction of

the free-stream. This causes a drag component and is why vortex drag is sometimes referred

to as induced drag [24].

Wave drag is unique to supersonic and transonic flow and is the result of pressure waves

that emanate away from the vehicle. Much like how a boat traveling at high speeds creates a
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wake across water, a supersonic aircraft creates a wake of compressed air. This compression

results in pressure waves that push back against the aircraft and cause drag [23].

1.3.1 Shock Waves and Pressure Signatures

After the aircraft passes through the local flow region, the air pressure suddenly shocks

to a new value, and the flow properties change dramatically [25]. This sudden change

in air pressure within a short time interval (in milliseconds) is the primary source of the

audible component of the sonic boom. The dramatic and nearly instantaneous change in

flow properties over a small distance along the aircraft is the primary source of a shock

wave.

These pressure changes are often studied as changes in pressure over time and are

referred to as pressure signatures. Pressure signatures can be evaluated at any point away

from the aircraft but are given specific names depending on how far the signature has

propagated. The change in pressure closest to the body is known as a near-field signature.

A change in pressure at least five body lengths away from the aircraft is known as a far-

field signature, and the change in pressure at ground level is known as the ground-pressure

signature. Pressure signatures closer toward the aircraft generally consist of multiple shock

waves and tend to have a jagged appearance.

As the pressure signature propagates through the atmosphere, the pressure waves co-

alesce [26] forming an abrupt over-pressure followed by an under-pressure. This abrupt

change causes ground pressure signatures to follow a general “N-wave” pattern because the

signature has lost most of its jagged appearance and looks like a capital ‘N’.

1.4 Discussion of Equivalent Area

Multiple publications have described the equivalent area as a way to represent a su-

personic body’s area of effect on the surrounding air. This representation is based on the

body’s geometric and aerodynamic characteristics. These publications form the basis of the

summary provided in this work [27–29].
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The equivalent area of a given body has two major components. The first component

is due to volume, and the second is due to lift [30]. The volume component is a product of

geometric characteristics, and the lift component is a product of aerodynamic characteris-

tics. The lift is included in the equivalent area representation because the the equivalent

area considers the entirety of the fluid being disturbed. This representation considers not

only the volume existing within the fluid, and the aerodynamic forces The expression for

equivalent area is shown in the equation

AE(x, ϕ) = AV (x, ϕ) +AL(x, ϕ) (1.1)

where x is an axial distance along the body of the aircraft, ϕ is the azimuth angle, and

AV and AL are the cross-sectional areas for volume and lift sliced through the body at the

appropriate Mach plane [31]. The areas at the Mach plane are used because the area and

lift distributions must be taken normal to the direction the shock waves are propagating off

the body [29,32].

1.5 Von Karman and Sears-Haack Bodies

The von Karman and Sears-Haack bodies are slender axisymmetric geometries that

minimize wave drag under specific conditions. The von Karman body minimizes drag

for a finite base area, and the Sears-Haack body minimizes drag for a given length and

volume [33]. Both bodies begin with a point at their leading edge and do not have lifting

surfaces. For the purposes of the present work, they are assumed to be at zero degrees

angle of attack and therefore produce zero lift. This assumption reduces Eq. (1.1) to

only the volume component as a function x and ϕ [23]. Figure 1.1 shows the geometrical

representation of a von Karman and Sears-Haack body.



6

Fig. 1.1: Visual representation of the Sears-Haack body and the von Karman Ogive body.

The general distribution of azimuth angles relative to a supersonic body is shown in

Figure 1.2.

Fig. 1.2: Azimuth angle relative to a supersonic body [1].

The solution to Eq. (1.1) is specific to a single axial location at a given azimuth angle. A

distribution of equivalent area can be generated as x sweeps through the full axial distance

of the aircraft. At this point, the solution is only referencing a single azimuth angle on the

aircraft, so the current description is limited to two dimensions. To get a complete picture

of the equivalent area for the entire body, the same process can be repeated for multiple

azimuth angles.

When studying the sonic boom, the primary region of interest is the under-track, so

ϕ is directly beneath the supersonic body at ϕ = 0. When studying wave drag, one must
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consider all surfaces on the aircraft, so ϕ is swept through a full 360 ◦ rotation. Each

equivalent area distribution is for the entire axial distance at a given ϕ creating a body of

revolution. This body of revolution has the same area and lift distribution as the original

three-dimensional body.

1.6 Wave Drag, Equivalent Area, and The Sonic Boom’s Relation to Pressure

The sonic boom and wave drag both stem from the pressure distribution on a body, so

understanding their mathematical relationship leads to identifying key components in their

equations. For example, the audible component of the sonic boom is due to a rapid increase

in air pressure. Therefore, identifying terms that influence the overall change in pressure

can give insight into understanding their relationship to the loudness of the sonic boom.

The same method can be applied to wave drag. The surface pressure around the body can

be integrated along its length to determine wave drag if no lift is produced. Therefore, by

identifying terms that minimize the surface pressure, one is able to isolate specific terms

and their contribution to wave drag. Both scenarios are mathematically related to the air

pressure and its reaction to the supersonic body.

Plotkin presented the mathematical relationship for a change in pressure in his review

of sonic boom theory [31] as

δp(x− βr, r) = p0
γshM

2F (x− βr)

(2βr)1/2
(1.2)

where

F (x− βr) (1.3)

is the Whitham F function [27], given as

F (x) =
1

2π

∫ X

0

A
′′(ζ)

(x− ζ)1/2
dζ (1.4)
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Note Eq. (1.4) has the second derivative of area with respect axial location in the

numerator. This term indicates it is not the area itself that affects the disturbance in

pressure, but it is the change in rate of area growth that is significant when determining the

F-function and subsequent change in pressure for the supersonic body. The area occupied

by a supersonic body is not as significant as the rate at which the area comes in contact

with the surrounding fluid [29]. This means a supersonic body must decrease the change in

rate of area growth to decrease the overall wave drag on the body.

In 1956, Whitcomb published a paper on an idea that became known as the “supersonic

area rule”. He discovered wave drag can be reduced by thinning the fuselage of the aircraft

at the locations of the wings and slightly thickening the fuselage in areas other than the

wings. This decreases the wave drag because it decreases the rate at which the equivalent

area is changing at a region of large increase due to the addition of each wing. By reducing

the area over the wings, the wings can keep the same geometric characteristics and only the

fuselage has to be modified to decrease wave drag [10]. This disperses the rate of change

in area throughout the axial distance of the aircraft. Figure 1.3 shows this modification at

the location of the wings.

Fig. 1.3: Top-down view of the Whitcomb modification to the fuselage (shown in red) on
an aerodynamic body.

