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played a central role in my development; welcoming me to their Lab at IMEDEA in

Mallorca and teaching me experimental techniques. As well as this, Raphaël taught
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Abstract

The dynamics of passive colloidal particles are explored when they interact

with active Chlamydomonas reinhardtii, a green micro-algae. Through the imple-

mentation of different confining microfluidic geometries, we examine the resulting

colloidal distributions and characterise the interactions which lead to them. Ex-

periments are outlined in which we characterise the positional dependence of the

‘jumps’ passive particles undergo, which result from interacting with the active par-

ticles. These jumps are then used to reconstruct the overall positional distributions.

Additionally, we outline experiments performed in a circular microfluidic confine-

ment. By exploiting the aforementioned positional distribution of colloids and a

semi-permeable membrane, this microfluidic device can be used to segregate the

passive particles out of the mixture. Finally, features of a model are outlined which

allows for the modelling of active-passive mixtures. The active particle of which

is easily tuneable, allowing both pusher or puller type swimmers, as well as a va-

riety of boundary scattering behaviours. Results show that confinement results in

inhomogeneous swimmer dynamics, which then feed into the behaviour of passive

particle dynamics. Microswimmer confinement is a clear example in which spatial

inhomogeneities lead to passive particle accumulation and, upon implementing a

semi-permeable membrane, can be used to perform particle demixing. Such inter-

actions present exciting new possibilities for controlling micro-scale particles using

active particles whose dynamics have such spatially dependent characteristics.
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Chapter 1

Introduction

1.1 Outline and Structure

In this thesis the focus will be primarily systems which are made up of both active

and passive particles, which exist in a state of confinement. The result of which leads

to inhomogeneous active forces acting on the passive particles. The primary aim

of this work is to introduce a relatively simple experimental system that combines

active matter, passive matter and confining geometries. Pair-wise, these concepts

have been relatively well studied as we will see in the literature, but we hope to build

on this to understand their combined effect. We specifically focus on the impact

of confinement and active particles on the dynamics and positional distributions of

passive particles. In doing so, we largely neglect the impacts of passive particles

on active. However, the systems considered are relatively dilute and the passive

particles small, so this impact is expected to be minimal. To understand the impact

on passive particles, we first ask what the positional distribution of the particles

is in confinement when subject to an active bath. Next, we will try to address

whether this resulting distribution can be understood by solely looking at the passive

particle’s dynamics, treating the motion as a coloured noise with thermal and active

contributions. Based on this understanding we will attempt to describe the minimal

considerations required to replicate such systems and also present numerical models

of modified active-particles to see how further changes can be made by choosing

different types of swimmer. Finally, we will introduce a simple experimental set-up

that exploits features of the distribution to see whether it is possible to exploit the

coloured noise to de-mix the active-passive mixture.

In this first chapter we will introduce active matter and some of its research

history, microswimmers and their behaviour in confined environments. After this,
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we will review the literature on mixed systems, composed of this active matter and

passive matter. In this review we will look at the body of research that details the

properties of such mixed systems. Next, we will look at a few select examples in

which the understanding of mixed system enables us to solve real world problems:

drug micro-delivery mediated by microswimmers, controlling the construction and

melting of colloidal crystals using active interstitial particles, and the construction

of exotic actively driven engines to produce meaningful work. Finally, the chapter

will be concluded with a brief discussion on the origin of active displacements of

passive particles.

In chapter two, several background topics will be outlined, relevant to the

later chapters will be given. The topics are partitioned into four sections: exper-

imental, data analysis, computational and theoretical. Within the experimental

section we first introduce Chlamydomonas reinhardtii, the microswimmer that is

used throughout as the active component of our mixed systems. Next, we detail

the various techniques required to perform the microfluidic experiments, the re-

sults of which are then discussed in chapters three and four. The data analysis

section details an algorithm used to process experimental images and extract po-

sitional information for the various agents within the system. The computational

section focuses on the key statistical concepts that we focus on, the Poisson process

and exponential distribution. After this, we discuss how, using acceptance-rejection

schemes and inverse sampling tools, we can resample experimental distributions to

make predictions about the system. These computational techniques are used ex-

tensively in chapter three alongside measured experimental data. We then go on to

outline Milstein’s Method, an algorithm which can be applied to stochastic systems

which have spatially dependent noise. By including an extra drift term, which de-

pends on the integration scheme employed, we can simulate such systems. We see in

chapter four Milstein’s algorithm used to make dynamic predictions of the particle’s

dynamics. The final computational topics are the Weeks-Chandler-Andersen force

and numerical solutions for stochastic differential equations. The two topics are core

to chapter five, in which they are used in tandem to simulate a model microswimmer

interacting with passive particles. Within the Theoretical section we discuss briefly

the Kramers-Moyal expansion, a Taylor series expansion of the Master equation.

The expansion can be used to solve for a distribution for which the master equation

is an integro-differential equation, allowing us to represent such a system as ap-

proximately a drift-diffusion system. Finally, we detail the narrow escape problem,

focusing on the the relevant equations needed to calculate the time we should expect

to elapse for a Brownian particle to reach a small absorbing portion of a reflective
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boundary. The topics are presented here, so as to make more clear for the reader

method used during later chapters, without distracting from the core results and

discussions too much. These will also be cited explicitly during the later chapters

to highlight, where they are directly relevant.

Chapter three will begin by discussing a series of experiments. The design

features and choices will be introduced before moving on to the results. The overall

arc of this research is as follows: first, by measuring the steady-state colloidal distri-

butions within a straight channel. Then, by looking at the particle dynamics on an

individual colloid level, specifically focusing on ‘jumps’ in the measure trajectories

as their key feature. Finally, using numerical and semi-analytical models, which

contain the different measured dynamical properties of the jumps, we reconstruct

the main features of the steady-state.

Chapter four will outline the details of a second set of the experiments. Here,

the experiments are focused on utilising key features of the steady-state discussed

in chapter three to segregate the colloids. As with chapter three the chapter opens

by discussing the experimental design. We will see that within the altered circular

geometry that the steady-state features are very similar. Next, we discuss the use

of a semi-permeable membrane to de-mix mixtures of colloids and swimmers. Next,

we measure the dynamics of this de-mixing process. Finally, using the measured

jump properties from chapter three, we show that the de-mixing dynamics can also

be understood in terms of these jumps.

In chapter five we will introduce a 2D model of active self-propelled-particles

which are mixed with passive particles. Using the various properties of the active

particles, as well as a novel near-boundary Poissonian ‘kicking’ process to replicate

microswimmer scattering, we attempt to capture the behaviour of a broad range

of microswimmer mixtures. The chapter opens by describing the various features

and origins of the model and some of the tools used to produce particle trajectories.

After this, the data is given a similar treatment to that detailed in chapter three:

using passive trajectory jumps to attempt to reconstruct steady-state distribution

features.

The final conclusions chapter will be divided into two main sections: the

first of which will sequentially outline the chapters’ main results and outcomes. The

second half of this chapter will outline briefly the remaining open questions and

ideas to progress further the research.
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1.2 Active Matter

Active matter is made up of a large number of agents which can utilise energy from

their environment and as a result produce directed motion [1, 2]. Its study often

involves an exciting mixture of both interdisciplinary work, and inter-field techniques

from across physics. These different tools which have been drawn on are numerous,

chief amongst these techniques from low Reynolds number hydrodynamics, kinetic

theory and statistical physics. Many of which require modification owing to the fact

that the systems involved are constantly consuming energy. Active particles, such as

microswimmers, consume nutrients within their environment and by using different

chemical processes are able to produce mechanical motion. This means that they

cause fluxes of energy within their environment, changing it in such a way as that it

can no longer be considered to be in thermodynamic equilibrium. Because of this,

we refer to active matter as example of an out-of-equilibrium system. This is one

of the core reasons why these systems are so interesting to the physics community,

as they allow exploration into these non-equilibrium processes using familiar tools,

which in turn leads to these tools becoming enriched or enhanced.

The study of active matter has taken place largely within the last half-

century, often as a result of the application of techniques, both experimental and

mathematical, to problems from traditionally different scientific fields. Progress

within the study of active matter has many important implications to our under-

standing of many real world systems. Development has enabled a level of realism

within modelling of several real world systems, for which equilibrium is rare, opening

the possibility of addressing a broad class of previously inaccessible problems. An

example of this is is present in the study of polar flocks in two-dimensions. Equi-

librium equivalents of such such systems are bound to obey the Mermin-Wagner

theorem, which means that at low-dimensionality there is no presence of sponta-

neous symmetry breaking and thus, at best, quasi-long-range order. However, for

models that include the agent’s energy consumption we can see long-range order, an

insight which fundamentally contrasts that of the equilibrium case [2]. As well as

theoretical advancements, active matter presents possible solutions to many of the

most challenging problems we face, to name a few key to this: understanding the

impacts and effects of microplastics within populated environments, improving the

toolset of medicine for targeted delivery of drugs within the body, and alternative

energy production using stochastically driven engines. In each of these highlighted

cases we see that there is a clear interaction between a passive component of the

system with an active. Focusing on the drug delivery case, we have the cargo, which
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will be a passive particle that we want to deliver to a specific site within the body

of a patient, and the active agent which performs the delivery. It is these sort of

mixed systems we are primarily interested in. Such mixed systems form the basis

of a body of exciting new research, in which the system being studied see this extra

dimension of complexity with different types of particles interacting.

Throughout this introduction, we will be focusing on the most relevant ex-

ample of active matter to our study: microswimmers. A brief overview on researches

in active particles in confinement will be provided. Following this, there will be a

brief discussion on early progress in mixed systems and the types of problem people

are interested in. An overview of some of the most exciting developments in mixed

active passive systems will be presented. Finally, a presentation of the two main

sides of the research concerning active displacements. Addressing why, in this thesis,

we are able to bypass this type of inquiry.

1.3 Microswimmers

The directed motion of bacteria had been studied as far back as 1901 [3], but was

popularised largely within physics by the works of H. Berg [4, 5, 6] and later in E. M.

Purcell’s seminal paper ‘Life at Low Reynolds Number’ [7]: These works primarily

highlight that viscous forces are hugely dominant over inertial at the scales at which

microscopic locomotion occurs (the ratio of these forces is known as the Reynolds

number). These organisms play largely by the rules dictated in the Navier-Stokes

equations, a set of partial differential equations which can be used to describe motion

of, and in this case within, viscous fluids. The Navier-Stokes equation is given by,

ρ

[
∂V

∂t
+ (V ·∇)V

]
= −∇P + ρg + µ∇2V , (1.1)

∇ · V = 0. (1.2)

Here, in equation (1.1) ρ is the fluid density, V describes the resulting flow-

field of the fluid, the term containing P encodes the effects of pressure gradients, g

the external body forces (gravitational etc.) acting on the fluid and µ the dynamic

viscosity which results in diffusion. Equation (1.2) is the continuity equation which

comes as a result of considerations of mass conservation. We can determine the

importance of the relative contribution of inertia and viscocity by considering the

Reynolds number, which is defined as
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Re =
ρV `

µ
. (1.3)

Here, ρ, µ and V = |V | are as previously defined, ` is the length scale

that characterises the length scale of interest. Due to the fact that for microscopic

organisms operate on small length scales ` and at relatively high viscosities µ, the

Reynolds number in such systems is often very small, allowing us to neglect the

inertial contributions to the Navier-Stokes equation. Inertial forces are, of course,

very familiar from physical intuitions gained by living at a higher Reynolds number.

People who frequently swim (where the Reynolds number is of the order 104) will

note that, by pushing off the wall with a good body positioning, it is possible to

coast and a human swimmer’s motion will not be immediately arrested. A distance

of a few meters can be covered by a human swimmer before it becomes beneficial

to begin using a swim stroke. This is an example of inertially driven motion, since

it takes a good amount of time for the drag from the water to slow the swimmer

down. In contrary to this, for our microswimmer for whom the Reynolds number

is on the order of 10−4, they will have mere microseconds before viscous forces halt

their motion. Through the inertial term’s omission, which comprise the left hand

side of (1.1) we get the Stokes equation,

0 = −∇P + ρg + µ∇2V . (1.4)

Such systems if they are subject to kinematic reversibility, the property that

reversing the sign of the instantaneous forces and torques the swimmer is subject

to reverses the sign of the flow-field but does not change the pattern, gain time

reversibility [8].

If a microswimmer’s motion acting on a fluid moves the organism forwards,

the reverse of that motion (i.e. the motion in reversed time) will move it equally

backwards (a visual example of this can be seen in [7]). As such, organisms which

aim to swim in these conditions cannot use this kind of reciprocal motion. However,

many strategies have evolved to overcome this limitation by using non-reciprocal

motion for translation at low Reynolds number. Organisms, such as Escherichia

coli, swim using flagellar motion [5]. The flagella in the case of Escherichia coli turns

in a corkscrew-like manner. Since the bacteria can continue to turn the flagella in

a single direction the motion is non-reciprocal, and as such fluid translated by the

flagella allows for propulsion at low Reynolds Number.

Flagellates form a group of such microswimmers who swim in similar ways to

this. Within this group there are a few different strategies of note: firstly, different
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Figure 1.1: Flow field for a pusher and puller. Taken from: [13]. (a) Here we
see the flow field for a force dipole resulting from a pusher. (b) Here we see the flow
field for a force dipole resulting from a puller.

organisms have different numbers of flagella, Escherichia coli. for example, can be

uni-flagellate (possessing only one flagella). But Escherichia coli is more commonly

multi-flagellate, with many flagella protruding from it’s body, which rotate around

each other to form a bundle [9]. Further examples of uni-flagellate microswimmers

include spermatozoa, Mircomonas pusilla, etc. As mentioned before, swimmers

can be multi-flagellate, this class includes many types of bacteria, as well as some

eukaryotes such as Giardia [10, 11]. Finally, there are several important bi-flagellate

organisms. Chlamydomonas reinhardtii (CR) is in particular a popular example,

owing to its relative simplicity [12]. As well as the number of flagella, another

classification exists that separates the swimmers into two groups, whether a swimmer

is a pusher or a puller. Self-propelled swimmers induce flow fields which is the far-

field is well described by a dipole [8]. We can see a comparison of these in figure

1.1. In (a) we see a pusher, drawing the fluid in from the sides and pushing it

outwards both in front and behind, while in (b) the fluid is pulled from in front and

behind and pushed out the sides. Notice, in both cases the dipoles point in opposite

directions leaving the swimmer force-free.

Pushers swim with their flagella behind their body, pushing the fluid behind

them to move forwards. This group includes Escherichia coli and spermatazoa. On

the other hand the pullers, which have their flagella in front of them as they, move

using a breast-stroke-like motion to pull the fluid past them to enable motion and

this group includes CR. Some rarer organisms are capable of the use of both of

these types of motion. For example Mircomonas pusilla, which can be a pusher or

a puller, depending on how its flagella moves [14].

These organisms swim, in the simplest description, in a manner known as run-

and-tumble [7, 15, 16]. What this means is that the trajectories resulting from their

motion are made up of ballistic ‘runs’. Within the trajectories then are interspersed
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b)

Figure 1.2: Schematic of Run-and-Tumble Motion in Escherichia coli . (a)
Taken from [7], shows an experimentally tracked trajectory of a swimming Es-
cherichia coli, using temporally equally spaced dots to show the distinct types of
motion. (b) Taken from [17], shows a schematic of the motion, with the flagella
changing their behaviour to reorient the swimmer.

‘tumbles’, in which the swimmers stop moving, randomly reorienting their direction,

before undergoing another ‘run’. A schematic and example of this is given in figure

1.2.

By modifying aspects of this run and tumble motion using feedback mecha-

nisms, the organism is able to perform the various taxis, often to maximise favourable

conditions: chemical, light, etc. This can be achieved by exploiting various mecha-

nisms within the organism. Chemotaxis, for example, in some bacteria is performed

by using an internal memory of detected local chemical concentration. Based on the

temporal gradients experienced in this measured concentration the tumble rate is

modified to give motion up the gradients [4].

In modern times there has been development around more exotic types of

experimentally realisable active particles. Some experimental systems of synthetic

microswimmers have become prominent in the literature. Janus particles in par-

ticular can be used as a close experimental equivalent of active Brownian particles

[18, 19]. Janus particles are made up of two distinct faces, which either have different

physical or chemical properties. This difference leads to symmetry breaking allow-

ing translational motion when subject to various phoretic mechanisms: chemotactic
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[20], thermotactic [21] or phototactic [22], to name just a few. Exploiting these then

enables an experimental set up which mirrors closely the ‘active Brownian particle’

(ABP) studied widely in computational literature. While on the other end of the

organic-synthetic scale there are some reports such structures as enzymes, which are

traditionally considered passive, too act as active particles [23].

1.4 Active Particles in Confinement

Throughout this thesis, confinement is implemented as the method of creating non-

homogeneous environments in which passive and active particles can interact. For

passive particles, confinement will largely mean that at very close-range they will

be physically blocked from continuing their motion. However, for swimmers, much

as is the case when they undergo chemo/thermo/photo-taxis, the result of such

confinements also result in a long-range change in their behaviours. As such, geo-

metric confinement will be the fundamental way in which the swimmer’s behaviour,

throughout the research presented in this thesis, is modified. However, in a more

general sense, considering the effects of confinement on active matter allows us to

add complexity to the system being studied. The result of this is moving us closer

to descriptions of real world systems, in which more often than not active matter

is found in confined environments. Since, in this thesis we aim to describe active

matter’s interaction with passive matter, first looking at the literature on active

matter’s interaction with large immobile passive boundaries is a good place to be-

gin. Separately, then considering active matter with passive particles without the

presence of boundaries. Finally, literature which considers all these ideas together.

The core theme of which will be to see how, swimmer behaviour as modified by the

presence of boundaries, then mediates the passive particle behaviour.

People for some time have studied active particles of all forms alone in con-

fined environments. Specifically, there has been a focus on their transport dynamics

and the modification of their collective behaviours when confined [24, 25, 26, 27, 28].

One of the key results, which will be referred to extensively, is that confinement mod-

ifies active particle positional distributions near boundaries. It has been shown that

active particles in confined environments generally have a tendency to accumulate

near to such surfaces. This accumulation is the result of of an asymmetry in the

processes individuals are subject to which bring microswimmers towards boundaries

and those that move them away. When an active particle is at a boundary it is effec-

tively stuck at that boundary until it is able to turn away from it [29, 30, 19]. As well

as this the hydrodynamic effects of individuals play a role in the near boundary be-
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haviour of microswimmers [31]. It has been experimentally shown in Escherichia coli

that close to surfaces the swimmers trace out clockwise circular trajectories, staying

close for extended periods of time. In [31], it is then shown that this motion can be

understood by considering the hydrodynamics of a force and torque-free swimmer

close to a no-slip surface. The flagella must have a force on it, acting perpendicular

to both the direction of motion and the outward normal of the boundary, to satisfy

the non-slip conditions at the boundary. Thus, the swimmer moves in circles along

the surface. Such active particles, which are near to boundaries, can then cause

interruption of more nearby swimmers in collisions. The effect of these collisions

in denser systems is traffic-jam-like, with clusters of swimmers clumping together

close to boundaries as a result of this collective effect. We can see an example of

such an accumulation in figure 1.3: showing a strong preference of the swimmers,

in this case a strain of Caulobacter crescentus, to congregate near the boundary.

In [24] a simulation of this effect is presented. At low swimmer concentrations it

was shown that at low concentrations there is indeed a strong accumulation of the

swimmers near to the boundaries. However, as the concentration is increased large-

scale flows emerge leading to enhanced mixing of fluid across the channel, moving

the accumulation peaks further from the boundary as the concentration increases.

1.5 Mixed Active-Passive Systems

Up to this point, we have discussed the studies of different biological systems in

isolation using the tools of physics. However, it should be clear that in the real

world these sorts of systems rarely appear in isolation. The natural question is,

how many real world complexities can we include into models of these sorts of

systems, while still allowing us to gain meaningful insights: specifically, can we

model the interaction of active matter with free moving passive matter? There are,

of course, a large number of considerations within this question: from relative active

particle to passive particle size ratio, passive particle shape, active & passive particle

density, to name just a few. Within this section we will aim to discuss some of the

work done regarding such considerations, the resulting properties in such mixed

systems and their resulting practical applications. As highlighted at the beginning

of this chapter, several mixed-system problems are central to solving of the most

pressing issues in modern times. Understanding the interactions of passive particles

with active could lead to breakthroughs in emerging technology, such as micro-scale

targeted cargo-delivery for drug delivery. As well as this, mixed system research

plays an important role in helping to understand, and perhaps even mitigate, the
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Figure 1.3: Swimmer Positional Distributions Near to a Boundary. Taken
from [29]. (a) Shows a Z-X plot of over 10000 measured cell positions from 699 cell
trajectories close to a boundary (Z=0). (b) Shows a histogram of the measurements
shown in (a). (c) Shows a comparison between the experiments (solid circles) and
model (clear circles) outlined in the paper.

stress that microplastics currently pose for aquatic environments. In this case,

research can allow us to better understand how different species, for example motile

algae, interact with microplastics in their natural environment and whether this

results their transport via bioconvection or accumulation of such pollutants. Finally,

these systems could allow new methods for the design and production of functional

materials, with active interstitial colloids being used to modify colloidal crystal

growth.
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Figure 1.4: Schematic of tracers in a bacterial bath and their enhanced
diffusion. Taken from [32]. (a) Here we see 10µm tracers (solid black circles
with white outline) in a bath of swimming bacteria. Below shows the experimental
schematic: a soap film (grey square), the humidity of which was maintained by four
water-droplets (grey circles). (b) A log-log plot of the mean squared displacement of
the tracers measured in the experiments. In the bottom left the gradient expected
of the thermal diffusivity of 4.5µm and 10µm particles is shown respectively.

1.5.1 Enhanced Diffusion: The Birth of Mixed Systems

Some of the earliest work in mixed systems came about in 2000. In [32], an experi-

mental set-up is described which utilised a soap film which contained both swimming

bacteria and passive tracer particles of 10µm. The tracers were then tracked to see

how the presence of active particles effected their behaviour. A schematic of the

set-up can be seen in figure 1.4a. The key result noted is presented in figure 1.4b

is the presence of super-diffusion of the passive colloids at short timescale and a

recover of the normal diffusion at longer. The effect initial was thought to be a

crossover of the dynamics from overdamped to an underdamped regime, however

due to the system being at low Reynolds number it cannot be as a result of inertial

effects. It was found instead to be the result of transient formations of coherent

structures within the active bath. The crossover time from the long to short time

dynamics was found to correspond to the life-time of such structures and to linearly

increase with the bath concentration. The overall contribution of the two time-scles

was found to result in an effective temperature (in the sense of the Stokes-Einstein

12



equation) between 2-3 orders of magnitude above that of room temperature within

the bath. This observation is also the key take away for many other similar stud-

ies [33, 34, 35, 36, 37, 38, 39, 40, 41, 42] and could easily be considered central to

the field of mixed-system research. These studies of bacterial-colloid mixtures span

over the last two decades and probe a wide range of properties of tracer diffusion in

bacteria of various densities. The different studies use vastly different tools, albeit

commonly they approach the presence of super-diffusion: some using pair inter-

action, others the collective behaviours and, some with analogs to fluid dynamics

phenomena, such as Taylor dispersions within the underlying space [39].

As well as this, starting in 2009 with [43] we start to see experimental studies

capturing this enhanced passive particle diffusion in a broader class of microorgan-

isms. In this case, and in many others, this is CR [44, 45, 46, 47, 48, 49]. Again, we

see in the literature a vast toolset being applied to understanding the enhancement

of the tracer dynamics for mixed systems. These result suggest a universality, that

many kinds of active matter are capable of inducing enhanced diffusion on tracer

particles they are in contact with. This has important implications for the various

applications we have highlighted (e.g. drug microdelivery) since one of the key tools

they require is fine control of microscopic particles. Controlling micron scale passive

particles within different environments is of course a difficult task. However, as we

have previously noted, the different types of active matter are capable of responding

to various environmental stimuli: light, chemical concentration, thermal, etc. These

sorts of environmental changes are relatively easy to induce and hence, controlling

active particles on these scales. Thus, if we can understand how the transport prop-

erties of passive particles is affected by active particles, this is a possible way in

which passive particles can be controlled within these scales. With such a wealth

of experimental results, beginning early in the history of mixed systems we start

to see computational models [50]. The early approaches use straightforward mod-

elling, mixed systems containing two different species. This being an ABP with

an active driving force and another passive particle subject to thermal diffusivity.

Many such other studies have then followed along these lines in an attempt to study

the diffusion of tracers within a toy-model setting [51, 52, 53, 54, 55, 56, 57, 58].

Janus particle, the synthetic microswimmers, then acts as a kind of bridge,

that has emerged in the literature between these real world experiments and simu-

lated systems [59, 60, 61, 62, 63]. As mentioned in section 1.3, Janus particles become

active through many different mechanisms. As such, this has enabled verification of

our theoretical understanding in systems composed of biological swimmers. They

also present a start-point for us to begin to, by exploiting various environmental
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stimuli in a controlled laboratory setting. By inducing directional motion in these

active particles, we can then modify the transport properties of passive particles to

gain precise control of passive objects.

With this expansion of research to many types of swimmer; in more re-

cent studies, we also see a diversification of the tracer particles which are being

studied: from elongated or elliptic particles [45, 49, 64, 51], or polymer chains

[65, 66, 67, 68, 69, 56], to exotic asymmetric structures [70, 71]. Such tracers,

specifically those with of asymmetric shape, once again present exciting possibilities

for applications where the precise control of micro-structures is desirable. Since, the

literature clearly shows for such objects, when under the influence of active particles,

this is an induced overall directed motion.

Another key topic in active-passive mixture research is the concept of the

‘active bath’. Which comes about largely from studies ignoring the specific features

of the swimmers. This result should be unsurprising given the vast (but not ex-

haustive) list of organisms and swim strategies for which this enhanced diffusivity

has relevance. The result of this view of the systems; instead, we present the pas-

sive particle as existing within an ‘active bath’. As far back as the earliest papers

this was an idea that was present [32], with the enhanced diffusivity measured by

tracking the colloid motion without consideration of the active-displacements which

the colloids underwent to drive this enhancement. The passive particle when in an

active bath must then be subject to two distinct types of noise. The first of which

is the standard Gaussian white noise which results from the thermal activity of the

particle. The second is a coloured-noise, which comes as a result of the presence of

the active particles [72]. This is a highly prevalent idea that is present throughout

the body of mixed systems literature.

1.5.2 Frontiers of Active-Passive Research

In this section, we will introduce very briefly a few of the recent key developments

in mixed system research. Some speculative research papers looking at potential

medical or biotechnological applications, others, the production of exotic structures.

A few studies of the application of active particle to emerging medical tech-

nologies have been reported in the literature. One of the most important mixed

system researches of this kind is the control and delivery of microscopic compounds.

Specifically, within the human body, for use in techniques such as personalised

medicine and drug micro-delivery. Using appropriately chosen active matter, the
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introduction of which does not have negative effects on the patient, the hope is,

with sufficient understanding this topic could lead to the invention of new medi-

cal technologies. In [73], it was demonstrated that for a given three-dimensional

microstructure, that active particle accumulation could be induced. Given previ-

ous result on the behaviour of active particle in confinement, this alone isn’t new.

