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ABSTRACT

Recent studies have demonstrated the possibility of constructing
magnetostrophic dynamo models, which describe the slowly evolv-
ing background state of Earth’s magnetic field when inertia and vis-
cosity are negligible. Herewe explore the properties of steady, stable
magnetostrophic states as a leading order approximation to the slow
dynamicswithin Earth’s core. For the case of an axisymmetricmagne-
tostrophic system driven by a prescribed α-effect, we confirmed the
existence of four known steady states: ±Bd , ±Bq, where Bd is purely
dipolar and Bq is purely quadrupolar. Importantly, here we show
that in all but the most weakly driven cases, an initial magnetic field
that is not purely dipolar or quadrapolar never converges to these
states. Despite this instability, we also show that there are a plethora
of instantaneous solutions that are quasi-steady, but nevertheless
unstable. If the dynamics in Earth’s core are reasonably modelled by
a strongly driven α-effect, this work suggests that the background
state can never be steady. We discuss the difficulties in comparing
our magnetostrophic models with geomagnetic timeseries.
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1. Introduction

Earth’s magnetic field is a long-lived and consistent feature of our planet, existing con-

tinuously over the past 3.4–4.2 billion years (Tarduno et al. 2015). Over this time span the

geomagnetic field has been dominated by an axisymmetric dipole alignedwith the rotation

axis, suggesting an inherent stability of the geodynamo process and resultant geomagnetic

field. On intermediate and rapid timescales, dynamics such as magnetic reversals with

timescales of a few thousand years (Amit et al. 2010) and torsional waves with timescales

of years (Gillet et al. 2010) show a rich array of complex behaviour, which may be regarded

as perturbations to the axisymmetric background state.

The disparate magnitudes of forces governing the geodynamo motion in Earth’s core

make fully resolving time-dependent models very challenging. The recent state-of-the-art

models (Schaeffer et al. 2017, Aubert 2020, Aubert andGillet 2021) have been able to repro-

duce a range of dynamics including fast variations using very small numerical time-steps.
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These direct numerical simulations use Ekman numbers (the ratio of viscous to rotational

effects) of no less than E = 10−7 (or with the addition of a “hyperdiffusion” approxima-

tion, down to E = 3 × 10−10 (Aubert and Gillet 2021)), very small but still much larger

than Earth-like values of 10−15. As a result of these extreme parameters, the models are

restricted to short temporal ranges compared with the length of the geomagnetic record,

and hence the ability to investigate the evolution and stability of the long-term field is very

limited. Simulations over longer timescales have been carried out in attempts to reproduce

the longer-term secular variation of the geomagnetic field, simulating temporally sporadic

events such as magnetic polarity reversals (Driscoll and Olson 2009, Olson et al. 2010),

dipole strength variability (Meduri et al. 2021) and rapid directional field changes (Davies

and Constable 2020). However, the price for this temporal range is in decreased resolution

and hence a restriction to using parameter values further from those of the Earth.

Modelling directly Earth’s extreme parameters of E ∼ 10−15, and the Rossby number

(or magnetic Ekman number), representing the ratio of inertial to rotational forces, Ro ∼
10−9 are extremely challenging, but here we adopt a different modelling strategy to direct

numerical simulation of the complete equations in which these difficulties are avoided.We

consider a model of Earth’s field comprising two components. The first component is the

slowly evolving background state, described by the leading order force balance under the

Boussinesq approximation between the Coriolis force, pressure, buoyancy and the Lorentz

force associated with the magnetic field B itself

ẑ × u = −∇p + FBr̂ + (∇ × B) × B, (1)

where FB is a buoyancy term that acts in the unit radial direction r̂ (Fearn 1998). For sim-

plicity, we consider a core in which the fluid temperature depends on radius alone; in this

case, the buoyancy term can be absorbed entirely into the pressure gradient and so we take

FB = 0. This equation has been non-dimensionalised (for details, see section 2.2).

The second, much more rapidly varying component, is described by perturbations to

the background state such as torsional waves and is likely dominated by quasi-geostrophy

(Aurnou and King 2017, Schwaiger et al. 2021).

In this paper, we focus attention on the slowly evolving magnetostrophic background

state. Taylor (1963) showed that, as a consequence of (1), consideration of the magne-

tostrophic balance leads to the well-known condition that the magnetic field must obey

at all times t

T(s, t) ≡
∫

C(s)
([∇ × B] × B)φs dφ dz = 0, (2)

for any geostrophic cylinder C(s) of radius s, aligned with the rotation axis, where (s,φ, z)

are cylindrical coordinates.

Although studying the background state in isolation is simpler in the sense that the only

dynamics are slow, computationally ensuring that themagnetic field satisfies equation (2) is

not easy. The first difficulty is finding a suitable initial condition, alongwith a description of

the subset of magnetic fields in which the time-dependent solution can lie. Recent studies

by Livermore et al. (2008, 2009), and Hardy et al. (2020) have provided and implemented a

complete algorithm for the non-trivial procedure of constructing instantaneous magnetic

fields. These methods all rely upon writing the integral in (2) as a finite power series in s,
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and constraining the magnetic field so that each term in the series individually vanishes; it

follows that the Taylor integral vanishes for all values of s.

The second difficulty is devising a numerical scheme that evolves the magnetic field

in such a way as to preserve Taylor’s condition. The flows driven by Taylor-state fields

(through the Lorentz force) along with other body forces will induce new magnetic

fields and so will perturb the original field. A special component of flow, the geostrophic

flow, arises to induce an additional magnetic field that ensures Taylor’s constraint is

maintained (Hardy et al. 2018). Despite much attention in the 1980s and 1990s by a

variety of approaches, (Soward and Jones 1983, Fearn and Proctor 1987, Hollerbach

et al. 1992, Hollerbach 1996) a method to find computationally this geostrophic flow

remained elusive. However, recent developments by two groups of researchers: Roberts

and Wu (2014, 2018, 2020), Wu and Roberts (2015), and, in parallel (Li et al. 2018), have

led to the breakthrough of functioning magnetostrophic models, albeit currently these are

constrained to the case of axisymmetry. Both sets of models, based on different numerical

schemes, independently demonstrate the existence of a range of time-dependent solutions.