1.6.1 Wave Drag, Equivalent Area, and The Sonic Boom’s Relation to Mach

The Whitham F function shown in Eq. (1.4) also shares a relationship with the Mach

number because the equivalent area is sliced by the Mach planes. This means the Mach
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carries significance in both Eq. 1.2 and Eq. 1.4 [31]. For simple axisymmetric bodies,

Lomax and Heaslet [34] showed that a good approximation for Mach-plane sliced area

distributions can be achieved by slicing the area distributions at the plane perpendicular

to the longitudinal axis. This work begins with the equivalent area distribution of the

Sears-Haack body, so the same assumption made by Lomax and Heaslet can be made in

this work. The Mach number will not change throughout the work and will be considered

as part of the control variables to define the given flight conditions.

1.7 Wave Drag and Equivalent Area from Fourier Coefficients

In their work, Aerodynamics of Wings and Bodies, Ashley and Landahl outline a way

to expresses the equivalent area distribution of an axisymmetric body using a Fourier sine

series [23]. A summary of the process is described in this section.

The fundamental equation for the wave drag of a lineal source distribution can be

written as

Dw = −p∞U2
∞

4π

∫ l

0

∫ l

0
f ′(x1)f

′(x2) ln |x1 − x2|dx1dx2 (1.5)

Assuming a slender body, the first derivative of area can be written as a function of x.

f(x) = S′(x) (1.6)

where x is the axial distance along the body, and S is the equivalent area. Then using a

change of variables to get from x to θ, the axial location along a body can be written as,

x =
l

2
(1 + cos θ) (1.7)

where the nose represents θ = π and the base by θ = 0. This is visualised using Figure 1.4.
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Fig. 1.4: Change of variables on an axisymmetric body between x and theta where θ = π
represents the leading edge and θ = 0 represents the trailing edge of the body.

Eq. (1.7) can be rearranged for θ where,

θ = arccos(
2x

l
− 1) (1.8)

With this change of variables, Eq. (1.6) can be expressed as a Fourier sine series

S′(θ) = f = l
∞∑
n=1

An sin(nθ) (1.9)

By solving the double integration in Eq. (1.5), the equation for wave drag can be simplified

to

Dw =
πp∞U2

∞l2

8

∞∑
n=1

nA2
n (1.10)

The area distribution can be written as a function of θ and a summation of the Fourier sine

series

S(θ) =
l2

4
A1

(
π − θ +

sin(2θ)

2

)
+

∞∑
n=2

An

[
sin(n+ 1)θ

n+ 1
− sin(n− 1)θ

n− 1

]
(1.11)

An additional integration of area yields the total volume

V =
πl3

8
(A1 −

1

2
A2) (1.12)
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where Eq. (1.12) is only dependent on the first and second Fourier coefficients, A1 and

A2. This is significant because A1 and A2 are not free variables and the total volume will

remain constant regardless of how many coefficients are chosen and at what magnitude they

are chosen. Furthermore, this means each Fourier coefficient An represents a weight added

to the Fourier sine series and are the only coefficients used to modify the equivalent area

distribution. In other words, these coefficients determine the resulting change in equivalent

area based off the Fourier sine series summation from Eq. (1.11). When working with the

von Karman and Sears-Haack bodies, the first Fourier Coefficients equate to specific values,

depending on the which body is being described.

For the von Karman scenario, A1 is the only coefficient that contributes to the finite

base area, as θ = 0. By solving Eq. (1.11) for the first Fourier coefficient, A1 is defined as

A1 =
4S(l)

πl2
(1.13)

and any coefficient beyond A1 is set to zero. This also reduces the equivalent area distri-

bution in Eq. (1.11) to

S =
S(l)

π

(
π − θ +

1

2
sin 2θ

)
(1.14)

By using Eq. (1.10), the generic equation for wave drag can be expressed as a function

of the area distribution without additional coefficients, which is shown by the equation

Dw =
2ρ∞U2

∞
π

[S(l)]2

l2
(1.15)

Dividing Eq. (1.10) by the dynamic pressure and length gives the wave drag coefficient for

the von Karman case, which is expressed through

CDw =
4

π

S(l)

l2
(1.16)

For the Sears-Haack scenario, the Fourier Coefficient A1 is zero due to the point at

each end of the geometry, and the second Fourier Coefficient, A2, is related to the geometry
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volume and length according to

A2 = −16V

πl3
(1.17)

The area distribution for the Sears-Haack body is given as

S(θ) =
4V

πl

(
sin θ − 1

3
sin 3θ

)
(1.18)

Using Eq. (1.11) and Eq. (1.15) with only A1 and A2 in the Fourier sine series gives the

wave drag for the Sears-Haack body. This is expressed using

Dw =
64V 2

πl4
p∞U2

∞ (1.19)

Dividing by the dynamic pressure and length gives the wave drag coefficient, which is

described by

CDw =
24V

l3
(1.20)

These relationships connect the Fourier coefficients of the Sears-Haack and von Karman

bodies to their equivalent area representations and define the initial values for A1 and A2

depending on which body is being described. The initial values for A1 and A2 remain con-

stant regardless of how many coefficients are added to the Fourier sine series. In subsequent

sections, the coefficients including A3 up to An will be used in a sample case to modify the

equivalent area distributions and produce a new geometry to study. Furthermore, these

equations outline the process to produce a wave drag estimate based on equivalent area

described by the Fourier coefficients.



CHAPTER 2

COMPUTATIONAL METHODS AND TOOLS

2.1 Tool Integration and Sample Case Study

This chapter outlines the tool integration and methods used in studying the trade-off

between wave drag and PLdB. In order to attain greater understanding of the design space

in regards to any change in Fourier coefficients, an initial sample case was designed to sweep

through a single Fourier coefficient, A3, and note the effect on equivalent area distribution,

ground pressure signature, and boom loudness. The sample case also served as a preliminary

checkpoint to verify the tools were working properly and demonstrate the tool workflow.

For the purposes of the sample case, the equivalent area of the axisymmetric body is

expressed using five Fourier coefficients, A1 through A5, using the equation

S(θ) =
l2

4
A1

(
π − θ +

sin(2θ)

2

)
+

∞∑
n=2

An

[
sin(n+ 1)θ

n+ 1
− sin(n− 1)θ

n− 1

]
(2.1)

where n = 5. Equation 2.1 is the same equation presented in Chapter 1 but repeated

here for convenience. Coefficients A1 and A2 are defined by the Sears-Haack Geometry

mentioned in Chapter 1, and any coefficient beyond A2 is considered a free variable since

it is not fixed by the geometry.

