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Abstract: Various methods of combining individual p-values into one p-value

are widely used in many areas of statistical applications. We say that a combin-

ing method is valid for arbitrary dependence (VAD) if it does not require any

assumption on the dependence structure of the p-values, whereas it is valid for

some dependence (VSD) if it requires some specific, perhaps realistic but un-

justifiable, dependence structures. The trade-off between validity and efficiency

of these methods is studied via analyzing the choices of critical values under

different dependence assumptions. We introduce the notions of independence-

comonotonicity balance (IC-balance) and the price for validity. In particular,

IC-balanced methods always produce an identical critical value for independent

and perfectly positively dependent p-values, a specific type of insensitivity to

a family of dependence assumptions. We show that, among two very general

classes of merging methods commonly used in practice, the Cauchy combina-

tion method and the Simes method are the only IC-balanced ones. Simulation

studies and a real data analysis are conducted to analyze the sizes and powers

of various combining methods in the presence of weak and strong dependence.
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1. Introduction

In many areas of statistical applications where multiple hypothesis

testing is involved, the task of merging several p-values into one naturally

arises. Depending on the specific application, these p-values may be from

a single hypothesis or multiple hypotheses, in small or large numbers,

independent or correlated, and with sparse or dense signals, leading to

different considerations when choosing merging procedures.

Let K be a positive integer, and F : [0, 1]K → [0,∞) be an increasing

Borel function used to combine K p-values, which we shall refer to as a

combining function. Generally, the combined value may not be a valid

p-value itself, and a critical point needs to be specified. Different depen-

dence assumptions on the p-values lead to significantly different critical

points, and thus different statistical decisions. The problem of merging p-

values has a long history, and early results can be found in Tippett (1931),

Pearson (1933) and Fisher (1948) where p-values are assumed to be inde-

pendent. Based on an idea of Tukey, Donoho and Jin (2004) developed the

higher criticism statistics to detect weak and sparse signals effectively us-
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ing independent p-values. Certainly, these methods do not always produce

a valid p-value if the assumption of independence is violated. On the other

hand, the independence assumption is often very difficult or impossible to

verify in many applications where only one set of p-values is available.

There are, however, some methods that produce valid p-values without

any dependence assumption. A classic one is the Bonferroni method by

taking the minimum of the p-values times K (we allow combined p-values

to be greater than 1 and they can be treated as 1) or equivalently, dividing

the critical value by K. Other methods that are valid without assumptions

include the ones based on order statistics by Rüger (1978) and Hommel

(1983), and the ones based on averaging by Vovk and Wang (2020); details

of these merging methods are presented in Section 3.

Some other methods work under weak or moderate dependence as-

sumptions, such as the method of Simes (1986), which uses the minimum

of Kp(i)/i over i = 1, . . . , K, where p(i) is the i-th smallest order statistic

of p1, . . . , pK . The validity of the Simes method is shown under a large

class of dependence structures (e.g., Sarkar (1998, 2008); Benjamini and

Yekutieli (2001) and Rødland (2006)), although even such dependence as-

sumptions are unlikely to hold in practice (see e.g., Efron (2010, p.51)).

Two more recent methods include the Cauchy combination test proposed

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4

by Liu and Xie (2020) using the weighted average of Cauchy transformed

p-values, and the harmonic mean p-value of Wilson (2019) using the har-

monic mean of p-values. Under mild dependence assumptions, these two

methods are asymptotically valid as the significance level goes to 0 (see

Theorem 2).

This paper is dedicated to a comprehensive and unifying treatment of

p-value merging methods under various dependence assumptions. Some

methods are valid without any assumption on the interdependence of p-

values, and they will be referred to as VAD methods. On the other hand,

methods that are valid for some specific but realistic dependence assump-

tion (e.g., independence, positive dependence, or joint normality depen-

dence) will be referred to as VSD methods. Our main goal is to understand

the difference and the trade-off between these methods.

For a fixed combining function F , using a VAD method means choosing

a smaller critical value (threshold) for making rejections compared to a

VSD method. Thus, the gain of validity comes at the price of a loss of

detection power. As it is often difficult to make valid statistical inference on

the dependence structure of p-values, our analysis also helps to understand

the relative performance of VSD combining methods under the presence of

model misspecification. As a byproduct, we obtain several new theoretical
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results on the popular Simes, harmonic, and Cauchy merging methods.

In the next section, we collect some basic definitions of VAD and VSD

merging methods and their corresponding threshold functions. We focus

on symmetric merging functions for the tractability in their comparison.

In Section 3, we introduce two general classes of combining functions,

which include all methods mentioned above. Formulas for their VAD

and VSD threshold functions are derived, some based on results from

robust risk aggregation, e.g., Wang et al. (2013). In Section 4, we in-

troduce independence-comonotonicity balanced (IC-balanced) combining

functions, which are indifferent between the two dependence assumptions.

We show that the Cauchy combination method and the Simes method are

the only IC-balanced ones among two general classes of combining meth-

ods, thus highlighting their unique roles. In Section 5, we establish strong

similarity between the Cauchy combination and the harmonic averaging

methods, and obtain an algebraic relationship between the harmonic av-

eraging and the Simes functions. In Section 6, the price for validity is

introduced to assess the loss of power of VAD methods compared to their

VSD versions. Simulation studies and a real data analysis are conducted

to analyze the relative performance of these methods. Due to the space

limit, we present all the results and observations of numerical studies in
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Section S1 of the supplementary material. Proofs of all technical results

are also put in the supplementary material.