Although a spherical shell geometry is appropriate for Earth’s core, the whole procedure of

evolving an initial Taylor state is further complicated significantly because of the difficulty

in handling the internal interface of the tangent cylinder (Livermore et al. 2010, Livermore

and Hollerbach 2012, Roberts and Wu 2020). We follow the majority of previous related

studies and will consider only a full sphere geometry in this paper.

In this study, motivated by the possibility that Earth’s background field is quasi-steady,

we build on these previous studies to investigate the stability of steady-state dynamically

self-consistent magnetostrophic solutions. Two such stable and steady solutions have been

reported in previous work by Li et al. (2018) and Wu and Roberts (2015), which were

discovered by evolving the equations from single initial conditionswithin each of the dipole

and quadrupole symmetries. These known stable Taylor states are denoted as Bd and Bq

respectively.

Here we investigate the broad space of steady self-consistent solutions in a systematic

manner and assess its subset of stable solutions. We also compare their rate of change to

geomagnetic observations.

2. Methodology

2.1. Overview

Our analysis consists of two parts: to find dynamically steady Taylor states and then to

investigate their stability.

Firstly, we investigate the existence of steady Taylor states, carrying out a systematic

search over a chosen subset of axisymmetric Taylor-statemagnetic fields. This is possible by

writing the magnetic field in a sparse representation based on spherical harmonics, whose

coefficients are appropriately chosen. For each Taylor state, we compute its instantaneous

rate of change. Very small values (below a given threshold) indicate a steady-state.

Secondly, we analyse the stability of these steady Taylor states. We do this in two ways.

Running a suite of dynamical magnetostrophic simulations with different initial magnetic

field conditions allows us to identify any attracting steady solutions. We can also begin a



4 C. M. HARDY ET AL.

numerical simulation with an initial condition of a steady Taylor state, and test instability

by assessing whether or not the trajectory diverges from the initial state.

These approaches that investigate steadiness and stability, although distinct, are com-

plementary in our investigation of the evolution of Taylor states. Steady states may not be

stable, and attracting solutions may not be steady.

2.2. The axisymmetric magnetostrophic system

We consider a rotating full sphere of dimensional radius L, filled with electrically con-

ducting fluid, surrounded by an electrical insulator. We non-dimensionalise the system

as follows: length is scaled by L the outer core radius 3.5 × 106 m, time by the Ohmic

diffusion time τ = L2/η and velocity by τ/L. The scale used for the magnetic field is

B = (2�0µ0ρ0η)
1
2 (Fearn 1998), where for Earth the physical parameters take the follow-

ing values: angular velocity�0 = 7.272 × 10−5 s−1, permeabilityµ0 = 4π × 10−7NA−2,

density ρ0 = 104 kgm−3 and magnetic diffusivity η = 0.6–1.6m2s−1 (Davies et al. 2015).

These give a timescale of Ohmic decay of τ ≈ 500 ka.

We then need to solve the coupled non-dimensional Navier–Stokes equation (1) and the

induction equation for the magnetic field

∂tB = ∇ × (u × B − ∇ × B). (3)

We restrict attention to the axisymmetric case and therefore take note of the anti-dynamo

theorem of Cowling (1933), which states that it is not possible for an axisymmetric

magnetic field to be maintained through self-sustaining dynamo action. In order to cir-

cumvent this anti-dynamo theorem, an α-effect is introduced which represents helical

motion within the flow. This provides an energy source (effectively replacing the neglected

buoyancy term) which promotes dynamo action (Parker 1955). The parametrisation is

however an imperfect simplification of the full three-dimensional effects and can lead to

some notably different features compared to 3D models (e.g. Fearn and Rahman 2004a).

Nevertheless, the axisymmetric study will serve as a useful first foray into investigating

Taylor-state dynamics. The form of any α-effect that we may choose is arbitrary, and this

is a notable model limitation (which we address in section 4.5). The majority of results

presented utilise the commonly used “Braginsky” form (Roberts 1972, Hollerbach and

Ierley 1991, Wu and Roberts 2015, Li et al. 2018)

α = α0
729

16
r8(1 − r2)2 cos θ , (4)

where the constant α0 specifies themagnitude of the α-effect with a threshold of α0 = 13.8

required to sustain a magnetostrophic dynamo (Wu and Roberts 2015, Li et al. 2018). This

is a necessary condition for any energetically stable or growing magnetic fields to exist as

it provides the means to balance Ohmic diffusion. The integer quotient in equation (4)

ensures that the maximum value of α within the core is α0.

The induction equation in full, which represents the instantaneous rate of change in the

magnetic field, now becomes

∂tB(r, θ) = ∇ ×
[

(ua(r, θ)) × B(r, θ) − ∇ × B + α(r, θ)B
]

+ sBs
d(ug(s)/s)

ds
φ̂, (5)
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where we have decomposed the flow u = ua(r, θ) + ug(s)φ̂ into explicit contributions of

the ageostrophic flow, which has zero cylindrical average, and the azimuthally directed

geostrophic flow (respectively) (Hardy et al. 2018).

It is useful to make this decomposition because while ua(r, θ) is specified uniquely by

equation (1), ug(s) is left arbitrary. The geostrophic flow is only then constrained by the

requirement of the magnetic field remaining as a Taylor state, that is, the time derivative of

equation (2) is zero. In the above equation, φ̂ is the unit vector in the longitudinal direc-

tion. We use both (axisymmetric) spherical coordinates (r, θ), where r is the radius and

θ colatitude, and (axisymmetric) cylindrical (s, z) coordinates, where s is the cylindrical

radius and z is the axial coordinate.

We now need to solve the coupled system of the induction equation (3) and the

Navier–Stokes equation (1). To do this, the magnetic field and velocity are represented

in orthonormal toroidal–poloidal vector components

B =
L

∑

l=1

N
∑

n=1

al,nT l,n + bl,nS l,n, (6)

where T l,n and S l,n are vector axisymmetric spherical-harmonic modes of degree l ≤ L

(with odd and even l corresponding to dipole and quadrupole parity respectively for the

poloidal modes, and vice versa for toroidal), and Galerkin radial bases of index n ≤ N,

which match to an electrically insulating boundary (Hardy et al. 2018). Each mode is nor-

malised to have unit squared integral over the unit sphere. A comparable expression is also

adopted for the flow which differs since the flow only obeys non-penetration conditions at

r = 1 (see Appendix D of Li et al. 2018). For a known velocity field, the rate of change of

magnetic field can be calculated using spherical-harmonic transforms (Hardy et al. 2018).