However, in this study as well as the accumulation of bacteria they demonstrated

that passive colloidal beads were also accumulated in such areas. The concentration

of these colloids was shown to be strongly increased or decreased given the local

topography of the underlying structure. An exciting result, suggesting that such

micro-control of particles is not too far out of the reach of current technology.

As well as this, with increasing amount of plastic pollution being introduced

into marine environments [74] there is ever-present interest in understanding how

this plastic will manifest within such environments, the interaction with native or-

ganisms and the associated outcomes [75]. A good example of this interdisciplinary

exchange of ideas is given in this pair of articles [76, 77]. The first paper [76] con-

cerns bio-mixing by krill of nutrient-rich water. It poses the question as to whether

swimming organisms can induce significant mixing in marine environments, an idea

presented as counter intuitive since the majority of organisms involved are on a

length scale of less than 1cm. Concluding that in fact, due to the low efficiency

of small mixers and the rarity of large that the overall affect of biomixing is likely

to be low. The second outlines a toy-model, using a Stokesian model of mixing in

krill-like systems, of lengths in the cm scale. The conclusions of this research are

mixed on the importance of biomixing. Specifically, that within a school of active

particles, even those of a small scale, the impact is significant and results in a dif-

fusion as much as five times higher. However, it’s stated outside such schools of

active particles the results are less clear due to the simplicity of the modelling. It

is hopefully clear from this example, a greater understanding of the interactions of

mixed systems can reveal insights contrary to intuition.

There is also a lot of interest in different accumulation behaviours that can

be observed in mixed systems. A range of such behaviours have been observed

contrasting the thermal case. In [78], systems who’s accumulation profile is tuned

by active particle dynamics are studied. It was observed that passive particles

which are subjected to an optical potential, both smooth and containing a speckle

pattern, will accumulate. However, in the presence of an active bath this effect

is disrupted. The characteristics of which depend on the type of optical potential

applied, with smooth potentials seemingly accumulating with a longer time-scale and

rough leading to a depletion in the region of the optical trap. This effect is because
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the active particle’s long time dynamics are modified by such potentials. Thus,

the accumulation behaviour of the the colloids can be modified by controlling the

underlying active particle dynamics. Much research has focused on such clustering

of colloids in active baths, with the swimmers inducing long-ranged interactions

between the colloids which would otherwise not be present [79, 80, 81, 82, 83, 84].

Another exciting area in which the study of mixed-systems have found ap-

plication is in the growth dynamics of colloidal crystals. One main issue of the

formation of colloidal crystals is that due to the rapidity of their formation by con-

densation, often metastable gels will instead form. However, computational evidence

suggests that by using mixtures of active self-propelled particles and colloids, it be-

comes thermodynamically favourable for crystalline structures to form [85, 86]. In

[87], an experimental set-up is demonstrated of active colloids undergoing dynamic

accumulation changes. The colloids, when illuminated, formed colloidal crystal and

dissolved when the light was removed. The self-assembly was noted to be the result

of propelling forces, osmotic effects and the coupling between the active colloids

and passive tracers in the mixtures. As far back at 2015, there has been speculation

that active-passive colloidal crystal systemscould be expanded upon, to give systems

where users have precise control, to manually design and oversee supra-colloidal as-

sembly [88].

In section 1.5.1 we saw several papers focussed on the enhanced diffusion of

increasingly exotic passive structures. It has been noted that, for certain passive

structures, directed motion can be achieved by the introduction of active particles

[89, 41, 90, 59, 91]. Further to this, ratchet effects in asymmetric passive structures

resulting from active particle influence have been observed [92, 93]. From these

topics, research has lead naturally to the development of stochastic engines. Systems

in which a passive (often colloidal) particle in contact with an active bath is used

to extract useful work [94, 95, 96, 97, 98, 99]. A recent review published [100] looks

at the body of literature emerging on this exciting new topic: from the descriptions

of such systems, to their overall efficiency as compared to equilibrium cases.

1.6 Active Displacements

The phenomenology and applications of mixed systems, it is hopefully clear, is rich

and diverse. Up until this point the different effects that have been highlighted are

the outcomes of the interaction of the active and passive particles. However, we

may also ask, what aspects of this interaction actually lead to these effects. The

answers to this question largely falls into two categories: the hydrodynamic effects
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and the steric effects.

Within the hydrodynamics literature the swimmers are largely modelled ei-

ther as Stokesian dipoles (or squirmer) [101, 102, 103] or using slender body theory

[104, 105]. These approaches note as outcomes for such models: the enhancement

of the transport properties in some cases [106, 107, 108, 109] , novel features like

pair-wise interactions between passive particles [110, 111] and, loop-like trajectories

caused in the far field of the microswimmer [112]. With these systems often focusing

on swimmers much smaller than the tracers they are interacting with, to minimise

the contributions of the contact forces. The steric effects then report similar re-

sults for given, but often much larger, scales with colloids of comparable size to the

swimmers [46, 113]. With some small body of research highlighting specifically the

features of these steric contact events [114].

Although these different approaches to the origin of active displacements,

and indeed the distance at which they are relevant, are distinct. It is clear that

the outcome is largely the same, with the passive particles undergoing non-thermal

motion as a result. In this thesis, no such distinction between the origin of the dif-

ferent forces on passive particles is drawn. In later sections the method of extracting

‘non-Brownian’ trajectory sections is outlined, to capture all such effects.
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Chapter 2

Background & Methods

2.1 Introduction

In this section various distinct topics will be introduced and discussed. This is

done here to make more succinct the explanations within the main text when dis-

cussing the research. The topics will be broken down into sections pertaining to

experimental, data analysis, computational and theoretical. To aid in connecting

these sections to the main text, in the later chapters the relevant subsections of the

background material will be cited explicitly.

2.2 Experimental

2.2.1 Introduction to Chlamydomonas reinhardtii

In chapter 3 and 4 two microfluidic experiments are central to our results, in which

Chlamydomonas reinhardii (CR) are used as the active particles in active-passive

mixtures. We will begin by outlining the details of this model organism to help

make it clear that they are suitable of use in such experimental systems. CR is a

green micro-algae, it is a single-celled biflagellate organism (See figure 2.1). The first

description of the species came in 1888 by Dangeard who named them for Ludwin

Reinhardt, a botanist from Ukraine [12]. The wild-type strain, cc-125 or 137c, was

first isolated by G. M. Smith in 1945 [116] in Massachusetts. The most common

research cell lines allegedly originate in the strain Isolated by Smith. CR was the

first alga to have its entire genome mapped, highlighting the importance of the

organism [117]. The results of this mapping were published in full in 2007 [118]. CR

also forms the background strain used to generate many mutants, many of which can

be easily ordered from collections from all over the globe. The ease of acquiring the
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Figure 2.1: Chlamydomonas reinhardtii (a) (From Dartmouth Electron Mi-
croscope Facility, public domain) Shows a TEM image of a collection of Chlamy-
domonas, with a faint scale bar for 10µm shown in the bottom left. (b) Taken
from [115], shows a chlamydomonas cell, the structures and organelles labelled. F:
flagella; E: endoplasmic reticulum; V: vacuole; S: starch granule; C: chloroplast; M:
mitochondria; P: pyrenoid; G: Golgi apparatus; N: nucleus; Nu: nucleolus.

various different stains makes the organism straight-forward to begin working with,

further reinforced by the ease in maintaining them within a laboratory setting. In a

laboratory setting CR are stored within a diurnal chamber. The chamber runs on a

day-night cycle, 16 hours of ‘day’ and 8 hours of ‘night’. This cycle keeps the cells in

a (vegetative) haploid state (gametes contain the same number of the chromosomes

as their offspring). These cells will then reproduce indefinitely asexually producing

clone cells. They can also perform sexual reproduction, in which pairs of CR produce

non-clone offspring. To do this, the cells must be moved into a medium which has

no nitrogen sources. However, for our purposes it was sufficient to allow the cells to

reproduce asexually in the diurnal chamber.

A review of CR can be found in [12], however several details of interest will

be outlined briefly here. CR’s body is roughly 10 micrometers in diameter. Enclosed

in the cell wall around the body there are the usual set of eukaryotic cell organelles:

vacuoles, smooth/rough reticulum, nucleus, etc. However, as well as these there

is a large half-moon shaped chloroplast for photosynthesis, a pyrenoid which aids

the availability of CO2 and an eyespot that enables light sensing [115]. Protruding

from the cell body, the two flagella generally measure 10-12 micrometers. These
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flagella move in a breast-stoke like motion to enable the motion of the CR, much

like the ‘flexible oar’ example outlined in [7]. The flagella beat at approximately

50Hz, giving an overall speed of the CR around 100µms−1 during the run phase

of its motion. As previously discussed, it is possible to easily generate mutants of

the wild-type, and so these features are somewhat malleable, with some research

focusing on mutants that have shorter or longer flagella [119, 120].

2.2.2 Culturing Techniques in Chlamydomonas reinhardtii

To perform the experiments outlined in chapters 3 and 4, we must culture and

sustain a healthy population of CR to enable them to swim within our experiements.

In this section we will detail the main techniques needed to produce a population

of suitable swimmers. To store them in a diurnal chamber we make use of the Tris-

acetate-phosphate (TAP) medium, which is standard for the culturing of freshwater

algae. This medium is sufficient to provide nutrients the cells need for motion

and reproduction. The media can be made using the following protocol: [121], to

produce liquid TAP. The cells can then be kept short term, requiring daily TAP

media substitution or long term, requiring the transference of the cells between old

and new solid media gel.

We will first discuss the use of solid media to create stocks of CR. To convert

the TAP to a solid gel the following steps must be followed: the TAP must be mixed

with 3% W/V agar and 0.4 W/V yeast and then autoclaved. The agar makes the

liquid-TAP mixture into a semi-solid gel. The yeast speeds up bacterial growth

to aid in identifying contamination. The heated mixture can then be transferred

into individual tubes after autoclaving, held in a slanted rack. By filling until the

mixture is level with the lower lip of the tube within a slanted rack, it can be cooled

within the tube to create a gel surface that the cells can be deposited onto. The

cells should be spread in a zig-zag pattern across the surface where possible, this

enables easier recovery of the cells in the case of contamination. After the cells have

been deposited onto the media, the rack can be transferred into the diurnal chamber

where it can be stored for up to six months.

From the solid stocks, liquid cultures can then be produced. Using a sterile

inoculation loop, a sample of cells from the solid stocks can be transferred into a

small beaker with 25ml of TAP (liquid) media. This beaker can then be put onto

a stirrer plate within the diurnal chamber. Over several days the media will change

from clear, with the green sediment of the cells, to a pale green colour. This liquid

culture is now ready to be used for substitutions.

Cells left too long in liquid media encounter several issues. Some will grow
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too large which can impede their ability to swim, at saturation the media can be

depleted of nutrients leading to the cells dying out, etc. To avoid these issues, af-

ter the cells have reached the pale green state described above, a small sample is

transferred each day into fresh media. This process is called substitution. First,

the concentration of the cells must be established. Using a sterile serological mi-

cropipette a small sample can be taken from the liquid culture. Within this sample

the cells should be killed using a small amount of Lugol’s iodine and appropriately

diluted for easier cell counting. The resulting diluted mixture can be inserted be-

tween a haemocytometer and a cover slip, then a microscope can be used to count

the total number of cells. A factor for the dilution (∼ 10) and the haemocytometer

(∼ 104) enables the calculation of the concentration of liquid culture’s CR per ml.

The liquid cultures should be brought down to 106 cells ml−1 using an appropriate

dilution of TAP. Expected growth at this concentration should be a factor of ∼5-8

overnight each day.

The benefit of keeping cells in long term storage is that liquid (short term)

cultures, being frequently interacted with, are more vulnerable to contamination.

Long term storage means they can be interacted with minimally, lowering the

chances of contamination. Hence, if there is an issue with the liquid cultures, having

a ready supply of solid stocks means that the liquid cultures can be readily replaced.

However, a liquid culture that has been regularly substituted over several days is

needed for the use of the CR cells in experiments. Within swimming experiments

liquid cultures CR are generally required, for which the concentration can easily be

modified. Maintained in this way liquid culture’s cells will swim better, with less

cells overgrown or lacking flagella.

2.2.3 Producing Concentrated Swimmer-Colloid Mixtures

Within the mixed system experiments passive particles are implemented. These are

colloidal, weakly-Brownian particles. The colloids are polystyrene and can be or-

dered in desired diameters [122]. We will later see in chapter 3 that the colloids used

have a diameter of 10(±1)µm. In chapter 4 the colloids are 6(±0.6)µm, to enable

the boundary to be permeable to the colloids but not the swimmers. The swim-

mers themselves must be concentrated to create a concentration that is low enough

to avoid swimmer-swimmer interactions, while being high enough to maximise the

swimmer-colloid interactions which we’re interested in capturing. To do this, first

we move 1ml from the liquid culture using a sterile micropipette into a 1.5ml Ep-

pendorf tube. This can then be centrifuged at 1000 RPM for 10-15 minutes. The

result of this will be a pellet of CR suspended at the bottom of the Eppendorf. At
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Figure 2.2: Examples of microfluidic devices A few examples of microfluidic
devices are shown. (Left) A PDMS device, with a coin shown for approximate scale
from: [124]. (Right) A PDMS device, bonded with tubing inserted into inlets and
outlets from: [125].

this point the liquid supernatant may be removed and then the pellet resuspended

in the desired new volume of DI water. The resulting osmotic pressure from the

DI water has not been seen to affect the viability of swimming of the CR due to

internal water regulating structures [123] At this point the desired quantity of col-

loids can be added and, keeping track of the volume of the combined mixture, we

can estimate the CR concentration. The pellet can be agitated gently to resuspend

the CR without damage the cells. The tube should then be returned to the diurnal

chamber for ∼ 1 hour to allow the cells to recover before being used in experiments.

2.2.4 PDMS Microfluidic Devices

In chapters 3 and 4 the experiments are performed using microfluidic devices. In

this section we will detail what these are and how they can be produced in a lab-

oratory setting. Polydimethylsiloxane (PDMS) is a silicon based organic polymer.

It is optically clear, reasonably inert and non-toxic. PDMS is also hydrophobic,

preventing wetting which makes it a good candidate for containing liquids. Raw

PDMS is a viscous liquid initially. However, it can easily be cured by using a cross

linker to form a transparent solid. In the following an outline of the key steps will

be given for microfluidic device production (for further details see [126]).
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To cure liquid PDMS a cross-linking compound is added at a ratio of 10:1.

The resulting mixture can be degassed to remove bubbles and then upon heat treat-

ment, over time, it will become an elastic solid. The trick here is that this curing

can be performed with the PDMS poured on top of any textured surface. Upon

pealing away the cured PDMS, after it has solidified, we are left with a negative of

that textured surface stamped into the PDMS using a mould.

Using photolithography, SU-8 photoresist can be conditionally hardened on

a substrate (a silicone wafer). It is possible in this way to produce moulds of any

reasonable shape to perform this stamping. To do this, with the aid of computer

software, a design for the microfluidic chamber can be made and a precise mask

produced. This mask is a thin sheet which allows the formation of the negative,

where the cavity of the microfluidic is intended to be, to allow columnated UV light

to pass through the sheet. First, by using a spin coater, the photoresist coats the

substrate to a precise desired thickness. Then using a UV light-source and the mask,

the photoresist is induced to cross-link in locations intended to form the textured

surface. Finally, a developer compound is used to remove the excess photoresist

(non cross-linked). These moulds then act as our textured surface and are used to

stamp designs into the PDMS [127, 128].

The cured PDMS is reasonably soft. As such, by using a scalpel it can easily

be cut, to aid in its removal from the mould. Using a circular biopsy punch, holes

through the device can also be cut, which can later be used as inlets or outlets for

fluid flow (See figure 2.2 right). With the device prepared it can now be bonded to

a glass cover slip. The bond comes as a result of exposing the surface of both the

PDMS and the cover slip to plasma. The plasma leads to oxidation, which in turn

causes the addition of silanol groups to both surfaces. When both exposed surfaces

come into contact they are able to form strong permanent bonds to each other. This

contact must occur somewhat quickly, as the new groups will not persist after the

plasma is removed. As a result of this bonding between the glass and the PDMS

the cavity is formed. Inlets can then enable liquids, cells, etc. to be inserted into

this space (see figure 2.2 left, shown as a grey substance).

2.2.5 Insertion of Prepared Swimmer-Colloid Mixture into Devices

Having produced a concentrated mixture of active and passive particles and pro-

duced the relevant microfluidic devices for the experiments, we can now describe

the process of insertion used in the experiments detailed in chapters 3 and 4. The

devices can be filled using a syringe and if necessary a small amount of tubing.

Between removal and re-insertion of any tubing, the inlet and outlet should be left
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with a small liquid droplet above, to avoid gas bubble introduction to the cavity.

Small gas bubbles, which are present after devices have been filled, drive undesirable

flows which can disrupt experimental measurements. Despite the fact that PDMS

is impermeable to liquids, owing to its hydrophobic nature, it is gas-permeable. As

such, by using the gas-permeability of the PDMS, any bubbles inside the chamber

can diffuse out through the PDMS. In general, the method for ensuring there are

no bubbles is to seal the outlets (using a paperclip or similar implement), pressurise

the chamber and wait for the bubbles to diffuse through the PDMS. Methods of

pressurisation include the use of a syringe, held at a constant plunger depth or the

removal of the plunger altogether, suspending a filled syringe at height to allow

gravitational potential to drive the pressure.

The insertion of both cells and colloids presents the issue of surface adhesion.

This leads to the particles getting pinned and no longer moving within the chamber,

which can disrupt experiments. To avoid the devices are pre-filled, using a Pluronic-

127 5% W/V solution (P-127). This thinly coats the walls within the chamber, thus

‘passivating’ the surface. The passivated surface will give less particle adhesion

of colloids or swimmers through adsorption. However, P-127 is non-biocompatible

with microswimmers. To prevent cells being damaged, after filling with P-127 and

leaving it to settle for ∼30 minutes to fully ensure the surface is passivated, the P-

127 should be thoroughly flushed out using water prior to cell insertion. When the

cells are inserted, following the passivation, the outlet and inlet (which as mentioned

prior should have a droplet above them to avoid bubbles) need to be blocked. This

blocking is used to prevent evaporation which can also drive flows within the device.

Blocking can be achieved using semi-solid oils like Vaseline.

2.2.6 Microscopy Techniques

The microscope used in this thesis for imaging was a Zeiss AxioVert 200M inverted

microscope [129] with a long-pass filter (cutoff wavelength 765nm) in the optical

path. The filter was added to prevent phototactic response from the CR cells in the

experiments.

Throughout this thesis, the microscope was used to perform bright-field il-

lumination to image the samples. This is the simplest form of optical microscopy,

in its most basic form it can be broken down to a few components. In this form of

illumination, white light is produced from a light source (for the Zeiss this comes

from a halogen lamp). A condenser lens is used to focus the light onto the sample

being imaged, it is this focused light that is filtered using the long-pass filter in this

thesis’ experiments prior to sample illumination. After the light has then passed
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100 µm

Figure 2.3: Taken from [131]. (Left) Shows an image containing two species of
particle, separable by eccentricity and visual intensity. (Right) Shows the Results
of the Kilfoil Algorithm, with CR (green) and colloids (red) highlighted.

through the sample, which will modify the light by attenuation, the light is collected

by an objective lens, this lens also magnifies the resulting image. Finally, the light

passes to the camera where the images of the system can be captured. The camera

will then have a physical pixel size. When combined with the magnification from

the objective lens the pixel size can be used to calculate the physical size of the

sample being imaged.

A complete introduction to the available techniques is given in [130] chapter

12, as well as more details on bright-field microscopy.

2.3 Data Analysis

2.3.1 Digitising Trajectories

During the experiments a series of images are captured. Within the images, we can

see both the swimmers and the colloids. Our aim is then to automate the recognition

of their positions, which is important to section 3.2.2. In this section, need to

measure the positional information for the colloids first to look at the stationary

distribution and then to extract information of large ‘jump’ events. This can be

done using a featuring algorithm such as that produced by M. Kilfoil (and various

other authors, using alternative programming languages) [132, 133]. The process for

positional data extraction will be described and an example of the result is shown in

figure 2.3. The first step in this process is to remove pinned artefacts, for example,

colloids which have become stuck within the channel and are thus immobile. To do

this, we can take an average of all of the collected images, the averaged image can
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then be subtracted from each image to remove such stationary artefacts. Following

this process, we have within our images a bright background (since nothing blocks

the microscope’s light from the objective) with dark spots where the cells or colloids

are. Using now the expected size, particle eccentricity and, a window of expected

maximum and average intensities, we are able to identify and distinguish the species

in the image. The recognition was performed first on a test set in our experiments,

with the tracking parameters modified to give the best particle recognition. Where

possible, they were chosen to maximally rule out false positives, while not giving too

many false negative cases. With the positions of all the colloids and the swimmers

marked within each of the frames, the next thing is to work out how the frames

are related. By considering both a range of possible distances and a number of

frames for which the particles can ‘disappear’, we are able to get the full particle

trajectories. Heuristically, for a position at step t a small circle around the position

is looked at at time t+ 1 to see if any measured positions are close. Multiple passes

are made for increasing circle sizes. Between t and t + m colloids can be detected,

where m is the number of frames in the memory. This allows correction for frames

in which colloids got false negatives, using colloids stored in the memory (and then

re-detected in subsequent frames) to fill in the gaps. Missing steps can be easily

corrected for, by interpolating the trajectories during missing steps since the step

size is small. For full details of this procedure works see: [133].

2.4 Computational

2.4.1 Important Statistical Processes and Distributions

During the computational portions of the work we will refer extensively to the Pois-

son process, Poisson distributions and exponential distributions. Specifically, once

we extract the jumps from the colloid’s measured positional data in section 3.2.3, in

section 3.2.4 we will model the colloid’s jump process as a Poisson process, the result

of which is a jump with an exponentially distributed size. Armed with descriptions

of the details of Poisson processes, we go on to implement them throughout section

3.4 for the stationary distribution, 4.4 for the dynamics, and in section 5.3. A brief

outline of each will be given here and references provided for further details.

The first process of interest is the Poisson point process. This is a model

used for discrete random events where the average rate is fixed, but the exact mo-

ment when the events happen is random and independent of the previous. A loose

anecdotal example (since in the strictest sense it is untrue in the real world) of this

is bus arrival times. Most bus companies will advertise ‘every 20 minutes’, however,
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due to traffic and real world conditions these buses arrival times in fact randomly

distributed. As well as this, the next bus driver, who sticks rigidly to his timetable

(which sets the process’ rate), will not know the previous was late/early. Thus, we

see in this case that these events are independent from each other.

For such continuous time Poisson processes, for which the events are inde-

pendent with a given rate, then the probability of k events occurring before a time

t is given by

pp(k;T ) =
(λT )k

k!
exp (−λt), (2.1)

where λ is the rate of the process. For such a process, we can also calculate easily

the probability of an event occurring at, or before, a given waiting time: τ . To

do this we look at the probability that no events occur pp(0; τ) and then look at

1− pp(0; τ) to give the probability this did not happen

Pw(τ) = 1− pp(0; τ) = 1− exp (−λτ). (2.2)

Finally, for Poisson distributions we note, for small τ we can make the fol-

lowing approximation, expanding the exponential, with terms of order τ2 negligible

we get

Pw(τ) = λτ. (2.3)

The next type of distribution is the exponential distribution. This process

is generally also associated to the time it takes for events to occur. A real world

example could be nuclear decay or the subsequent production failed product on a

factory’s production line. In this case the probability density of a given event is

pe(t) =
1

`
exp

(
−x
`

)
. (2.4)

Importantly, the average value 〈x〉 is given by `. Notice, that Pw(τ) with λ = 1
` is the

associated cumulative distribution function of (2.4). The reason for this is because

the lengths of the wait times in a Poisson process are exponential distributed.

2.4.2 Acceptance-Rejection Schemes and Inverse Sampling

In section 3.3 we will detail a numerical model in which experimentally measured

of dynamical property’s distributions are re-sampled, in an attempt to replicate the

stationary distribution. To do this we need to implement, an acceptance-rejection

(AR) scheme, a numerical method used to generate discrete sample events which
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follow a given distribution. The idea is as follows, a uniformly distributed number is

selected, a portion of this interval designated as ‘accept’ according to a distribution

and the remainder is ‘reject’.

To use the example of (2.3), which gives the probability of a Poisson process

generating an event between t = 0 and t = τ for a small τ . Here, to use acceptance-

rejection we need a subset of the interval [0,1] of width λτ (corresponding to the

probability from (2.3)): Λ = [1−λτ
2 ,1+λτ

2 ] is such an interval. So, if a uniformly

distributed random variable (which is generated at each time-step for comparison)

is within this interval Λ, it constitutes an acceptance, while if it’s in the complement

of this interval then it is a rejection. The result of which will be a sequence of ‘accept’

or ‘reject’, and the acceptances will be Poisson distributed with a rate λ.

Inverse transform sampling is a method of generating a series of samples

which are distributed according to a known distribution. However, rather than

getting a binary (discrete) value as was the case for AR, we hope to generate a con-

tinuous value at each step. If we have a random variable X which has an associated

cumulative distribution function FX , then we may construct a new random vari-

able: Y = FX(X), and this new random variable will now be uniformly distributed

on [0,1]. If an inverse of the cumulative distribution can be formed, then we get:

F−1
X (Y ) = F−1

X (FX(X)) = X. So we see that the values of F−1
X (Y ) for a Y which

is uniformly distributed on [0,1] will itself have the same distribution as X. This

process can be used for a distribution measured from experimental data by using

interpolation methods (for example spline [134]), allowing arbitrary distributions to

be sampled.

2.4.3 Milstein’s Method

In section 4.4, we describe a simulation that replicates the dynamical properties of

passive particles under the influence of active particles in the presence of a selec-

tively permeable membrane. To do this, we implement drift and diffusivity which

positional dependence and so we need to use tools that account for this inhomoge-

neous system. Milstein’s Method is a way to approximate the solutions for certain

stochastic differential equations (SDEs), which have both positionally dependent

drift and diffusion. We consider the following SDE,

dXt = a(Xt)dt+ b(Xt)dWt, (2.5)

where Xt represents the position at a time t, a(Xt) captures the magnitude of a

spatially dependent drift, dt is an infinitesimal time interval, b(Xt) gives the spatially
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dependent diffusivity size, Wt is a Wiener process [135] with ∆Wt = Wt+1 −Wt.

What this means is that Wt has increments which are normally distributed, that is

Wt = Wt −W0 N(0, t), with 0 mean and a variance t.

For such an equation, the following recursive relation can be used as an

approximation to the solution,

Xm
n+1 = Xm

n + a(Xm
n )∆t+ b(Xm

n )∆Wn +
1

2
b(Xm

t )b′(Xm
t )
(
(∆Wn)2 − α∆t

)
. (2.6)

Here, Xm
n is the Milstein approximation to the true solution, where the nth time step

is tn = n∆t within an interval of total length T. It follows from this that ∆t = T
N

and for N → ∞ the approximation will converge to the true solution [136, 137].