2.1.1 Propagation Through sBOOM and PyLdB

The equivalent area distribution is generated using Eq. 2.1 and given to the NASA

atmospheric propagation tool titled sBOOM. sBOOM requires an equivalent area distri-

bution, the Mach number, the altitude, a reference body length, and the distance to start

and stop propagating the signature. Each of these inputs are important to fully define the

flight conditions. For example, the Mach number affects the shock waves emanating from
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the geometry, the pressure intensity, and it quantifies the overall speed of the axisymmetric

body. The altitude is significant because it defines the space in which the pressure is allowed

to propagate, which affects many aspects of the boom as outlined in Chapter 1.

sBOOM uses the equivalent area distribution to generate a near-field pressure signature,

propagates the pressure signature through a standard atmosphere, and returns the pressure

signature perceived from the ground. That signature is given to an in-house tool called

PyLdB. PyLdB is a python script that uses Stevens’ perceived loudness method [35] to

predict the PLdB observed at the ground for a given ground pressure signature. The PLdB

value is generated using PyLdB, and the wave drag is calculated using Eq. (1.10). The

PLdB, wave drag, equivalent area distribution, and ground pressure signature for the current

set of Fourier coefficients are recorded, and A3 is incremented to create a new set of Fourier

coefficients. Coefficients A4 and A5 were not altered with each set of coefficients, as it was

important to verify the tools were working properly and understand a single coefficient’s

affect on the equivalent area, boom loudness, and ground pressure signature. The process

was repeated with the new A3 coefficient until all increments of design variable sweeps were

complete. If a negative equivalent area was detected, the code skipped the current execution

and no results were recorded for that set of Fourier coefficients.

2.2 Sears-Haack Sample Case

A Sears-Haack body was chosen as the geometry for the sample case. A body length

of 38.26 meters was chosen to match that of the NASA 25D experimental aircraft with a

volume of 29.726 cubic meters. The Mach number was set to 1.6, and the altitude was

initialized to 50,000 feet. sBOOM was initialized to begin propagating at five body-lengths

away and to stop propagating once the signature reached the ground.

Coefficient A1 = 0 and coefficient A2 was defined using Eq. (1.17). The coefficient A3

was initialized at -0.002, and an increment value for A3 was set to 0.00025. The Fourier

coefficients A4 and A5 were set equal to -0.002 and 0, respectively. The coefficient A3 was

incremented after each result, for a total of 18 solutions. The wave drag was calculated for

each set of Fourier coefficients using Eq. (1.19) using the prescribed volume and length.
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The PLdB was compared against the wave drag for each set of Fourier Coefficients, and the

results are shown in Figure 2.1. To improve readability, only half of the results are shown.

Fig. 2.1: Study showing the relationship between PLdB and wave drag as the Fourier
coefficient A3 is incremented through a range of values.

This study served as a means of verifying the tool integration and showed PLdB and

wave drag share a relationship with a change in equivalent area. This study also showed

that changing a single coefficient will reach an instance where the trend where PLdB is

being minimized turns back on itself. This test case showed that altering a single coefficient

would not be sufficient in reducing the PLdB, as the solutions eventually mirror themselves

as the coefficient changes from positive to negative. Therefore, an optimizer would be used

to adjust multiple coefficients and find equivalent area distributions that minimized the

objective. These minimums can then be used to find Pareto fronts between the Sears-Haack

solution and the solutions that minimize noise.

The equivalent area distributions for each set of Fourier coefficients were visualised in

Figure 2.2. Note the figure only shows every other A3 increment to improve readability, but

the overarching trends remains.
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Fig. 2.2: Study showing the shifts equivalent area as A3 is incremented from negative to
positive.

A negative A3 value shifted the area distribution aft, and a positive A3 value shifted

the area distribution forward. It is important to note that the case where A3 was equal

to zero was not the Sears-Haack case because A4 was set to -0.002 for each set of Fourier

coefficients used in this sample case. This study also showed that the equivalent area shifted

systematically as the coefficient A3 incremented through the allowed range.

The ground pressure signatures associated with the sets of Fourier coefficients are

plotted at every other increment of A3, and the results are shown in Figure 2.3.

Fig. 2.3: Ground pressure signatures at periodic increment ofA3 with shaped characteristics.
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The loudest signatures in the sample case were those with the largest over pressures

and under pressures, as these signatures demonstrated the sharpest deviation from ambient

pressure in the shortest time interval.



CHAPTER 3

OPTIMIZATION ROUTINES AND EXPOSURE TO THE DESIGN SPACE

3.1 Fourier Coefficients and the Equivalent Area

To get an initial exposure to the design space, a digital spreadsheet was created that

accepted four Fourier coefficients and plotted the resulting equivalent area distribution. The

coefficients A1 and A2 were defined in Chapter 1, and coefficients A3 and A4 were again

designated as free variables. A slider was created that allowed A3 and A4 to be adjusted

in small increments, and the resulting equivalent area was compared to the equivalent area

of the Sears-Haack. Some Fourier coefficient combinations produced a negative equivalent

area at some points along the body. An area distribution with any negative area values

represents something non-physical. Therefore, the set of Fourier coefficients must produce

an area distribution with all points being positive to produce valid results.

This spreadsheet also gave insight into each coefficient’s effect on the equivalent area.

The sheet was altered to accept A5-A10, and coefficients A3-A10 were initialized to zero.

Each coefficient was tested individually by setting its value equal to ±0.005 and observing

the results. A positive A3 created two peaks in the sine function and shifted the area

forward, while the negative value of A3 created two peaks of the same magnitude with the

area shifted aft. A positive A4 created a sine function with three peaks, and the negative

A4 value simply redistributed the area between the three peaks.

The coefficient A5 produced a curve with four peaks, and A6 produced and expression

with five peaks. This pattern held true for A7 through A10. Increasing the magnitude of the

coefficients exaggerated the expressions sinusoidal behavior, which resulted in more drastic

amplitudes between peaks. These patterns remained the case for the rest of the design

variables. Lastly, this tool provided an estimate for the orders of magnitude needed by the

Fourier coefficients to produce reasonable results. A value of ±0.005 frequently created sine
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functions that contained negative values, so future tests required a smaller magnitude.

3.2 Defining Bounds for the Optimization Routine

Using the methods outlined by the sample case in Section 2.2, the Fourier coefficients

A3 and A4 were swept from -0.003 to 0.002 at set increments while reporting PLdB and

wave drag for each combination. The Mach number was set to 1.4, and the altitude was

set to 50000 feet. The coefficients A5-A10 were not included in this study, as the goal was

simply to find a suitable range of values to search for an optimum solution. Additional

coefficients, such as A5-A10, will be included in the optimization routines, but were not

included at this point.

The PLdB values were lowest when A3 and A4 were each between values of ±0.001.

Negative equivalent areas were produced for A4 values of 0.001, excluding the case when

A3 equaled zero. The results of the study are shown by the tables in the Figure 3.1 below.

(a) PLdB (b) Wave Drag Coefficient 1e−5

Fig. 3.1: PLdB and wave drag produced from the initial sweep through A3 and A4.