We conclude the section by providing additional notation and termi-

nology that will be adopted in this paper. All random variables are defined

on an atomless probability space (Ω,F ,P). Random variables X1, . . . , Xn

are comonotonic if there exist increasing functions f1, . . . , fn and a ran-

dom variable Z such that Xi = fi(Z) for each i = 1, . . . , n. For α ∈ (0, 1],

qα(X) is the left α-quantile of a random variable X, defined as

qα(X) = inf{x ∈ R | P(X ≤ x) ≥ α}.

We also use F−1(α) for qα(X) if X follows the distribution F . The set U is

the set of all standard uniform random variables defined on (Ω,F ,P) (i.e.,

the set of all measurable functions on (Ω,F) whose distribution under

P is uniform on [0, 1]) and 1 is the indicator function. The equality
d
=

represents equality in distribution. For given p1, . . . , pK , the order statistics

p(1), . . . , p(K) are ordered from the smallest to the largest. The equivalence

Ax ∼ Bx as x → x0 means that Ax/Bx → 1 as x → x0. All terms of

“increasing” and “decreasing” are in the non-strict sense.
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2. Merging methods and thresholds

Following the terminology of Vovk and Wang (2020), a p-variable is a

random variable P such that P(P ≤ ε) ≤ ε, for all ε ∈ (0, 1) (such random

variables are called superuniform by Ramdas et al. (2019)). Values realized

by p-variables are p-values. In the Introduction, p-values are used loosely

for p-variables, which should be clear from the context.

Let P1, . . . , PK be K p-variables for testing a common hypothesis.

A combining function is an increasing Borel measurable function F :

[0, 1]K → [0,∞) which transforms P1, . . . , PK into a single random vari-

able F (P1, . . . , PK). The choice of combining function depends on how one

integrates information, and some common options are mentioned in the In-

troduction. Generally, F (P1, . . . , PK) may not be a valid p-variable. For

different choices of F and assumptions on P1, . . . , PK , one needs to assign

a critical value g(ε) so that the hypothesis can be rejected with significance

level ε ∈ (0, 1) if F (P1, . . . , PK) < g(ε). We call g a threshold (function)

for F and P1, . . . , PK . Clearly, g(ε) is increasing in ε. In case g is strictly

increasing, which is the most common situation, the above specification

of g is equivalent to requiring g−1 ◦ F (P1, . . . , PK) to be a p-variable. To

objectively compare various combining methods, one should compare the

corresponding values of the function g−1 ◦ F .
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In some situations, it might be convenient and practical to assume

additional information on dependence structure of p-variables, e.g., inde-

pendence, comonotonicity (i.e., perfectly positive dependence), and specific

copulas. The choice of the threshold g certainly depends on such assump-

tions. If no assumption is made on the interdependence of the p-variables,

the corresponding threshold function is called a VAD threshold, otherwise

it is a VSD threshold. A testing procedure based on a VAD threshold al-

ways produces a size less than or equal to the significance level regardless

of the dependence structure of the p-variables.

We denote the VAD threshold of a combining function F by aF . If

a merging method is valid for independent (resp. comonotonic) depen-

dence of p-variables, we use bF (resp. cF ) to denote the corresponding

valid threshold function, and we call it the VI (resp. VC ) threshold. More

precisely, for the equation

P(F (P1, . . . , PK) < g(ε)) ≤ ε, ε ∈ (0, 1), (2.1)

a VAD threshold g = aF satisfies (2.1) for all p-variables P1, . . . , PK ; a VI

threshold g = bF satisfies (2.1) for all independent p-variables P1, . . . , PK ,

and a VC threshold g = cF satisfies (2.1) for all comonotonic p-variables

P1, . . . , PK .

The comonotonicity assumption on the p-variables to combine (actu-
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ally they are identical if they are uniform on [0, 1]) is not interesting by

itself for statistical practice. Nevertheless, comonotonicity is a benchmark

for (extreme) positive dependence, and we analyze cF for the purpose of

comparison; it helps us to understand how valid thresholds for different

methods vary as the dependence assumption gradually shifts from inde-

pendence to extreme positive dependence. This point will be made more

clear in Sections 4-6.

An immediate observation is that the p-variables can be equivalently

replaced by uniform random variables on [0, 1] as for each p-variable P , we

can find U ∈ U with U ≤ P ; see e.g., Vovk and Wang (2020). Therefore,

it suffices to consider p-variables in U . Moreover, if g satisfies (2.1), then

any function that is smaller than g is also valid. Hence, for the sake of

power, it is natural to use the largest functions that satisfy (2.1). Putting

these considerations together, we formally define the thresholds of interest

as follows.

Definition 1. The thresholds aF , bF and cF of a combining function F
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are given by, for ε ∈ (0, 1),

aF (ε) = inf{qε(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}, (2.2)

bF (ε) = qε(F (V1, . . . , VK)), (2.3)

cF (ε) = qε(F (U, . . . , U)), (2.4)

where U, V1, . . . , VK are independent standard uniform random variables.

In what follows, we focus on the thresholds in Definition 1. It is clear

that g = aF , bF or cF in Definition 1 satisfies (2.1) under the respective

dependence assumptions.