There are two key features here to note. Firstly, the presence of the b′ contribution

on the right hand side of (2.6), which is in effect another contributing drift, due

to gradients in the diffusivity. Secondly, the term α, which codifies the integration

scheme which is being used, α = 0 being the Stratonovich scheme, and α = 1 being

the Itô scheme [136].

2.4.4 Weeks-Chandler-Andersen Forces

In chapter 5, we will implement a model of active particles interacting with passive

particles. Unlike in previous simulations, where there is no interactions between

colloids and swimmer-colloid is captured by implementing a coloured noise, this

time the simulation captures this inter-particle interaction explicitly. So, we need

to introduce a force particle in contact with each other experience. The Weeks-

Chandler-Andersen (WCA) potential is a modification of the Lennard-Jones (LJ)

potential [138]. It can be used to model the potential between two objects which

is repulsive at short distances and non-interacting (zero) otherwise. LJ is repulsive

at short distances, but instead becomes attractive further away. To counter this,

WCA shifts the LJ potential to ensure it is always purely repulsive (or attractive)

and ensures that it remains 0 above this point. The form of the two are as follows:

ΦWCA(r) =

ΦLJ(r) + ε if r ≤ 2
1
6σ

0 if r ≥ 2
1
6σ

, (2.7)

ΦLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
. (2.8)

29



Here, r is the separation between the two interacting objects which are being con-

sidered, ε is the depth of the attractive well for the Lennard-Jones potential, σ

the constant which sets the separation at which the objects feel neither attraction

or repulsion. The second case within (2.7) is exactly the separation where the LJ

potential is at a minima and so there is no force, by setting the potential to be 0

beyond this point. This ensures beyond a threshold distance the objects continue

to be non-interacting. Conversely, beyond this point in (2.8) we see the 6th power

term overcomes the repulsion from the 12th power term, hence we get attraction.

With this in place, we are now able to discuss the forces that result from

such a potential. Using Fr = −∇rΦ, given our expression Φ for the potential, for

r ≤ 21/6σ we have

F = −24εσ6

[
r6 − 2σ6

r13

]
. (2.9)

Notice, here the nominator inside the square brackets is always negative, since this

expression is only valid for r < 2
1
6σ, otherwise the force is zero. As a result of this,

we can see that the resulting force from the interaction always has a positive sign,

and so the objects are pushed from each other.

These results can easily be generalised to a pair which exists in a two-

dimensional space (or more) by noting r =
√

(x2 − x1)2 + (y2 − y1)2 for particles

at (x1, y1) and (x2, y2). Using x = x2 − x1 and y = y2 − y1, then taking instead:

Fx = −∇xΦ and Fy = −∇yΦ, we are able to construct component-wise the forces.

The result of which is that

Fxi = −∂Φ

∂r

∂r

∂xi
= −24εσ6

[
r6 − 2σ6

r13

]
xi
r
, (2.10)

where xi can be either the x or y directions.

Another generalisation which can be easily made is the extension to calculat-

ing torques. This time, we consider particles placed at (x1, y1) and (x2+a cos(θ), y2+

a sin(θ)), this means that now our distance equation is modified to give

r =
√

(x2 + a cos(θ)− x1)2 + (y2 + a sin(θ)− y1)2. (2.11)

From this result, by using the chain rule we can get the force due to orien-

tational changes of the form

Fθ = −24εσ6

[
r6 − 2σ6

r13

]
a(y cos(t)− x sin(t))

r
. (2.12)
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Here, x and y are defined as: x = x2 + a cos(θ)− x1 and y = y2 + a sin(θ)− y1.

2.4.5 Numerical Solutions for Stochastic Systems

When modelling the particles in chapter 5, since we now explicitly include the

particle-particle interactions through the WCA potential, we introduce the possibil-

ity of large moves due to numerical errors. To avoid this, the simulation’s time-step

must be decreased. However, as we will describe in this section by implementing

higher-order numerical schemes, we can also prevent these numerical errors at a

larger time steps. The most basic numerical scheme available for the solution of

differential equations is the Forward-Euler (FE) method [139]. If we are given an

initial value problem: dy/dt = F (y, t) and y(0) = y0, where y(t) is the desired

function. Then for a fixed small value h we can write the iterative equation

y(t+ h) = y(t) + hF (y(t), t) +O(h2). (2.13)

Here, O(h2) is the local truncation error, the error associated to each individual

iterative step. This value scales as the square of the time-step h and it’s value

added up over the solution as the iteration is used to find y(t) for all the various

values of t. Once the value of this error is summed over the course of the solution we

get the global truncation error, which in the case of Forward-Euler is O(h). What

this means practically: If we perform two numerical solutions with h1 and h2, where

h1 = 2h2. The comparative error we should expect for the h2 simulation will be half

that of the h1 solution.

Next, we generalise this solution scheme to a stochastic differential equation

(SDE). In this case we have that

dXt = a(Xt)dt+ b(Xt)dWt. (2.14)

Here Xt has conventionally replaced y(t), a and b are positionally dependent func-

tions which determine the relative contribution sizes of each of the terms and,

dWt is an infinitesimal increment in a Weiner Process W (t) defined as: dWt =

W (t+dt)−W (t). Notice, this equation is an analog to the initial value problem, so

if we have X(0) = X0 and choose a fixed time-step δt then we can write iteratively

Xt+δt ≈ Xt + a(Xt)δt+ b(Xt)δWt. (2.15)

Notice this is an equation of similar form of (2.13). This solution is called the Euler-

Muruyama (EM) scheme [139]. However, this time we have a system with a global
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truncation error O(dt
1
2 ). As such, we require relatively a much larger reduction in

the time-step to achieve equal improvements in the solution’s error.

To improve upon the associated error, one can use higher order numerical

schemes. One such example of this is the Runge-Kutta (RK) scheme [139], which is

an implicit-explicit method. To explain what this means we will outline qualitatively

how this numerical scheme works for second-order. First, as with the previous

schemes, for a given time-step we know the current state of the system. Using the

information encoded in the differential equation to be solved we can construct the

solution a small time ahead (as indeed we did in FE). This information is explicit

since we only use information from time t to calculate it. At this point the scheme

diverges; we retain this newly calculated position and from this position calculate

another time-step forward into the future. This two-steps ahead position is known

implicitly, since we have used position from t+δt to calculate it. Written as a rough

equation we then have y(t+2δt) = y(t)+δy1 +δy2. However, this is not the position

we implement in our solution, instead we use: y(t+ δt) = y(t) + 1
2(δy1 + δy2). Here,

we have used an average of the implicitly calculated and explicitly to give a position

which factors for both. In this case we get a resulting global truncation error of

O(δt2).

Much like for the FE which can be converted into the EM for SDEs, the

same is true of RK schemes; the name of the solution for the more general class of

differential equations remains RK in the literature (SRK will refer to the stochastic

variant). As with EM when compared to FE, there is a reduction of the order of

the global truncation error due to the stochastic terms. In the case of second order

SKR we get a global truncation error O(δt) [140, 141].

2.5 Theoretical

2.5.1 Kramers-Moyal Expansion

In section 3.4, building from a Langevin equation we derive an integro-differential

master equation, the solution of which describes the probability distribution of pas-

sive particles under the influence of coloured noise. This master equation proves

intractable to solve and requires the use of a Kramers-Moyal expansion to proceed.

In this section, we will derive how the master equation of a distribution can be writ-

ten in terms of the moments of a conditional probability distribution function, which

relates to how the distribution evolves in time. If we can do this, and we know these

moments, then we can get the master equation. This full master equation written

in terms of the sum of all of the moments is called the Kramers-Moyal expansion of
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the distribution [142, 143].

First, a distribution function P (x, t) is a function describing the probability

of finding a particle in the positional range (x, x+dx) at a given time t. In stochastic

systems such functions can provide important information about their properties.

In general, for time dependent system we can write

P (x, t+ τ) =

∫
w(x, t+ τ |x′, t)P (x′, t)dx′. (2.16)

This is because, all particles at (x, t+ τ) must have arrived there from somewhere,

by moving from various other positions (x′, t). At time t, P (x′, t) can be interpreted

as the total proportion of particle at (x′, t) and by calculating the product w(x, t+

τ |x′, t)P (x′, t) we can work out what proportion of the particles that started at

(x′, t) ended up at (x, t + τ). Finally, by integrating over all the possible values of

x′ (including x’=x), we can work out the portion of particles that are at (x, t + τ)

after this transition has occurred. We assume then that all of the moments of the

conditional probability distribution function are known, then

M (N)(x′, t, τ) =

∫
(x− x′)nw(x, t+ τ |x′, t)dx. (2.17)

We can then write the conditional probability distribution function

w(x, t+ τ |x′, t) =

∫
δ(y − x)w(y, t+ τ |x′, t)dy. (2.18)

Where δ(y − x) is the delta function. We can then use an expansion of the delta

function, with a slight modification of the derivative to give

δ(y − x) = δ(x′ − x+ y − x′) =
∞∑
n=0

(y − x′)n
n!

(
∂

∂x′

)n
δ(x′ − x)

=

∞∑
n=0

(y − x′)n
n!

(
− ∂

∂x

)n
δ(x′ − x). (2.19)

Here, we have used the fact that ∂/∂x′f(x − x′) = −∂/∂xf(x − x′). This can

be seen by setting x − x′ = y, on taking the derivative with respect to x′ we get

∂/∂x′f(y) = ∂f(y)/∂y ∂y/∂x′ = −∂f(y)/∂y. By considering ∂/∂xf(y) we get the

desired result. Putting all this back into equation (2.18) then we have
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w(x, t+ τ |x′, t) =
∞∑
n=0

1

n!

(
− ∂

∂x

)n ∫
dy(y − x′)nw(y, t+ τ |x′, t)δ(x′ − x)

=

[
1 +

∞∑
n=1

1

n!

(
− ∂

∂x

)n
M (n)(x′, t, τ)

]
δ(x′ − x). (2.20)

By substituting this into equation (2.16) and rearranging then we can write

P (x, t+ τ)− P (x, t) =
∞∑
n=1

(
− ∂

∂x

)n [M (n)(x′, t, τ)

n!

]
P (x, t). (2.21)

By dividing both sides of this equation by τ and taking a limit of τ → 0 then we

get the equation of motion in the Kramers-Moyal expansion form

∂P (x, t)

∂t
=
∞∑
n=1

(
− ∂

∂x

)n [
D(n)(x, t)P (x, t)

]
. (2.22)

Where D(n)(x, t) = 1
n! limτ→0

1
τM

(n)(x, t, τ) are the Kramers-Moyal coefficients.

The coefficients are subject then to Pawula’s theorem [143]. What this tells

us is that there are only three such forms of this expansion. The first case is that

D(n) vanishes for all n > 1 in which case the equation of motion is deterministic

and the motion consists only of a drift. Secondly, D(n) vanishes for n > 2, this

gives us the Fokker-Plank equation and the motion is made up of both a drift and

a diffusion. Finally, we can have that the expansion contains all terms. In this last

case any truncation of the expansion for a finite order higher than n = 2 will lead

to a non-positive P (x, t), which of course is non-physical. We will see in section 3.2

that the jumps in colloid trajectory constitute a non-zero second moment. Thus, in

section 3.4 we are either in the case which requires two moments or infinitely many,

and we shall see it is sufficient to consider the first two moments to reproduce the

experimental positional dependence.

2.5.2 The Narrow Escape Problem

The narrow escape problem is a famous problem, the statement of which is as

follows. We consider a system with a particle moving around within a container.

The container then has two distinct types of boundary. The first type is reflective,

if the particle reaches this boundary type it bounces off and then continues moving.

The second type is absorbing, if the particle reaches this then it is absorbed and
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thus removed from the system. For such a system, given a prescribed type of motion

(classically this is Brownian), we can then calculate the expected amount of time

a particle will take to be absorbed at the boundary. This is exactly the situation

we find ourselves in, in chapter 4. Up to this point, our simulations implement a

coloured noise. However, we see in section 3.4, we can also model this system as

an effective drift diffusion equation. In this section, we will look how such a system

can be modelled.

For a two-dimensional disk of radius R and one absorbing ‘exit’ on the bound-

ary corresponding to |θ| < ε, where the particle’s coordinates are given in polar

coordinates by (r, θ), the equations needed to work out the mean first passage time

of a Brownian particle to the absorbing portion are

∇2t(r, θ) = −D−1 |r| < 1, − π ≤ θ < π,

∂t(r, θ)

∂r r=1
= 0 |θ| > ε,

t(r, θ)r=1 = 0 |θ| < ε. (2.23)

Here, t(r, θ) is the expected time to be absorbed given an initial condition of (r, θ)

and D is the diffusivity associated to the Brownian motion of the particle. The

second line codifies the reflecting boundary condition (since there is no flux through

the boundaries) and the third line the absorbing, since particle which begins at

such positions instantly is absorbed [144, 145]. This is in effect a Poisson equation

with mixed inhomogeneous boundary conditions. A one-dimensional derivation of

which is given in [145] and also some direction towards inclusion of drift by analog

to electrostatic boundary-value problems.

Although, as we see in [144] some of these problems can be solved analytically,

due to the large number of small exits (the result of which is a relatively large

boundary portion associated to absorption) these calculations will turn out to be

unhelpful and thus are omitted here. The chief take away from section is that for

such systems we have equations (2.23), which can be solved numerically for a given

constant diffusivity and prescribed geometry. However, we will see for this system

the numerical solution does not give a good prediction of the dynamics of escape

we measure in the experiments and that inclusion of particle drifts are needed to

reproduce the measurements.
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Chapter 3

Active-Driven Dynamics of

Colloids in Confinement

3.1 Introduction

We begin by introducing a set of experiments in which a mixture of active and

passive particles are introduced into a straight pseudo-two dimensional microfludic

channel together. It has been established that many microswimmers, in the pres-

ence of boundaries, will tend to accumulate near them to varying degrees [29]. In

[146], a system of interacting self propelled particles was studied using numerical

simulations within straight channels subject to a variety of flows. In this study it

was clearly demonstrated that particle aggregation near to the boundaries occurs.

Indeed, we see in our dilute system this accumulation manifests as a time-averaged

effect; partial accumulation near the boundary, with swimmers occasionally leaving

and re-enter this region. As a result of this, there is an inhomogeneous distribution

of swimmers close to any surface. If we measure the swimmer distribution over a

long period of time, we see a non-uniform distribution. Since the swimmers contin-

uously consume different energy forms within their environment, they are able to

sustain a non-equilibrium distribution. Despite this the distribution is found to be

stationary, with a consistent time averaged shape. The shape of any confining cham-

ber that swimmers are placed into, in an experimental context, is if course entirely

controllable. This is because we can design a microfludic device to be of any shape,

by doing so altering the swimmer distribution shape. Hence, if we understand the

relationship between the shape of such chambers and the resulting inhomogeneous

distribution of swimmers, then in theory by tuning the confining geometry, desir-

able swimmer distributions can be produced. In experimental systems it is well
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known that wall scattering dominates the boundary interactions [147, 151], where

it’s noted that flagella contact in the vicinity of boundaries leads to a distribution

of exit angles. Using this scattering idea, and by modifying the confining bound-

ary’s curvature that the cells experience, experiments have been designed to use

this curvature to guide the swimmer’s motion [148]. The results of which is further

explored in [149], where experiments using CR and simulations are used to show

that by considering the curvature in general confining geometries, the active fluxes

that are generated by the motion of the CR can be calculated. In this chapter we

will build on this idea. Considering the the swimmers as active bath, which thanks

the the chamber geometry will have spatially dependent properties. As a result of

these properties we will see that a non-uniform distribution of swimmers results

in a straight channel, replicating what has been seen in previous work [146]. We

will see how this swimmer distribution impacts the behaviour of passive colloids by

measuring their positional distribution and their dynamics.

3.2 Microfluidic Straight Channel Experiments

In this section we will briefly introduce the experiments performed and explain the

design choices of the system being studied.

3.2.1 Experimental Design

By utilising CR and similarly sized (∼10µm) polystyrene colloidal particles we can,

using microfludics, explore this inhomogeneous swimmer distribution’s effect on

passive colloidal particles. In sections 2.2.1-2.2.5 an outline of the various experi-

mental protocols and some further references for a more comprehensive description

are given. The simplest confining chamber geometry available is a pseudo-two-

dimensional straight channel, bound by two walls. The channel’s height is designed

to be comparable in size to the diameter of a CR cell. Another key benefit to the

pseudo two-dimensional channel design, we have a system of colloids and swimmers

that all lie in one focal plane. Within the experiments, bright-field microscopy (see

section 2.2.6 for details) was used to acquire images. As noted in 1.6, the previous

work on this subject has seen a split in focus for active-displacements. Hydro-

dynamic effects on one side, looking at the effect that the flow generated by the

swimmer affects the passive particles. Steric events, on the other, in which contact

between the particles plays the major role. In this work we have not distinguished

these types of event, instead focusing on ‘large’ events, without focusing on what in-

teraction type originates them. By having the colloids and swimmers be constantly
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b)

Figure 3.1: Schematic of the straight channel microfluidic (A) Schematic
showing the geometry of the microfluidic channels, with lengths exaggerated for
clarity. Swimmers are shown as green circles with two flagella, the colloids as black
circles. We see the different channel widths between the two reservoirs. (B) Exper-
imental image of the channels taken away from the reservoirs.

in focus and using a high frame rate, all such large events can be tracked in their

entirety.

Within the straight channel’s confinement it is clear that there are two princi-

ple directions. These being perpendicular to the boundary and parallel. As we study

the dynamics of the colloids, it will become clear that it is in fact the perpendicular

direction which contains the most dynamical inhomogeneity.

As well as this, we will compare channels of different widths. Far away from

any of the boundaries, we should expect that the behaviour of the system will return

to a ‘bulk’ behaviour. By looking at the different channel widths, we are able to

assess whether or not any difference in behaviours, that result from the boundaries,

can be boiled down to purely the distance from it. In effect, if this can be shown

to be the case then we have reduced the passive dynamics dimensionality from a

two-dimensional problem, to a one-dimensional. Since then all we need to know is

the distance to the nearest boundary to predict the behaviour.
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Figure 3.2: Stationary distribution of colloids and swimmers Figuring show-
ing the relative probability of finding colloids (solid line) and swimmers (dotted line)
at given distances y measured in micron from the closest boundary. Four different
channel widths are indicated using the following colours: 50um (yellow), 100um (or-
ange), 150um (brown), 200um (black). Two faint lines are used to indicate two key
lengths, (blue) indicates the distance of one colloid radius (5µm) from the boundary
and (red) shows the sum of a colloid diameter and a swimmer radius (16µm).

The microfluidic channels are positioned between two large reservoirs, which

themselves are connected to the inlet and the outlet, to allow for easy insertions of

mixtures. The reservoirs serve to maintain the concentration of CR and colloids in

the thin channels between them, and by imaging close to the centres of these thin

channels we are able to neglect the effects of the reservoirs. The concentration of

swimmers and colloids is reasonably dilute. This ensures that any collective effects

of both species can be neglected.

3.2.2 Stationary Distributions of Colloids and Swimmers

The data from the microfluidic experiments described above is in the form of a time

lapse of 80,000 images taken at 10 frames per second. The images show the positions
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of the colloids and swimmers over the duration of the experiment. From the images

digital trajectories for each particle can then be produced (in the section 2.3.1 details

are given on this tracking process), with the positions of the centres of the colloids

and swimmers at each time-step measured. From this positional data we can get

the positional probability density function (PDF) as a function of distance from

the nearest boundary. By choosing to use the distance to the nearest boundary

as the principle measurement, this allows us to symmetrise the data around the

centreline of the channels, effectively doubling the overall data. This PDF can be

seen in figure 3.2.4, where we see the colloid distributions represented by a solid

line and the swimmer distribution in dashed. Each of the channel widths tested

in the experiments is shown in a different colour. In both species, the curves show

non-monotonic behaviour.

Starting first with the curves for the swimmers; there is a clear peak in the

positional distribution for all widths at ∼ 15µm from the boundary (y = 0), roughly

the sum of the CR radius and either a colloid diameter or a flagella. It has been

shown previously that flagella interactions dominate the near boundary behaviour

of CR [147], as as a result this causes a peak due to the extra time swimmer spend

at this distance from the boundary scattering. However, this result is also likely

exacerbated by the presence of the colloids which, due to their accumulation, could

also be acting as a partial boundary. On either side of this swimmer PDF peak we

see a decrease on the boundary side decreasing to 0. While inside the channel the

distribution decreases to a constant value. This tells us that far enough away from

the boundary we expect that the swimmers will distribute uniformly and recover

their ‘bulk’ behaviour. Since there is a fixed distance from the boundary in which

the swimmers feel the effects of the boundary. For the smaller channel widths, this

boundary area makes up a larger portion of the overall channel, so we see that the

effect is larger in these cases.

The colloids, similarly, have a distributional peak near to the boundary.

However, this time the peak is present 5.9 ± 1.5µm, comparable to the particle

radius which is indicated in figure 3.2.4 with a faint blue line. Between 10− 20µm

we then have a depleted region. This depletion is in the vicinity of, but not exactly

aligned with, the swimmer’s distributional peak, suggesting that this is perhaps not

merely an exclusions effect. As we will come to see, when we study the dynamics

of the colloid motion near the boundary, it turns out that this effect is due to an

asymmetry between motion of the colloid toward and away from the boundary in

this area. As a result there is an excess of colloids which are pushed toward the

boundary. Following this depletion region there is a recovery to the bulk value, as we
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v (µm s�1)

Figure 3.3: Example trajectory colourised by local speed Figure showing a
single example trajectory of a colloid tracked in the experiments. The colour showing
the local velocity of the colloid as it moves along the trajectory: values of which are
given in the colour-bar in µs−1. Boundaries within the system are shown at the top
and bottom by thick black lines. A 10µm scale bar given.

saw with the swimmers. As with the swimmers, this peak, depletion and recovery

is present for all the channel widths in the experiments.

3.2.3 Extracting Colloid Jumps from Positional Data

In 1.6 we highlighted the various methods in which large displacements can come

about for colloids, due to swimmers. These can be either hydrodynamic or steric.

However, in both cases these large displacements have hallmark features that enable

us to distinguish them from Brownian motion within the trajectories. In figure 3.3

we see an example trajectory of a colloid colourised by the local velocity along

the trajectory. For the most part the motion can clearly be distinguished into

two distinct types; (blue/green) slow diffusive motion and (yellow/red) fast ‘jump’-

like ballistic motion. Based on previous works, [150, 46], we postulate that the

overall positional PDF largely depends on these fast jump events, which can be
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distinguished by noting that the local velocity during the jump events and the

directional correlation behaviours are very different to what they undergo during

Brownian motion. As such, we will isolate these portions of the trajectory and

characterise the dynamics to see if indeed the jumps do dictate the behaviour of the

stationary state.

In order to recognise the jump events within positional trajectories, we use

a hybrid method, similar to both [150, 46], but with some slight modifications. The

process follows first the method of [150], using directional correlation between subse-

quent particle displacements to identify candidate periods of non-Brownian displace-

ment. Subsequently, as in [46], the individual displacements during these periods

are evaluated to ensure that their constituent steps are sufficiently large,verifying

them as non-Brownian in origin.

To look for the directionally correlated windows we start by defining the

displacements ∆r(t) = r(t + ∆t) − r(t), where r(t) is the colloid position at time

t. With these we calculate the scalar product p∆t(t) = ∆r(t + ∆t) ·∆r(t). In the

Brownian case 〈p∆t(t)〉 = 0 with a standard deviation given by qc =
√

8D0∆t. For

a diffusivity D0 = 0.0439µm2/s (the thermal diffusivity for a 5µm radius at 300 K

in bulk water found using the Stokes-Einstein relation) and a time between frames

∆t = 0.1 s, we have qc = 0.0124µm2. Notice that, due to hydrodynamic interactions

between colloids and boundaries, D0 over-estimates the thermal diffusivity of the

colloids in our experiments. This makes the threshold for classification of active

jumps more stringent. From this we compute q∆t(t) = (p∆t(t+∆t)+p∆t(t))/2, and

use 4qc as a threshold to select sections of a colloids’ trajectory which are sufficiently

directionally correlated, and which could therefore be non-Brownian in origin. Fi-

nally, we confirm that each of these potential jumps (consecutive time steps where

q∆t(t) is above the threshold) has individual constituent displacements which are

sufficiently large to rule out correlated Brownian motions. To do this, we calculate

for these trajectories the displacement magnitudes |∆r(t)| = |r(t+1)−r(t)|, we can

then compare these values to the Brownian expectation
√

4D0∆t = 0.132µm. For

a candidate jump trajectory, requiring that at least 70% of the individual displace-

ments within it are larger than the Brownian prediction for the overall jump to be

confirmed. This percentage strikes a balance between being over-selective, losing a

large portion of actual jumps, and under-selective, mis-classifying non-jump events

as jumps.
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c)

Figure 3.4: Colloidal jump wait time dynamics (a) Shows a semi-log probability
distribution plot of a given wait time (τ) for the 50µm channel width experiment.
Here, the colours show distance from the boundary with red at the boundary and
blue in the bulk. Single rate Poissonian fits are shown as a solid line. (b) Shows the
average wait time measured as a function of distance to the boundary. The colours
represent 50µm (green), 100µm (blue), 150µm (red) and, 200µm (black) channel
widths. A fit is given in solid black for the 100µm. (c) As with (b), the average wait
time is shown. Each curve in (c) has been scaled by their concentration relative to
that of the 100µm channel’s.

3.2.4 Space-dependent Properties of Colloid Jumps

The first question that must be addressed to characterise the jump dynamics is the

following: For a given colloid, at some distance from the boundary, how long should

it be expected to wait before a jump will occur?

Since we can distinguish jumps from within a trajectory it is possible to

measure this. We can look at the time at which the jump n ends and compare this

to the time at which jump (n+1) starts, the difference in which we call the wait time.
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Along each of the colloid’s individual trajectories we are able to construct these wait

times. Further, we associate these wait times to the position at which jump n ends

to give the waits themselves positions. Here, we are implicitly assuming, since the

diffusivity of the colloids is relatively low, they don’t move far from this point. Thus

this is the point at which the waiting was done. By binning all of the wait times

by the distance of the position where the colloid waited from the boundary, it is

possible to construct the PDF of colloid wait times within these uniformly sized

bins. This distribution can be seen in figure 3.4(a), for the case of the 50µm width

channel, where the circular markers show the experimentally measured distribution.

Within this plot we can see different distances from the boundary represented by

the colour of the markers, with red markers near the boundary and blue markers

in the bulk. Noting this plot is in semi-log scale then we can see two straight line

gradients for each of the curves, depending at which part of the curve we look at.