As a result of this study, all free variables were bound between ±0.001 for the future

optimization routines, as A3 and A4 produced the lowest drag and PLdB values when they

were within said range.

3.3 Visualization Through Two-Dimensional Slices of the Design Space

At this point, it was unclear if the design space contained smooth gradients between

PLdB values or if it contained multiple local minima throughout the design space. There-
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fore, the next step was to generate contour plots by setting A5 and A6 to zero while sweeping

A3 and A4 through the bounds mentioned above. These results were used to create a contour

plot of PLdB for combinations of A3 and A4. Some combinations of A3 and A4 generated

a negative equivalent area, and these locations were denoted as white space around the

contour lines to represent infeasible combinations of A3 and A4. The contour plot for A3

and A4 is shown in Figure 3.2.

Fig. 3.2: Contour plot of PLdB for combinations of A3 and A4 holding A5 and A6 to 0.0.

The same process was repeated with A3 and A4 set to zero while sweeping A5 and A6

through the bounds set previously. The results are shown in Figure 3.3.

Fig. 3.3: Contour plot of PLdB for combinations A5 and A6 holding A3 and A4 to 0.0.



21

This study showed 2D slices through the design space appear somewhat well behaved

when two of the coefficients are held constant. The contour plots are generally smooth,

continuous, and appear to have one global minimum. This supported the researchers intent

to test the design space using a gradient-based method.

3.4 Data Handling of Infeasible Solutions

Some combinations of Fourier coefficients produced a negative equivalent area, which

is non-physical and indicates the entire equivalent area distribution cannot be used. In

order to function properly, the optimization routines require a solution to the objective

function at each instance. Therefore, even infeasible solutions were required to return a

numerical value. With this in mind, the Python script was designed to return a value

proportional to the PLdB value of the Sears-Haack plus a factor using the number of

negative areas encountered in the current area distribution. This scaled the result of the

constraint function to be proportional to the results of the Sears-Haack body and prevented

the optimization routines from generating too steep of a cliff in any direction of the design

space.

This positive area constraint was expressed as a non-linear inequality constraint so that

the optimizer forced a positive result. The equivalent area was generated for each combi-

nation of Fourier coefficients at each value for θ along the axial distance of the geometry.

The equivalent area distribution was tested, and the minimum equivalent area was returned

by the constraint function. This scaled the constraint function by enforcing large penalties

for a very negative area and a smaller penalty for an equivalent area that was only slightly

negative.

3.5 Optimization Through a Genetic Algorithm

To test the design space further, SciPy’s Differential Evolution algorithm was used

to generate sets of Fourier coefficients to search for a minimum. Coefficients A1 and A2

remained the same as defined previously, and the remaining coefficients were designated as

free variables for the optimizer to change.
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The genetic algorithm was given a population size, a maximum iteration number, the

number of generations to perform, and an initial guess. It found favorable results to mini-

mize PLdB even when given the initial conditions of the Sears-Haack. However, the speed

of the genetic algorithm was largely dependent on how close the initial guess was to an

optimal solution. When given the Sears-Haack coefficients as the initial guess, the genetic

algorithm took up to 13 hours to produce the coefficients that minimized PLdB.

Differential Evolution was profitable in that it wasn’t at risk of becoming stuck at

a local minimum, but it did take significantly more computing time than gradient-based

optimization routines, especially as more coefficients were introduced as free variables.

Differential Evolution also used a polishing function that could be toggled via a Boolean

input parameter. If the parameter was set to true, the polishing function would attempt a

gradient-based method to polish the final results produced by the genetic algorithm. The

polishing parameter was set to true for these results.

3.6 Optimization Through a Gradient Method

The next optimization routine used an in-house minimization tool created by the Aero-

Lab at Utah State University called Optix. Optix is a gradient-based optimization tool and

functions similarly to other minimization tools in Python’s SciPy module. The SQP method

was selected as the gradient-based routine because SQP can accept constraints, such as the

positive equivalent area constraint required for this study. The SQP method was not guar-

anteed to enforce the constraint throughout the optimization process, but it was guaranteed

to produce a result that satisfied the constraint.

The speed of the SQP method also showed a dependency on the initial guess. If the

initial guess was close to a minimum, the SQP was able to find a set of Fourier coefficients

for a quieter PLdB in about an hour or less. However, the SQP method sometimes produced

results that were considered local minima. They were considered local minimum because

other methods were able to find quieter solutions given the same initial guess.

Gradient-based methods are known for finding a solution quickly if the domain is well

behaved, but they come with the drawback of sometimes getting stuck in a local minimum.
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The fact that the SQP method reported some local minima led the researchers to believe

that the domain is well behaved when taking a slice through the domain of two coefficients,

but the design space becomes increasingly complex as more coefficients are introduced as

free variables.

3.7 Optimization Through Nelder-Mead Method

The last optimization routine used the Nelder-Mead simplex method under the SciPy

Minimization package. The Nelder-Mead method is a direct search method, in that it

evaluates the objective function multiple times and systematically makes decisions to find

the minimum solution.

When considering a two-dimensional design space, the Nelder-Mead method calls the

objective function three times and forms a triangle between the three solutions. It evaluates

which point is the largest among the three, and flips that solution over the line segment

created by the other two points. It tests this flipped point to determine if it is smaller than

its previous position. If it is, the process repeats. If it is not, the algorithm shrinks each leg

of the triangle, and repeats the search. In higher dimensions n, the Nelder-Mead method

uses n+1 function calls to optimize, and continues in the same manner described above.

The Nelder-Mead method does not require the derivative of the objective function to

be known. It is able to handle bounds, but not constraints. Therefore, this method required

the data to be handled as mentioned in Section 3.4.

3.8 Selection of an Optimization Method

When selecting an optimization method, it is important to define what aspects of

the optimization are important for the study. For this work, it is important that the

optimization routine not get stuck in any local minima and that it is reasonably time

effective. The optimization routine needs to find solutions to approximately 100 cases, and

if the optimizer takes 13 hours to find a solution for a single case, that could lead to an

extensive amount of time even if the optimizer was constantly running.
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The Nelder-Mead method was able to find solutions relatively quickly, and it was able

to return solutions that were quieter than the gradient based method given the same initial

guess, which marked it as a good initial candidate. Nelder-Mead is not guaranteed to find

the global minimum. However, the Differential Evolution algorithm took 13 hours to find

a solution to some test cases. Although Differential Evolution was an effective means to

find valuable solutions, it’s computationally expensive nature deterred the researchers from

selecting it as the optimization routine for the rest of the studies in this work.