Remark 1. While the objects bF and cF in (2.3)-(2.4) can often be explic-

itly calculated, the object aF in (2.2) is generally difficult to calculate for

a chosen function F due to the infimum taken over all possible dependence

structures. Techniques in the field of robust risk aggregation, in particular,

results in Wang et al. (2013), Embrechts et al. (2013, 2015) and Wang and

Wang (2016), are designed for such calculation, as illustrated by Vovk and

Wang (2020). By definition, for any threshold g(ε) > aF (ε), there exists

some dependence structure of (P1, . . . , PK) such that validity is lost, i.e.,

(2.1) is violated. Moreover, if the combining function F is continuous, the

infimum in (2.2) is attainable; the proof of this statement is similar to that

of Lemma 4.2 of Bernard et al. (2014).
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3. Combining functions

3.1 Two general classes of combining functions

We first introduce two general classes of combining functions, the gen-

eralized mean class and the order statistics class. Let p1, . . . , pK ∈ [0, 1]

be the K realized p-values. The first class of combining functions is the

generalized mean, that is,

Mφ,K(p1, . . . , pK) = φ−1

(
1

K

K∑
i=1

φ(pi)

)
,

where φ : [0, 1]→ [−∞,∞] is a continuous and strictly monotone function

and φ−1 is its inverse on the domain φ([0, 1]). Many combining functions

used in the statistical literature are included in this class. For example,

the Fisher method (Fisher (1948)) corresponds to the geometric mean with

φ(p) = log(p); the averaging methods of Vovk and Wang (2020) and Wilson

(2019) correspond to the functions φ(p) = pr, and r ∈ [−∞,∞] (including

limit cases), and the Cauchy combination method of Liu and Xie (2020)

corresponds to φ(p) = tan
(
π
(
p− 1

2

))
.

The second class of combining functions is built on order statistics.

Let α = (α1, . . . , αK) ∈ RK
+ , where R+ = [0,∞). We define the combining

function

Sα,K(p1, . . . , pK) = min
i∈{1,...,K}

p(i)

αi
,
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where the convention is p(i)/α = ∞ if α = 0. If α1 = 1/K and all the

other components of α are 0, then using Sα,K yields the Bonferroni method

based on the minimum of p-values. The VAD method via order statistics

of Rüger (1978) uses Sα,K by setting αi = i/K for a fixed i ∈ {1, . . . , K}

and all the other components of α to be 0. On the other hand, if αi = i/K

for each i = 1, . . . , K, then we arrive at the method of Simes (1986); in

this case, we will simply denote Sα,K by SK , namely,

SK(p1, . . . , pK) := min
i∈{1,...,K}

Kp(i)

i
,

and SK will be called the Simes function. The method of Hommel (1983)

uses `KSK , which is SK adjusted via the VAD threshold, where

`K =
K∑
k=1

1

k
. (3.5)

If αi+1 ≤ αi, then the term p(i+1)/αi+1 does not contribute to the calcula-

tion of Sα,K(p1, . . . , pK). Hence, we can safely replace αi+1 by αi without

changing the function Sα,K . Thus, we shall assume, without loss of gener-

ality, that α1 ≤ . . . ≤ αK . Admissibility of VAD merging methods in the

above two classes are studied by Vovk et al. (2021).

Recall that a function F : RK
+ → R is homogeneous if F (λx) = λF (x)

for all λ > 0 and x ∈ RK
+ . It is clear that the function Sα,K is homogeneous,

and so are the averaging methods of Vovk and Wang (2020). In such cases,
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we can show that the VAD threshold aF is a linear function.

Proposition 1. If the combination function F is homogeneous, then the

VAD threshold aF (x) is a constant times x on (0, 1).

In the subsections below we will discuss several special cases of the

above two classes of combining functions, and analyze their corresponding

threshold functions. As the first example, we note that the functions aF ,

bF and cF for the Bonferroni method can be easily verified.

Proposition 2. Let F (p1, . . . , pK) = min{p1, . . . , pK} for p1, . . . , pK ∈

[0, 1]. Then aF (ε) = ε/K, bF (ε) = 1 − (1 − ε)1/K and cF (ε) = ε for

ε ∈ (0, 1).

3.2 The averaging methods

The aforementioned averaging methods of Vovk and Wang (2020) use

the combining functions given by

Mr,K(p1, . . . , pK) =

(
pr1 + · · ·+ prK

K

) 1
r

,
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for r ∈ R \ {0}, together with its limit cases

M−∞,K(p1, . . . , pK) = min{p1, . . . , pK};

M0,K(p1, . . . , pK) =

(
K∏
i=1

pi

) 1
K

;

M∞,K(p1, . . . , pK) = max{p1, . . . , pK}.

Some special cases of the combining functions above are r = −∞ (mini-

mum), r = −1 (harmonic mean), r = 0 (geometric mean), r = 1 (arith-

metic mean) and r = ∞ (maximum); the cases r ∈ {−1, 0, 1} are known

as Platonic means. Note that M−∞,K gives rise to the Bonferroni method,

and the geometric mean yields Fisher’s method (Fisher (1948)) under the

independence assumption. The harmonic mean p-value of Wilson (2019)

is a VSD method using the harmonic mean.

Since the mean function Mr,K is homogeneous, by Proposition 1, the

VAD threshold is a linear function aF (x) = arx, x ∈ (0, 1) for some ar > 0.