For a givenmagnetic field, (1) can be solved for the ageostrophic component of flow (such a

solution in general contains an arbitrary geostrophic component which is removed); three

alternative methods are described by Roberts and Wu (2014), Li et al. (2018), and Hardy

et al. (2018). What remains is the more complex task of explicitly finding the geostrophic

flow, which is specified uniquely through the requirement that the Taylor constraint (2)

continues to be satisfied through time. This is discussed in the sections below. We note

that the flow is entirely governed by the magnetic field as we have ignored buoyancy. This

means that the only initial condition required is that of the magnetic field.

For an α-effect which is equatorially antisymmetric (e.g. (4)), the axisymmetric mag-

netic field partitions into two further symmetry classes: the quadrupole and dipole, which

may be studied independently (Malkus and Proctor 1975, Proctor 1977, Abdel-Aziz and

Jones 1988). In this paper, we will consider both symmetry classes separately but also the

whole axisymmetric system collectively.

2.3. Calculating the instantaneousmagnetic field rate of change

In the first part of our study focused on finding steady Taylor states, we need to calculate

the rate of change of magnetic field. To do this requires knowledge of the geostrophic flow,

whose instantaneous structure can be found exactly by requiring that the rate of change
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of Taylor’s constraint is zero. In axisymmetry, the geostrophic flow can then be calcu-

lated analytically following the method proposed and successfully implemented by Wu

and Roberts (2015).

We first require the computation of the intermediate quantities

S0(s) = 2πs2
∫ ZT

−ZT

(BsC
a
φ + BφC

a
s ) dz, α0(s) = 2πs2

∫ ZT

−ZT

B2s dz, (7)

where

C
a = ∇ × (ua × B + αB) + ∇2

B, (8)

and ZT =
√
1 − s2. The geostrophic flow is then

ug(s) = −s

∫ s

0

S0(s
′)

s′α0(s′)
ds′ (9)

but only its derivative is actually needed here:

∂(ug(s)/s)

∂s
= − S0(s)

sα0(s)
. (10)

Using (5) the three components of ∂B/∂t can be calculated.

There is however a technical difficulty in that (5) combines two different coordinate sys-

tems. The final term involves Bs (expressed in spherical coordinates) and ug (in cylindrical

coordinates); ultimately the whole term needs to be written in the same spherical represen-

tation as B. We do this by evaluating it on a physical grid, and then using a real to spectral

transform.

To calculate the geostrophic flow, cylindrical components of B and C
a need to be

determined in order to find S0(s) and α0(s)

Bs(r, θ ,φ) = Br(r, θ ,φ) sin θ + Bθ (r, θ ,φ) cos θ ,

Bφ(r, θ ,φ) = Bφ(r, θ ,φ),

Bz(r, θ ,φ) = Br(r, θ ,φ) cos θ − Bθ (r, θ ,φ) sin θ .

To evaluate the integrals over z, we first transform the integrands in the expressions for

S0(s) and α0(s) (7) into spherical spectral space represented in terms of spherical harmon-

ics and the spanning set of Worland polynomials (Livermore et al. 2007) in radius. We

then integrate in z using Gauss quadrature on each spherical-harmonic mode individually,

which are then summed. A sufficiently large number of abscissae in z are used such that

the integration is exact.

This method allows us to calculate the vector quantity ∂B/∂t for a given Taylor state B.

However, in order to determine steady states, we introduce the scalar diagnostics

IV =
∫

Ḃ
2
dV

∫

B2 dV
, and IS =

∫

Ḃ
2
dS

∫

B2 dS
, (11)

where IV is integrated over the whole spherical domain and IS is integrated over the sur-

face r = 1. Both quantities are normalised by the magnetic field strength in order to truly
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represent the rate of magnetic field variation without any effect due to themagnitude of the

field itself. Small values of IS or IV , therefore, correspond to states which instantaneously

change very slowly. Since time is non-dimensionalised by the magnetic diffusion timescale

(105 yrs), a threshold of 1 in IS, IV is used to denote “quasi-steady” states: these define states

which evolve slower than the Ohmic timescale. While IV provides a more holistic measure

of the rate of field evolution, we sometimes choose to use IS when comparing to geomag-

netic observations, which provides information about the field only at r = 1 and not inside

the core.

2.4. Time-dependent evolution of themagnetostrophic system

In the second part of our study, we probe the stability of Taylor states using the numerical

magnetostrophic dynamo code of Li et al. (2018) to evolve an initial magnetic field. Stable

steady Taylor states will act as attractors for nearby magnetic fields and so can be found

numerically by evolving from a large set of initial conditions.

In this method, the structure of ug is determined implicitly using an optimisation pro-

cedure, ensuring that the Taylor constraint is satisfied at the end of each finite time-step.

Because the time-step is finite, the optimised geostrophic flow so determined will in gen-

eral differ from the instantaneous approach outlined in the previous section. Only if a

steady state has been reached, or the time-step is sufficiently small, will the two methods

agree. Indeed, taking a finite time-step using a geostrophic flow that is correct only at the

start of the time-step will in general lead to a deviation from the manifold of Taylor states

(Livermore et al. 2011).

3. Searching for steady Taylor states

In this section, we investigate the values IV associated with a subset of simple Taylor states.

We construct this subset such that each member has the same poloidal component but

their toroidal component is parameterised in a two-parameter family. Compared to amore

generalised non-linear construction, this procedure has the significant advantage that the

Taylor constraints reduce to a linear system of equations for the toroidal coefficients.

The choice of poloidal field is a free one, as indeed any arbitrary poloidal field can be

modified into a Taylor state with the addition of a suitably chosen toroidal field (Theorem 1

in Hardy et al. 2020).