There is a steeper straight line for early wait times and then a shallower line for

the longer wait times. The earlier value gradient is suspected to be due to repeated

interactions of the colloid with the same swimmer. Some swimmers observed in the

experimental time-lapse had a tendency to interact with a colloid, pass it and then

turn back. Despite these slightly disparate gradients for the two time scales, to

a reasonable degree of accuracy the two can be encapsulated by a single gradient.

This is represented in each binned distance’s PDF by the solid lines within the

figure. The assumption being made here, with the use of a single fit line, is that

the waiting time is given by a Poisson process (further details on these processes

and their associated distributions are given in 2.4.1). However, it is also clear that

priority must be given to either to early or late times if we are to approximate the

curves as a process with a single rate. To do this we must consider both the fact

that, as a Poisson process, the late times are crucial to capturing the dynamics. But

also that, due to their rarity, events of this length are less likely and so the statistics

on these are not as good. We find that for our data the single rate fitting based on

early times has a characteristic time-scale ∼1s and based on the long times ∼3s.

To determine which timescale is more important these fits, an alternative

method of estimating this wait time can be performed, by measuring instead the

bulk effective diffusivity. If we think of the whole trajectory as being made up of

diffusive parts and jump segments, with an occurrence average rate λ and length

〈`〉, we are able to estimate an effective diffusivity of the colloids. Here, we are

trying to estimate only the bulk wait time, so we exclude trajectories close to the

boundary, since we know from the measurements in 3.4(a) that close to the boundary

(red curve) the rate is significantly different from the bulk. To distinguish these
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trajectories we use the trajectories that lie in a 120µm strip within the centre 200µm

channel. Within this strip the average wait time (and hence encounter rate) can be

considered constant, since we are far enough away from the boundary to neglect its

influence, so we have an average rate λ(yctr). The same is true of the length of the

jumps, we we consider `(yctr). Using the measured trajectory data of the colloids,

the effective diffusivity in bulk can be directly calculated. Then by separating the

trajectory into diffusive and jump portions, which can be done using the jump

detection previously outlined, we are able to calculate the diffusivity in trajectory

portions in which the colloids are only diffusing and the net length of the jumps in

the remainder of the trajectory. In this case, the long-time diffusivity Deff is

Deff = DWJ +
1

2
λ(yctr)〈`2(yctr)〉, (3.1)

where DWJ is the diffusivity of the colloids within the channel when they are not

undergoing a jump and 〈`2(yctr)〉 is the averaged squared size of the jumps. The

experimental value is found to be DWJ ' 0.162 ± 0.0057µm2/s. If instead we

work with the full trajectory, without distinguishing jumps, within the central strip

then we are able to work out the effective diffusivity Deff = 1.82 ± 0.02µm2/s.

Finally, we can work out 〈`2(yctr)〉 by looking at the net displacement of all the

jumps that occur within the strip to give 〈`2(yctr)〉 ' 15.5µm2. All of these values,

together with equation 3.1, then allow us to estimate the bulk rate λ(yctr) = 0.23s−1.

For the data in figure 3.4(a) the gradient estimation can be done in the following

way. By using the standard least squares fitting to the distribution, which gives

a bulk rate of λ(yctr)lin = 0.97 ± 0.02s−1 or using the least squares fitting to the

logarithm of the distribution of the wait times, giving λ(yctr)log = 0.32 ± 0.01s−1.

The result of these two measurements is respectively a weighting toward earlier

time and later times. We can see that the latter estimation, which gives more

weight to the tails of the distribution, provides a better estimate of the interaction

rates when compared to the bulk effective rate, confirming that using the tail of

the distribution provides a better match to the average rate measured directly. We

therefore extract the effective rates λ(y) using the least squares fit to the logarithm

of the experimental data and these are the lines are then plotted in 3.4(a) as solid

lines. To further support this approximation, we will see that it turn out to be

sufficient to recapitulate the distributions both in numerical simulations in 3.3 and

in the theoretical modelling in 3.4.

Now that the wait time PDFs have been measured, it is then reasonable

to extract the space-dependent encounter rates λ(y) from the gradients identified.

However, at this point, we must note that the different channels have somewhat
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different swimmer concentrations. These concentrations are given in table 3.1. As a

result of the different concentrations, each of the channel’s colloids sees a somewhat

different encounter rate.

We can see these unscaled rates in figure 3.4(b). With a further processing

step, re-scaling to the channel swimmer concentration, we recover the same bound-

ary dependence for each of the channels, this is shown in 3.4(c). This extra step

accounts for the fact that the swimmer concentrations within each of the channel

is quite different. Supporting that, at these concentrations the encounter rate is

approximately linear in swimmer concentration. In each channel width in 3.4(c) we

see that there is a decrease in the encounter rate near the boundary and a recovery

to a bulk value over a similar range in each case. Interestingly, the shape of this

curve does not match the positional PDF of the swimmer’s distribution. It might

be intuitive to assume based on the previously highlighted detail, more swimmers

means more jumps (via. the encounter rate), that this would be the case. However,

we saw in figure this is not the case, which likely reflects the fact that the proximity

to the wall limits the possible directions that the swimmers can move in when in-

teracting with the colloids. A fit to the characteristic encounter rates is given in the

figure (solid black), this is an exponential relaxation to a bulk value as the colloid

moves away from the boundaries. The analytic function for this fit curve is

λ(y) = (λw − λb) exp

(
−y − ycol

`λ

)
+ λb. (3.2)

Here, λw is the encounter rate at the wall (boundary), while λb is the encounter rate

in the bulk of the channels far from the walls, y is the distance to the nearest bound-

ary, ycol is a correction for the colloid’s finite radius (since y=0 is the boundary)

and `λ is the characteristic length over which the encounter rate relaxes.

Next, we will focus on the net direction of the jumps. Using the start and

end positions measured for the jumps, we can measure the distribution this value. In

figure 3.5(a) we can see this plotted. Once again the convention is that measurements

near the boundary is shown in red, while in bulk is blue. In this figure negative

and positive jump orientations indicate jumps towards or away from the boundary

Channel Width µm Cell Surface Density (cells/µm2) (×10−4)

50 2.7 ± 0.7

100 4.5 ± 0.8

150 2.9 ± 0.6

200 4.0 ± 0.7

Table 3.1: Experimentally measured cell density for the different channel widths.
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<latexit sha1_base64="4X8dij41Jrq1aCeqql2JiK5Nhdg=">AAAB+nicbVBNS8NAEN34WetXqkcvi0Wol5KIqMeiF48V7Ae0oWy2m3bpbhJ2J2qI9Z948aCIV3+JN/+N2zYHbX0w8Hhvhpl5fiy4Bsf5tpaWV1bX1gsbxc2t7Z1du7TX1FGiKGvQSESq7RPNBA9ZAzgI1o4VI9IXrOWPriZ+644pzaPwFtKYeZIMQh5wSsBIPbuU4idc6cqkC+wBMjk+7tllp+pMgReJm5MyylHv2V/dfkQTyUKggmjdcZ0YvIwo4FSwcbGbaBYTOiID1jE0JJJpL5uePsZHRunjIFKmQsBT9fdERqTWqfRNpyQw1PPeRPzP6yQQXHgZD+MEWEhni4JEYIjwJAfc54pREKkhhCpubsV0SBShYNIqmhDc+ZcXSfOk6p5V3ZvTcu0yj6OADtAhqiAXnaMaukZ11EAU3aNn9IrerEfrxXq3PmatS1Y+s4/+wPr8AbTZk6c=</latexit>

y (µm)
<latexit sha1_base64="4X8dij41Jrq1aCeqql2JiK5Nhdg=">AAAB+nicbVBNS8NAEN34WetXqkcvi0Wol5KIqMeiF48V7Ae0oWy2m3bpbhJ2J2qI9Z948aCIV3+JN/+N2zYHbX0w8Hhvhpl5fiy4Bsf5tpaWV1bX1gsbxc2t7Z1du7TX1FGiKGvQSESq7RPNBA9ZAzgI1o4VI9IXrOWPriZ+644pzaPwFtKYeZIMQh5wSsBIPbuU4idc6cqkC+wBMjk+7tllp+pMgReJm5MyylHv2V/dfkQTyUKggmjdcZ0YvIwo4FSwcbGbaBYTOiID1jE0JJJpL5uePsZHRunjIFKmQsBT9fdERqTWqfRNpyQw1PPeRPzP6yQQXHgZD+MEWEhni4JEYIjwJAfc54pREKkhhCpubsV0SBShYNIqmhDc+ZcXSfOk6p5V3ZvTcu0yj6OADtAhqiAXnaMaukZ11EAU3aNn9IrerEfrxXq3PmatS1Y+s4/+wPr8AbTZk6c=</latexit>

y (µm)

<latexit sha1_base64="DVMl9lakbMg2KhZG+fZw0gdJo5w=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ5lsN+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUUdagsYhVO0DNBJesYbgRrJ0ohlEgWCsY3U791hNTmsfy0YwT5kc4kDzkFI2VHvCsV664VXcGsky8nFQgR71X/ur2Y5pGTBoqUOuO5ybGz1AZTgWblLqpZgnSEQ5Yx1KJEdN+Nrt0Qk6s0idhrGxJQ2bq74kMI63HUWA7IzRDvehNxf+8TmrCaz/jMkkNk3S+KEwFMTGZvk36XDFqxNgSpIrbWwkdokJqbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0aQCGEZ3iFN2fkvDjvzse8teDkM4fwB87nDyjNjR4=</latexit>

a)
<latexit sha1_base64="UV0k0pKeGLZ7YR/p9DMiG+ObjBI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITjrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHypSjR8=</latexit>

b)

<latexit sha1_base64="hQYGcLYn+iUxUWT0siIuZqfKioI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpgZ31yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nDyvXjSA=</latexit>

c)
<latexit sha1_base64="AoTpRdPgvZ52id1EPhmtKksbEQU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpoX/WK1fcqjsDWSZeTiqQo94rf3X7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m106ISdW6ZMwVrakITP190RGI63HUWA7I2qGetGbiv95ndSE137GZZIalGy+KEwFMTGZvk36XCEzYmwJZYrbWwkbUkWZseGUbAje4svLpHle9S6r3v1FpXaTx1GEIziGU/DgCmpwB3VoAIMQnuEV3pyR8+K8Ox/z1oKTzxzCHzifPy1cjSE=</latexit>

d)

Figure 3.5: Jump direction and size (a) A distribution of jump direction, as a
function of jump orientation (θ) and distance from the boundary. With close to
the boundary shown in red and in the bulk in blue. (b) The average jump size 〈`〉
as a function of distance from the boundary. With channel widths: 50µm (green),
100µm (blue), 150µm (red) and, 200µm (black). (c) The semi-log distribution of
the jump size, colourised with red near the the boundary and blue in the bulk. (d)
The semi-log distribution of jump sizes projected perpendicular to the boundary.
(Red) closest to the boundary and (blue) in the bulk. An exponential is fitted to
the positive and negative values for each position, given by the solid lines. These
curves have been shifted vertically to allow for easier comparison.

respectively, while θ = 0 corresponds to a jump that was parallel to the boundary.

The parallel directions along the boundary are considered equivalent, since it does

not matter for our purposes if a colloid moves right or left, parallel to the boundary.

We can see for colloids close to the boundary (red) that there is a strong peak in

the distribution for θ = 0. There is clearly a strong anisotropy, which reflects the

anisotropy of the swimmers motion in this region of the channel, since swimmers

in this position are reoriented to swim along the boundaries. This anisotropy has

been observed up to ∼ 100µm away from boundaries [151]. The peak of the curve of

P (θ, y) decays exponentially as we move away toward the bulk with a characteristic
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length of Lθ = 16.4± 0.3µm.

Next, we will discuss the jump magnitudes. The measured jump magnitudes

were similar to those measured in previous studies for micro-sized particles [46, 114].

We can see in figure 3.5(b) that above ∼ 4µm there is an exponential decay in this

jump length. From this distribution of jump sizes we can then calculate the average

jump length 〈`(y)〉, this is then shown in 3.5 (c). In this figure we have each of the

different channel widths represented: 50 µm (green), 100 µm (blue), 150 µm (red)

and 200 µm (black). We see that in each case there is a decrease within 10− 15µm

from the boundary of ∼ 30%. This decrease is to be expected due to the obvious

limitations of the active movement of the colloids imposed by the presence of the

boundary.

Since we are interested in the dynamics across the channels it is useful to re-

duce the full two-dimensional jump distribution functions to their projection q(yJ |y)

along the axis perpendicular to the channel boundary. Here, yJ is the associated

jump size, with a positive signed jump moving away from the boundary and a neg-

ative toward it and y is the position at which the jumps origination, given by the

distance to the nearest boundary. In figure 3.5(d) we see these distributions; as

before, the colour here represents the position within the channel at which the jump

occurred. The plot is given here in semi-log with the circular markers showing the

experimental measures. By separating the jumps into jumps towards and away from

the boundary we are able to see that they can be reasonably fitted with a straight

line, specifically in the bulk (blue) where the plot is reasonably symmetric about

yJ = 0. It follows then that these jumps can be reasonably approximated with

two exponential distributions (further details on these is presented in section 2.4.1).

These distributions show some of the strongest positional dependence so far encoun-

tered: Near the boundary (orange-red) we see that the characteristic length scale

of the associated to the exponential fits starts to change, with the steepest (and

therefore shortest length) given by the jumps nearest to the boundary. The mea-

sures length scales here start to lose their symmetry, as we noted in the case of the

bulk (blue), the exponentials have near-identical characteristic lengths associated.

But near to the boundaries we see a strongly non-heterogeneous behaviour. This is

likely once again due to the fact that the jumps are highly anisotropic in this region.

Further, as a result of the presence of the boundaries, we see that the negative jump

size is capped; yellow and orange curves show a cap on the experimentally measures

jump sizes for the negative portion of the plot, which is not present for the positive

jump sizes. This cap in jump size is due to the presence of the boundary, which

physically prevents larger jumps. In the experimental time-lapses, this can be seen
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<latexit sha1_base64="E1fXtuBF2pb0F/6ScmzsZQlV3hY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BItQQUpSRD0WvXisYD+gCWWz3bZLdzdhd1IMof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMC2PONLjut1VYW9/Y3Cpul3Z29/YP7MOjlo4SRWiTRDxSnRBrypmkTWDAaSdWFIuQ03Y4vpv57QlVmkXyEdKYBgIPJRswgsFIPdtO/YuKLxIf6BNkYnres8tu1Z3DWSVeTsooR6Nnf/n9iCSCSiAca9313BiCDCtghNNpyU80jTEZ4yHtGiqxoDrI5pdPnTOj9J1BpExJcObq74kMC61TEZpOgWGkl72Z+J/XTWBwE2RMxglQSRaLBgl3IHJmMTh9pigBnhqCiWLmVoeMsMIETFglE4K3/PIqadWq3lW19nBZrt/mcRTRCTpFFeSha1RH96iBmoigCXpGr+jNyqwX6936WLQWrHzmGP2B9fkDOpmTaA==</latexit>

y (µm)

<latexit sha1_base64="gYJa+h4eRi6XDaD289+2EUHPjMA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe2OMuw==</latexit>

0

<latexit sha1_base64="G8K6jqOom1BPTTKCkqh0NsbcPnU=">AAAB63icbVDLSgMxFL3xWeur6tJNsAiuykwRdVl047KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+bVB5Wq++bAq8QvSBUKNAeVr/4wpqlkylJBjOn5XmKDjGjLqWCzcj81LCF0Qkas56gikpkgm+86w+dOGeIo1u4pi+fq746MSGOmMnSVktixWfZy8T+vl9roJsi4SlLLFF0MilKBbYzzw/GQa0atmDpCqOZuV0zHRBNqXTxlF4K/fPIqaddr/lWt/nBZbdwWcZTgFM7gAny4hgbcQxNaQGEMz/AKb0iiF/SOPhala6joOYE/QJ8/xYCNaQ==</latexit>

0.02

<latexit sha1_base64="mW/xhhF0aA5DrQhaSi63CGPtXvE=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi6LblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+TdmprPQ1gMhh3Pu5d57gpgzbVz32yltbG5t75R3K3v7B4dH1eOTro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7C7ze09UaRbJRzOPqS/wRLKQEWwyya27zVG1Zr8caJ14BalBgfao+jUcRyQRVBrCsdYDz42Nn2JlGOF0URkmmsaYzPCEDiyVWFDtp/muC3RhlTEKI2WfNChXf3ekWGg9F4GtFNhM9aqXif95g8SEN37KZJwYKslyUJhwZCKUHY7GTFFi+NwSTBSzuyIyxQoTY+Op2BC81ZPXSbdR967qjYdmrXVbxFGGMziHS/DgGlpwD23oAIEpPMMrvDnCeXHenY9lackpek7hD5zPH8iIjWs=</latexit>

0.04

<latexit sha1_base64="O8SYjOlbZRwPGqoCME6ul4diZoE=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+TdmprPQ1gMhh3Pu5d57gpgzbVz32yltbG5t75R3K3v7B4dH1eOTro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7C7ze09UaRbJRzOPqS/wRLKQEWwyya27zVG1Zr8caJ14BalBgfao+jUcRyQRVBrCsdYDz42Nn2JlGOF0URkmmsaYzPCEDiyVWFDtp/muC3RhlTEKI2WfNChXf3ekWGg9F4GtFNhM9aqXif95g8SEN37KZJwYKslyUJhwZCKUHY7GTFFi+NwSTBSzuyIyxQoTY+Op2BC81ZPXSbdR95r1xsNVrXVbxFGGMziHS/DgGlpwD23oAIEpPMMrvDnCeXHenY9lackpek7hD5zPH8uQjW0=</latexit>

0.06

<latexit sha1_base64="5ckWFDZsSJdKgk0JGpkW0pl5IVg=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswU0S6LblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+TdmprPQ1gMhh3Pu5d57gpgzbVz32yltbG5t75R3K3v7B4dH1eOTro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7C7ze09UaRbJRzOPqS/wRLKQEWwyya27zVG1Zr8caJ14BalBgfao+jUcRyQRVBrCsdYDz42Nn2JlGOF0URkmmsaYzPCEDiyVWFDtp/muC3RhlTEKI2WfNChXf3ekWGg9F4GtFNhM9aqXif95g8SETT9lMk4MlWQ5KEw4MhHKDkdjpigxfG4JJorZXRGZYoWJsfFUbAje6snrpNuoe9f1xsNVrXVbxFGGMziHS/DgBlpwD23oAIEpPMMrvDnCeXHenY9lackpek7hD5zPH86YjW8=</latexit>

0.08

<latexit sha1_base64="MVIPF0EmxxGxOp5bezBH5KEJ7x4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKqMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8/1e+WK53pzkFXi56QCOeq98le3n7As5gqZpMZ0fC/FYEI1Cib5tNTNDE8pG9EB71iqaMxNMJmfOiVnVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0XUwESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadkg3BX355lTSrrn/pVu8vKrWbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBVxo0u</latexit>

0.1

P
(y

)

<latexit sha1_base64="nYFEgoXJMi4V8ZqeDJJebXfbkJg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Ln9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aVTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ22TAFTIjJpZQpri9lbARVZQZG07JhuAtv7xKWrWqd1mt3V9U6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A+q8jPY=</latexit>

10
<latexit sha1_base64="JveAszq8lTerjKeBZrtMAmNxQVM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtGpV77Jau7+o1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB+xBjPc=</latexit>

20
<latexit sha1_base64="TU1V3ER8SS7mj73d1ek7W2W2j3g=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4dztlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd1mp3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+3GjPg=</latexit>

30
<latexit sha1_base64="Rrb5gTIX7tAU6eOPjMAm7hrUo9w=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx6r2FpoQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3dfdfrniVt05yCrxclKBHM1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvmZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpF2rehfV2l290rjO4yjCCZzCOXhwCQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH+9LjPk=</latexit>

40
<latexit sha1_base64="sqrKOZrj4g4ludenyX5NcQmpSqg=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4cLtlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd1mp3p+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/DQjPo=</latexit>

50

<latexit sha1_base64="E1fXtuBF2pb0F/6ScmzsZQlV3hY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BItQQUpSRD0WvXisYD+gCWWz3bZLdzdhd1IMof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMC2PONLjut1VYW9/Y3Cpul3Z29/YP7MOjlo4SRWiTRDxSnRBrypmkTWDAaSdWFIuQ03Y4vpv57QlVmkXyEdKYBgIPJRswgsFIPdtO/YuKLxIf6BNkYnres8tu1Z3DWSVeTsooR6Nnf/n9iCSCSiAca9313BiCDCtghNNpyU80jTEZ4yHtGiqxoDrI5pdPnTOj9J1BpExJcObq74kMC61TEZpOgWGkl72Z+J/XTWBwE2RMxglQSRaLBgl3IHJmMTh9pigBnhqCiWLmVoeMsMIETFglE4K3/PIqadWq3lW19nBZrt/mcRTRCTpFFeSha1RH96iBmoigCXpGr+jNyqwX6936WLQWrHzmGP2B9fkDOpmTaA==</latexit>
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Figure 3.6: Jump distribution moments A plot showing the first two moments
of the jump distribution q(yJ |y): m1 given in green, two related values L± are in
red and blue respectively and,

√
m2 given in black. In each case the values from the

jumps measured in the experiments are shown (solid circles) and a fit given (solid
line).

to cause the colloid and swimmers to separate, effectively pre-emptively ending the

jump event.

With this distribution, we can then explore its various moments. A few

relevant values to be discussed are shown in figure 3.6. We begin with L±, the

characteristic lengths associated to the positive (red) and negative (blue) jumps re-

spectively, as a function of the colloid’s distance from the nearest boundary. These

are calculated from the gradients of the two exponential distributions for each posi-

tion in the channel in q(yJ |y), measured by method of least squares to the logarithm

of the data. We see in the L± plots the difference in the magnitudes of characteristic

length between jumps away from the boundary versus towards it. As in previous

figures, the circular markers show the experimental values while the solid line is

a fit to the data. In both cases we see that the jump characteristic length both

toward and away from the boundary increases as we move away from the boundary.

However, the jumps that are toward the boundary L+ increases more rapidly. If we

model L± as exponentially relaxing from a boundary value (solid red/blue) we have

the following analytic functions for these characteristic lengths
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L+ = (L+
w − Lb) exp

(
−y − ycol

`+

)
− Lb, (3.3)

L− = (L−w − Lb) exp

(
−y − ycol

`−

)
− Lb. (3.4)

The value L±w represents the characteristic jump sizes at the walls (boundaries).

These are both equal and fixed as 0.375µm. Lb then is the characteristic jump length

in bulk, again this is equal in both cases and is set as 3.6µm from the experimentally

measured bulk projected jump size and ycol is due to the finite radius of the colloids.

Since in bulk the jumps the colloids are eventually uniformly distributed it should be

clear that the value of Lb should be equal, leading to bulk jumps being isotropic in

this projected direction. The difference then between these two functions is codified

in the values of `±, the characteristic lengths over which the jump’s characteristic

size decays.

We previously noted that q(yJ |y) was made up of two exponential distribu-

tions, which had distinct negative and positive domains which were characterised

by the L± values. Motivated by this description, the following form for q(yJ |y) can

be proposed:

q(yJ |y) =
1

L+(y) + L−(y)
exp

(
− |yJ |
L±(y)

)
. (3.5)

With the L± used in the exponential term determined by the sign of yJ .

Using these different definitions then we are able to calculate the moments of q(yJ)

as:

mn(y) =

∫ ∞
−∞

dyJ y
n
Jq(yJ |y). (3.6)

By breaking this integral up into positive and negative domains we can also

write for the first two moments that

m1 = L+(y)− L−(y), (3.7)

m2 =
L+(y)3 + L−(y)3

L+(y) + L−(y)
. (3.8)

If we calculate the value of equation (3.6), then we get the local drift caused by

the asymmetry of jumps toward and away from the boundary. We can see this

in figure 3.6 (green), due to difference the rates at which L± recover to the bulk
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value there is a net drift. Leading to a near boundary tendency for colloids to be

pushed inwards to the centre of the channel. The second moment is then shown in

figure 3.6 (black). The square root of m2 is shown so it’s dimensionally consistent

with the other curves. Here we see again, this curve can be approximated as an

exponential relaxation to a bulk value far enough away from the boundary, while

the value decreases sharply near the walls. As a result of this, close to the boundary

we have a lower effective diffusivity contribution from the jumps.

3.3 Jump-Diffusion: Computational Modelling of Ex-

periments

With the dynamic properties of the jumps characterised in the previous section, the

next step is to check if these features we have highlighted are sufficient to reconstruct

the stationary state of the colloid’s positional distributions in the channel. In this

section we will outline a simple model based off the data from the experimental plots,

to see whether such a model does a good job at the reconstruction and further how

this model can be modified to highlight the essential dynamical properties.

3.3.1 Jump-Diffusion Simulation Outline

We focus once again on a reduced one-dimensional system, since the dynamics par-

allel to the boundary are symmetric. The aim is to create a simple simulation in

which passive particles are both diffusing and undergoing a Poisson process of jumps

studied, as in the previous section. Proceeding in this way, we neglect the explicit

presence of the swimmers. Instead the colloids are treated as active Brownian par-

ticles (ABP), in this case weakly Brownian, owing to the relatively large size of the

passive particle. The active component of the motion has been converted from an

explicit active displacement due to the presence of the swimmer to a coloured active

noise term resulting from the active bath.

We will start by outlining how the motion of the passive particles is deter-

mined when the motion is uninterrupted by jump events. For the passive particles,

at each time-step a accept-rejection scheme is implemented using the following tests

(full details are given in section 2.4.2). A uniformly distributed random number is

drawn and a comparison is made to the interval Λ(y) = [1−λ(y)δt
2 ,1+λ(y)δt

2 ], where

λ(y) is the rate of the Poisson process and δt is the time-step 0.1s, chosen to match

the frame rate of the images in the experiments. Here, following section 2.4.1 we

have expanded the Poisson probability of an event to give 1− λ(y)δt, further terms
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in this expansion for δt = 0.1 would result in a contribution ∼ 1
20.13 for λ ∼ 0.1.

Thus, our expansion here is sufficient. The jumps themselves are drawn from the

discrete experimental distributions of jump size within each bin (without interpola-

tion) and implemented as instantaneous events without interactions, as such a jump

within a given bin can take a colloid no further than a bin-width (3µm) outside the

system. We use a stopping boundary, which is discussed in more detail later within

this section to stop these rare events. If the uniform drawn number is within Λ(y)

then the passive particle undergoes a jump event, otherwise it will move diffusively

with a move size δy =
√

4D0δtη(t); D0 = 0.0439 µ2s−1 is the thermal diffusivity of

a 5µm particle and η(t) is a normally distributed random variable. The form of this

δy means we’re sampling a normal distribution to get our step sizes for the diffusion.