The SQP method was effective in finding solutions in a relatively short amount of time,

but it did return solutions that were louder than the Nelder-Mead method for some test

cases even when given the same initial guess. Therefore, the Nelder-Mead method was

chosen as the optimization routine for the rest of the studies included in this work due to

its computational speed and because it did not return any local minima during the test

cases.

3.9 Multi-Objective Optimization

One of the main objectives of this work was to produce a Pareto front of solutions

between the minimum drag solution and the solution that minimized PLdB. To achieve this

result, a multi-objective optimization routine was implemented into the objective function

within the optimizer that weighted the two solutions relative to each other.

A weighted parameter Γ was implemented into the following equation,

W = Γ ∗ (Dw ∗ 5 ∗ 106) + (1.0− Γ) ∗ PLdB (3.1)

where W was the weighted result, Dw was the coefficient of wave drag multiplied by a factor

of 5 ∗ 106 to scale the wave drag to the same order of magnitude as the PLdB. This created

a weighted average between the two solutions.

A Γ of 0.0 signified a solution solely weighted toward minimizing PLdB, and a Γ of 1.0

signified a solution solely weighted toward minimizing drag. The value of Γ could be set to

any value between 0.0 and 1.0 to weight the solution by that percentage of wave drag and
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use the remaining percentage to weight PLdB. For example, a Γ value of 0.2 will weight

the objective function to optimize for 20% in the direction of wave drag and 80% in the

direction of PLdB. With this multi-objective optimization routine in place, the optimizer

was ready to run solutions that define the Pareto front between wave drag and PLdB.



CHAPTER 4

OPTIMIZATION RESULTS

4.1 Optimization with Nelder-Mead

The optimization routine was organized such that a number of design coefficients, N,

could be specified. Coefficients A1 and A2 were the first two coefficients in each set, so the

total number of coefficients in the Fourier series was always two greater than N. The routine

was designed to minimize PLdB and wave drag by altering the design coefficients used in

the Fourier sine series. The initial guess for each set of coefficients were defined, and Γ

was set to a value between 0.0 and 1.0 depending on the desired weighting. The objective

function was written to calculate the PLdB and wave drag result based on the current set

of Fourier coefficients and use Eq. (3.1) to return a weighted result.

The Nelder-Mead algorithm was given the objective function, the initial guess for the

design coefficients, and the bounds in which to operate. Once a solution was found, Nelder-

Mead was called a second time with the Fourier coefficient results set as the initial guess

for the next set of Fourier coefficients. This process repeated until two consecutive results

matched to machine precision. At this point, a PLdB and wave drag solution were returned

for the current weighting of Γ. This verification method helped ensure the optimizer would

not stop prematurely and assist in making the optimizer more robust.

4.2 Pareto Front Generation

With the Nelder-Mead method in place, the optimization routine was used to generate

the Pareto fronts by iterating on the design coefficients within the Fourier sine series. To

generate a Pareto front, Γ was initialized at 0.0 and the initial guesses for A3 through AN

were set to 0.0. After a solution was found for that specific Γ, the PLdB, wave drag, and the

Fourier coefficients were recorded to a digital spreadsheet. The weighting parameter Γ was
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incremented by +0.1, and the optimization was repeated using the previous solution as the

initial guesses for A3 through AN . This process of using the previous Fourier coefficients

as the initial guess for the next data point within the Pareto front assisted in connecting

the solutions to each other across the design space and ensured the optimizer started in the

same valley within the design space.

The optimization routine repeated this process from Γ = 0.0 to Γ = 1.0 to generate the

data points for a single Pareto front. A CSV file was produced that listed the optimized

Fourier coefficients with their respective PLdB and wave drag values. The PLdB and wave

drag values were plotted on a digital spreadsheet to visualise the Pareto front for the number

of design variables.

To generate subsequent Pareto fronts, the coefficients describing the minimum noise

solution were used as the initial guess for the next Pareto front, and any additional design

coefficients were initialized to 0.0. This process was repeated using 2 design coefficients to

18 design coefficients by adding two design coefficients to Eq. 1.11 with each new Pareto

front. The Sears-Haack solution was marked and served as a reference for the minimum

wave drag solution in each Pareto front. These Pareto fronts are shown in Figure 4.1.

Fig. 4.1: Pareto front of wave drag to PLdB for a Mach of 1.6 using a number of design
coefficients, N , compared to the Sears-Haack solution.
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4.3 Discussion of Trade-Off Between PLdB and Wave Drag

Figure 4.1 shows that a trade-off exists between PLdB and wave drag as equivalent

area changes on a supersonic body. The solution that minimizes noise is the solution that

generates the most wave drag, and the solution that minimizes wave drag is the solution

that generates the loudest boom. By looking at the curve when N=18, one can see a range of

solutions that minimize these two objectives for different weighted solutions. Each solution

set returned to that of the Sears-Haack as Γ approached 1.0. As the number of Fourier

coefficients was increased, the minimum noise solution was able to produce a quieter result.

The minimum noise solution using 18 design variables produced a wave drag coefficient

of 1.93E-05 with a PLdB value of 76.235 decibels, and the Sears-Haack solution produced

a wave drag coefficient of 1.15E-05 and a PLdB value of 86.241 decibels. Based on these

results, the PLdB value from an axisymmetric body could be reduced by approximately

10.03 decibels if it accepted a 67.96% increase to the coefficient of wave drag relative to the

Sears-Haack solution when using 18 design variables.

The Pareto front when N=18 demonstrates the PLdB can be reduced significantly with

only a marginal increase to wave drag with an appropriate weighting of Γ. This region is

project dependent as it varies with the number of design coefficients N as well as Mach

and other flight conditions, but in this work, the PLdB dropped from 86.265 dB to 79.518

dB with the wave drag increasing from 1.15E-05 to 1.30E-05. This translates to a 6.721

decrease in decibels for a 12.88% increase to wave drag.

The Pareto fronts in Figure 4.1 help visualise the minimum solutions for the two objec-

tives across the design space. The information gained from these Pareto fronts connects two

areas of research important to supersonic studies. This suggests a similar trade-off exists

for all supersonic bodies that can alter their equivalent area distribution. Theoretically,

these supersonic bodies could alter their equivalent area distribution in such a way to select

a desired minimum noise and wave drag solution that lies along their respective Pareto front.
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4.4 Convergence of Solutions

It is important to note that adding more design coefficients allowed for a greater spread

in results. The attainable solutions when N=2 were not nearly as widespread as the solu-

tions attained when N=18. This is because an equivalent area distribution created from

two free variables is not as flexible as the curves with more free variables. In this case, the

optimizer had less coefficients to adjust and lacked the ability to manipulate the equivalent

area distribution due to the number of frequencies built into Eq. (1.11). This idea becomes

apparent when considering the jump in solutions when N=2 to when N=4. The additional

design variables allowed the optimization routine to manipulate the equivalent area distri-

bution to where the PLdB and wave drag solutions could be minimized further. However,

there comes a point where additional design coefficients become less significant with each

additional design coefficient. The solutions generated in this work are shown in Figure 4.2

Fig. 4.2: Convergence of minimum PLdB values using N design coefficients.