We choose the poloidal component as that of the known stable steady Taylor state

(Wu and Roberts 2015, Li et al. 2018), discovered by restricting to dipole symmetry (here

referred to as Bd). The space of Taylor states explored will therefore include this stable

steady solution, along with many other magnetic fields which are (not necessarily small)

perturbations of this. Our choice guarantees that there will be at least this one steady Tay-

lor state within the domain that we explore. We then have the opportunity to examine the

behaviour of nearby Taylor states, addressing the question of how isolated a steady state

might be.

The two-parameter family of magnetic fields that we explore is

B = S0 + βT 1,1 + γT 1,2 + T 3(β , γ ,S0), (12)
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Figure 1. Surface plot of the normalised instantaneous rate of change of magnetic field over the core
volume, IV , as a function of the l = 1, n = 1 and l = 1, n = 2 toroidal coefficients β and γ respectively.
The vertical black line corresponds to the coefficient values of the known stable steady solution of Li et
al. (2018). The α-effect form (4) is used, with an above critical magnitude of α0 = 18. (a) and (b) show
the same 3D plot viewed from a different angle (Colour online).

where S0 is the imposed poloidal field and (β , γ ) are the two parameters that are system-

atically varied, that are multipliers of the two largest scale normalised toroidal modes. The

vectorT 3 is the remainder of the toroidal field, which depends on (β , γ ) andS0 by Taylor’s

constraint (Livermore et al. 2009).

In the example presented here, the truncation of the magnetic field used is spherical

degree L = 20 and radial degree N = 10, for which Taylor’s constraint requires 38 condi-

tions (Livermore et al. 2008). However, if 2 toroidal modes are fixed by choosing β , γ , then

there are 198 free toroidal parameters left in T 3 to satisfy 38 constraints, a vastly under-

constrained system. To find a unique solution, we partition T 3 into 2 parts: its largest scale

38 modes, and the remaining 160 smallest scale modes. We fix the smallest scale modes to

be those of the same steady solution as defines the poloidal field, while the coefficients of

the largest scale modes are used to solve the linear system.

At the truncation adopted the fixed poloidal field and small-scale toroidal field are suit-

ably resolved: its energy spectrum has a drop of 9 orders of magnitude between degrees 1

and 20.

For each Taylor state belonging to this 2-parameter family, we calculate its rate of change

assuming the alpha-effect of equation (4) with α0 = 18. Figure 1 shows the surface of IV as

a function of the two parameters, in the proximity of the known stable steady state demar-

cated by the vertical black line. We note how this point lies within an extended trough and

hence that there are many Taylor states within this (restricted) parameter space for which

IV is small enough to represent a rate of magnetic field change of IV < 1. This is a key and

not a priori obvious result, that demonstrates the abundance of “quasi-steady”Taylor states:

they are not only found at isolated locations in parameter space but exist continuously over

significant ranges of parameters albeit in this example close to Bd.

The bottom of the valley seen in figure 1 appears to have a “spiked” nature, with sig-

nificant variation in some neighbouring values, despite the smooth broader trends. This is

likely not to be of geophysical interest but rather merely an artefact of the uniform, finite-

resolution grid that has been used. Despite the high-resolution grid used (1000 × 1000),
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Figure 2. The magnetostrophic trajectory of IV as a function of toroidal and poloidal energy (defined
as half the squared integral over the unit sphere of the respective components). The initial condition is a
single poloidal l = n = 1 mode, which is a simple but unsteady Taylor state. The solution evolves from
the magenta data point toward a stable steady state with IV ≪ 1 and tending to zero. Two magnetic
diffusion times of duration are plotted, with circular data points plotted at intervals of 0.001 and blue
points denoting when IV > 1 and red points when IV < 1 (Colour online).

the steepness of the valley edge and the lack of alignment between the trough and the grid

cause relatively large fluctuations.

4. In search of stable steady Taylor states

Here we run dynamical simulations of the magnetostrophic equations to evolve Taylor-

state magnetic fields with time, to numerically assess stability. All of these simulations use

the code of Li et al. (2018) and are conducted at the sufficiently high resolution ofmaximum

spherical-harmonic degree L = 50 and radial basis truncation N = 25. For the major-

ity of the calculations in this section (all those reported in sections 4.1–4.4), the α-effect

form (4) is used, with an above critical magnitude of α0 = 18. The sensitivity of our results

to this choice is then considered in section 4.5. There are several strands to our approach

here. Firstly, we begin with simple initial conditions, purely within either the dipole or

quadrupole symmetry. We analyse the evolution of these Taylor states observing whether

the solution converges to a stable state, anticipating that at least some of our models will

converge to the steady states Bd and Bq, already reported byWu and Roberts (2015) and Li

et al. (2018). Secondly, we generalise this approach to mixed symmetry and evolve a large

number of more complex initial conditions. Our aim here is to find a mixed-symmetry

steady state. Thirdly, we adopt as an initial condition some of the many “quasi-steady”

Taylor states we found in section 3, and so numerically assess their stability. Finally, we

assess whether the known steady, stable statesBd andBq ofWu andRoberts (2015) and Li et

al. (2018) restricted to dipole or quadrapole symmetry are also stable in amixed symmetry.

4.1. Searchingwithin symmetry classes: single-mode initial conditions

We begin by using a very simple but unsteady initial Taylor state, that of a l = n = 1 purely

poloidal mode, whose evolution is mapped out in terms of IV in figure 2.

Initially, the rate at which the field changes is fast, with large changes in the poloidal

and toroidal energies between each one-hundredth of a magnetic diffusion time, indicated
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Figure 3. Graphs showing the evolution of (a) IV and (b) deviation in magnetic energy from the sta-
ble state within each symmetry (±Bd or ±Bq respectively), for the suite of single poloidal mode initial
conditions, which fall into either the dipole or quadrupole symmetry class (Colour online).

by the red data points plotted. The field progresses from this initial state towards a stable

steady Taylor state with a vanishingly small value of IV . The evolution is not associatedwith

purely monotonically decreasing IV but rather the trajectory enters and escapes several

local minima, with IV � 1 (thus indicating that quasi-steady states are not always stable or

attracting) before approaching the vicinity of a stable point by t = 1 where IV = 2 × 10−1.

For times t>1, we tracked the solution which continues to converge with IV < 10−6.