The multipliers ar have been well studied in Vovk and Wang (2020), and

here we mainly focus on the cases of Platonic means and the Bonferroni

method. It is known that a−∞ = 1/K and a1 = 1/2. For r = 0 or

r = −1, the values of ar and their asymptotic formulas are calculated by

Propositions 4 and 6 of Vovk and Wang (2020), summarized below for

K ≥ 3.
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(i) For F = M0,K ,

aF (x) = a0x = cK exp

(
K − 1

1−KcK

)
× x, x ∈ (0, 1), (3.6)

where cK is the unique solution to the equation: log(1/c−(K−1)) =

K − K2c for c ∈ (0, 1/K). Moreover, a0 ≥ 1/e, and a0 → 1/e as

K →∞.

(ii) For F = M−1,K ,

aF (x) = a−1x =
(yK + 1)K

(yK +K)2
× x, x ∈ (0, 1), (3.7)

where yK is the unique solution to the equation: y2 = K((y +

1) log(y + 1) − y) for y ∈ (0,∞). Moreover, a−1 ≥ (e logK)−1, and

a−1 logK → 1 as K →∞.

To determine the VC threshold, it is easy to check that cMr,K
(x) = x,

x ∈ (0, 1) for all r ∈ [−∞,∞], because the generalized mean of identical

objects is equal to themselves; this obviously holds for all functions in the

family of Mφ,K .

Next, we study br := bMr,K
or its approximate form. For this, we will

use stable distributions (e.g., Uchaikin and Zolotarev (2011) and Samorod-

nitsky (2017)) below. Let Fα be the stable distribution with stability pa-

rameter α ∈ (0, 2), skewness parameter β = 1, scale parameter σ = 1 and
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shift parameter µ = 0. The characteristic function of Fα is given by, for

θ ∈ R,

∫
exp(iθx) dFα(x) =


exp

(
−|θ|α(1− i sgn(θ) tan πα

2
)
)

if α 6= 1,

exp
(
−|θ|(1 + i 2

π
sgn(θ) log |θ|)

)
if α = 1,

where sgn(·) is the sign function. For α ≥ 2, let Fα stand for the standard

normal distribution.

Proposition 3. Let br be the VI threshold of Mr,K, r ∈ R.

(i) If r < 0, then for K ∈ N+

br(ε) ∼ K−1−1/rε, as ε ↓ 0, (3.8)

and for ε ∈ (0, 1),

br(ε) ∼
((
CαF

−1
α (1− ε) + bK

)
/K
) 1

r , as K →∞,

where α = −1/r > 0 and the constants Cα and bK are given in Table

1.

(ii) If r = 0, then

br(ε) = exp

(
− 1

2K
q1−ε

(
χ2

2K

))
. (3.9)

(iii) If r > 0, then for K ∈ N+,

br(ε) =
(Γ(1 +K/p))1/Kε1/K

K1/rΓ(1 + 1/p)
, if ε ≤ (Γ(1+1/p))K

Γ(1+K/p)
,
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3.3 The Cauchy combination method17

where Γ is the Gamma function. For ε ∈ (0, 1),

br(ε) ∼
(

σ√
K

Φ−1(ε) + µ

) 1
r

, as K →∞,

where µ = (r + 1)−1 and σ2 = r2(1 + 2r)−1(1 + r)−2.

Table 1: Coefficients Cα and bK for r = −1/α < 0.

r = −1/α Cα bK

− 1
2 < r < 0

(
K

(
α
α−2 −

(
α
α−1

)2))1/2

Kα/(α− 1)

r = − 1
2

√
K logK Kα/(α− 1)

−1 < r < − 1
2 K1/α (Γ(1− α) cos(πα/2))

1/α
Kα/(α− 1)

r = −1 Kπ/2
πK2

2

∫ ∞
1

sin

(
2x

Kπ

)
αx−α−1 dx

r < −1 K1/α (Γ(1− α) cos(πα/2))
1/α

0

3.3 The Cauchy combination method

The Cauchy combination method is recently proposed by Liu and Xie

(2020) which relies on a special case of the generalized mean via φ = C−1,

where C is the standard Cauchy cdf, that is,

C(x) =
1

π
arctan(x) +

1

2
, x ∈ R; C−1(p) = tan

(
π

(
p− 1

2

))
, p ∈ (0, 1).

We denote this combining function by MC,K (instead of MC−1,K for sim-

plicity), namely,

MC,K(p1, . . . , pK) := C

(
1

K

K∑
i=1

C−1 (pi)

)
.
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3.3 The Cauchy combination method18

It is well known that the arithmetic average of either independent or

comonotonic standard Cauchy random variables follows again the stan-

dard Cauchy distribution. This feature allows the use of such a combina-

tion method to combine p-values under uncertain dependence assumptions.

In addition, Liu and Xie (2020) showed that under a bivariate normality

assumption of the individual test statistics (i.e., a normal copula), the

combined p-value has the same asymptotic behaviour as the one under the

assumption of independence (see Theorem 2 (ii) below).

Since 1
K

∑K
i=1 C−1(Ui) follows a standard Cauchy distribution if U1, . . . , UK ∈

U are either independent or comonotonic, we have bF (x) = cF (x) = x for

all x ∈ (0, 1). This convenient feature will be studied in more details in

Section 4.

By Definition 1, we get, for F = MC,K ,

aF (ε) = C

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Ui)

)
| U1, . . . , UK ∈ U

})
. (3.10)

The function aF does not admit an explicit formula, but it can be calcu-

lated via results from robust risk aggregation (Corollary 3.7 in Wang et al.

(2013)) as in the following proposition.