The Pareto front describing the absolute achievable minima within the design space

occurs when the optimization routine uses an infinite number of Fourier coefficients. How-

ever, testing such a routine with the method outlined in this work is not possible. The

objective then transitions into testing a number of design coefficients where solutions begin

to converge and to determine when adding additional coefficients begins to produce dimin-

ishing returns. The general trend in Figure 4.2 showed an increase to the number of design
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coefficients produced a decreasingly significant change in the minimum PLdB.

The minimum solution using 10 design coefficients decreased more than what was

expected based on the previous step, but it is important to note the significance of additional

frequencies being added to the equivalent area representation. Each design coefficient being

added to the expression adds an additional frequency to the system overall, and the human

ear can be more sensitive to some frequencies than to others. This could give reason to

why some frequencies are more sensitive to ears than others. The step change in minimum

PLdB from N=8 to N=10 is much less than the jumps in PLdB from N=2 and N=4.

Based on the information in Figure 4.2, the solutions show the beginning of convergence

but have not yet converged on a solution. Future work could include testing even more

design variables to study the rate of convergence, but such a study is not done in this

work. The researchers used 18 Fourier coefficients to describe the equivalent area of the

NASA 25D with respect to volume, so the optimization process stopped after using 18

design coefficients. Adding additional coefficients would increase computing power and

require additional time, but more design coefficients could be added beyond 18 to study the

behavior of the system and could give insight into harmonic behavior in connection with

the frequencies added into the system.

Figure 4.3 presents the absolute value of each coefficient, A3 to A20, along the Pareto

front when N=18. From the figure, it can be seen that the coefficient A10 does not carry

as much influence in the solutions compared to other coefficients. Further work could be

done to investigate the frequencies introduced through each coefficient and understand the

behavior of higher coefficients. The coefficients show a slight downward trend in order of

magnitude when comparing the data set as a whole.
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Fig. 4.3: Fourier coefficient values from A3 to A20 over different weighting distributions
from minimum wave noise to minimum wave drag plotted on a log scale.

4.5 Limitations

As outlined in Chapter 1, the results in this work are created using only the volume

component of the equivalent area representation. Further work would include adding the

lift component to describe the equivalent area distributions used throughout this process.

The Sears-Haack axisymmetric body is assumed to be at zero degrees angle of attack

for all cases in this study and does not have lifting surfaces. Therefore, the Sears-Haack

body does not produce lift. The NASA 25D is an aircraft with lifting surfaces, and the

equivalent area of the NASA 25D does have a lift component even when at zero angle of

attack. However, the NASA 25D equivalent area distributions used in this work are strictly

the volume component of equivalent area for the 25D as obtained through OpenVSP [36,37].

This difference between the bodies could give reason to why the equivalent area distribution

for the NASA 25D is shifted further aft compared to the equivalent area distributions

produced from the optimization routine.

Adding the lift component to the equivalent area would help to create a more complete

picture of the relationship between wave drag and PLdB, but such a solution is beyond the

scope of this work and is left for future researchers to implement. The lift component adds

complexity to the Fourier sine series, as it would require the sine series to generate a less

harmonic shape such that the equivalent area distribution would not return to zero at the
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trailing edge. Rather, the area distribution would end at a finite value to signify lift. In

this case, the von-Karman axisymmetric body may be more appropriate of a comparison in

a similar study as that done here.

4.6 Comparison of Equivalent Areas as a Function of Coefficients

This section presents the equivalent area distributions for different numbers of design

variables as Γ shifted from 0.0 to 1.0. A Γ value of 0.0 represented an objective weighted

solely toward minimizing PLdB, and a Γ of 1.0 represents an objective weighted solely

toward minimizing wave drag. Figure 4.4 shows the shifts in equivalent area distribution

for two design variables for different weighting parameters.

Fig. 4.4: Shifts in equivalent area distribution as the objective function shifts from mini-
mizing boom to minimizing drag when using two design coefficients.

Here, the spread in results is minimal due to only having two design coefficients to

optimize, so the solution that minimizes noise is not significantly different from that which

minimizes drag. The minimum noise solution is similar in shape to the Sears-Haack, except

that it is shifted slightly forward along the body. With only two design coefficients, the

Fourier sine series is limited in its flexibility.



33

When four design coefficients are used, the spread in equivalent area distributions be-

comes more noticeable, and the minimum noise solution begins shifting toward the equiva-

lent area distribution of the NASA 25D. The minimum noise solution is narrower than the

Sears-Haack solution. This result is shown in Figure 4.5.

Fig. 4.5: Equivalent area distributions as the objective function shifts from minimizing
boom to minimizing drag when using four design coefficients.

With six design coefficients, the minimum noise solution shifts forward along the axial

distance, which is in the same direction as the minimum noise solution that used two design

coefficients. The minimum noise solution still favors an increasingly narrower shape as more

coefficients are added. This trend is shown in Figure 4.6.



34

Fig. 4.6: Equivalent area distributions as the objective function shifts from minimizing
boom to minimizing drag when using six design coefficients.

The equivalent area of the minimum noise solution using 8 design coefficients continues

to drop below that of the Sears-Haack at the leading and trailing edge by redistributing

this area towards the center of the body. This creates a higher peak with each shift in Γ

towards minimizing PLdB. The height of the peak has increased with each step towards

minimum noise. This indicates the minimum noise solution will become increasingly taller

as more coefficients are added as the solutions converge.

A similar pattern is shown by the equivalent area distribution of the NASA 25D aircraft.

The NASA 25D’s distribution has less equivalent area along the nose and droops significantly

below that of the Sears-Haack. It also has a high peak value near the center location along

the body. These relationships are shown in Figure 4.7.
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Fig. 4.7: Equivalent area distributions as the objective function shifts from minimizing
boom to minimizing drag when using eight design coefficients.

The results using ten coefficients further support the trends outlined above. The min-

imum noise solution for an axisymmetric body is a solution that shifts the equivalent area

distribution away from the forward and aft positions and towards the center of the body.

This creates a higher maximum equivalent area than the solutions that minimize drag. The

results are shown in Figure 4.8

Fig. 4.8: Equivalent area distributions as the objective function shifts from minimizing
boom to minimizing drag when using ten design coefficients.
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Figure 4.9 presents the equivalent area distributions that produced the minimum noise

solution for each number of Fourier coefficients tested.

Fig. 4.9: Equivalent area distributions that produced minimum noise for a given number of
design coefficients N.