Here, the time-step must be considered as close to the boundary, since diffusion is

the only way the time-step enters into the magnitudes of the motion. If we con-

sider a value η(t) ∼ 0.05 at around 2-standard deviations for a normal distribution

with variance 1 to give a reasonably rare jump, then the resulting displacement is

δy = 0.007µm for δt = 0.1s. Diffusion as such has a very limited ability to displace

colloids outside of the box and this is dealt with using a reflecting boundary which

we discuss in greater detail later. Although the time step is large, since we have

no inter-particle or particle-boundary interactions and the jump sizes come directly

from the experimental distribtuions, the move sizes thus cannot introduce numerical

errors from non-physical events. If the jump criteria is met the the passive particle

is able to undergo a large non-Brownian event. The size of this can be determined

by inverse transform sampling (ITS) the distribution q(yJ |y) (see section 2.4.2 for

full details), by doing this jumps can be sampled which are correctly distributed and

the size of these can be directly implemented as δy = yJ . The sampled jumps here

are signed, and so based on the sign of the jump from the inverse-sample we have

both jumps going towards and away from the boundary. Notice, here we have made

a subtle simplification in the dynamics, the jumps measured in the experiments have

a finite duration which can be seen in figure 3.7. Within our implementation the

jumps are instantaneous. In the experimental system we justify this by noting that

the jump durations are on average ∼ 1.2s while the waits are ∼ 3.5s, sufficiently

longer than the overall time that a jump takes. As we will see, even with this jump

duration simplification it will be sufficient to replicate the overall outcome of the

distributions.

With this in mind, we can define each of the steps using the iterative equation
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Figure 3.7: Jump duration A plot showing the average jump duration as a function
of the distance from the boundary. With channel widths: 50µm (green), 100µm
(blue), 150µm (red) and, 200µm (black).

y′(t+ δt) = y′(t) + δp(t)yJ(t|y′(t)) + (1− δp(t))
√

4D0δtη(t), (3.9)

y′(t) is the channel position (which will be defined in detail in subsequent para-

graphs), δp(t) an indicator function which determines if the Poisson process is giv-

ing a jump and yJ(t|y′(t)) the jump generated at time t starting from y′(t). Here,

we have neglected the x-direction. As previous stated, it was noted in the experi-

ments that the jump distributions are symmetric in the x-direction for all distances

from the boundary. As such, we model the system as pseudo two-dimensional and

consider only the projection of the jumps motion normal to the boundary.

As we saw in several previous figures, the colloids dynamics are not defined

for the point y = 0, since the passive particles have a finite radius, so instead

the jump-diffusion process is defined with a new coordinate system, taking values

53



in [−W/2 + ycol,W/2 − ycol] where W is the channel width and ycol, as before,

is the passive particle radius. Unlike the previous system, where y = 0 was the

boundary, these simulations have y′ = 0 as the centre of the channel. As a result,

several quantities must be calculated by transforming the values from simulation

coordinates to distance to the nearest boundary coordinates: For example, in ITS

to sample jump sizes from q(yJ |y) the value y from the experiments is the distance

to the nearest boundary, while the coordinates of passive particle in the system are

given in signed distance from the centre of the channel.

The passive particles interact with the boundaries in two distinct ways de-

pending on the type of motion they are undergoing. The first case is when a particle

crosses the boundary via a diffusive motion, then the passive particle as a result is

reflected back into the channel. For example: A passive particle which would dif-

fuse from y′1 = W/2 − ycol − ε1 to y′2 = W/2 − ycol + ε2 will in fact be moved to

y′2 = W/2− ycol − ε2. This ensures that there is no loss of passive particles through

the boundary. This is clearly an approximation for any real system, giving overall

a slight overcompensation. However, as we previously discussed the impact of this

is negligible for our time-step because the colloids are weakly Brownian with a low

diffusivity. Another alternative method would be to use a stopping boundary condi-

tion resulting in y′2 = W/2−ycol−εs where εs is a fixed but small value, which would

give an under-compensation of the boundary effect. However, since the diffusivity

is small either approximation would be sufficient. The second case is a boundary

crossing which is the result of a jump. In this case it is possible for a passive particle

to end up some distance into a physically forbidden area, meaning that a reflective

condition here would result in a large over-compensation. Instead a stopping bound-

ary condition is used, where the colloids are placed at a very small distance from

the boundary that was crossed. This decision of boundary condition was motivated

largely by the experimental movies of the colloids. When they are undergoing jump

events due to swimmers, the forces from the boundary generally lead to the colloid

disengaging from the swimmer. The result of this is the colloid being left at the

boundary while the swimmer continues on. Again, this boundary implementation

suffers similar limitations as an approximation to what really happens. However,

again we shall see it is sufficient for replicating the distributions.

3.3.2 Jump-Diffusion Simulation Results

The results of this simple numerical resampling of the jumps can be seen in figure

3.8. Here, we have focused on the 100µm channel’s distribution (note: We saw in

figure 3.2.4 this distribution is reasonably uniform beyond 50µm, so these results
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0

<latexit sha1_base64="G8K6jqOom1BPTTKCkqh0NsbcPnU=">AAAB63icbVDLSgMxFL3xWeur6tJNsAiuykwRdVl047KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+bVB5Wq++bAq8QvSBUKNAeVr/4wpqlkylJBjOn5XmKDjGjLqWCzcj81LCF0Qkas56gikpkgm+86w+dOGeIo1u4pi+fq746MSGOmMnSVktixWfZy8T+vl9roJsi4SlLLFF0MilKBbYzzw/GQa0atmDpCqOZuV0zHRBNqXTxlF4K/fPIqaddr/lWt/nBZbdwWcZTgFM7gAny4hgbcQxNaQGEMz/AKb0iiF/SOPhala6joOYE/QJ8/xYCNaQ==</latexit>

0.02

<latexit sha1_base64="mW/xhhF0aA5DrQhaSi63CGPtXvE=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi6LblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+TdmprPQ1gMhh3Pu5d57gpgzbVz32yltbG5t75R3K3v7B4dH1eOTro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7C7ze09UaRbJRzOPqS/wRLKQEWwyya27zVG1Zr8caJ14BalBgfao+jUcRyQRVBrCsdYDz42Nn2JlGOF0URkmmsaYzPCEDiyVWFDtp/muC3RhlTEKI2WfNChXf3ekWGg9F4GtFNhM9aqXif95g8SEN37KZJwYKslyUJhwZCKUHY7GTFFi+NwSTBSzuyIyxQoTY+Op2BC81ZPXSbdR967qjYdmrXVbxFGGMziHS/DgGlpwD23oAIEpPMMrvDnCeXHenY9lackpek7hD5zPH8iIjWs=</latexit>

0.04

<latexit sha1_base64="O8SYjOlbZRwPGqoCME6ul4diZoE=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUqS6LblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+TdmprPQ1gMhh3Pu5d57gpgzbVz32yltbG5t75R3K3v7B4dH1eOTro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7C7ze09UaRbJRzOPqS/wRLKQEWwyya27zVG1Zr8caJ14BalBgfao+jUcRyQRVBrCsdYDz42Nn2JlGOF0URkmmsaYzPCEDiyVWFDtp/muC3RhlTEKI2WfNChXf3ekWGg9F4GtFNhM9aqXif95g8SEN37KZJwYKslyUJhwZCKUHY7GTFFi+NwSTBSzuyIyxQoTY+Op2BC81ZPXSbdR95r1xsNVrXVbxFGGMziHS/DgGlpwD23oAIEpPMMrvDnCeXHenY9lackpek7hD5zPH8uQjW0=</latexit>

0.06

<latexit sha1_base64="5ckWFDZsSJdKgk0JGpkW0pl5IVg=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswU0S6LblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+TdmprPQ1gMhh3Pu5d57gpgzbVz32yltbG5t75R3K3v7B4dH1eOTro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7C7ze09UaRbJRzOPqS/wRLKQEWwyya27zVG1Zr8caJ14BalBgfao+jUcRyQRVBrCsdYDz42Nn2JlGOF0URkmmsaYzPCEDiyVWFDtp/muC3RhlTEKI2WfNChXf3ekWGg9F4GtFNhM9aqXif95g8SETT9lMk4MlWQ5KEw4MhHKDkdjpigxfG4JJorZXRGZYoWJsfFUbAje6snrpNuoe9f1xsNVrXVbxFGGMziHS/DgBlpwD23oAIEpPMMrvDnCeXHenY9lackpek7hD5zPH86YjW8=</latexit>

0.08

<latexit sha1_base64="MVIPF0EmxxGxOp5bezBH5KEJ7x4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKqMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8/1e+WK53pzkFXi56QCOeq98le3n7As5gqZpMZ0fC/FYEI1Cib5tNTNDE8pG9EB71iqaMxNMJmfOiVnVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0XUwESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadkg3BX355lTSrrn/pVu8vKrWbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBVxo0u</latexit>

0.1

P
(y

)

<latexit sha1_base64="nYFEgoXJMi4V8ZqeDJJebXfbkJg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Ln9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aVTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ22TAFTIjJpZQpri9lbARVZQZG07JhuAtv7xKWrWqd1mt3V9U6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A+q8jPY=</latexit>

10
<latexit sha1_base64="JveAszq8lTerjKeBZrtMAmNxQVM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtGpV77Jau7+o1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB+xBjPc=</latexit>

20
<latexit sha1_base64="TU1V3ER8SS7mj73d1ek7W2W2j3g=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4dztlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd1mp3l+Uazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+3GjPg=</latexit>

30
<latexit sha1_base64="Rrb5gTIX7tAU6eOPjMAm7hrUo9w=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx6r2FpoQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3dfdfrniVt05yCrxclKBHM1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvmZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpF2rehfV2l290rjO4yjCCZzCOXhwCQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH+9LjPk=</latexit>

40
<latexit sha1_base64="sqrKOZrj4g4ludenyX5NcQmpSqg=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4cLtlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd1mp3p+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/DQjPo=</latexit>

50

<latexit sha1_base64="E1fXtuBF2pb0F/6ScmzsZQlV3hY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BItQQUpSRD0WvXisYD+gCWWz3bZLdzdhd1IMof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMC2PONLjut1VYW9/Y3Cpul3Z29/YP7MOjlo4SRWiTRDxSnRBrypmkTWDAaSdWFIuQ03Y4vpv57QlVmkXyEdKYBgIPJRswgsFIPdtO/YuKLxIf6BNkYnres8tu1Z3DWSVeTsooR6Nnf/n9iCSCSiAca9313BiCDCtghNNpyU80jTEZ4yHtGiqxoDrI5pdPnTOj9J1BpExJcObq74kMC61TEZpOgWGkl72Z+J/XTWBwE2RMxglQSRaLBgl3IHJmMTh9pigBnhqCiWLmVoeMsMIETFglE4K3/PIqadWq3lW19nBZrt/mcRTRCTpFFeSha1RH96iBmoigCXpGr+jNyqwX6936WLQWrHzmGP2B9fkDOpmTaA==</latexit>

y (µm)

<latexit sha1_base64="btnG2Lu7e8wIMyhKDIjpn0tTqiU="></latexit> L
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<latexit sha1_base64="nYFEgoXJMi4V8ZqeDJJebXfbkJg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Ln9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aVTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ22TAFTIjJpZQpri9lbARVZQZG07JhuAtv7xKWrWqd1mt3V9U6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A+q8jPY=</latexit>

10
<latexit sha1_base64="JveAszq8lTerjKeBZrtMAmNxQVM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtGpV77Jau7+o1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB+xBjPc=</latexit>

20
<latexit sha1_base64="Rrb5gTIX7tAU6eOPjMAm7hrUo9w=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx6r2FpoQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3dfdfrniVt05yCrxclKBHM1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NLp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvmZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOGUbAje8surpF2rehfV2l290rjO4yjCCZzCOXhwCQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH+9LjPk=</latexit>

40
<latexit sha1_base64="sqrKOZrj4g4ludenyX5NcQmpSqg=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrp4cLtlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhtZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmtWKd1mp3p+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/DQjPo=</latexit>

50

<latexit sha1_base64="gYJa+h4eRi6XDaD289+2EUHPjMA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe2OMuw==</latexit>

0

<latexit sha1_base64="dSGkyJ9yh4FtXN3IeyG8yp8NxWE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqu15kWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffmuMvQ==</latexit>

2

<latexit sha1_base64="vLM+egkJ3/CM7aDUcCffMv+XPxo=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVJIi6rHoxWMF+wFtKJvtpF272YTdjVBCf4EXD4pXf5M3/43bNgdtfTDweG+GmXlhKrg2nvftlDY2t7Z3yrvu3v7B4VHFPW7rJFMMWywRieqGVKPgEluGG4HdVCGNQ4GdcHI39zvPqDRP5KOZphjEdCR5xBk1Vnq4HFSqXs1bgKwTvyBVKNAcVL76w4RlMUrDBNW653upCXKqDGcCZ24/05hSNqEj7FkqaYw6yBeHzsi5VYYkSpQtachC/T2R01jraRzazpiasV715uJ/Xi8z0U2Qc5lmBiVbLooyQUxC5l+TIVfIjJhaQpni9lbCxlRRZmw2rg3BX315nbTrNf+qVq82boswynAKZ3ABPlxDA+6hCS1ggPACb/DuPDmvzseyseQUEyfwB87nDxcBi5U=</latexit>

4

<latexit sha1_base64="uFeVfy26v70Q55GkKBMvuk054PM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIR7jME=</latexit>
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Figure 3.8: Simulated jump’s resampled passive distributions. Positional dis-
tributions resulting from a numerical simulation resampling the jumps, symmetrised.
We have: The experimental values (black circles), full dynamics simulation (solid
black), no diffusion (blue dashed), bulk-encounter rate (dashed orange), using the
bulk jump distribution (yellow), and (green) the predictions of modelling outlined
in section 3.4.

can be extended to other channel sizes). The experimental measurements for the

distribution are shown as the clear black circular markers, while the full dynamics

numerical model is given by the black solid line (this line is under each of the other

curves). We can see that there is good agreement of this model with the experi-

mental results. The key features that were highlighted for the distribution are all

recaptured: The peak of the distribution at the boundary, the local depletion around

10µm away and finally, the recovery of the overall distribution to a flat profile far

away from the boundary. As such, we conclude that the positionally dependent dy-

namics of the jumps is clearly sufficient to recapture the various long-time behaviour

of the colloid’s distributions in the experiments.

The next step then is to reduce the overall information we feed into the
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resampling, to highlight which of the jump event’s features are core to understanding

the positional distributions. To do this we can re-perform the numerical simulation

described in the previous subsection; systematically removing different aspects of

the simulation to see how the overall positional distribution is affected.

Firstly, if instead of Λ(y) = [1−λ(y)δt
2 ,1+λ(y)δt

2 ], we have a homogeneous

acceptance-rejection criteria Λ = [1−λ(yb)δt
2 ,1+λ(yb)δt

2 ] where yb is a position deep

in the interior of the channel, giving an encounter rate representative of the bulk

behaviour of the colloids. The idea of this modification is to remove the spatial

dependence of the Poisson process determining when the jumps will occur. We can

see in figure 3.8 with the dark blue dashed line the outcome of such a modification.

It is clear, the full dynamics are almost indistinguishable and that the positional

dependence of the encounter rate is not fundamental to the colloid’s distribution.

Looking at the positionally averaged encounter rate it makes some sense that this

would be the case, since the largest deviation from the bulk value only occurs very

close to the boundary.

The next modification to the full dynamics to consider is one in which the

non-jump steps do not result in any motion (note: The rate was returned to posi-

tional dependence). To do this we can set D0 = 0, so there is no thermal diffusivity

of the passive particles within the simulation. This can then be seen within the

figure as the orange dashed line; the key features of the distribution are replicated

with the line once again nearly indistinguishable from the full dynamics. On closer

inspection it can be seen that this line has a small amount of variability around the

full dynamics, likely due to the fact that diffusion is no longer smoothing out the

distribution. As we have previously noted, the colloids used in the experiments are

relatively large and thus only weakly Brownian, so once again it is easy to rationalise

that the removal of their thermal motion does not affect their overall distribution

throughout the channel.

The final case to consider is jumps drawn from the bulk jump size distribution

q(yJ |yb) where yb once again is a distance far from the boundary. In this simulation’s

case we get the yellow line in the figure. There is still a measurable accumulation,

which follows from the fact that large jumps near the boundary that lead to the

passive particles being outside of the channel are made more possible. The spatial

dependence of the jumps (when we include positional dependence) leads to the

jumps themselves getting smaller closer to the boundary, especially in the negative

direction (towards the boundary). As well as this the depleted region is destroyed

entirely, with the curve instead slowly decreasing the the bulk value, which is slightly

lower, instead of recovering to it from below. What this tells us then is that the
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colloid’s positional distribution is largely a result of the spatial dependences in the

projected jump length distribution and the asymmetry of the distribution q(yJ |y).

3.4 Jump-Diffusion: Theoretical Modelling of Experi-

ments

In this final section we will now expand on these results. For this, a general ana-

lytical model for the system will be outlined. Within this section, we will look at

a derivation. Starting by outlining a Langevin-equation that encodes both the col-

loid’s diffusivity and positionally dependent jumps, we will work towards an integro-

differential master equation for the system. Finally, we will discuss a method of re-

ducing this master equation to an effective drift diffusion equation for which, given

suitable boundary conditions, we can then predict the overall distribution of the

colloids.

3.4.1 Derivation of the Jump-Diffusion Fokker-Planck equation

Motivated by the numerical validation outlined in the previous section of the jump-

diffusion dynamics and following previous work: [152] we first write a stochastic

(Langevin) equation for the passive particle’s dynamics

Yt+τ = Yt +Nτ + ∆τ (Yt), (3.10)

where τ is an infinitesimal time interval, ∆τ is a random variable describing the

inhomogeneous Poisson process and Nτ is a standard Wiener process. As in the

numerical simulations, notice that this derivation has the implicit assumption that

the jumps which occur are instantaneous and that the movement from y − yj to y

takes no time.

This can then be used to derive the Master equation for this system. We

first write

Pt+τ (y) = 〈δ(y − Yt+τ )〉,
= 〈δ(y − (Yt +Nτ + ∆τ (Yt))〉,

(3.11)

with the angular brackets denoting an average over all noise realisations, which we

can express in the following way by integrating over all the possibilities
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Pt+τ (y) =

∫ +∞

−∞
dy′Pt(y

′)

∫ +∞

−∞

∫ +∞

−∞
dyJ d∆η py

′
τ (yJ)rτ (∆η)δ(y − (y′ + yJ + ∆η)),

(3.12)

where py
′
τ (yJ) is the probability density that ∆τ = yJ at position y′ and rτ (∆η) =

e−∆η2/(4Dτ)/
√

4πDτ is the transition probability for the Wiener process (with dif-

fusion coefficient D) [153]. Integrating first over ∆η we get

Pt+τ (y) =

∫ +∞

−∞
dy′

Pt(y
′)√

4πDτ

∫ +∞

−∞
dyJ p

y′
τ (yJ)e−

(y−y′−yJ)
2

4Dτ , (3.13)

which we can Fourier-transform, giving

P̃k(t+ τ) =

∫ +∞

−∞
dy′

Pt(y
′)√

4πDτ

∫ +∞

−∞
dyJ p

y′
τ (yJ)

∫ +∞

−∞
dy e−ikye−

(y−y′−yJ)
2

4Dτ ,

=

∫ +∞

−∞
dy′Pt(y

′)

∫ +∞

−∞
dyJ p

y′
τ (yJ)e−ik(y′+yJ)e−Dτk

2
.

(3.14)

Now we are going to expand Eq. (3.14) at first order in τ . Following [152], we can

write

py
′
τ (yJ) = (1− λ(y′)τ)δ(yJ) + λ(y′)τq(yJ|y′) + o(τ2), (3.15)

where qy′(yJ) is the probability of having a jump of size yJ at position y′ and λ(y′)

is the Poissonian rate at position y′. We can then get the first order expansion

P̃k(t+ τ) ≈ (1−Dk2τ)

∫ +∞

−∞
dy′ Pt(y

′)e−iky
′ − τ

∫ +∞

−∞
dy′ Pt(y

′)λ(y′)e−iky
′

+ τ

∫ +∞

−∞

∫ +∞

−∞
dyJ dy

′ Pt(y
′)λ(y′)q(yJ|y′)e−ik(y′+yJ),

≈ (1−Dk2τ)P̃k(t)− τ
∫ +∞

−∞
dy′Pt(y

′)λ(y′)e−iky
′

+ τ

∫ +∞

−∞

∫ +∞

−∞
dyJdy

′Pt(y
′)λ(y′)q(yJ|y′)e−ik(y′+yJ).

(3.16)

From this expansion, we can express the time-derivative of P̃k(t)
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∂P̃k(t)

∂t
= lim

τ→0

P̃k(t+ τ)− P̃k(t)
τ

,

= −Dk2P̃k(t)−
∫ +∞

−∞
dy′Pt(y

′)λ(y′)e−iky
′

+

∫ +∞

−∞

∫ +∞

−∞
dyJ dy

′ Pt(y
′)λ(y′)q(yJ|y′)e−ik(y′+yJ).

(3.17)

We can now inverse Fourier-transform Eq. (3.17) to get

∂Pt(y)

∂t
= D

∂2Pt(y)

∂y2
−
∫ +∞

−∞
dy′Pt(y

′)λ(y′)δ(y − y′)

+

∫ +∞

−∞

∫ +∞

−∞
dyJdy

′Pt(y
′)λ(y′)q(yJ|y′)δ(y − y′ − yJ),

(3.18)

and finally obtain the master equation for this system

∂Pt(y)

∂t
= D0

∂2Pt(y)

∂y2
− λ(y)Pt(y) +

∫ +∞

−∞
λ(y − yJ)Pt(y − yJ)q(yJ|y − yJ)dyJ.

(3.19)

The various terms present can be identified in the following way: the first term on

the right hand side describes the gain of passive particles to position y via diffusive

means, the second term then is a loss of passive particles from position y due to

various jumps which lead the the passive particle leaving the position and the integral

then describes a summation of all the passive particles which arrive at position y

from each of the various initial (previous) positions y − yJ for all possible yJ .

3.4.2 Reduction of the Master-Equation to an Effective Drift-Diffusion

Equation

Notice that master equation described above has the integral term, because of this

there is no simple analytical solution for the distributions. However, we can perform

a Kramers-Moyal expansion (see 2.5.1) on the term inside of the integral, we will

now see how this then leads to an effective drift-diffusion equation. First we rewrite

q(yJ|y − yJ) = q(y − yJ, yJ) for clarity when performing the expansion of what is

being expanded. The expansion used then
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λ(y − yJ)Pt(y − yJ)q(y − yJ, yJ) = λ(y)Pt(y)q(y, yJ)− yJ
∂

∂y

[
λ(y)Pt(y)q(y, yJ)

]
+
y2

J

2

∂2

∂y2

[
λ(y)Pt(y)q(y, yJ)

]
+ o(y3

J). (3.20)

Insertion of this into our master equation gives

∂Pt(y)

∂t
= D

∂2Pt(y)

∂y2
− λ(y)Pt(y) + λ(y)Pt(y)

∫ +∞

−∞
q(yJ|y)dyJ

− ∂

∂y

[
λ(y)Pt(y)

∫ +∞

−∞
yJq(yJ|y)dyJ

]
+

∂2

∂y2

[λ(y)Pt(y)

2

∫ +∞

−∞
y2

Jq(yJ|y)dyJ

]
.

(3.21)

From this we notice, several interesting simplifications have arisen. Firstly, the loss

term on the right hand side of the equation is now compensated; this follows from

the fact that
∫∞
−∞ q(yJ |y)dyJ = 1, owing to the normalisation of the distribution of

jump sizes. Next, we notice that the remaining integrated terms on the right hand

side can be identified as the moments of the distribution of jump size q(yJ|y), noting

we previously defined mn(y) =
∫ +∞
−∞ ynJ qy(yJ)dyJ.

Putting these together and inserting our newly defined moments, we get

∂Pt(y)

∂t
=

∂

∂y

[(
D +

λ(y)m2(y)

2

)∂Pt
∂y

]
− ∂

∂y

[(
λ(y)m1(y)− 1

2

∂

∂y
[λ(y)m2(y)]

)
Pt(y)

]
. (3.22)

Here we have collected the various terms, putting it in the form of an effective drift-

diffusion equation with effective diffusivity Deff(y) = D + λ(y)m2(y)
2 and effective

drift Veff(y) = λ(y)m1(y) − 1
2
∂
∂y [λ(y)m2(y)]. By comparison to previous work [46]

we see their asymptotic diffusivity obtained comparable, with a contribution from

the jump event frequencies and the variance of the jump size.

With this new effective drift-diffusion equation and the additional stipulation

that there is no flux of particles for a given boundary we are able to solve for a closed

form of the steady state solution

P (y) =
A

Deff(y)
exp

(∫ y

0

λ(y′)m1(y′)

Deff(y′)
dy′
)
, (3.23)

where A is a normalisation constant. From this we can see that without the asym-
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metry of the jump dynamics; m1(y) = 0 everywhere, the result is the solution of a

state dependent diffusive process with Itô convention for multiplicative noise inte-

gration. Since, in our case the m1(y) values are significant up to ∼ 30µm away from

the boundary the exponential’s contribution cannot be neglected.

3.4.3 Jump-Diffusion Effective Drift-Diffusion Model Results

The comparison of equation (3.23) and the experimental measurements is facilitated

by the heuristic fitting of various properties of the jumps properties: Using expo-

nential fits for L+(y), L−(y) enabled us to write an analytical form for q(yJ |y) and

using exponential fits as previously described for λ we had

m1(y) = L+(y)− L−(y), (3.24)

m2(y) = 2
L+(y)3 + L−(y)3

L+(y) + L−(y)
, (3.25)

λ(y) = (λw − λb) exp

(
−y − ycol

`λ

)
+ λb. (3.26)

Armed with this description, we can now construct an approximate jump-

diffusion model distribution of the passive particles to compare to the experimental

curves. This can be seen in figure 3.8 in the green curve, which has been shifted

downwards to allow for better comparison. As with the numerical simulations we

see that this approximate jump-diffusion model nicely captures the different key

features that we expect: the peak in distribution near the boundary, the depletion

and then the recovery to a flat bulk.
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Chapter 4

Segregation of Colloids

4.1 Introduction

Following on from the previous chapter, we will look at a set of experimental results.

From these a model, motivated also by the previous work, will be used to highlight

key aspects of the experimental observations. Once again, we’ll be examining a

mixture of CR with passive colloids. However, two major changes are present,

firstly the colloids themselves will be smaller and second the shape of the chamber

in which they coexist is markedly different. Specifically, the chambers are designed

with the overall aim of enabling the segregation of the colloids from the swimmers.

This segregation occurs largely as the result of the spatial distribution of the colloids

in the presence of active particles. We will look first at whether this separation is

indeed possible, then look at the dynamics of the underlying process and how the

separation is maintained by the continued work provided by the active particles.

4.2 Microfluidic Segregation Experiments

In this section there will be a brief introduction to the experiments performed and

where possible an explanation of the design choices.