Proposition 4. For ε ∈ (0, 1/2), we have

aF (ε) = C (−Hε(xK)/K) , (3.11)
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3.4 The Simes method19

where Hε(x) = (K − 1)C−1(1− ε+ (K − 1)x) + C−1(1− x), x ∈ (0, ε/K),

and xK is the unique solution x ∈ (0, ε/K) to the equation

K

∫ ε/K

x

Hε(t) dt = (ε−Kx)H(x).

3.4 The Simes method

The method of Simes (1986) uses the Simes function SK in the order

statistics family, given by SK(p1, . . . , pK) = mini∈{1,...,K}
K
i
p(i). For F =

SK , the results in Hommel (1983) together with Proposition 1 suggest that

aF (x) = x/`K for x ∈ (0, 1). For independent p-variables P1, . . . , PK ∈ U ,

Simes (1986) obtained

P
(

min
i∈{1,...,K}

K

i
P(i) > ε

)
= 1− ε, ε ∈ (0, 1),

which gives bF (x) = x for x ∈ (0, 1). For comonotonic p-variables P1, . . . , PK ∈

U , it is clear that SK(P1, . . . , PK) = P(K), which follows a standard uni-

form distribution, and hence we again have cF (x) = x for x ∈ (0, 1). The

validity of the Simes function using the VI (VC) threshold (called the

Simes inequality) holds under many positive dependence structures; see

e.g., Sarkar (1998, 2008).

In the context of testing multiple hypotheses, if p-variables for several

hypotheses are independent, the Benjamini-Hochberg procedure for con-

trolling the false discovery rate (FDR) (Benjamini and Hochberg (1995))
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also relies on the Simes function (in case all hypotheses are null). Although

the Benjamini-Hochberg procedure is valid for many practical models, to

control the FDR under arbitrary dependence structure of p-variables, one

needs to multiply the p-values by `K , resulting in the Benjamini-Yekutieli

procedure (Benjamini and Yekutieli (2001)). This constant is exactly

x/aF (x), and the function aF is called a reshaping function by Ramdas

et al. (2019) in the FDR context.

4. Independence-comonotonicity balance

As we have seen above, the Cauchy function and the Simes function

both satisfy bF = cF , and hence the corresponding merging methods are

invariant under independence or comonotonicity assumption, an arguably

convenient feature. Inspired by this observation, we introduce the prop-

erty of independence-comonotonicity balance for combining functions in

this section. This property distinguishes the Cauchy combination method

and the Simes method from their corresponding classes Mφ,K and Sα,K ,

respectively.

A combining function is said to be balanced between two different

dependence structures of p-variables if the combined random variable un-

der the two dependence assumptions coincide in distribution. Recall that
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U, V1, . . . , VK are independent standard uniform random variables.

Definition 2. A combining function F : [0, 1]K → [0,∞) is independence-

comonotonicity balanced (IC-balanced) if F (V1, . . . , VK)
d
= F (U, . . . , U).

As the VI and VC thresholds are the corresponding quantile functions

of F (P1, . . . , PK), we immediately conclude that a combining function F :

[0, 1]K → [0,∞) is IC-balanced if and only if bF = cF on (0, 1]; recall that

cF is the identity for all functions in Section 3.

IC-balanced methods have the same threshold bF = cF if the depen-

dence structure of p-variables is a mixture of independence and comono-

tonicity, i.e., with the copula

λ
n∏
i=1

xi + (1− λ) min
i=1,...,n

xi, (x1, . . . , xn) ∈ [0, 1]n, (4.12)

where λ ∈ [0, 1]. This is because P(F (U1, . . . , UK) ≤ bF (ε)) is linear in the

distribution of (U1, . . . , UK).

For any combining function F , VI and VC thresholds generally yield

more power to the test compared with the corresponding VAD threshold,

but the gain of power may come with the invalidity due to model misspeci-

fication. If a combining function F is IC-balanced, the validity is preserved

under independence, comonotonicity and their mixtures, and we may ex-

pect (without mathematical justification) that, to some extent, the size of
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the test can be controlled properly even if mild model misspecification ex-

ists. Therefore, the notion of IC-balance can be interpreted as insensitivity

to some specific type of model misspecification (e.g., dependence structure

given in (4.12)) for VSD merging methods.

We have already seen in Section 3 that the Cauchy combination method

and the Simes method are IC-balanced. Below we show that they are the

only IC-balanced methods among the two classes of combining functions

based on generalized mean and order statistics.

Theorem 1. For a generalized mean function Mφ,K and an order statistics

function Sα,K,

(i) Mφ,K is IC-balanced for all K ∈ N if and only if it is the Cauchy com-

bining function, i.e., φ(p) is a linear transform of tan
(
π
(
p− 1

2

))
,

p ∈ (0, 1);

(ii) Sα,K is IC-balanced if and only if it is a positive constant times the

Simes function.

The IC-balance of Mφ,K for some fixed K (instead of all K ∈ N) does

not imply that φ is the quantile function of a Cauchy distribution; see

the counter-example (Example 1) in the supplementary material. As a

direct consequence of Theorem 1, if Sα,K is IC-balanced, then Sα,k for

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



23

k = 2, . . . , K−1, are also IC-balanced (here we use the first k components

of α); a similar statement does not hold in general for the generalized mean

functions, also shown by Example 1.