The equivalent area distributions using fewer design variables oscillate forward and aft with

each two design coefficients added. This is most noticeable between the minimum noise

solutions when N=2 and when N=4. However, this oscillation becomes less drastic as more

design coefficients are used. This supports the idea that adding coefficients will eventually

reach a point of diminishing returns once the solution has converged.

Figure 4.9 also suggests that the converged solution producing minimum noise expe-

riences a peak equivalent area value at a location that is slightly forward of the midpoint

along the longitudinal axis, whereas the Sears-Haack is symmetric at the midpoint. Future

work could investigate how the rate of change in area growth from Whitham’s F-Function

contributes to the pressure signatures generated by the minimum noise geometry.
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4.6.1 Using Fourier Coefficients to Approximate a Solution to the NASA 25D

With the equivalent area distribution for a minimum noise solution known, the re-

searchers sought to compare the NASA 25D area distribution to the minimum noise so-

lutions using the tool set outlined in this work. A digital spreadsheet was used to find

the Fourier coefficients that approximated the NASA 25D area distribution with respect to

volume.

The approximated solution was produced using a solver that iterated on 18 design

coefficients to minimize the error between the approximate solution and the equivalent

area of the NASA 25D with respect to volume. Those design coefficients were used in the

methods explained in Chapter 2 to produce the PLdB, wave drag, and the equivalent area

distribution for an approximate solution of the NASA 25D’s equivalent area distribution

with respect to volume. This allowed for a PLdB and wave drag result to be produced for

the NASA 25D using only the methods produced in this work.

4.6.2 Comparison of Equivalent Areas

With the approximate solution to the NASA 25D known, the most prominent equiv-

alent area distributions could be compared. These equivalent area distributions are: the

equivalent area for minimum noise using 18 design variables, the equivalent area of the

Sears-Haack body, the NASA 25D equivalent area with respect to volume, and the approx-

imate equivalent area distribution for the NASA 25D using 18 Fourier coefficients. These

four area distributions are shown in Figure 4.10.
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Fig. 4.10: Equivalent area distributions with respect to volume for the Sears-Haack, the
minimum noise, the NASA 25D and the approximate 25D solution.

These equivalent area distributions show how the geometry of the NASA 25D aircraft

relates to the geometry of the two optimized axisymmetric bodies of equal length.

4.7 Comments on Results to NASA 25D Aircraft

It is worth noting that an axisymmetric body without wings was used to produce the

equivalent area distributions in this work. It is possible that the placement of wings or other

lifting surfaces on the NASA 25D aircraft causes the optimal equivalent area distribution

for the NASA 25D to shift further aft along its axial distance to reduce noise. As mentioned

previously, lift was not accounted for in the equivalent area representations for this work,

but the geometries of the lifting surfaces could still affect the equivalent area distribution

when compared to the geometry of the axisymmetric body.

Figure 4.11 compares the Pareto fronts created in this work with two NASA 25D

solutions. The PLdB portion of the NASA 25D(A) solution was generated from the full
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Fig. 4.11: Comparison of Pareto fronts with the approximated 18 coefficient NASA 25D
results and the NASA 25D solution from using CFD/OpenVSP. Note the log scale on the
y-axis.

CFD result and is in the same range of PLdB values as the Pareto fronts generated in

this work. The wave drag component of that solution is based solely on the volume and

was generated using OpenVSP. The NASA 25D(B) solution shown in Figure 4.11 uses the

equivalent area distribution of the approximated NASA 25D solution using 18 coefficients

in the Fourier sine series. The approximated solution of the NASA 25D with respect to

volume is significantly louder than the others but contains a wave drag solution that is the

same order of magnitude as those in the Pareto fronts. This NASA 25D(B) solution was

generated using the tool set outlined in Chapter 2.

By comparing these solutions on Figure 4.11 we can find a correlation between 3rd

party results as to what the PLdB and wave drag with respect to volume are for the NASA

25D aircraft. This could also show a connection where the lift components create more

wave drag, but lift adjusts the equivalent area distribution in a way that reduces PLdB.
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Figure 4.12 compares the Pareto front when N=18 to the approximated NASA 25D so-

lution using 18 design coefficients. Both results were using equivalent areas with respect to

volume only. The Pareto front shows a quieter solution on all accounts, and the NASA 25D

produces a louder result when only using the volume component of the equivalent area dis-

tribution. The 25D was not designed using the volume of equivalent area alone. Therefore,

it isn’t surprising that a minimized solution would perform better than a representation

from an actual aircraft. Figure 4.12 gives a point of comparison between the minimized

solution with 18 coefficients and the approximated 25D solution. This 25D result shown in

Figure 4.12 is the same result as the approximated NASA 25D solution generated in Figure

4.10 and Figure 4.11, respectively.

Fig. 4.12: Comparison of the Pareto front with 18 coefficients to the approximated NASA
25D equivalent area described using 18 coefficients.

Table 4.1 presents the minimum noise solution generated by each each test case using

N coefficients. Additionally, the talbe presents the associated coefficient of wave drag and

the Fourier coefficients used to describe equivalent area distribution for each solution.



41

Table 4.1: Minimum noise solutions for each set of design coefficients with the associated
wave drag and Fourier coefficients along with the NASA 25D approximation.

N=2 N=4 N=6 N=8 N=10 N=18 25D

PLdB 85.26975 81.12707 79.2448 78.76122 77.80097 76.23544 92.53553

CDw 1.39E-05 1.46E-05 1.55E-05 1.60E-05 1.79E-05 1.93E-05 5.75E-05

A1 0 0 0 0 0 0 0

A2 -0.00270 -0.00270 -0.00270 -0.00270 -0.00270 -0.00270 -0.00270

A3 0.00101 -0.00032 0.00053 0.00019 0.00040 -0.00009 -0.00100

A4 -0.00001 0.00066 0.00067 0.00085 0.00092 0.00092 0.00132

A5 0 -0.00025 -0.00039 -0.00042 -0.00048 -0.00048 0.00050

A6 0 -0.00052 -0.00035 -0.00047 -0.00048 -0.00071 -0.00079

A7 0 0 0.00027 0.00020 0.00037 0.00022 -0.00023

A8 0 0 -0.00023 -0.00013 -0.00021 -0.00004 -0.00064

A9 0 0 0 -0.00013 -0.00018 -0.00029 0.00049

A10 0 0 0 0.00000 0.00000 0.00000 -0.00054

A11 0 0 0 0 4.08E-05 1.57E-04 -4.98E-04

A12 0 0 0 0 -1.24E-04 7.73E-06 2.08E-05

A13 0 0 0 0 0 4.78E-07 -5.94E-05

A14 0 0 0 0 0 1.93E-04 -9.95E-04

A15 0 0 0 0 0 7.72E-05 -8.06E-04

A16 0 0 0 0 0 7.39E-05 -3.07E-05

A17 0 0 0 0 0 5.07E-05 4.02E-04

A18 0 0 0 0 0 1.01E-04 1.50E-04

A19 0 0 0 0 0 -6.93E-06 1.25E-04

A20 0 0 0 0 0 1.80E-05 5.06E-04
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Table 4.2 presents the PLdB values in connection with the Pareto fronts presented in

Figure 4.1.