4.2.1 Experimental Design

As stated previously, the experiments involve a mixture of CR and markedly smaller

colloidal particles (diameter of ∼ 6µm). Once again, the chamber is designed to be

pseudo two-dimensional, with the device thickness in the range of 14-20µm. As we

see in figure 4.1, the chamber has a large circular central region and coming out from

this are thin side-channels. The diameter of the overall chamber is 400µm to allow
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Figure 4.1: Schematic of the segregation channel microfluidic (top) Here we
see in blue the overall schematic for the microfluidic, with the inlets and outlets on
the far left and right. The chambers themselves then consist of large central cavities
radius 200µm with offshoots of thickness d=7-8µm. (bottom) An experimental
image is shown, with the scale bar. The central cavity is shown in red, the side
channels in blue. Within this the two species are present. The colloids are the small
round white objects and the CR white outlined grey objects with higher eccentricity.
Conventions for the rates of colloidal transport are also defined.

a sufficient number of CR and colloids to fit inside while still keeping the mixture

reasonably dilute. As well as this, the resulting chamber walls have a relatively low

curvature. The width of the side channels is 7− 8µm and their length is ∼ 190µm;

by design they can fit many of the smaller colloids but they will not fit the CR cells.

As such, the chamber’s boundary acts as a semi-permeable membrane that can only

be penetrated by the colloids. In figure 4.1, we see the central chamber highlighted

in red, while the side channels are shown in blue. In this figure we can see the scale

of the CR and colloids relative to the side-channels.

From the previous set of experiments we expect that near to any sufficiently

flat boundary there will be a sharp peak in the colloid’s spatial distribution, then

a depleted region outwards from this and finally a bulk uniformly distributed re-
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gion. We note here, these expectations stem from the assumption the distributions

resulting from a flat boundary can be applied in the circular chamber. Thus, the

radius must be such that the local boundary has low enough curvature so as to be

approximated locally as flat.

4.2.2 Experimental Colloid Properties

The experiment was performed at 10 frames per second over several hours. The

data for the first ∼ 320 minutes then contained the dynamics of the system settling

from its injected state to the stationary state. As with the previous experiments,

this resulted in a time lapse of images of the colloids and swimmers and using the

properties of each of the species the particle’s positions can be extracted and thus

their trajectories digitised.

From the digitised positions we are able to measure the positional distribution

within the chamber (red in 4.1). This distribution is shown in figure 4.2. Here, the
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Figure 4.2: Colloid positional distributions within a circular chamber Here
we see the positional distributions for various central chamber sizes. Here, the x-
axis shows the distance of the colloids from the boundary calculated from the radius
R minus the distance from the centre point of the chamber ρ. Chamber radius R
150µm (yellow), 200µm (orange), 200µm (brown) and, 300µm (black) are shown.
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value ρ is the radius used to produce the annulus, of thickness ∆ρ, within the

chamber used to bin the colloids, in which the positional distribution is defined.

As in the previous case, we see the colloids are restricted from approaching the

boundary closer than their radius allows. Matching that highlighted at the start of

this section, in our expectations for the experiment, we see the key features of the

colloid distribution are present. The peak in the distribution near to the boundary,

a depleted region as we move away and finally a recovery to a bulk value. Rather

than decreasing to flat value in the distribution we see a decrease in the value. In

measuring, we used
∫ R

0 P (ρ)dρ = 1 to define our distribution. Thus, built into the

value of P (ρ) is some information about the area annulus on which it is measured.

The area is given as A = 2πρdρ, notice how this is proportional to ρ the distance

from the centre at which we measure, thus the area decreases closer to the interior

of the channels we see the value decrease to zero.

As well as this, we can also measure the number of colloids within the channel

and the side-channels as a function of time. In figure 4.3 the red line above the

others corresponds to the number of colloids in a control chamber which contains

no swimmers. None of the colloids were seen to enter the side channels by thermal

means during several hours of this control. For the mixture, initially upon flowing

the swimmer-colloid mixture there were no colloids in the side channels. However,

over time the thermal motion and the interactions with the swimmers then enabled

the colloids the move into the side channels. We can see this in figure 4.3. The

plots shows the number of colloids (a) and the surface number density (b). The

properties of the colloids in the side channels, given as a function of time (showing

here the initial ∼ 320 min), are shown by the cyan solid line. The red solid line shows

the properties of the colloid in the main chamber and the total number of colloids

for the two region combined is then shown by the purple solid line. In the figure

we can see that the number in the side channels (cyan) increases initially quickly.

However, the number moving into the side channels as time goes on decreases and it

eventually settles to a stationary state. In response to the entry of the colloids into

the side channel we see an equal decrease in the number in the main channel (red).

Further confirmed by the fact that the total (purple) remains relatively constant

over the course of the experimental measurements. The number of colloids and

their number density show a great deal of change within the side channels, but the

number density’s relative change within the main channel is noticeably lower.

Next we will characterise these dynamics. We call the amount of colloids

in the side channels Ns(t), in the central chamber Nc(t) and the total Nt(t); t

representing the time. If we assume that there is a constant rate at which the
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b)

Figure 4.3: Dynamics of side-channel filling in microfluidic (a) and (b) Show
the time evolution of the number of particles and surface number density within the
circular chamber (red solid line) and the side channels (cyan solid line) in presence
of the swimmers. Within this time the total number of particles in the chamber
remains constant (purple solid line). Dashed/dash-dot lines are a fit to the first
order kinetics. The top red line in (a) corresponds to a control without swimmers.

colloids enter and leave the side channels then simple first-order kinetics can be

used to model these results. In a first-order kinetic system the following set of

equations are obeyed

dNc(t)

dt
= −kinNc(t) + koutNs(t), (4.1)

dNs(t)

dt
= +kinNc(t)− koutNs(t). (4.2)

Here, kin and kout represent the rate at which the colloids enter and leave the side

channels respectively. From the experimental data, we noted that the overall number

of colloids that are split between the two sections is relatively constant. Thus, we
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have the constraint: Nt = Nt(t) = Ns(t) +Nc(t), allowing us the then solve the two

equations, giving:

Nc(t) = Nt

[
kout + kin exp (−kt)

k

]
, (4.3)

Ns(t) = Nt

[
kin (1− exp (−kt))

k

]
, (4.4)

(4.5)

where k = kin +kout. This value k determines the relaxation rate of the exponential

governing both equations. Using the experimental data this can be estimated as

1/k = 77 ± 4 min. Further, we can use the long time behaviour of both regions to

determine the following: N∞c /Nt = kout/k = 0.64 ± 0.02 and N∞s /Nt = kin/k =

0.36 ± 0.02, leading the estimates for the two rates as kin = (7.8 ± 0.6) × 10−5s−1

and kout = (13.9 ± 0.6) × 10−5s−1. The latter value of which results from the

passive dynamics of the colloids within the side channels, which depends on their

thermal diffusivity, potential electrostatic interactions with the boundaries, short-

range hydrodynamic interactions between the beads, channel design, etc [154, 155].

The former value is the result of the active-displacements of the colloid which results

from the interaction with the swimmers. From equation (4.1) we can see that in

a stationary state kin
kout

= Ns
Nc
∼ 0.56. The relative value comes as a result of a few

effects. Overall, there is a great deal more space in the chambers and so the value

of Nc takes a higher value. As well as this, the value of kout is heavily impacted by

the initial situation of colloids entering the side channel, all colloids that enter the

side channel do so at the position of the exit. As such, they are relatively likely to

diffuse out of the space quickly and we see this manifested in the value of kout when

compared to kin, since the colloids inside the channel have a lot more space to leave

the area of the side-channel entrances after they exit. It encapsulates the out-of-

equilibrium nature of the system, a property immediately clear when we compare the

relative steady-state densities between the side channels (ρs = 0.0295± 0.007µm−2)

and the main chamber (ρc = 0.0019± 0.0001µm−2).

4.3 Exist Rate Calculation using Various Constant Ef-

fective Diffusivity

In this section we will outline a rudimentary method that can be used to estimate the

escape rate of colloids kin, whose experimentally measured value is kin = (7.8±0.6)×
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10−5 s−1. The result of this model will be within reasonable order of magnitude,

but ultimately an overestimate of the value.

The system we will consider is composed of a single particle within a circular

chamber, subject to diffusion and in the subsequent section we will include also

drift. Both of these properties will have built into them a spatial dependence to

their magnitudes. Different sections of the boundary wall of the circular chamber

are divided into two types: The first is a no-flux part which the colloids cannot

penetrate. The second is an absorbing part where the colloids are removed from

the system upon arrival. We will estimate the escape rate as the inverse of the

average time taken by a colloid to be absorbed at the boundary. This is of course

a case of the famous ‘Narrow Escape Problem’ [145]. However, it will require two

modifications to enable us to predict the escape rates: Firstly, in order to stay

faithful to the geometry of the experiments, the boundary must be composed of

several distinct absorbing patches, rather than a single one (of the same total size)

as would be standard in the Narrow Escape Problem. Secondly, the particles will

need to be subject to space-dependent diffusivity and drift, while the Narrow Escape

approaches generally have constant diffusivity and no drift. In this section we will

look at several possible cases of constant diffusivity. The value of which will attempt

to capture the spatial dependence of the dynamics of the colloids. In the subsequent

section, we will then see how inclusion of full spatial dependence of diffusion and

drifts allows for a quantitive match to the experimental rate measurements.

For a single absorbing patch on the boundary of a disk, the Narrow Escape

Problem can be posed as a system of partial differential equations which can be

analytically solved for a particle with constant diffusivity [144]. Following this work,

we begin noting that solving the mean first passage time, and hence the particle’s

escape rate, means solving the following Poisson equation with mixed Neumann-

Dirichlet inhomogeneous boundary conditions
D∆t(r, θ) = −1 for r < R, 0 ≤ θ < 2, π

t(r, θ) = 0 for r = R, θ ∈ Θa,

∂t(r,θ)
∂r = 0 for r = R, θ /∈ Θa,

(4.6)

where (r, θ) are the coordinates on a disk of radius R, D the constant diffusivity,

t(r, θ) the escape time given initial position (r, θ) and Θa is the set of angles for

which the boundary is absorbing. Here, as opposed to the standard narrow escape

problem this is a set of 12 regions with angles corresponding to 7.5µm exits, matching

what we had in the experimental system. This set of equations can then be solved

68



<latexit sha1_base64="y5jOtmskr/X3Pn0ZmtTU+22mHKw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBiyepYD+gDWWz3bRLN5uwOxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgkQKg6777ZTW1jc2t8rblZ3dvf2D6uFR28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuc39zhPXRsTqEacJ9yM6UiIUjGIu9ZGmg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+a3zsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UY3viZUEmKXLHFojCVBGOSP06GQnOGcmoJZVrYWwkbU00Z2ngqNgRv+eVV0r6oe1d17+Gy1rgv4ijDCZzCOXhwDQ24gya0gMEYnuEV3pzIeXHenY9Fa8kpZo7hD5zPHybBjlo=</latexit>⌧

<latexit sha1_base64="Y4EQzIReJp01oOzNa9z1lqm3Ay0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix48SQt2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSzvzThBP6IDyUPOqLFS/alXKrsVdwayTLyclCFHrVf66vZjlkYoDRNU647nJsbPqDKcCZwUu6nGhLIRHWDHUkkj1H42O3RCTq3SJ2GsbElDZurviYxGWo+jwHZG1Az1ojcV//M6qQmv/YzLJDUo2XxRmApiYjL9mvS5QmbE2BLKFLe3EjakijJjsynaELzFl5dJ87ziXVa8+kW5epfHUYBjOIEz8OAKqnALNWgAA4RneIU358F5cd6dj3nripPPHMEfOJ8/682NDg==</latexit>x

<latexit sha1_base64="kP0lV7iKvPtqpHCIpcC32t2lmL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBiydpwX5AG8pmO2nXbjZhdyOE0l/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MFmCfkSHkoecUWOlRtYvV9yqOwdZJV5OKpCj3i9/9QYxSyOUhgmqdddzE+NPqDKcCZyWeqnGhLIxHWLXUkkj1P5kfuiUnFllQMJY2ZKGzNXfExMaaZ1Fge2MqBnpZW8m/ud1UxPe+BMuk9SgZItFYSqIicnsazLgCpkRmSWUKW5vJWxEFWXGZlOyIXjLL6+S1kXVu6p6jctK7T6PowgncArn4ME11OAO6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/7VGNDw==</latexit>y

<latexit sha1_base64="9KOcxV4oHknc00O3XhzrU+MDYs8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyUpoh4LevBYwX5AG8pmu2mX7m7C7kYooX/BiwdFvPqHvPlv3KQ5aOuDgcd7M8zMC2LOtHHdb6e0tr6xuVXeruzs7u0fVA+POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G09vM7z5RpVkkH80spr7AY8lCRrDJpIuG6w6rNbfu5kCrxCtIDQq0htWvwSgiiaDSEI617ntubPwUK8MIp/PKINE0xmSKx7RvqcSCaj/Nb52jM6uMUBgpW9KgXP09kWKh9UwEtlNgM9HLXib+5/UTE974KZNxYqgki0VhwpGJUPY4GjFFieEzSzBRzN6KyAQrTIyNp2JD8JZfXiWdRt27qnsPl7XmXRFHGU7gFM7Bg2towj20oA0EJvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8AxEONaQ==</latexit>�200

<latexit sha1_base64="9KOcxV4oHknc00O3XhzrU+MDYs8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyUpoh4LevBYwX5AG8pmu2mX7m7C7kYooX/BiwdFvPqHvPlv3KQ5aOuDgcd7M8zMC2LOtHHdb6e0tr6xuVXeruzs7u0fVA+POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G09vM7z5RpVkkH80spr7AY8lCRrDJpIuG6w6rNbfu5kCrxCtIDQq0htWvwSgiiaDSEI617ntubPwUK8MIp/PKINE0xmSKx7RvqcSCaj/Nb52jM6uMUBgpW9KgXP09kWKh9UwEtlNgM9HLXib+5/UTE974KZNxYqgki0VhwpGJUPY4GjFFieEzSzBRzN6KyAQrTIyNp2JD8JZfXiWdRt27qnsPl7XmXRFHGU7gFM7Bg2towj20oA0EJvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8AxEONaQ==</latexit>�200

<latexit sha1_base64="KqV4aUSo0QUBli/2jaVqXEjRNLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeCHjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSQ811++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+y6t1fVOq3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFaoI0y</latexit>

200

<latexit sha1_base64="KqV4aUSo0QUBli/2jaVqXEjRNLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeCHjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSQ811++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+y6t1fVOq3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFaoI0y</latexit>

200<latexit sha1_base64="TdXmvjJlwcVAzFufBQ6QbQJtskA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBDx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFSw+2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6V1WvcVmp3eVxFOEETuEcPLiGGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHe6uMvA==</latexit>

0

<latexit sha1_base64="awpQQFx9Ip0QQNiYVz90edEhAng=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU8mKVI8FPXisYD+gXUo2zbahSXZJskJZ+he8eFDEq3/Im//GbLsHrT4YeLw3w8y8MBHcWIy/vNLa+sbmVnm7srO7t39QPTzqmDjVlLVpLGLdC4lhgivWttwK1ks0IzIUrBtOb3K/+8i04bF6sLOEBZKMFY84JTaXGhjjYbWG63gB9Jf4BalBgdaw+jkYxTSVTFkqiDF9Hyc2yIi2nAo2rwxSwxJCp2TM+o4qIpkJssWtc3TmlBGKYu1KWbRQf05kRBozk6HrlMROzKqXi/95/dRG10HGVZJapuhyUZQKZGOUP45GXDNqxcwRQjV3tyI6IZpQ6+KpuBD81Zf/ks5F3W/U/fvLWvO2iKMMJ3AK5+DDFTThDlrQBgoTeIIXePWk9+y9ee/L1pJXzBzDL3gf3872jXA=</latexit>

6000

Figure 4.4: Surface plot showing the numerical solution to equations (4.6)
A plot showing the expected escape time given different initial conditions with D =
〈D(r, θ)〉. The exit geometry matching the experimental design, with 12 exits shown
as downward spikes on the surface.

numerically for a given prescribed boundary, an initial condition and diffusivity

to give the escape rates of the colloids. This diffusivity inserted into the series

of equations to be solved is given as constant. To solve this set of equation we

propose several appropriate values of constant diffusivity which each codify slightly

differently the spatial-dependence diffusivity.

The results for a control case and three chosen constant diffusivities and, their

initial conditions are given in table 4.1, which shows the rates obtained from the

numerical solution of equation (4.6). The various initial conditions (corresponding

to the different columns) used are as follows: The first column describes a particle

starting from the exact centre of the chamber and diffusing from there, as such

this can be thought of as a lower bound on the expected escape rate, since it is

in the position that is the furthest from all of the exits of the chamber. This

can be visualised as the time corresponding to (x, y) = (0, 0) in figure 4.4. The

next column is then the average rate, calculated from particles that are uniformly
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D (µm2s−1) t(0, 0)−1 (×10−5 s−1) 〈t(r, θ)〉−1 (×10−5 s−1) 〈t(r, θ)〉−1
ρ (×10−5 s−1)

Dth = 0.05 0.228 0.295 0.280

Dbulk = 3.55 16.2 20.8 19.9

〈D(r, θ)〉 = 3.14 14.3 18.3 17.6

〈D(r, θ)〉ρ = 3.12 14.2 18.3 n/a

Table 4.1: Escape rates for constant diffusivities in the Narrow Escape numerical
model. Th experimental value, for comparison, if given by: kin = (7.8 ± 0.6) ×
10−5s−1.

distributed throughout the chamber. In this way we have accounted for the particles

in the chamber which start off near to one of the exits and then escape through it

relatively quickly. This is the average over all the value on the surface of figure 4.4.

Finally, the last column corresponds to an initial distribution that follows equation

(3.23), normalised to describe a circular chamber. In these, y taken to be the

distance to the closest boundary along a line connecting the boundary to the centre

(the distribution is assumed to be radially symmetric). This initial condition then

accounts for the fact that the stationary state of the colloids is non-equilibrium and

that a relatively larger portion of them are closer to the boundary, thus have less

distance to travel to escape. As before, this is the average over the value in figure

4.4, but with the weighting as described by the stationary distribution.

The first diffusivity case solved is the thermal value as calculate from Stokes-

Einstein, to be performed as a baseline for the other cases: If we use the measured

rate for the thermal case to provide a characteristic time for a particle to exit the

system we see the time is on the order of ∼ 120 hours. From this estimate we gain

some understanding of the observation that no colloids entered the side channel

in the control experimental case, where there were no swimmers present. Since the

duration measured for was only ∼ 320 minutes this was not sufficient for the thermal

motion even with many colloids.

The next case was the bulk effective diffusivity Dbulk = 3.55µm2s−1 predicted

by the jump-diffusion model which was introduced in equation (3.22); specifically,

the value is the effective diffusivity far from the boundary. We see in this case the

exit rate is 2 orders of magnitude higher than the thermal case, although it is still

in each initial condition’s case too high.

Below this we have the spatially-averaged effective diffusivity over the whole

system, 〈D(r, θ)〉, where D(r, θ) = Deff(R−r), the effective diffusivity as in equation

(3.22) and R the radius of the chamber. In doing this, we have then included also

the decrease in the effective diffusivity near to the boundary. As before, we see that

this is an overestimate, but closer to the experimentally measured value than in the
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previous case.

Finally, we have the case where the diffusivity is 〈D(r, θ)〉ρ, here we have

the diffusivity being averaged according a weighting given by the distribution of the

particles within the chamber. Owing to the fact that that the averaging is performed

according to the stationary state the final initial condition is not performed, since

this would be a double-accounting of this distribution. The results in this case are

quantitively almost identical to the previous constant diffusivity described.

We see from the results in table 4.1 that in all of the different cases of constant

diffusivity that the model over-predicts the rate at which colloids leave the system.

4.4 Modelling using Spatially Dependent Effective Drift

& Diffusivity

Up to this point we have limited ourselves to a constant diffusivity and no particle

drift. But, we have previously seen in our jump-diffusion model, spatially dependent

features naturally arise for such systems. In order to include them in the estimate of

the escape, we must perform instead a numerical simulation of a colloid subject to

the space-dependent effective diffusivity and drift used in the jump-diffusion model.

This numerical scheme uses Milstein’s Method (see section 2.4.3 for details), the

effect of which is to include an extra term due to the gradient in the diffusivity

(since now we have a fully spatial-dependent value) the nature of which depends on

the integration scheme being employed to evaluate the noise term. The dynamics

for each component are

x(t+ δt) = x(t) +
√

2D(r)δt ξ1(t) + v1(r)δt cos(θ) + v2(r)δt cos(θ),

y(t+ δt) = y(t) +
√

2D(r)δt ξ2(t) + v1(r)δt sin(θ) + v2(r)δt sin(θ). (4.7)

Here, (x(t), y(t)) is the position of the colloid at time t, D(r) = D0 + 1
2λ(r)m2(r)

is the local effective diffusivity at a position r = |(x, y)|, ξ(·) is a Gaussian white

noise of variance 1, v1(r) = λ(r)m1(r) is the drift due to the first moment of the

jump distributions, v2(r) = 1
2D
′(r)

(
ξi(t)

2 − α
)

the drift due to the second moment.

The constant α captures the integration scheme [156], with α = 0, 1 corresponding

to the Stratonovitch and Itô respectively. The angle θ = arctan(y(t)/x(t)) ensures

the drifts are oriented towards the center of the chamber. Finally, the simulations

boundary conditions match those described in the experiment.

In these numerical simulations we use: δt = 0.1s; the same boundary struc-
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ture used to estimate the values of Table 4.1 with the mixed reflective and absorbing

parts distributed along the chamber’s edge; and the KM effective diffusivity and drift

calculated for the 100µm straight channel, rescaled by the ratio of the concentra-

tions between that experiment and the circular chamber one. The results of this

numerical simulation can be found in Table 4.2 for the escape rate given an initial

condition of particles at the centre of the chamber, where the error is the stochastic

error from the simulations.

α t(0, 0)−1 (×10−5 s−1) ± stochastic error (×10−5 s−1)

0 (Stratonovitch) 7.408 0.066

1 (Ito) 3.063 0.027

Table 4.2: Passive particle escape rates calculated from Eq. (4.7), the drift-diffusion
model equation including both terms with spatial dependence.

We see that the Ito scheme leads to an under-prediction of the experimental

escape rate of the colloids, while the Stratonovich provides an excellent match with

the experimentally measured value (kin = (7.408 ± 0.066)10−5 s−1 vs. kin = (7.8 ±
0.6) × 10−5 s−1 respectively). The exact details of which is the correct choices of

integration scheme depends on the system being considered and has been discussed

within existing literature [156, 157].

A few final details remain to be captured by the model. Notice, here we

implemented a spatially dependent diffusivity and drift, but only the drift (by used

of trigonometric function of θ) has directionality. The diffusivity parallel to the

boundary, if it is largely driven by the swimmer activity, should be expected to be

reduced markedly less than perpendicular to the boundary. It is clear from the good

agreement to the experiments that this additional feature is overall minimal, but

perhaps, in a less symmetric exit geometry, it would be of greater consequence.
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Chapter 5

Mixed System Simulations with

Tuneable Active Boundary

Scattering

5.1 Introduction

In this chapter we will introduce a computational model, which has been developed

to further the study of active passive mixtures. The work presented here differs

from the two previous chapters, being an exclusively computational study. Where

appropriate, we will refer back to the previous chapters to gain a more intuitive

understanding of any relevant situations. The model implemented is an adaptation

of [158] which drew originally from [159]. The model is centred around an active

broken-fore-aft symmetric three-body swimmer, which plays the role of our active

particles within the system. By implementing steep potentials which can act on these

particles, we are able to simulate these active particles moving within a confined

environment, the geometry of which is tuneable. These same types of potentials

can also be used to simulate passive particles, existing within the confinement and

interact with the swimmers.

Our model also looks at the dynamics of passive particles under the influ-

ence of self-propelled active particles within a confinement. The geometry of the

confinement we will study is the same as that of the microfluidic device that we

discussed in chapter 3. The aim of our model will be to further deepen our under-

standing of the interactions of passive particles with swimmers. The key result of

chapter 4 was that, by choosing a particular geometry that pairs nicely with the

way in which our active particle’s scatter, we can produce a desirable non-uniform
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distribution of swimmers. As a result, we can accumulate them as a given distance

from a boundary. However, in this chapter we ask the reverse of this question. If in-

stead of considering a fixed geometry for our swimmers, can we use swimmers which

scatter differently to produce different accumulations that can influence our passive

particles. To do this, we use several different active particle properties, which will

be discussed as the model is outlined, the swimmers behaviour can be tuned and

as a result a broader range of swimmer types can be captured by the model. We

will then see how by changing the boundary scattering, we can influence the accu-

mulation of the colloids. Much like the systems that we have encountered thus far,

the particle concentrations will be in the dilute regime. The focus remains on the

predicting long time behaviours of individual passive particles, by separating their

diffusive motion and active particle driven jumps.

5.2 The Broken Fore-Aft Symmetric Self-Propelled-Particle

Model

5.2.1 Swimmer Properties & Geometry

The first earliest ideas implementation of such a model is found in [159], in which

the active particles were rod structures with fore-aft symmetry. These rods were

self-propelled with a favoured direction. When undergoing motion, they had an

associated translational (both parallel and perpendicular to the axis of the rod) and

a rotational friction tensor. The values of which are given by

fT = f0

[
f||ûαûα + f⊥(I − ûαûα

)
], (5.1)

fR = f0fRI. (5.2)

Here, f0 is a Stokesian coefficient of friction, ûα is a unit vector which codifies

the orientation of the rod, I is a two-by-two identity matrix, and the trio of non-

dimensional values f||, f⊥ & fR are found using the following equations from [160]

2π

f||
= log a− 0.207 + 0.980a−1 − 0.133a−2, (5.3)

4π

f⊥
= log a+ 0.839 + 0.185a−1 + 0.233a−2, (5.4)

πa2

3fR
= log a− 0.662 + 0.917a−1 − 0.050a−2. (5.5)
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f∥

f⊥fR

L

2Rla

Figure 5.1: Schematic of the 3-particle active particle The various lengths
and frictional forces for the active particle are shown. An additional active force
can then either act to the right (puller) or to the left (pusher).

Here a is the aspect ratio of the active rod. In equation (5.1), the square brackets

on the right hand side of the equation can be thought of as a rotation of these

dimensionless friction values f|| and f⊥ into the direction, and perpendicular to, the

orientation of the swimmer.

By use of the friction tensors associated to these values, we can write an

equation of motion for the centre of mass of the active rods

fT · ∂trα = −∇rαU + F ûα, (5.6)

fR · ∂tuα = −∇ûαU. (5.7)

Here, rα is the position vector of the centre of mass of the rod, ∇rα and ∇ûα are the

positional gradient and the gradient on a unit circle respecticely, U is a potential

(the exact form of which will be discussed in subsequent sections) and, F is the

active force, which drives the self-propelled motion.

Both, equations (5.6) and (5.7) can be straightforwardly solved by pre-

multiplying by the inverse of the friction tensors. Using suitable numerical solutions

for the resulting differential equations we can get particle trajectories.