5. Connecting the Simes, the harmonic averaging and the Cauchy

combination methods

As we have seen from Theorem 1, the Cauchy and Simes combining

functions are the only IC-balanced ones among the two classes considered

in Section 3. Although the harmonic combining function does not satisfy

bF = cF , we observe empirically that the harmonic averaging method and

the Cauchy combination method report very similar results in all simula-

tions; see Section S1 of the supplementary material.

In this section, we explore the relationship among the three methods

based on SK , M−1,K and MC,K . We first show that the harmonic averaging

method is equivalent to the Cauchy combination method asymptotically in

a few senses. Second, we show the Simes function SK and the harmonic av-

eraging function M−1,K are closely connected via M−1,K ≤ SK ≤ `KM−1,K ,

where `K is given in (3.5). Throughout this section, for fixed K ∈ N, we

write aC = aMC,K , aS = aSK
, aH = aM−1,K

and similarly for bC, bS and bH.

We will use the following assumption on the p-variables U1, . . . , UK ∈
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U .

(G) For each 1 ≤ i < j ≤ K, (Ui, Uj) follows a bivariate Gaussian copula

(which can be different for each pair).

The assumption (G) is mild and is imposed by Liu and Xie (2020, Con-

dition C.1). Note that condition (G) includes independence and comono-

tonicity as special cases. The following theorem confirms the close relation-

ship between the harmonic averaging method and the Cauchy combination

method. Recall that the VC thresholds for both methods are the identity

function, and thus it suffices to look at VAD and VI thresholds.

Theorem 2. For fixed K ∈ N, the harmonic averaging and the Cauchy

combination methods are asymptotically equivalent in the following senses:

(i) If mini∈{1,...,K} pi ↓ 0 and maxi∈{1,...,K} pi ≤ c for some fixed c ∈ (0, 1),

then

MC,K(p1, . . . , pK)

M−1,K(p1, . . . , pK)
→ 1.

(ii) For K standard uniform random variables U1, . . . , UK satisfying con-

dition (G),

P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε) ∼ ε, as ε ↓ 0.

(5.13)

In particular, bC(ε) ∼ bH(ε) as ε ↓ 0.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



25

(iii) aC(ε) ∼ aH(ε) as ε ↓ 0.

(iv) For r 6= −1,

MC,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
6→ 1, as max

i∈{1,...,K}
pi ↓ 0.

Remark 2. The statement P (MC,K(U1, . . . , UK) < ε) ∼ ε in Theorem 2

(ii) is implied by Theorem 1 of Liu and Xie (2020), which gives the same

convergence rate for the weighted Cauchy combination method. For the

weighted harmonic averaging method, we have a similar result (see (S3.13)

in the supplementary material): For standard uniform random variables

U1, . . . , UK satisfying condition (G) and any (w1, . . . , wK) ∈ [0, 1]K with∑K
i=1wi = 1, we have

P

(
K∑
i=1

wiU
−1
i > 1/ε

)
∼ ε, as ε ↓ 0.

We omit a discussion on weighted merging methods as the focus of this

paper is comparing symmetric combination functions.

The first statement of Theorem 2 means that, if at least one of realized

p-values are close to 0, the harmonic averaging and the Cauchy combining

functions will produce very close numerical results. This case is likely to

happen in high-dimensional situations where the number of p-variables is

very large. As the condition (G) for (ii) in Theorem 2 is arguably mild,
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the thresholds of the two methods are similar for a small significance level

under a wide range of dependence structures of p-variables (including inde-

pendence and comonotonicity). Therefore, if the significance level is small,

one likely arrives at the same statistical conclusions on the hypothesis test-

ing by using either method. The third result in Theorem 2 illustrates the

equivalence between the VAD thresholds of the harmonic averaging and

the Cauchy combination methods as the significance level goes to 0. The

final result in Theorem 2 shows that among all averaging methods, the har-

monic averaging method is the only one that is asymptotically equivalent

to the Cauchy combination method.

The next result reveals an intimate relationship between the Simes and

the harmonic averaging methods.

Theorem 3. For p1, . . . , pK ∈ [0, 1],

M−1,K(p1, . . . , pK) ≤ SK(p1, . . . , pK) ≤ `KM−1,K(p1, . . . , pK).

The first inequality holds as an equality if p1 = · · · = pK. The second

inequality holds as an equality if p1 = pk/k for k = 2, . . . , K. As a conse-

quence, aS/aH ∈ [1, `K ] and bS/bH ∈ [1, `K ].

By Proposition 3 (i), the VI threshold of the harmonic averaging

method satisfies bH(ε) ∼ ε = bS as ε ↓ 0. Using Theorem 3, we further
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know that bH(ε) < ε (the inequality is strict since M−1,K < SK has prob-

ability 1 for independent p-variables). Therefore, we cannot directly use

the asymptotic VI threshold ε of the harmonic averaging method, which

needs to be corrected; see Wilson (2019).

To summarize the results in this section, the Cauchy combining func-

tion and the harmonic averaging function are very similar in several senses,

and the Simes function is more conservative than the harmonic averaging

function. Empirically, we see that the Simes function is only slightly more

conservative; see Section S1 of the supplementary material.

6. Prices for validity

For a given set of realized p-values, the decision to the hypothesis

testing for some specific combining function will be determined by the

corresponding threshold. The VAD method can always control the size

below the significance level; VSD methods may not have the correct size,

but they yield more power than the VAD method. Therefore, there is

always a trade-off between validity and efficiency, thus a price for validity.