Table 4.2: PLdB values along the Pareto fronts for each set of design coefficients.

Γ N=2 N=4 N=6 N=8 N=10 N=18

0.0 85.26975 81.12707 79.2448 78.76122 77.80097 76.23544

0.1 85.56872 81.47224 79.58660 79.25697 78.35730 77.47878

0.2 85.83024 82.09040 80.20049 80.36430 80.31199 78.92561

0.3 85.98799 82.96196 80.99748 81.30470 81.20332 79.51885

0.4 86.07631 83.66378 82.48076 82.23322 82.08244 80.88805

0.5 86.13635 84.27799 84.20581 83.49351 83.10814 82.48892

0.6 86.17203 84.99095 84.98744 84.43014 84.46665 84.12815

0.7 86.20505 85.55568 85.56041 85.03242 84.89064 84.98657

0.8 86.22890 85.87775 85.86128 85.65644 85.49623 85.45196

0.9 86.24652 86.06741 86.06405 86.02794 85.89999 85.88051

1.0 86.24652 86.24652 86.25569 86.24962 86.24146 86.24002



43

Finally, Table 4.3 presents the coefficients of wave drag in connection with the Pareto

fronts presented in Figure 4.1.

Table 4.3: Coefficients of Wave Drag along the Pareto fronts for each set of design coeffi-
cients.

Γ N=2 N=4 N=6 N=8 N=10 N=18

0.0 1.390E-05 1.461E-05 1.546E-05 1.602E-05 1.788E-05 1.928E-05

0.1 1.196E-05 1.339E-05 1.389E-05 1.437E-05 1.568E-05 1.531E-05

0.2 1.164E-05 1.266E-05 1.319E-05 1.303E-05 1.306E-05 1.342E-05

0.3 1.154E-05 1.212E-05 1.269E-05 1.245E-05 1.245E-05 1.296E-05

0.4 1.150E-05 1.186E-05 1.216E-05 1.208E-05 1.210E-05 1.239E-05

0.5 1.149E-05 1.170E-05 1.171E-05 1.177E-05 1.185E-05 1.195E-05

0.6 1.148E-05 1.157E-05 1.157E-05 1.161E-05 1.160E-05 1.163E-05

0.7 1.148E-05 1.151E-05 1.151E-05 1.154E-05 1.154E-05 1.153E-05

0.8 1.148E-05 1.149E-05 1.149E-05 1.149E-05 1.150E-05 1.150E-05

0.9 1.148E-05 1.148E-05 1.148E-05 1.148E-05 1.148E-05 1.148E-05

1.0 1.148E-05 1.148E-05 1.148E-05 1.148E-05 1.148E-05 1.148E-05



CHAPTER 5

SUMMARY OF RESULTS AND CONCLUSIONS

The Sears-Haack solution is an axisymmetric geometry that minimizes wave drag for

a given length and volume. The objective of the current work was to find an axisymmetric

geometry that minimized the noise perceived from a sonic boom given a length and volume.

Additionally, this research intended to further define the relationship between wave drag

and the perceived loudness of a sonic boom.

Modern aircraft have the ability to alter their outer-mold line during flight. This

change in the outer-mold line affects both the aerodynamic and geometric characteristics

of the aircraft. Wave drag and the sonic boom are both affected by the rate of area growth

along the axial distance of an aerodynamic body, but there is a trade-off to be considered

as the equivalent area distribution changes.

It has been shown in this work and others that the equivalent area distribution for the

Sears-Haack solution minimizes the rate of area growth for a given length and volume, thus

minimizing wave drag. Based on the equivalent area distributions produced in this work, a

similar observation can be made for the solution that minimized noise. The minimum noise

solution is one that redistributes the equivalent area from the nose of the aircraft towards

the center of the axial length along the body creating a higher peak equivalent area than

that of the Sears-Haack. This characteristic of a low-boom supersonic body can be seen in

equivalent area distribution of the NASA 25D aircraft.

This difference in how the equivalent area is distributed indicates there is a theoretical

trade-off between wave drag and sonic boom loudness as equivalent area changes on a

supersonic body. The Pareto-fronts generated in this work define the set of minimum

solutions for a number of design coefficients that minimize both objectives. The information

gained from these solution sets further define the relationship between wave drag and the

perceived loudness of a sonic boom.
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In this work and for an axisymmetric geometry, the PLdB was shown to be reduced

by 10.03 decibels by accepting a 67.96% increase relative to the minimum wave drag when

using 18 design coefficients for the Sears-Haack body. From a more practical standpoint, the

PLdB was shown to decrease by 6.721 decibels with a 12.88% increase to the coefficient of

wave drag when Γ was set to 0.3. This is a much easier trade-off to accept when considering

the force of wave drag on a supersonic body. This relationship between wave drag and

PLdB further supports the idea that a morphing aircraft can alter its PLdB value without

changing its flight conditions if the operators are willing to accept a change in wave drag as

a result. Future supersonic aircraft could incorporate the information gained from similar

Pareto fronts into future designs and decision-making. A morphing supersonic airliner

could temporarily reduce the audible intensity of the sonic boom over a populated area

while accepting a penalty to wave drag if it was able to alter its equivalent area distribution

in an optimal way.

Future work on this research would include adding the lift component to the equiv-

alent area representation. The lift component adds complexity to the Fourier sine series

representation because the sine series would need contain more frequencies and thus require

more coefficients to define the equivalent area distribution. The equivalent area distribu-

tions with lift end in a non-zero value, so the von-Karman axisymmetric body would be

an appropriate representation for the initial test cases, since the von-Karman body is the

geometry that minimizes wave drag for a given volume and finite base area.

The current tool set could be used to study the convergence of solutions with each

additional design coefficient. This work has shown a relationship between wave drag and

PLdB, and it has found an axisymmetric geometry that minimizes noise for a set number

of design coefficients. The convergence of these solutions could be studied in greater depth

to define the sensitivity of wave drag and PLdB to additional design coefficients.

Lastly, additional work could be done to enhance the optimization routine. The opti-

mization routine could be changed to integrate a non-dominated sorting genetic algorithm

(NSGA). The NSGA algorithm is a genetic algorithm specifically tailored to optimizing a
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Pareto front for a multi-objective optimization problem. This would assist in solving the

optimization problem more efficiently and lower the searching time while ensuring the global

minimum solution is obtained.
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