Following [158], which builds on this active-rod model, active particles within

the system are instead made up of three overlapping circular segments of decreasing

size. The reason for this modification is to account for the area swept out by the

average motion of the flagella from the microswimmer being modelled. As noted in

[158], a triangular shape with a fixed orientation captures well the area that is swept
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out. But for practical purposes a series of overlapping circles is more appropriate

for a computational model, since such segments each have radial symmetry. We can

see such an active particle in figure 5.1, with the frictional components marked. The

circles themselves have three distinct radii, relating them to the largest, which is

marked in the figure as Rla, we have:
√

2Rme = Rla for the medium and 2Rsm = Rla

for the smallest. The centre of the next smaller circle in the series sits on the

circumference of the larger circle adjacent to it. Notice here, the work by [160] relies

on the particle being a rod. Here, we are assuming that the friction coefficients for a

rod applies to a three overlapping particle system, using an aspect ratio a = L/Rla.

As mentioned in the introduction, one of the aims of this model is to enable

the simulation of a broader class of microswimmers. To achieve this, the preferred

direction of motion, which is represented within the model by the sign of the active

for F , can be easily modified. This allows the model to easily make the switch

between an active particle that is a pusher or puller [158].

The model up to this point has represents a ballistically moving swimmer,

which is not what is seen in experiments with real swimmers, with their motion

made up of run-and-tumble. To begin to account for this, we can easily alter our

equations of motion by including a rotational noise term. A noise of the form

DRζ(t), where DR is a rotational diffusivity and ζ(t) a gaussian white noise. From

the inverse of this rotational diffusivity we set a timescale in which the direction

of the active particle’s orientation, uα, de-correlates. This enables us to model

swimmers with built in turning dynamics. We should note, a term could also be

added into the positional dynamics as translational diffusion. However, owing to

the relatively large size of the microswimmers and their high speed, in most cases

many times their body-length, this contribution will be neglected.

5.2.2 Particle Forces

Now that we have established the active particle geometry and dynamics when they

are unimpeded, we can also include interactions between the boundaries and species

within the system. The inclusion of passive particles into the system is relatively

straightforward. Passive particles are in effect just active particles with only one

segment and with no active force (i.e. F = 0). Thus, using the equations of motion

described thus far we can also include passive particles. Unlike the swimmers, these

particles are given a translation diffusion.

As well as the passive particles, we can also include confining boundaries.

Within this work we adopt a geometry matching that of the straight channel mi-

crofluidic experiments from chapter 3. As such, there are two parallel boundaries
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at the top and bottom of the system. Active (and passive) particles encountering

these boundaries experience a potential, the result of which is a force which acts

perpendicular to the boundary. The remaining two boundaries in which the system

is enclosed are implemented as periodic, with particles passing through the left side

of the system ending up on the right and vice versa.

The interaction potential between these species will now be discussed. In

equation (5.7), which described the equation of motion for the active particles, we

had a term −∇xU , where x was occupied either by the position vector or the unit

vector which encoded the active particle’s orientation. This term is a force which is

the result of the active particles interacting with various bodies within the system.

Within [159] and [158] this was a Yukawa-Potential [161]. However, in our model

the form of this potential is modified to be a WCA potential (details on this can be

found in 2.4.4). This potential has a cut-off beyond a given distance allows which

the potentials value to be set to zero. The distance of the cut-off rc = σ
1
6 for the

WCA potential is determined by the radii of the interacting bodies. The sum of the

two radii values of interacting particles/segments can be used to set an appropriate

value of rc in particle-particle interactions, while in particle boundary the particle

radius sets rc The only remaining WCA parameter is then ε, a scaling factor, which

allows very straightforward tuning of the steepness of the potential. Yukawa in

contrast to this requires two parameters to tune the steepness and extent of the

potential, which in contrast to WCA is infinite, making WCA easier to modify.

The value of the function Ui for the ith active particle is calculated as

Ui =
∑
s∈S

∑
j∈Σ\{i}

∑
σ∈S

Uis;jσ +
∑
s∈S

∑
c∈Γ

Uis;c +
∑
s∈S

Uis;w. (5.8)

Here, we can there are three main type of contribution to the total potential. The

first of which are the contributions from Uis;jσ, the potential that is a result of

segment s of active particle i with the segment σ of active particle j. The set S is

then the collection of all three of the segments of the active particles. To capture

the full interaction we need to look at each of the segments of the swimmer we’re

interested in as compared to each other swimmer (and all their individual segments),

this set is given as Σ\{i}. The second contribution comes from terms of the form

Uis;c, this is a back-force of the passive particles acting on the swimmers. Here, this

can be summed over all of the colloid in the system for each segment of the active

particle to give the total contribution. Finally, the third term is the contributions

of the form: Uis;w, these are interaction of the active particles with predefined

boundaries in the system. As previously mentioned, these interactions act purely
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perpendicular to the boundaries to prevent active particles from escaping from the

system.

For calculating the potentials acting on the passive particles there is a slightly

simpler overall equation

∑
s∈S

∑
i∈Σ

Uc;is + Uc;w. (5.9)

Here, we have a contribution from each of the different swimmers in the system

acting on the passive particle and a contribution from any boundaries on the particle.

The passive particles don’t see each other within their potential terms and so cannot

interact with each other.

Using the total potential of each particle, we can now calculate the gradient in

the x, y (and θ for active particles, which have orientation) directions to determine

the forces and torques that the particles are subjected to, the explicit forms of

which are given by equations (??) and (??). This is then all the information needed

to enable appropriate numerical schemes to calculate the trajectories of all of the

particles in the system (an introduction to the details of which is given in 2.4.5).

The solution scheme used is a second order SRK, implemented following closely as

outlined in [140].

5.2.3 Near-wall Swimmer Kick Events

The last feature of the model which differs from previous implementations is the

presence of a Poissonian kicking-process, which occurs near the boundaries. It has

been previously noted that microswimmers near boundaries will escape at relatively

sharp angles. The scattering angle of microswimmers in the vicinity of a surface is

largely dictated by flagella or ciliary contact [162, 163]. This is not an effect which

is captured by the current dynamics. The only way in which an active particle can

currently leave a boundary, with which it is aligned, is via reorientation caused by

rotational diffusion. To enable this scattering effect, we include a small layer near to

the boundary. Once an active particle’s centre of mass is within this boundary layer

each time step an acceptance-rejection Poisson criteria is initiated. If the check

is failed, then the particle continues and only the WCA potential, due to other

particles/boundaries, can affect its trajectory. However, if the check passes then the

active particle is subject to a constant torque, the sign of which is determined so as

to rotate the swimmer out of the boundary. For example, a swimmer approaching

the lower boundary at an anti-clockwise 45-degree angle to the vertical, the torque

applied will also act anti-clockwise. The applied torque is then maintained until
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the centre of mass of the active particle passes out of the boundary layer in which

the kick process occurs. It is clear that this kicking process is characterised by two

parameters: the associated kicking-rate of the Poisson process and the magnitude

of the applied torque. It should be noted here, the possible values of the torque

can be bounded above for boundary layers of appropriate thickness. This is because

it should not be possible for a swimmer facing (even slightly) right to leave the

boundary facing to the left. It is this phase space of kicks that allows us to tune

the behaviour of the active particles. Thus, using these kick properties we are able

to model a range of microswimmer boundary behaviours. As such, in the following

results section the focus will largely be on the passive particle dynamics resulting

from different positions within this kick phase-space.

5.2.4 Simulation Parameters

For the simulation there are several more parameters of note, which we will dis-

cuss prior to the presentation of the results. Firstly, the simulated system was

500µm (between the periodic boundaries) by 100µm (between the WCA bound-

aries). Within the system there were 20 active particles, each with an overall length

of Ls = 15µm, with the individual segments proportioned as described in section

5.2.1. The swimmers move as pushers (smallest segment first) with a speed of

∼ 100µm s−1. Their rotational diffusivity was set as Dsr = 0.5Rad2s−1, the corre-

sponding 2s for a de-correlation of the direction means this kind of active particle

behaves highly ballistically.

As well as the active particles there were 40 passive particles in the system,

each with a radius 2.5µm, with a thermal diffusivity Dc = 0.2µm2s−1. These passive

particles cannot interact with each other, as outlined in section 5.2.2. As a result of

the two species concentrations, the system is well within the dilute regime.

The realisations of the system correspond to 16 different kick frequencies and

6 kick torques. The kick frequency range between [25
16 , 225

16 , ..., 1625
16 ] (Hz). This cor-

responds to respectively a 0.0781% and 1.24% chance per time-step in the boundary

for the lowest and highest. After entering the boundary layer in which the kick pro-

cess can be activated, which is 1.5 times the size of the largest segment, to reach the

boundary (at which point the WCA potential begins to reorient the swimmer) there

are at least 150 time-steps (since swimmers move at 100µms−1 with dt = 0.0005s).

Treating the kicks as binomial, the mean number of events in this time are respec-

tively at least 0.117 and 1.86. This gives a good range of behaviours, with the

low-kick frequency samples seeing the swimmers generally reaching the boundary,

aligning via. the WCA-force and then reorienting due to a scattering by a kick, while
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high-kick frequency are rapidly scattered, reorienting and moving out. The kicks

then have an associated torque after they have been triggered. This is implemented

as a constant change in swimmer orientation, directing it toward the outward nor-

mal, per time-step. The torques take values in the range [0.0001,0.0002,...,0.0006]

(Rad), this set was chosen using empirical observations in test cases, with an active

particle directed into the boundary with high kick-frequency. The results of which

showed the low torque cases are slower to leave than the higher and result in a

shallower exit angle. Further exploration of this phase space is desirable. However,

we shall see that these values are sufficient to show non-trivial differences in the

resulting passive distributions.

Finally, the overall elapsed time for each realisation of the system was 4000s,

with a time-step dt of 0.0005s. The two values of which must be determined by

practical restraints. Firstly, a longer total time is, from a data analysis stand-point,

generally good, since this means more overall data. However, it also means a longer

run-time, which can be impractical. Using Parallelisation of the different runs,

each of the kick-frequencies were run in parallel, and the code’s run-time brought

down from around a week to 1-2 days, allowing for longer elapsed times within the

runs. The time-step poses several challenges, since a higher time-step means a faster

code. However, a higher time-step can introduce several undesirable artefacts. As

a specific example, within the code the active particles move at a fixed speed. As

such, the given time-step can be used to calculate the maximum distance into a

potential (either from the boundary, another active particle or a passive particle)

that an active particle can reach. If the time step is large, then so too is this

distance, which can lead to massive non-physical displacements since the WCA is a

very steep potential. Smaller time-steps can of course negate such issues, at the cost

of a greater run-time. Overall the time-step arrived at was found to be a reasonable

compromise between these different opposing considerations.

5.3 Simulation Results

In this section we will outline the results of the simulation. As with the results in

chapter 3, this will consist of looking at the overall passive particle distributions.

Following this we will then focus on the jumps within the trajectories. In this

case, there is no need to describe a method of detecting the jumps themselves from

the trajectories. This is because within the simulation, associated to each passive

particle, a value can keep track of whether or not there is a non-zero force acting on

the particle (not including from the boundary). Thus, we can easily separate out
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Figure 5.2: Extrema passive particle distributions. The passive particle dis-
tributions are shown corresponding to the extremes of the kicks sampled in the sim-
ulations. (Blue) Low kick frequency, low torque. (Red) High Kick frequency, low
torque. (Yellow) Low kick frequency, high torque. (Purple) High kick frequency,
high torque.

the times when the particles are in contact and thus, when a jump is occurring.

5.3.1 Active and Passive Positional Distributions

In figure 5.2 we see a few select examples of the distributions of passive particles.

With each of the cases, the boundary is placed at y = 0 and the curve has been

symmetrized about the centre of the channel. First we look at some special cases

to highlight the effects which are at play. The lines in the figure correspond to the

four most extreme cases of the kick’s properties.

The first of which cases is the low kick frequency and low torque (blue). In

this distribution we see the presence of two distinct peaks at ∼ 2.5µm and ∼ 12.5µm.

Between these there is a relatively depleted region and after the second peak another

depletion, after which there is a recovery to a boundary value (with a slight increase).

In this case the active particles, upon reaching the boundary, take a while to undergo

a scatter. The WCA-force aligns the active particles parallel to the boundary and

they then move along the boundary, until such a time that a kick event can remove

them. As a result of this, the active particles occupy primarily the area very close
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to the boundary, making it difficult for the colloids to reach the boundary. In the

case where colloids end up near the boundary they then spend relatively more time

very near to it, which is the origin of the first accumulation at 2.5µm, notably equal

to the radii of the passive particles. The second accumulation interestingly would

seem to be the result of the boundary trapped swimmers themselves acting as a

kind of pseudo-boundary. The largest segment of the swimmers has a diameter of

∼ 10µm, combining this diameter with the radii of the passive particles we see the

resulting second accumulation at ∼ 12.5µm. After this point, there is then a slight

depletion and then a recovery to a bulk value far away from the boundary. In this

case there is a slight increasing of the distribution even as far away as 40µm, this

could be because there is a persistent alignment of the active particles (which are

themselves very ballistic), far away from the boundary. Exploring this further would

either require data from a much wider channel or using active particles with a higher

rotational diffusivity, to enable them to de-correlate.

Next, the yellow curve, which corresponds to the case when there is a low

kick frequency but a high kick torque. This shares many of the different features

of the first case. The only differing features are that the accumulations are both

markedly smaller. This is likely due to the fact that for higher torque means that

active particles are scattered with a steeper angle. This combined with the active

particle’s ballistic motion means they arrive at the opposing boundary faster and

return to their confined state. With more swimmers near the boundary for longer

this further restricts the presence of the colloids. The other notable feature, is the

slightly faster increase after the second accumulation point.

The third case we consider is the high kick frequency and low torque (Red).

In this we no longer have the two accumulations, instead there is a much larger

boundary accumulation, a depletion region, a recovery to the bulk and finally a

slight bump in the distribution close to the centre of the channel. Opposed to as we

had in the previous two cases, the high-kick frequency now means that swimmers

that reach the boundary are rapidly scattered and ejected from the area to the

channel centre. As a result, the boundary region is much more hospitable to the

passive particles, which spend relatively more time in the region. Thus, we see

the sharp accumulation peak. The area in which the active particles are scattered

(∼ 7.5µm from the boundary) is then depleted, since this is the area where the

swimmers spend a good deal of time while they are being reoriented. In the case

of the red curve, due to the lower kick torque, the active particles are scattered to

a shallower angle, meaning they likely spend more time in the region out from the

boundary (20 − 30µm) and so we see a slight increase in the distribution in the
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1
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="QFw4+4c0rJUH6eFpMx4QAiOQ4EU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKqMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo+tgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmlWXf/S9e8vKrWbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBW+I0u</latexit>

0.2
<latexit sha1_base64="a/4FyPbW3VkXnpJg1/6+oi5Bpeg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo+tgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP6l699XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBaAI0w</latexit>

0.4
<latexit sha1_base64="oQk0cCEnO4dq5KElPzmThRg7Eis=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEqseiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo+tgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuH7V9e8vK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBdCI0y</latexit>

0.6
<latexit sha1_base64="4SeZ93X4OYiu7oobExOrp7vpZjs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEtMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo2owESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadkg3BX355lTQvXP/K9e8vK7WbPI4inMApnIMP11CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBgEI00</latexit>

0.8

<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1

<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1
<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1

<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1
<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1

<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="28zxYWGYCpxa1Sz7sEQnPvHSR4s=">AAAB9XicbVBNTwIxEO36ifiFevTSSEw84a4x6pHoxSMmApvASrqlCw1td9POKmTD//DiQWO8+l+8+W8ssAcFXzLJy3szmZkXJoIbcN1vZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrH2Q2KY4IrVgYNgfqIZkaFgzXBwM/Gbj0wbHqt7GCUskKSneMQpASs9+Kd+pw1sCJkkw3GnVHYr7hR4kXg5KaMctU7pq92NaSqZAiqIMS3PTSDIiAZOBRsX26lhCaED0mMtSxWRzATZ9OoxPrZKF0extqUAT9XfExmRxoxkaDslgb6Z9ybif14rhegqyLhKUmCKzhZFqcAQ40kEuMs1oyBGlhCqub0V0z7RhIINqmhD8OZfXiSNs4p3UfHuzsvV6zyOAjpER+gEeegSVdEtqqE6okijZ/SK3pwn58V5dz5mrUtOPnOA/sD5/AG2VZKp</latexit>

X/Xmax

<latexit sha1_base64="DVMl9lakbMg2KhZG+fZw0gdJo5w=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ5lsN+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUUdagsYhVO0DNBJesYbgRrJ0ohlEgWCsY3U791hNTmsfy0YwT5kc4kDzkFI2VHvCsV664VXcGsky8nFQgR71X/ur2Y5pGTBoqUOuO5ybGz1AZTgWblLqpZgnSEQ5Yx1KJEdN+Nrt0Qk6s0idhrGxJQ2bq74kMI63HUWA7IzRDvehNxf+8TmrCaz/jMkkNk3S+KEwFMTGZvk36XDFqxNgSpIrbWwkdokJqbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0aQCGEZ3iFN2fkvDjvzse8teDkM4fwB87nDyjNjR4=</latexit>

a)
<latexit sha1_base64="UV0k0pKeGLZ7YR/p9DMiG+ObjBI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITjrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHypSjR8=</latexit>

b)
<latexit sha1_base64="hQYGcLYn+iUxUWT0siIuZqfKioI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpgZ31yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nDyvXjSA=</latexit>

c)

<latexit sha1_base64="AoTpRdPgvZ52id1EPhmtKksbEQU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpoX/WK1fcqjsDWSZeTiqQo94rf3X7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m106ISdW6ZMwVrakITP190RGI63HUWA7I2qGetGbiv95ndSE137GZZIalGy+KEwFMTGZvk36XCEzYmwJZYrbWwkbUkWZseGUbAje4svLpHle9S6r3v1FpXaTx1GEIziGU/DgCmpwB3VoAIMQnuEV3pyR8+K8Ox/z1oKTzxzCHzifPy1cjSE=</latexit>

d)
<latexit sha1_base64="xtsvQM5GJ+HyoZ5QpTAVoxyJlLg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpAc965YpbdWcgy8TLSQVy1Hvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LJU0Qu1ns0sn5MQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rw2s+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpySDcFbfHmZNM+r3mXVu7+o1G7yOIpwBMdwCh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeWnDymUP4A+fzBy7hjSI=</latexit>

e)
<latexit sha1_base64="bn5qyQKCDSGeRzpb8UrA89I+1Mk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITzrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHzBmjSM=</latexit>

f)

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0

<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25

<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25

<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)

<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)

<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)
<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)

<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)
<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)

Figure 5.3: Accumulation heatmap for passive and active particles. (a-
c) Heatmaps for the passive particle distributions are shown. The accumulation is
measured using distribution kurtosis (a), a near-boundary integral of the distribution
(b) and the variance of the distribution (c). (d-f) Heatmaps for the active particles
are shown, following the same order of accumulation rule respectively. All values
are shown as relative to the maximum value.

centre of the channel.

Finally, we have the high kick frequency and high torque case (purple). Many

of the features are common to the purple as the red curve, with the exception of

the slight increase in the centre of the channel. Instead at ∼ 15µm the bulk value

for the curve is reached and the value remains relatively stable. We see in this case

a curve very similar to what we had in the microfluidic experiments in chapter 3,

with each of the key features we highlighted present.

Now that we have seen the features of some specific cases, we can look at the

full set of results. This can be see in figure 5.3: Figures (a-c) relate to the passive

particles, while (d-f) relate to the active particles. The columns then correspond

different methods of measuring the boundary accumulation. The aim here is, for a

given point in the frequency-torque phase space, to associate a single value which
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tells us the relative amount of particles at the boundary as compared to in the bulk

region of the channel.

In the left column of figure 5.3, (a,d), we look at the kurtosis, X = K,

of the distributions. This is a measure of whether a given distribution is overall

heavy tailed [164] and in this case, since we centre our distributions on centre of

the channel, a heavy tailed distribution (high kurtosis) corresponds to the particles

being largely at the boundary. We see for the passive particles in subfigure (a) for

lower kick frequencies there is a lower kurtosis, while at higher kick frequencies the

value increases. This matches with what we saw in the specific cases of figure 5.2,

with high frequency cases having relatively more accumulation. As well as this,

we see that as we increase the torque there is even higher kurtosis. This again

matches with the differences we saw between the red and purple curves from 5.2.

This method however, presents a clear limitation. We see that for the low torque

cases there is little difference between the low and high kick-frequency cases, while in

figure 5.2 we saw that these have very different properties (curves: red vs. yellow).

In panel (d) we see the kurtosis for the active particles. As expected for the higher

kick frequencies we get a lower value, since the swimmers are rapidly moved away

from the boundaries by scattering. For the lower kick frequencies we also see that

decreasing the torque leads to a slightly lower kurtosis.

In the middle column (b,e) the method of classification is integration of the

distribution from 0 to 15µm, X = I. As we saw in the previous figure, this was

the area where the majority of the non-bulk behaviour was present and so this is

another possible method of classifying the boundary accumulation. The results are

very similar to what we saw with the kurtosis. Again, high frequency and torque

in the passive case (b) shows a larger accumulation, with a decrease in the value

for lower frequencies. Unlike in the case of the kurtosis however, for the lowest

torque case we see that there is a slight difference in the value of the accumulation

measure, with the higher kick-frequency showing a higher value than the lower.

For the cases in figure 5.2 red and purple, this measurement registers that there

is indeed a difference between the two. However, it does not retain what form the

difference takes. For the active particles, shown in (e), we see largely the same as

in the kurtosis case (d), but again with greater gradation between the maximum

values and the minimum.

Finally, we have the right column (c,f). These plots come from looking at the

variance of the distribution X = V . This means, the plot quantifies the difference

between a uniform distribution and the measured distributions. Again, we see high

frequency and torque has a clear signal, the intermediate kick frequencies have a
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<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="ECDHSLeDnMxQePXPP5JunHEWxVk=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNUY9ELxwxkUcCGzI79MKE2YczvUTc8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e7yYik02va3tbK6tr6xmdvKb+/s7u0XDg4bOkoUhzqPZKRaHtMgRQh1FCihFStggSeh6Q1vp35zBEqLKLzHcQxuwPqh8AVnaCR3SEsdhEdMq0+Ts26haJftGegycTJSJBlq3cJXpxfxJIAQuWRatx07RjdlCgWXMMl3Eg0x40PWh7ahIQtAu+ns6Ak9NUqP+pEyFSKdqb8nUhZoPQ480xkwHOhFbyr+57UT9K/dVIRxghDy+SI/kRQjOk2A9oQCjnJsCONKmFspHzDFOJqc8iYEZ/HlZdI4LzuXZefuoli5yeLIkWNyQkrEIVekQqqkRuqEkwfyTF7JmzWyXqx362PeumJlM0fkD6zPHy5Ekbk=</latexit>

k(Hz)
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25

<latexit sha1_base64="DVMl9lakbMg2KhZG+fZw0gdJo5w=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ5lsN+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUUdagsYhVO0DNBJesYbgRrJ0ohlEgWCsY3U791hNTmsfy0YwT5kc4kDzkFI2VHvCsV664VXcGsky8nFQgR71X/ur2Y5pGTBoqUOuO5ybGz1AZTgWblLqpZgnSEQ5Yx1KJEdN+Nrt0Qk6s0idhrGxJQ2bq74kMI63HUWA7IzRDvehNxf+8TmrCaz/jMkkNk3S+KEwFMTGZvk36XDFqxNgSpIrbWwkdokJqbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0aQCGEZ3iFN2fkvDjvzse8teDkM4fwB87nDyjNjR4=</latexit>

a)
<latexit sha1_base64="UV0k0pKeGLZ7YR/p9DMiG+ObjBI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITjrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHypSjR8=</latexit>

b)
<latexit sha1_base64="hQYGcLYn+iUxUWT0siIuZqfKioI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpgZ31yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nDyvXjSA=</latexit>

c)
<latexit sha1_base64="AoTpRdPgvZ52id1EPhmtKksbEQU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpoX/WK1fcqjsDWSZeTiqQo94rf3X7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m106ISdW6ZMwVrakITP190RGI63HUWA7I2qGetGbiv95ndSE137GZZIalGy+KEwFMTGZvk36XCEzYmwJZYrbWwkbUkWZseGUbAje4svLpHle9S6r3v1FpXaTx1GEIziGU/DgCmpwB3VoAIMQnuEV3pyR8+K8Ox/z1oKTzxzCHzifPy1cjSE=</latexit>

d)
<latexit sha1_base64="xtsvQM5GJ+HyoZ5QpTAVoxyJlLg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpAc965YpbdWcgy8TLSQVy1Hvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LJU0Qu1ns0sn5MQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rw2s+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpySDcFbfHmZNM+r3mXVu7+o1G7yOIpwBMdwCh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeWnDymUP4A+fzBy7hjSI=</latexit>

e)
<latexit sha1_base64="bn5qyQKCDSGeRzpb8UrA89I+1Mk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITzrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHzBmjSM=</latexit>

f)

<latexit sha1_base64="p6iGW4kCuXYrmL1kOtzl8+fstxY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpYXDWK1fcqjsDWSZeTiqQo94rf3X7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m106ISdW6ZMwVrakITP190RGI63HUWA7I2qGetGbiv95ndSE137GZZIalGy+KEwFMTGZvk36XCEzYmwJZYrbWwkbUkWZseGUbAje4svLpHle9S6r3v1FpXaTx1GEIziGU/DgCmpwB3VoAIMQnuEV3pyR8+K8Ox/z1oKTzxzCHzifPzHrjSQ=</latexit>

g)
<latexit sha1_base64="PAy/8PDph29Dhtni0/5vIDnxngY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD8OzXrniVt0ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NLJ+TEKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMyfZv0heYM5dgSyrSwtxI2pJoytOGUbAje4svLpHle9S6r3v1FpXaTx1GEIziGU/DgCmpwB3VoAIMQnuEV3pyR8+K8Ox/z1oKTzxzCHzifPzNwjSU=</latexit>

h)
<latexit sha1_base64="wz2ic1PcbLJiG/3HcHIZz4wTySQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD0Sc9coVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs3zqndZ9e4vKrWbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gCKm41Q</latexit>

i)
<latexit sha1_base64="6T6MLUQVKXzSeZ5pLiVcdnlgXfc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3azSbsboQS+g+8eFDEq//Im//GbZuDVh8MPN6bYWZekAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHst7M07Qj+hA8pAzaqx093DSK1fcqjsD+Uu8nFQgR71X/uz2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Nrt0Qo6s0idhrGxJQ2bqz4mMRlqPo8B2RtQM9aI3Ff/zOqkJL/2MyyQ1KNl8UZgKYmIyfZv0uUJmxNgSyhS3txI2pIoyY8Mp2RC8xZf/kuZp1TuverdnldpVHkcRDuAQjsGDC6jBDdShAQxCeIIXeHVGzrPz5rzPWwtOPrMPv+B8fAM2eo0n</latexit>

j)
<latexit sha1_base64="oJhAahGG3fTirGFisvdrZPpSuzc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpYXTWK1fcqjsDWSZeTiqQo94rf3X7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m106ISdW6ZMwVrakITP190RGI63HUWA7I2qGetGbiv95ndSE137GZZIalGy+KEwFMTGZvk36XCEzYmwJZYrbWwkbUkWZseGUbAje4svLpHle9S6r3v1FpXaTx1GEIziGU/DgCmpwB3VoAIMQnuEV3pyR8+K8Ox/z1oKTzxzCHzifPzf/jSg=</latexit>

k)
<latexit sha1_base64="FHgK69/jkzrlrAdVDal9LT9NbP0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpQZz1yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nDzmEjSk=</latexit>

l)