We now repeat the above procedure but for a suite of single poloidal mode initial

conditions, for the complete set of different combinations of (l, n) (within the triangular

truncation with Lmax = 50 and Nmax = 25) this is a total of 650 simulations. For visual

clarity, only 50 of these simulations are shown in figure 3. Single spherical-harmonicmodes

are used here as they allow us to explore a range of initial fields with different spatial scales

that are always strictly in either dipole or quadrupole symmetry while being guaranteed to

be an exact Taylor state (Livermore 2009). Each calculation is performed in either dipole

(red lines) or quadrupole symmetry (black lines), as determined by the initial condition.

Within two magnetic diffusion times, all trajectories are convergent to attracting steady

states and have an exponentially decreasing IV . Because B and −B evolve identically, on

ignoring the sign of the magnetic field all calculations converge to a single stable steady

state within each symmetry class, those found by Wu and Roberts (2015), Li et al. (2018)

and denoted as Bd and Bq here. Beyond the initial transient phase, whose duration varies

with initial conditions, within each symmetry class all solutions converge at the same rate

to the fixed point solution as shown by the same linear gradient on the plot for each colour.

The apparent convergence to only the two known steady stable states (or four steady

states ±Bd, ±Bq if the sign is included), suggests one of several explanations: that stable

steady Taylor states are rare, that imposing purely dipolar or quadrupolar symmetry is

too restrictive, or that the solutions we find are overwhelmingly attracting; each of these

possibilities is explored in the following sections 4.2–4.4. The small number of two stable

states that we found stands in stark contrast to the apparent ubiquity of quasi-steady Taylor

states found in section 3.
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4.2. Searchingwithin symmetry classes: the evolution from quasi-steady Taylor

states

We now address the issue of whether the rarity of stable states that we were able to find in

the previous section was due to the simplistic nature of the single-mode initial conditions,

which perhaps were too far from any stable state. We now describe a strategy for finding

a suite of “quasi-steady” Taylor states using an optimisation method, which then are time-

evolved to assess their stability.

The calculations of IV shown in figure 1 reveal many locations in the two-parameter

subspace we explored where the fields are “quasi-steady”. We now generalise the approach

to an m-dimensional subspace of Taylor states. As before, the poloidal field remains fixed

to the poloidal component of the stable dipole-symmetry solution, S0. However, now the

toroidal component of the field that we consider is much more general. The toroidal field

is constructed by the choice of the coefficients of the m largest scale modes, a1, a2, . . . am,

fromwithin the domain [−1, 1] (which spans the poloidal coefficients values), and the rest

of the toroidal field is determined through solving the linear system of Taylor’s constraints,

B = S0 + a1T 1 + a2T 2 + · · · + amT m + am+1(a1, a2, . . . , am,S0)T m+1 + . . .

+ an(a1, a2, . . . , am,S0)T n. (13)

Here, T i denotes a toroidal mode (within the chosen symmetry class), ordered from large-

scale (low spherical-harmonic degree l, l = 1, n = 1 . . .Nmax) mode i = 1 . . .m, whose

coefficients are varied throughout our search; to the remaining higher l toroidal modes

(up to l = Lmax, n = 1 . . .Nmax) denoted by subscripts i + 1, . . . , n whose coefficients are

determined through solving Taylor’s constraints. This principle is akin to implementing

a boundary condition using a spectral method by solving for the smallest scale modes

(Boyd 2001).

The specific example reported here has a resolution ofL = 10,N = 5; imposingTaylor’s

constraint requires 18 conditions to be satisfied. Here there are 50 toroidal coefficients, so

we define a subspace using the remainingm = 32 parameters. We now search over the 32-

dimensional subspace of Taylor states for those which have a small IV . A direct grid-search

method would be too time consuming, so here we use the neighbourhood algorithm opti-

misation (Sambridge 1999) to more efficiently locate the regions of small IV . To initialise

the algorithm, we choose p random models, for each we evaluate IV . The domain is then

divided up into p neighbourhoods (“Voronoi” cells in spectral space) surrounding each

point and the q regions centred on the smallest values of IV retained to be explored further

by repeating the process x times. At each stage, within each neighbourhood we explore

p new models obtained by a uniform random walk within each of the Voronoi cells. The

parameters p, q and x are input parameters suitably chosen to balance computational time

and the amount of exploration. The algorithm results in a set of models which are clustered

around local minima in IV . Here, we explored the 32-dimensional space using p = 20,

q = 10, x = 5. Of the resulting models, we choose the 68 magnetic fields with a value of

IV below a threshold of 1 to be used as initial conditions. These quasi-steady Taylor states

exhibit a range of poloidal and toroidal energies, spread throughout the ranges [0.01, 0.47]

and [0.01, 0.43] respectively.

Figure 4(a) shows the evolution of two of these quasi-steady Taylor state magnetic fields

within dipole symmetry, neither of which is close to Bd. Despite a low value of IV , the
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Figure 4. The paths taken from two initial quasi-steady Taylor-state magnetic fields, within (a) dipole
symmetry and (b) quadrupole symmetry using the α-effect form (4) with α0 = 18. The fields diverge
from the initial states (magenta points) before finally converging to Bd and Bq respectively. Blue points
denote when IV > 1 and red points when IV < 1. In (b), the trajectory passes through multiple models
which are quasi-steady but unstable. In both cases, convergence to the stable model is denoted by the
continuous red line (Colour online).

magnetic fields diverge from the initial state before eventually converging to Bd. A similar

behaviour is found within quadrupole symmetry (figure 4(b)).

This instability of quasi-steady initial states is mirrored by all 68 models we found in

our 32-dimensional subspace, strengthening the evidence that all (at least, all those we

have explored) quasi-steady states are unstable, aside from Bd.

The same procedure is also carried out within the quadrupole symmetry, with simi-

lar results obtained. The many quasi-steady Taylor states are all unstable and ultimately

converge to Bq as shown in figure 4(b).