For a combining function F and K standard uniform random vari-

ables U1, . . . , UK with some specific dependence assumption (e.g., inde-

pendence, comonotonicity, or condition (G)), let gF be the VSD threshold,
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i.e., gF (ε) = qε(F (U1, . . . , UK)). Let aF be defined as in (2.2). For some

fixed ε ∈ (0, 1), the ratio gF (ε)/aF (ε) is called the price for validity under

the corresponding dependence assumption of the p-variables. For instance,

bF (ε)/aF (ε) is the price paid for validity under independence assumption

and cF (ε)/aF (ε) is the corresponding price under the comonotonicity as-

sumption. For a specific application, one may consider the price for valid-

ity under other dependence assumptions. The calculation of the price for

validity serves for two purposes:

i (Power gain/loss): On the one hand, if additional information on the

dependence structure of the p-values is available, the price for validity

can be used as a measure for the gain of power from the dependence

information. On the other hand, if the dependence information is not

available or credible, the price can be used to measure the power loss

by switching to the VAD threshold.

ii (Sensitivity to model misspecification): If the dependence structure is

ambiguous, VAD thresholds should be used. A small price for validity

indicates that a relatively small change of threshold due to the model

ambiguity. Hence, the price for validity can be used as a tool to assess

the sensitivity of VSD methods to model misspecification.

Remark 3. Instead of using the price for validity, a more direct way to

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



29

assess the trade-off between using VSD and VAD methods is comparing

the sizes, i.e., P(F (P1, . . . , PK) < gF (ε))/P(F (P1, . . . , PK) < aF (ε)), where

the dependence of p-variables P1, . . . , PK corresponds to the VSD method.

More precisely, for a fixed ε ∈ (0, 1), the ratio of sizes is ε/g−1
F (aF (ε)),

where g−1
F is the (generalized) inverse of gF . The connection between the

price for validity and the ratio of sizes is explained below.

(i) For the Simes and the Cauchy combination methods, the ratios of

sizes under independence and comonotonicity are identical to the

corresponding price for validity since bF and cF are identity functions.

(ii) For the averaging methods, the ratios of sizes under comonotonicity

are identical to the price for validity since cF is identity. The ratios

of sizes under independence may be different from bF (ε)/aF (ε); how-

ever, by letting δ = aF (ε), we have (aF is strictly increasing in all

cases we consider)

ε

b−1
F (aF (ε))

=
a−1
F (δ)

b−1
F (δ)

.

This is very similar to bF (ε)/aF (ε); it is a matter of looking at the

ratio of threshold functions or that of their inverses. In fact, if r < 0,

by Proposition 3, we have,

ε

b−1
F (aF (ε))

∼ bF (ε)

aF (ε)
, ε ↓ 0,
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which suggests that the ratio of sizes is almost the same as the price

for validity under independence for small significance levels.

We use the Bonferroni method based on the combining function F =

M−∞,K as an example to illustrate the above idea. Using Proposition 2

and noting that K(1−(1−ε)1/K) ∼ ε as ε ↓ 0, we obtain that the prices for

validity of the Bonferroni method satisfy cF (ε)/aF (ε) = K for ε ∈ (0, 1)

and bF (ε)/aF (ε)→ 1 as ε ↓ 0. Therefore, for a small ε close to 0, the price

for validity under the independence assumption is close to 1 while the

price for validity under the comotonicity assumption increases linearly as

the number of p-variables increases. This means a model misspecification

of independence is not affecting the Bonferroni method much, whereas

a model misspecification of comonotonicity greatly affects the statistical

conclusion of the Bonferroni method.

Next we numerically calculate the prices for validity under indepen-

dence and comonotonicity assumptions for various merging methods using

results in Section 3. We consider the Bonferroni, the harmonic averag-

ing, the geometric averaging, the Cauchy combination, the Simes, and the

negative-quartic (using M−4,K , a compromise between Bonferroni and har-

monic averaging) methods. The (asymptotic) VAD and VI thresholds of

these methods are summarized in Table 2. The VC threshold is identity
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for all these methods. The VAD threshold of the negative-quartic method

is given by Proposition 5 of Vovk and Wang (2021). Numerical results on

the prices for validity are reported in Table 3 for ε = 0.01. Although some

of the VAD thresholds in Table 2 do not have explicit forms, the numeri-

cal computation is very fast. The results for ε = 0.05 and ε = 0.0001 are

similar and reported in Tables 1 and 2 in the supplementary material.

Table 2: Thresholds for K p-variables at significance level ε ∈ (0, 1).

Bonferroni Negative-quartic Simes Cauchy Harmonic Geometric

aF (ε) ε/K 3
4K
− 3

4 ε ε/`K (3.11) (3.7) (3.6)

bF (ε) 1− (1− ε)1/K (3.8) ε ε (3.8) (3.9)