4.3. Mixed symmetry: stability of solutions

We now assess whether the restriction to a specific symmetry class influences the dynam-

ics we have found. Of course, even by considering a general axisymmetric representation,

should an initial field be purely dipole or quadrupole, then the solution will remain so

indefinitely. However, if the initial field is of mixed symmetry (containing both dipolar

and quadrupolar components) then these components interact and its evolution cannot

be partitioned into that of its two symmetric components. We broaden our search for sta-

ble steady Taylor states without restriction to equatorial symmetry. To do so, we now use

a much more general form of initial conditions and construct random Taylor states that

have mixed symmetry and a combination of toroidal and poloidal modes.

We adopt an initial condition of a large-scale axisymmetric Taylor-state magnetic field

of maximum degree L = 4, N = 2, which has 16 degrees of freedom; Taylor’s condition

requires 6 constraints that need to be satisfied. We assign the coefficients of the 10 largest

scale modes to be randomly chosen from within the range [−1, 1] and solve the linear

system of constraints for the remaining 6 coefficients. The magnetic field in this example
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Figure 5. The evolution of four different initial conditionswithmixed symmetry (black, blue, red, green)
shown by (a) Magnetic energy and (b) IV . The α-effect form (4) was used with α0 = 18 (Colour online).

has the following components

B = +a1,1S1,1 + a1,2S1,2 + a2,1S2,1 + a2,2S2,2

+ a3,1S3,1 + a3,2S3,2 + a4,1S4,1 + a4,2S4,2

+ b1,1T 1,1 + b1,2T 1,2 + b2,1T 2,1 + b2,2T 2,2

+ b3,1T 3,1 + b3,2T 3,2 + b4,1T 4,1 + b4,2T 4,2, (14)

where a1,1, a1,2, a2,1, a2,2, a3,1, b1,1, b1,2, b2,1, b2,2, b3,1 are the coefficients that are assigned

values and the coefficients of the higher degree modes a3,2, a4,1, a4,2, b3,2, b4,1, b4,2 are

calculated through solving Taylor’s constraints.

We form a set of 1000 randomised Taylor states, which comprise the initial conditions

for an ensemble of calculations. Each initialmagnetic field will evolve along a different path

and in doing so we will search through a much broader region of state space than we have

done so far for attracting solutions.

The evolution of four initial conditions (which illustrate the typical behaviour of the

ensemble) is plotted in figure 5. All solutions shown remain time-dependent and quasi-

periodic. Importantly, none of the solutions from our large suite of calculations converge

to a stable Taylor state, reinforcing the evidence that these states are very rare. In themixed-

symmetry case considered in this section, we fail to find any stable Taylor states, including

those strongly attracting in the purely dipole or purely quadrupolar symmetry classes. This

is important as it is undoubtedly the situation of greatest geophysical interest, as the Earth’s

magnetic field is complex and of mixed symmetry.

Another notable feature from these results is the plethora of troughs in the rate of change

of magnetic field as the field evolves. The solution passes through fields which are “quasi-

steady” as IV becomes smaller than 1. This confirms the results of previous sections, where

we observed many different magnetic fields that were “quasi-steady”, but what we show

here is that these states are in general not stable and given time will diverge.

Figure 5 also shows that although the trajectories are distinct (and are not simply offset

in time), they show a remarkable degree of similarity. In particular, the peaks of magnetic
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energy (about one in our units) and of IV are approximately uniform over time, suggesting

that the trajectories might all be close to a non-steady attractor.

4.4. The strength of the known symmetric solutions as attractors

The apparent lack of stable steady solutions in mixed symmetry suggests that the stable

solutions of definite symmetry: Bd and Bq lose some of their attractive properties when

embedded in the broader non-equatorially symmetric solution class.

Here, we investigate this by perturbing Bd by a small quadrupolar component, break-

ing the purely dipole symmetry. When this perturbation has zero size, then the trajectory

will not deviate from Bd. It is likely that small perturbations (whose size is below a thresh-

old) will converge to Bd, but larger perturbations may always diverge. The structure of the

perturbations must ensure that the whole magnetic field remains a Taylor state. This is

simple to achieve by considering a purely toroidal, quadrupolar perturbation (Livermore

et al. 2009), which for simplicity we define by taking all the non-zero (toroidal, odd-l)

coefficients to be the same value. Working within the truncation L = 50, N = 25, and

recalling the normalisation of our modes, this means that the perturbation has an energy

of 6252q2/2, compared with the unperturbed field with energy 0.368 (Li et al. 2018). We

then define the perturbation magnitude by δ, as the ratio of the energy of the imposed

quadrupolar field to the original dipolar field.

We find that there is a threshold of δ ≈ 10−2 below which an initial state will converge

to Bd. For initial conditions with δ exceeding about 10−2 then the field fails to converge,

as was seen in section 4.1. This same procedure is carried out for the allied case of dipolar

perturbations to the quadrupolar fieldBq, also resulting in a similar perturbation threshold.

Although a very special class of perturbation, this corroborates our finding that the

steady states Bd and Bq, stable and strongly attractive in their restricted symmetry classes,

are only weakly attractive when embedded in a broader solution space. Therefore, this sug-

gests that magnetostrophic models (at least with our choice of α) would not be expected

to converge to any stable Taylor state when considering mixed symmetry.

4.5. The dependence on the choice of α-effect

Our analysis so far has been based on an α-effect, which is a valuable approach when

studying axisymmetric dynamos. However, because the choice of α is arbitrary and to

investigate whether our results have broader applicability, it is useful to explore varying

both the magnitude and the spatial structure of the α-effect.

4.5.1. Magnitude of α0

The α-effect adopted in section 3 has a critical value of α0 = 13.1 (above which a gen-

eralised magnetic perturbation will grow); and a Taylorised critical value of αT = 13.8

above which a Taylor-state perturbation will grow. We now reduce the strength of the α-

effect from α0 = 18, to α0 = 16 (which remains above the critical value), to investigate the

dynamics when the system is more weakly driven. The equivalent plot as figure 1 is shown

in figure 6, with the stable solution of Li et al. (2018) at α0 = 16 indicated by the black line.