Table 3: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.01 and K ∈

{50, 100, 200, 400}
K = 50 K = 100 K = 200 K = 400

bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF

Bonferroni 1.005 50.000 1.005 100.000 1.005 200.000 1.005 400.000

Negative-quartic 1.340 25.071 1.340 42.164 1.340 70.911 1.340 119.257

Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570

Cauchy 6.625 6.625 7.465 7.465 8.277 8.277 9.058 9.058

Harmonic 6.658 6.625 7.496 7.459 8.314 8.273 9.117 9.072

Geometric 69.903 2.718 78.096 2.718 84.214 2.718 88.694 2.718

The Bonferroni and the negative-quartic methods pay much lower price

under the independence assumption than the comonotonicity assumption,
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and the geometric averaging method is the absolute opposite. On the

other hand, the harmonic averaging, the Simes and the Cauchy combina-

tion methods have relatively small prices under both independence and

comonotonicity assumptions and their prices increase at moderate rates

as K increases, compared to other methods. In particular, the harmonic

averaging and the Cauchy combination methods have very similar perfor-

mance (cf. Theorem 2) and their prices are slightly larger than that of the

Simes method. If mild model misspecification exists, it may be safer to

choose one of the harmonic averaging, the Simes and the Cauchy combi-

nation methods and use the corresponding VAD threshold without losing

much power. The prices for validity in Table 3 can also be interpreted as

inflations of sizes by using VSD threshold against VAD threshold except

the geometric averaging method (see Remark 3).

Next, we show that the prices for validity of the harmonic averaging,

the Cauchy combination and the Simes methods behave like logK for K

large enough and ε small enough.

Proposition 5. For ε ∈ (0, 1), the prices for validity satisfy:

(i) For the harmonic averaging method, F = M−1,K,

lim
δ↓0

bF (δ)

aF (δ)
=
cF (ε)

aF (ε)
∼ logK, as K →∞.
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(ii) For the Cauchy combination method, F = MC,K,

lim
δ↓0

bF (δ)

aF (δ)
= lim

δ↓0

cF (δ)

aF (δ)
∼ logK, as K →∞.

(iii) For the Simes method, F = SK,

bF (ε)

aF (ε)
=
cF (ε)

aF (ε)
∼ logK, as K →∞.

Numerical values of the ratios between the price for validity under

independence assumption and logK are reported in Table 4; the results

for the corresponding ratios under comonotonicity assumption are similar

for these methods. The Simes method has the fastest convergence rate

among the three methods. The ratios for the harmonic averaging and the

Cauchy combination methods converge quite slowly and have similar rates.

This fact can also be explained by Theorem 3, where we see that the Simes

function is generally larger than the harmonic averaging function.

Based on Proposition 5, one may be tempted to use bF/ logK as the

corrected critical value under model misspecification; however, for the har-

monic averaging and the Cauchy combination methods, the asymptotic

rate of logK can only be expected for very large K (instead, 1.7 logK

works for K ≥ 100).
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Table 4: Numerical values of 1
log(K)

bF (ε)
aF (ε)

for the Simes, the Cauchy combi-

nation and the harmonic averaging methods.

ε K = 10 20 50 100 200 500

Simes
0.05 1.272035 1.200955 1.150097 1.126425 1.109415 1.093041

0.01 1.272035 1.200955 1.150097 1.126425 1.109415 1.093041

Cauchy
0.05 1.979572 1.82826 1.693025 1.620527 1.561670 1.511264

0.01 1.980144 1.828822 1.693562 1.621011 1.562121 1.504288

Harmonic
0.05 2.026308 1.873762 1.73641 1.661098 1.601539 1.539448

0.01 1.989255 1.837605 1.701851 1.627702 1.569179 1.508248

7. Concluding remarks

We discussed two aspects of merging p-values: the impact of the de-

pendence structure on the critical thresholds and the trade-off between

validity and efficiency. The Cauchy combination method and the Simes

method are shown to be the only IC-balanced members among the general-

ized mean class and the order statistics class of combining functions. The

harmonic averaging and the Cauchy combination methods are asymptoti-

cally equivalent, and the Simes and the harmonic averaging methods have

simple algebraic relationship. For the above three methods, the prices for

validity under independence (comonotonicity) assumption all behaves like

logK for large K. Moreover, numerical studies in the supplementary ma-

terial suggest that these methods lose moderate amount of power if VAD
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thresholds are used, and their performance against model misspecification

is better than other methods. This explains the wide applications of these

methods in different statistical procedures.

Merging p-values is not only useful for testing a single hypothesis,

but also important in testing multiple hypotheses, controlling false dis-

covery rate (Benjamini and Hochberg (1995), Benjamini and Yekutieli

(2001)), and exploratory research (Goeman and Solari (2011), Goeman

et al. (2019)). In many situations especially involving a large number of

hypotheses and tests, dependence information is hardly available. The

results in our paper offer some insights, especially in terms of gain/loss

of validity and power, on how the absence of such information influences

different statistical procedures of merging p-values.

In many practical applications, p-values arrive sequentially in time,

and the existence of the n-th p-variable may depend on previously ob-

served p-values (only promising experiments may be continued); thus the

number of experiments to combine is a stopping time. Unfortunately,

the current merging method of p-values discussed in this paper cannot be

used to sequentially update p-values with arbitrary stopping rule. To deal

with such a situation, one has to rely on anytime-valid methods, typically

through the use of a test supermartingale (see Howard et al. (2021) and
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Ramdas et al. (2020)) or through e-values (see Shafer (2021) and Vovk and

Wang (2021)). Moreover, e-values are nicer to combine (e.g., using aver-

age and product as in Vovk and Wang (2021)) especially under arbitrary

dependence, in contrast to the complicated methods of merging p-values.

Supplementary Materials

The online supplementary material contains simulation studies and a

real data analysis. An R package pmerge for various merging methods in

this paper is available at https://github.com/YuyuChen-UW/pmerge. All

the technical proofs, additional remarks and tables are also put into the

supplementary material.
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