Similarly, we repeat the dynamical simulations of section 4.3, now with α0 = 16 using

the same 1000 random mixed-symmetry initial conditions (figure 7). This time we find
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Figure 6. Surface plot of IV as a functionof the l = 1,n = 1 and l = 1,n = 2 toroidal coefficientsβ and
γ respectively. The vertical black line corresponds to the coefficient values of the known stable steady
solution of Li et al. (2018). The α-effect form (4) is used, with an above critical magnitude of α0 = 16. (a)
and (b) show the same 3D plot viewed from a different angle (Colour online).

Figure 7. Normalised instantaneous rate of change of magnetic field within the core, IV , with α0 = 16,
for 60 different random initial conditions of mixed symmetry (Colour online).

that instead of failing to converge at all, the models all converge to the steady states Bd and

Bq (Li et al. 2018). Therefore we have still failed to find any stable steady Taylor state that

has the complexity of a mixed dipole and quadrupole symmetry. The difference in the case

of α0 = 16 is merely the strength of attraction of these stable points appears stronger and

therefore enables convergence from arbitrary initial conditions, unlike for α0 = 18, where

we found that in order for the system to collapse to a symmetry class and hence find the

stable point, the initial condition was required to be sufficiently close.

As α0 is increased further above critical (e.g. α0 = 25), the stronger forcing results in a

large and rapidly growing magnetic field and ultimately in numerical instability. Although

we have not investigated the source of the instability in detail, the issue may be spe-

cific to the axisymmetric problem we are studying, as in fully 3D models more powerful

equilibration limits the magnetic field strength (Fearn and Rahman 2004b).

In summary, what we observe is no fundamental change in the conclusions of abun-

dance of “quasi-steady” Taylor states, but a scarcity of stable steady Taylor states (and a

complete absence inmixed symmetry). The difference discerned ismerely that less strongly
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driven models allow magnetic fields to converge to stable steady states more easily, from a

wider range of initial conditions.

4.5.2. Structure of the α-effect

We now investigate the effect of adopting an alternative structure for the α-effect using a

similar suite of 1000mixed-symmetry initial conditions.We use amore complex form (see

Li et al. 2018) and a very simple structure

α = α0

√

7

3

343

48
r3(1 − r2)2 cos(3θ),

and

α = α0 cos(θ),

which are normalised such that max|α| = α0 (as was the α-affect defined in equation (4)).

This helps to allow a fair comparison, although note the critical values of α0 are in gen-

eral distinct. In terms of generalised (not restricted to Taylor states) kinematic dynamos,

the critical value has a slightly smaller value of α0 = 12.5 (Li et al. 2018) for the for-

mer and α0 = 13.1 (Fearn and Rahman 2004a) for the latter (the same as for the form

of equation (4)). Qualitatively similar results are observed for all α-effect structures, we

observe four types of behaviour dependent on the magnitude of α0: at values of α0 below

critical, dynamo action fails and the field decays via magnetic diffusion; slightly above crit-

ical our models converge toward one of two stable states, of either dipole or quadrupole

symmetry; more strongly forced models have continually and rapidly varying rates of

change and fail to converge to a stable state (as shown in figure 5); while significantly super-

critical values of α0 lead to highmagnetic field rates of change and very largemagnetic field

energies.

5. Discussion

5.1. Comparisonwith Earth

We have focussed in this paper on a set of magnetostrophic models, under a variety

of approximations such as axisymmetry and α-effect driving. It is of significant interest

to compare these to the Earth, to try to identify whether Earth might be in a “quasi-

steady”, “stable”, or other, state. Because the evolution of the geomagnetic field occurs on a

large range of timescales, and in particular contains dynamics excluded from the magne-

tostrophic approximation such as inertia-driven waves causing rapid oscillations, a direct

comparison is not straightforward. Nevertheless, here we discuss a series of comparisons

of timescale between our models and Earth.

A direct and very simple comparison can be conducted by calculating the surface nor-

malised timescale, IS, based on the CHAOS-6 model at epoch 2015, itself based on satellite

and ground-based data (Finlay et al. 2016). We find a value of IS = 6 × 107 or in dimen-

sional units 2.4 × 10−4 yrs−2. This is much larger than the rates of change we observe in

our magnetostrophic models, due to the dominating short timescale secular variation that

is explicitly excluded from our magnetostrophic model.

A better comparison can be made using archaeomagnetic models, which describe the

Earth’smagnetic field over the long timescales necessary to be compatible with Taylor-state
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Figure 8. Observational geomagnetic field data from GGF100k (Panovska et al. 2018) are compared to
two illustrativemodels. (a) Totalmagnetic field core surface energy over the past 100 ka. (b) The instanta-
neous rate of change ofmagnetic field at Earth’s surface IS (defined in equation 11), the GGF100kmodel,
and the resultant field dynamics after passing the data through a Butterworth filter with a 50,000 yr
timescale cutoff (red), are compared to the results from the mixed-symmetry simulations of section 4.3
(blue and green). The offset time of GGF100k is arbitrarily chosen to be 0 (Colour online).

dynamics. Figure 8 shows both the surface magnetic energy and IS based on the GGF100k

model (Panovska et al. 2018) over the past 100,000 years. Although GGF100k is smoothed

due to data sparsity, the figure shows that it contains a range of timescales which are still

slightly faster (higher IS), than the range of timescales of the two magnetostrophic models

presented. Interestingly, this demonstrates that the slowest dynamics captured inGGF100k

could be magnetostrophic in origin, at least in terms of timescale.

To make a still better comparison, we need to filter out the most rapid timescales (pre-

sumably caused by non-magnetostrophic dynamics) from the GGF100k model. To do

this, we adopt a Butterworth filter with a 50,000 yr cutoff timescale, which retains only

timescales at or above 50,000 yrs (see the red line in figure 8). This timescale, τ/π2, is the

e-folding time of the slowest mode of Ohmic decay when considering the effects of the

spherical geometry (Backus 1958) and so is a dynamically relevant threshold. The filtered

GGF100kmodel is now consistent with themagnetostrophic models in terms of timescale,

although it does not show the large fluctuations that we found in our numerical models.

What these comparisons highlight is the difficulty in extracting the magnetostrophic

component of Earth’s magnetic field from observational models. Part of the difficulty is

the broad range of timescales that the magnetostrophic system requires, and so a low-pass

filter at any given frequency will likely not succeed. The magnetostrophic system includes

slow dynamics such as diffusion (with timescales of c.a. 50 ka), but also possibly much

more rapid features like MC waves with timescales 100–10,000 yr depending on the com-

plexity of the magnetic field (Finlay et al. 2010). At the very rapid end of the spectrum,

decadal timescales may even overlap with those of non-magnetostrophic dynamics such as

the torsional waves,making separation based purely on timescales very challenging indeed.

Without a clear way to separate the magnetostrophic signal, it is not possible to quantify a

value of IS for the magnetostrophic component of the geodynamo, and therefore to assess

how it compares with the models that we have described in this paper.
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It is interesting to consider howmagnetostrophic dynamics may differ from those in the

geodynamo, where inertia and viscosity play a role. Inertia often acts as a restoring force,

acting on short timescales and causing a rapid response to perturbations in the system.

For example, it permits torsional waves, which act to re-establish the unperturbed state

(Jault and Finlay 2015). In the absence of this correction mechanism, deviations from the

long-term equilibrium state may be expected to persist, perhaps through the slow build-

up of an unfavourable state followed by a rapid re-equilibration. Such rapid changes are

exacerbated by the lack of viscosity which ordinarily would promote the diffusion of small-

scale features in the fluid and smooth out temporal dynamics. Inviscid models such as

ours might therefore be expected to contain more extreme variations than weakly viscous

counterparts. It is therefore quite possible that the periods of slow change that our models

predict disappear on reinstating weak inertia and viscosity.

6. Concluding remarks

It has been previously shown that there is a large space ofmagnetic fields that exactly satisfy

Taylor’s constraint instantaneously (Livermore et al. 2009, Hardy et al. 2020). In this study,

we have addressed the question of which of these are steady and stable, from a variety of

standpoints.

Firstly, we have shown that there exists a large space of Taylor states which are quasi-

steady, with a rate of change of the core surface field IS of 1 or below. Secondly, we find

that stable steady Taylor states are very rare. Within specific imposed symmetries of either

dipole or quadrupole, only a single stable state is found. Crucially, in the more general

and physically relevant situation: without any symmetrical restrictions, then our extensive

search for any stable states is fruitless. This suggests that it may be the case that no stable

steady Taylor states with a mixed symmetry exist except for very weak forcing.

Of course, despite using awide range of initial conditions, across a range of spatial scales,

we can not rule out the possibility that some stable Taylor states do exist, but that they

are merely not sufficiently strong attractors for us to find. Also, we emphasise that all our

calculations are restricted to axisymmetry, and the full three-dimensional setting might

yield different results.

Themean field α-effect used to provide the driving force for our axisymmetric dynamos

acts as a non-ideal proxy for buoyancy. Coupling the Navier–Stokes equation with the

full temperature equation would drive more complex non-linear interactions with perhaps

more feedback and stronger equilibration. Alternatively, as amore direct and simple exten-

sion to our model, buoyancy non-linearities can also be introduced through α-quenching.

In this setting, the value of α is no longer fixed but allowed to evolve subject to the mag-

netic feedback leading to deformation of the turbulence (Rüdiger and Kichatinov 1993).

The addition of a quenching of the α-effect is of course an approximation. However, the

inclusion of a simple algebraic form, such as

α = α0

1 + B2/B20

of Kleeorin et al. (2000), where B0 is the equipartition field strength, would allow an initial

study into any stabilising effect.
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The stability of mean field dynamos has been previously examined within finite viscos-

ity models. Fearn and Rahman (2004a) studied the α2-dynamo model at (relatively large)

finite Ekman numbers of about 4 × 10−4 and compared the behaviour within a three-

dimensional non-axisymmetric non-linear system and the two-dimensional axisymmetric

case. They reported very different behaviour in these two situations: in the axisymmetric

case the magnetic energy grows quickly as the forcing α0 is increased (for values above

critical), whereas in the 3D case the field is more rapidly equilibrated by the fully 3D treat-

ment of the non-linear interaction between the field and the flow. This agrees with our

findings in section 4.5 that axisymmetric and strongly forced models result in very strong

magnetic fields that become increasingly computationally expensive and prone to insta-

bility. Therefore caution is required when interpreting axisymmetric studies such as ours

in the context of the three-dimensional geomagnetic field. The variability of stability as a

function of Ekman number has been studied by Hollerbach and Ierley (1991), who inves-

tigated the asymptotically small limit of viscosity in an α2-dynamomodel. For all α-effects

considered their solutions do approach a Taylor state in this limit. However, the manner of

the transition from the viscous to inviscid regime varies. The formal limit E → 0 is seen

to not always be well-behaved, sometimes requiring a discontinuous jump.

Finally, there have been many suggestions of a marked difference in the fluid behaviour

inmagnetostrophic and finitely viscousmodels (McLean et al. 1999).While not definitively

proven, the plausible intuition remains that the dynamo is particularly unstable as E → 0

(Zhang and Gubbins 2000), as in the absence of viscous damping to suppress perturba-

tions, stable states are less likely to be sustained. Instability can arise due to dynamo action

being extremely sensitive to the vigour of convection by which it is driven (the difference

between the Rayleigh number and its critical value). Zhang and Gubbins (2000) showed

that at small Ekman numbers the critical Rayleigh number is increasingly sensitive to the

poloidal magnetic field. Therefore small fluctuations in themagnetic field will directly lead

to rapid variations in the strength of convection and significantly alter the state of the

dynamo. The nature of the Earth’s core being at parameter values unattainable in viscous

numerical simulations (E = 10−15) makes it very challenging to accurately model the sta-

bility of the geodynamo. While magnetostrophic models (at E = 0) may be over-sensitive

to instabilities, all present finite viscosity (E > 10−9) models have the opposing problem

of inherently being more stable than the geodynamo itself, as the inflated significance of

viscosity is expected to provide an artificial stabilising effect. Therefore the question of the

stability of a realistic model of the Earth’s magnetic field, still computationally out of reach,

remains open. The construction of a fully three-dimensional Taylor-state dynamo model

driven by thermal convection is an obvious but significant future objective. This would

be a profound step forward, facilitating direct comparisons between viscous and inviscid

dynamos as we attempt to constrain the behaviour in Earth’s core.
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