<latexit sha1_base64="PR1oiZvOSFw/yEFQxds18Z5SrBM=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoOgl7Aroh6DXjxGMQ9IljA7mU2GzGOZmRXCkj/w4kERr/6RN//GSbIHTSxoKKq66e6KEs6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2hA3lTNKGZZbTdqIpFhGnrWh0O/VbT1QbpuSjHSc0FHggWcwItk56EGe9csWv+jOgZRLkpAI56r3yV7evSCqotIRjYzqBn9gww9oywumk1E0NTTAZ4QHtOCqxoCbMZpdO0IlT+ihW2pW0aKb+nsiwMGYsItcpsB2aRW8q/ud1UhtfhxmTSWqpJPNFccqRVWj6NuozTYnlY0cw0czdisgQa0ysC6fkQggWX14mzfNqcFkN7i8qtZs8jiIcwTGcQgBXUIM7qEMDCMTwDK/w5o28F+/d+5i3Frx85hD+wPv8ATsJjSo=</latexit>

m)
<latexit sha1_base64="/+Z81zXPcXD0op3sEFLqD71tvDA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpQZ71yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nDzyOjSs=</latexit>

n)
<latexit sha1_base64="Px+8ElyNN+AP3ry9N5arcIydRvw=">AAAB6XicbVBNSwMxEJ3Ur1q/qh69BIugl7Iroh6LXjxWsR/QLiWbZtvQbLIkWaEs/QdePCji1X/kzX9j2u5BWx8MPN6bYWZemAhurOd9o8LK6tr6RnGztLW9s7tX3j9oGpVqyhpUCaXbITFMcMkallvB2olmJA4Fa4Wj26nfemLacCUf7ThhQUwGkkecEuukB3XWK1e8qjcDXiZ+TiqQo94rf3X7iqYxk5YKYkzH9xIbZERbTgWblLqpYQmhIzJgHUcliZkJstmlE3zilD6OlHYlLZ6pvycyEhszjkPXGRM7NIveVPzP66Q2ug4yLpPUMknni6JUYKvw9G3c55pRK8aOEKq5uxXTIdGEWhdOyYXgL768TJrnVf+y6t9fVGo3eRxFOIJjOAUfrqAGd1CHBlCI4Ble4Q2N0At6Rx/z1gLKZw7hD9DnDz4TjSw=</latexit>

o)
<latexit sha1_base64="4PeiYm/FLxs3icKThdQvMh+9ahA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITnrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHz+YjS0=</latexit>

p)
<latexit sha1_base64="4WuA7eHIM0xdV3mv7zf9uUIZFyc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLopSQi6rHoxWMV+wFtKJvtpF262cTdjVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4M/GbT6g0j+WDGSXoR7QvecgZNVa6fzztlspuxZ2CLBIvJ2XIUeuWvjq9mKURSsME1brtuYnxM6oMZwLHxU6qMaFsSPvYtlTSCLWfTS8dk2Or9EgYK1vSkKn6eyKjkdajKLCdETUDPe9NxP+8dmrCKz/jMkkNSjZbFKaCmJhM3iY9rpAZMbKEMsXtrYQNqKLM2HCKNgRv/uVF0jireBcV7+68XL3O4yjAIRzBCXhwCVW4hRrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP0EdjS4=</latexit>

q)
<latexit sha1_base64="p/B46LhucLCWFLSJU5eU72L0Suw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD/qsV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42ezSCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbTglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD0KijS8=</latexit>

r)

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0

<latexit sha1_base64="0aGYkfaki5OLvrLMAt4PHxF8HzE=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uHB75YpbdWcgy8TLSQVy1Hvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LJU0Qu1ns0sn5MQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rw2s+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpySDcFbfHmZNM+q3mXVuz+v1G7yOIpwBMdwCh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeWnDymUP4A+fzB/B+jPk=</latexit>

50

<latexit sha1_base64="PnAQV+E8GuM12aj79V0t8KsJS+4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0Io/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHkyXoR3QoecgZNVZqZP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03Mf6EKsOZwGmpl2pMKBvTIXYtlTRC7U/mh07JmVUGJIyVLWnIXP09MaGR1lkU2M6ImpFe9mbif143NeGNP+EySQ1KtlgUpoKYmMy+JgOukBmRWUKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD6bWNAw==</latexit>y

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0

<latexit sha1_base64="0aGYkfaki5OLvrLMAt4PHxF8HzE=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uHB75YpbdWcgy8TLSQVy1Hvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LJU0Qu1ns0sn5MQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rw2s+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpySDcFbfHmZNM+q3mXVuz+v1G7yOIpwBMdwCh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeWnDymUP4A+fzB/B+jPk=</latexit>
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Figure 5.4: Jump Properties (a-f) Show the variation of m1(y), (g-l) shows the
variation ofm2(y) and (m-r) shows the variation of λ(y): Each are given as a function
of distance from the channel centre (y = 0). In each case the columns correspond
to the kick-torque undergone by the active particle and the x-axis in each figure the
kick-frequency.

relatively lower overall variance and then the low kick frequency values show the

greatest values. This is likely due to the increase from the bulk value in the very

centre of the channel and large depletion region we saw in figure 5.2’s blue and yellow

curves. The active particle variant of this measure matches well the two previous

values, but shows the least intermediate features, sharply transitioning from high

values for the low frequencies to low values for medium-high values.

Now that we have classified the distributions and discussed measurements of

accumulation, we we now proceed as we did with the experimental data, by looking

at the properties of the jumps.

5.3.2 Passive Jump Properties

In the previous analysis of the jumps, we initially highlighted the rate, length and

orientation as the key features of the jumps. As reconstruction of the positional

distributions progressed we further refined this list of jump features to the average

encounter rates and the first two moments of the length distribution, when projected

into the direction perpendicular to the boundary. Following this, we proceed in the

same way, examining the values of m1(y),m2(y) and λ(y).
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We can see these properties in figure 5.4. In this case, the various columns of

subfigures correspond to the different jump-torques. Within each of the subfigures

then, the x-axis corresponds to the kick frequency and the y-axis corresponds to

the distance from the centre of the channel (data is symmetrized, as was done the

positional distributions). The tops within the figures the bulk while the bottom

values are near the boundary. The rows then correspond to the three properties of

the jumps, which we highlighted as the most important features: The top row (a-f)

being the values of m1(y), the middle row m2(y) and the bottom row showing λ(y).

First, we will look at the relative differences in the m1(y) profiles. Here,

yellow corresponds to high values, while the blue corresponds to lower values. As

was the case for the experiments, the drift caused by m1(y) points away from the

boundary, towards the channel’s centre. Hence, the sign of the drift is negative,

relaxing to zero in the bulk. Indeed, this is what we see in each realisation of

the system, with the strongest inward effective drifts near to the boundary. For

lower torque cases (a-c) there is a relatively small difference in the near-boundary

behaviour between the low and high kick frequency (at ∼ 47µm). However, in

the higher torque case we start to see more contrast between the two, with low

frequencies having larger magnitudes of inward drift. As well as this for high kick

frequencies, particularly in the higher torques there is a lowering of the drift -very-

close to the boundary (at ∼ 50µm). This is likely due to the fact that the swimmers

in these cases are quickly scattered and so this area is less likely to give an active

displacement toward the channel centre for the colloid.

Next, we will look at the value of m2(y). Here, oppositely to m1(y): Yellow

corresponds to larger magnitudes, while blue to the lower, since all values of m2(y)

are necessarily positive. As with m1(y) there is a general pattern in all cases with

slight differences. We see a bulk value and an increased value close to the boundaries.

Looking closely, there is also a reduction in the value of m2(y) which sits between

the enhanced region and the bulk. This is particularly the case for lower kick-

frequencies. The differences arise for the higher torques (k-l), present in a larger

difference in high vs. low frequencies’ increased m2 value, with lower kick frequencies

the increase is more similar across the length of the plot, while for higher torques

there is more of an increase on the left than right (at ∼ 47µm). With this, there is

a greater depression in the m2 value for the higher torques’ lower frequency cases

(at ∼ 40µm).

Finally, we have the average encounter rate λ(y). For the most part this

actually turns out to be relatively constant throughout the channel in each reali-

sation of the system. There is a slight increase in the value near to the boundary,

86



<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="QFw4+4c0rJUH6eFpMx4QAiOQ4EU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKqMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo+tgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmlWXf/S9e8vKrWbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBW+I0u</latexit>

0.2
<latexit sha1_base64="a/4FyPbW3VkXnpJg1/6+oi5Bpeg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo+tgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuP6l699XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBaAI0w</latexit>

0.4
<latexit sha1_base64="oQk0cCEnO4dq5KElPzmThRg7Eis=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEqseiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo+tgIlSaIVdssSjKJMGEzP4mfaE5Qzm2hDIt7K2EDammDG06JRuCv/zyKmleuH7V9e8vK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBdCI0y</latexit>

0.6
<latexit sha1_base64="4SeZ93X4OYiu7oobExOrp7vpZjs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEtMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB8+t9soVz/XmIKvEz0kFctR75a9uP2FZzBUySY3p+F6KwYRqFEzyaambGZ5SNqID3rFU0ZibYDI/dUrOrNInUaJtKSRz9ffEhMbGjOPQdsYUh2bZm4n/eZ0Mo2owESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadkg3BX355lTQvXP/K9e8vK7WbPI4inMApnIMP11CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBgEI00</latexit>

0.8<latexit sha1_base64="28zxYWGYCpxa1Sz7sEQnPvHSR4s=">AAAB9XicbVBNTwIxEO36ifiFevTSSEw84a4x6pHoxSMmApvASrqlCw1td9POKmTD//DiQWO8+l+8+W8ssAcFXzLJy3szmZkXJoIbcN1vZ2l5ZXVtvbBR3Nza3tkt7e03TJxqyuo0FrH2Q2KY4IrVgYNgfqIZkaFgzXBwM/Gbj0wbHqt7GCUskKSneMQpASs9+Kd+pw1sCJkkw3GnVHYr7hR4kXg5KaMctU7pq92NaSqZAiqIMS3PTSDIiAZOBRsX26lhCaED0mMtSxWRzATZ9OoxPrZKF0extqUAT9XfExmRxoxkaDslgb6Z9ybif14rhegqyLhKUmCKzhZFqcAQ40kEuMs1oyBGlhCqub0V0z7RhIINqmhD8OZfXiSNs4p3UfHuzsvV6zyOAjpER+gEeegSVdEtqqE6okijZ/SK3pwn58V5dz5mrUtOPnOA/sD5/AG2VZKp</latexit>

X/Xmax

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)

<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0

<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c
<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)

<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="OAAYnvXP9LxO9+QCzWv+mT8MyVk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoXrRK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV77Li3Z+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ODjPs=</latexit>

25
<latexit sha1_base64="Vfb0NZ+9iqEjSKP57hdHdUfLXZk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfVY9NJjBfsBbSib7aZdutmE3YnYhvpHvHhQxKs/xZv/xm2bg7Y+GHi8N8PMPD8WXIPjfFu5tfWNza38dmFnd2+/aB8cNnWUKMoaNBKRavtEM8ElawAHwdqxYiT0BWv5o9uZ33pgSvNI3sM4Zl5IBpIHnBIwUs8ujvATLneBPUJam0zPenbJqThz4FXiZqSEMtR79le3H9EkZBKoIFp3XCcGLyUKOBVsWugmmsWEjsiAdQyVJGTaS+eHT/GpUfo4iJQpCXiu/p5ISaj1OPRNZ0hgqJe9mfif10kguPZSLuMEmKSLRUEiMER4lgLuc8UoiLEhhCpubsV0SBShYLIqmBDc5ZdXSfO84l5W3LuLUvUmiyOPjtEJKiMXXaEqqqE6aiCKEvSMXtGbNbFerHfrY9Gas7KZI/QH1ucP59iSnA==</latexit>

k (Hz)

<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1

<latexit sha1_base64="Nh7TLHkIWAHD9QsOwjc+3htkUJM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBexGMug==</latexit>

0
<latexit sha1_base64="nA669ESJcPGn9Y5Z5FmqTy5edz8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSYi6rHoxWMFawtpKJvtpl262Q27E6GU/gwvHhTx6q/x5r9x0+agrQ92ebw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej29xvPzFtuJIPOE5ZmJCB5DGnBK0UdJFkZ/nXo71qzat7M7jLxC9IDQo0e9Wvbl/RLGESqSDGBL6XYjghGjkVbFrpZoalhI7IgAWWSpIwE05mK0/dE6v03Vhp+yS6M/V3x4QkxoyTyFYmBIdm0cvF/7wgw/g6nHCZZsgknQ+KM+GicvP73T7XjKIYW0Ko5nZXlw6JJhRtShUbgr948jJ5PK/7l3X//qLWuCniKMMRHMMp+HAFDbiDJrSAgoJneIU3B50X5935mJeWnKLnEP7A+fwBJYiRKw==</latexit> ⌧
/⌧

c

<latexit sha1_base64="DVMl9lakbMg2KhZG+fZw0gdJo5w=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ5lsN+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUUdagsYhVO0DNBJesYbgRrJ0ohlEgWCsY3U791hNTmsfy0YwT5kc4kDzkFI2VHvCsV664VXcGsky8nFQgR71X/ur2Y5pGTBoqUOuO5ybGz1AZTgWblLqpZgnSEQ5Yx1KJEdN+Nrt0Qk6s0idhrGxJQ2bq74kMI63HUWA7IzRDvehNxf+8TmrCaz/jMkkNk3S+KEwFMTGZvk36XDFqxNgSpIrbWwkdokJqbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0aQCGEZ3iFN2fkvDjvzse8teDkM4fwB87nDyjNjR4=</latexit>

a)
<latexit sha1_base64="UV0k0pKeGLZ7YR/p9DMiG+ObjBI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITjrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvepdV7/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHypSjR8=</latexit>

b)

<latexit sha1_base64="hQYGcLYn+iUxUWT0siIuZqfKioI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyURUY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpgZ31yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nDyvXjSA=</latexit>

c)

Figure 5.5: Effective drift-diffusion model solution’s associated accumula-
tion (a-c) Show the relative change in the accumulation according to distribution
kurtosis (a), integration of the distribution near the boundary (b) and distribution
variance (c).

specifically for the passive particles near to the boundary with low kick frequency

swimmers.

5.3.3 Reconstructing the Distributions using the Jump-Diffusion

Analytical Solution

Now that we have characterised the relevant spatially-dependent properties of the

jumps within the simulation we can refer back to equation (3.23) from section 3.4.2.

As before, if we think about the motion of the passive particles as the result of a

jump-diffusion process coming from a coloured noise, then we can use m1(y),m2(y)

and, λ(y) to construct effective diffusivities and drifts which the particles are sub-

jected to. The result of which gives us a prediction of the positional distribution

from the dynamic properties.

In figure 5.5 the calculation results of these distribution curves are shown.
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As in figure 5.3 the kurtosis (a), boundary integration (b) and the variance (c)

are shown. We see in the kurtosis and the integration methods, there is a good

agreement with the positional distribution found directly from the trajectories. In

both cases the peak in the value for high kick frequency and torque is present. For

the kurtosis plot overall there is a greater amount of variance in the value for the

lower kick frequencies, unlike what was seen in figure 5.3(a). 5.5(b) replicates many

of the key features present in figure 5.3(b); the relative difference in the value for

the low torque’s high vs. low kick frequency cases can clearly be seen. Finally, in

5.5(c) we see the variance case. The low kick frequency cases are a reasonably good

match with figure 5.3 (c). However, the slight increase in variance seen in a small

number of high frequency and torque cases is not clearly present.

Overall, we see that the resulting distributions share a similar accumulation

profile. With the correct scatter effects leading to the a similar portion of the passive

particles near to the boundary.
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Chapter 6

Conclusions

6.1 Conclusion

Within this thesis, we have looked at systems which are made up of active and pas-

sive particles, interacting with each other in confined environments. It has been a

key theme throughout that the environment has lead to a non-homogeneous distribu-

tion of the swimmers and as a result, there is spatially dependent active-flux present

which the passive particles experience and as such themselves acquire non-trivial dis-

tributions. Building on previous studies in the literature, which have shown that

the geometry of a microfluidic device can be designed in such a way as to control the

behaviour of microswimmers, we have detailed the impacts of the resulting swim-

mer distributions on passive particles. We have outlined two experimental set ups

in chapters 3 and 4. The first being the straight channel experiments which showed

that the non-equilibrium stationary state of the passive colloids could be understood

as a result of the underlying spatially dependent dynamics of the colloids when ex-

posed to the active particles. The second a different geometry, which has similar

features of colloidal accumulation near to the boundary. By using a selective mem-

brane we demonstrated that the active particles could be harnessed to segregate the

colloids into side channels. In chapter 5 a model that studies how modifying the

swimmer’s boundary scattering, the colloid accumulation can be modified. In this

section, the main results pertaining to the specifics of each of the chapters will be

discussed and their place in the wider literature. After this, a short section on the

reamining open questions and possible avenues for further inquiry will be presented.
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6.1.1 Chapter Three

In this chapter we outlined a series of experiments, with a mixture of CR and

polystyrene micro-colloids, confined using a microfludic device in straight channels.

From these we were able to track the particles positions and thus, measure their

steady-state. To do this, a jump-tracking algorithm was developed based on previous

studies, utilising both the non-Brownian magnitudes and directional correlations of

the colloid’s trajectories to extract parts of their motion that were due to interactions

with active particles. This steady-state, owing to the energy flux injected into the

system by the swimmers, was non-equilibrium, yet had a defined profile if measured

over a long time which was measured, the results of which were in line with previous

studies of active particles in confinement. Showing that the presence of the boundary

resulted in an accumulation of active particles. In addition to this the measured

distribution of the colloids was non-monotonic and made up of a few key features:

An accumulation peak near the boundary, depletion nearby and then a recovery

within the bulk of the microfluidic channel to a flat (uniform) value. In an effort

to understand these distributions, using the trajectory data for the colloids, we

extracted a series of large non-Brownian moves, which we called jumps. Based on

previous work, that has shown that the dynamics of passive particles in bulk comes

largely as a result of entrainment events, it was hypothesised that these jumps

were what lead to the colloid distribution. These jumps were then shown to have

spatially dependent properties. By looking at the motion of the colloid’s different

properties projected perpendicular to the boundaries of the channel, the spatial

differences were characterised. Following this, first by use of inverse-sampling of the

distributions of these jumps in a numerical simulation, we were able to reconstruct

the colloid distribution and the result was in good agreement with what we observed

experimentally. This validated our initial hypothesis that that jumps were central

to understanding the positional distributions. Particularly that the diffusivity of

the colloids and swimmer encounter time was not crucial to capture the stationary

state. However, asymmetries in the properties of jumps toward and away from the

boundaries proved fundamental to predicting their behaviour. Building on this, a

new semi-analytical jump-diffusion model was outlined and the results of this model

were again a good agreement with the experimental measurements.

6.1.2 Chapter Four

Following on from the results from chapter three, in this chapter we describe another

experimental set up. This time, designed to exploit the distributions seen for the
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colloids, in tandem with a semi-permeable membrane, to separate out the passive

particles from the mixture. We showed that the colloid positional distributions share

the key-features from the straight channels if we account for the area of the annuli

on which they are measured. We also see that, with the inclusion of off-shoots which

can fit the colloids but not the swimmers, the colloids will indeed segregate. We

classified the experimental dynamics of the segregation, which can be reasonably

well fitted by first-order kinetics. From such a fit, we can then extract rates at

which the colloids enter and exit the channel via the off-shoots. Next, we showed

using numerical solutions to the ‘narrow escape problem’ equations do not show a

good match with the experimentally measured rates. However, using a numerical

simulation, which contained a positionally-dependent effective drift and diffusivity

of the form we found in chapter three, we get a very good match for the experimental

rate.

6.1.3 Chapter Five

In section five we describe a simulation developed to explore problems similar to

those outlined in chapters three and four. The origin of the code, specifically the

various codes which inspired its design are discussed. Here we noted that previ-

ous studied of this sort have been performed with active rods and broken fore-aft

symmetric swimmers in bulk. Our work makes several additions, including passive

particles that can interact with the active particles, hard boundaries and also a

near-boundary scattering of the active particles which has previously been charac-

terised in experimental studies. Specifically, this scattering is introduced by way of

a ‘kick’ process designed to emulate microswimmer boundary scattering caused by

mechanical flagella-boundary interactions. We then measured positional distribu-

tion of passive particles within these mixed systems over a range of kick parame-

ters. The values of three different measurements of the quantity of accumulation of

passive particles is then explored, showing distinct regimes of boundary and bulk

accumulation, depending on the parameters of the active particle scattering kicks.

Early results suggest that by choosing swimmers which interact with boundaries in

different ways that the distribution of the swimmers can be altered, and in turn

the distribution of the colloids. Finally, using the semi-analytic results presented

in chapter three, we extract the properties of jumps within the simulation and use

these to reconstruct the distributions. The accumulation profiles of which show a

good agreement with the direct measurements from the simulated trajectories.
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6.2 Open Problems and Future Work

As with the resolution of any problem, results more often than not, contain more

question than resolutions. As a result of the numerous discussions, seminars and

conferences in which the research was presented, this work is no exception to that

rule. In this section a few of the remaining open questions and further topics to be

explored will be described.

6.2.1 Chapter Three

In addition to the current microfluidic device, one possibility is that further anisotropies

could be added. Two reasonably straightforward examples of this are in utilisation

of a chemical or light intensity gradient. To do this the microfluidic device itself

could be exposed to a light intensity gradient or light introduced by way of an optical

fibre. Thus, generating a bias in the swimmer direction. Alternatively, by choosing

a different microfluidic in which media and chemicals are injected and flowed parallel

to each other, a chemical gradient can be produced. As a result of either, in the case

of CR, this would result in a preferential motion up (or down) such gradients. We

would no longer be able to look at the measured colloidal dynamics in the direction

perpendicular to the boundary. Instead, the parallel direction would also come into

play. This is something that we hope to first explore using the code from chapter

five. By including into the equation of motion for the particle’s orientation a term

to bias it along one direction of a straight channel, this can be simulated. In this

case, it would be interesting to see if the swimmer dynamics near to the boundaries

result in different colloidal dynamics.

6.2.2 Chapter Four

The experiments outlined in this section pertained to one of the simplest possible

geometries. Microfluidics by their very nature enable the rapid prototyping and

implementation of a broad range of designs. In figure 6.1 another channel geometry

which could be explored experimentally is shown. These designs are a hybridisation

of the straight channels with the off-shoots from the circular channel experiments,

with pores between the channel pairs. The idea then, is that by changing the

boundary modulation (which in this case is sinusoidal) you can affect the swimmer

distributions. This then would lead to a change in the colloid dynamics and possibly

even circulations of colloids for adjacent pores.

One possibility building on this work is that such experimental systems could

be utilised to measure swimming induced pressure. In this case the passive would
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Figure 6.1: Prototype microfluidic design for modulated boundaries.
Schematic of possible modulated boundary microfluidic channels. Two pairs of par-
allel channels are shown, with the top two having a lower amplitude of modulation
than the bottom two. In both cases the modulation period is equal.

act as tracers in such experiments, to define and measure non-equilibrium analogs to

pressure (swim pressure) [165, 166, 167, 168]. This might be measurable indirectly,

by using an experimental set up similar to that of chapter four. Here, the aim would

be to measure the exit rate of colloids for different swim-pressures.

For the approach using the narrow escape parallel using a constant diffusiv-

ity, further inclusion of a constant drift is eluded to in [145] to see whether this

refinement improved the numerical solution. Further to this, the inclusion of spa-

tially dependent drift and diffusivity (of a known functional form) into the narrow

escape problem’s numerical solution would be an interesting follow up.

For the numerical simulation, using the positionally dependent drift and

diffusivity, we used the values from the drift-diffusion model outlined in chapter

three. However, this model said nothing of the motion of the colloids parallel to the

boundary. In data relating to this measurement, it looked to be the case that the

parallel jump sizes were largely unaffected by the proximity to the boundary. As

a result, a non-isotropic diffusivity could also be implemented to further verify the

outcome. It is however possible that due to the large number of evenly spread exits

that this would not be the case. Such a model, with this directional inclusion, could

complement well the taxis experiments described in 6.2.1.
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6.2.3 Chapter Five

The simulation opens several possible exciting avenues of progress. Indeed the work

presented in this thesis is from an as yet incomplete project.

Firstly, as with the jumps from chapter three, it would be nice to use inverse-

sampling to reconstruct the distributions for the passive particles to compare their

shape to that was found in the directly measured distributions.

To build on the simulation, similar to the geometry as shown in 6.1, a pre-

liminary code has been written. This code has all of the boundaries in the system

periodic and then running through the centre of the long axis is a line of overlap-

ping passive particles, modified so they cannot be moved by the swimmers/passive

particles. The line itself can be either straight or modulated and can be written to

have gaps (which could replace the inter-channel off-shoots). That way we can have

boundaries with modulation. Clearly, due to the large number of passive particles

required, there are computational limitations that need to be overcome to make

reasonable data-collection viable for this code.

Next, as discussed in the possible progress avenues for the work in chapter

three, inclusion of anisotropy in the swimmer orientation dynamics parallel to the

boundary would be interesting to explore. Similarly to how the kicks are imple-

mented near the boundary with a constant torque, a small torque could be applied

to the swimmers at all times to model chemo/photo-tactic behaviour. That way the

code could allow such systems to be explored.

Finally, there has been some recent developments in understanding microswim-

mer distributions for arbitrary geometries by analysing the fluxes generated by their

motion [149]. In all the work within this thesis we have understood the resulting

distributions for the passive particles in terms of the moments of their jump distri-

butions. It would be interesting to explore whether the distributions could instead

be understood in terms of the fluxes induced by the swimmers themselves. That

way, instead of measuring the colloid trajectory (as a result of the active fluxes

it is subjected to) to predict its distribution, we could look directly at the active

fluxes themselves and predict the resulting distributions. The simulation offers a

straightforward way in which the active fluxes could be tuned, the colloid dynamics

measured. Then the measures compared to the results for specific cases of straight-

forward active fluxes.

94



Bibliography

[1] S. Ramaswamy. The Mechanics and Statistics of Active Matter. Annual

Review of Condensed Matter Physics, 1(1):323–345, 2010.

[2] M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M.

Rao, and R.A. Simha. Hydrodynamics of soft active matter. Rev. Mod. Phys.,

85(3):1143–1189, 2013.

[3] H.S. Jennings and J.H. Crosby. Studies on reaction to stimuli in unicellular

organisms. -VII The manner in which bacteria react to stimuli, especially

chemical stimuli. American Journal of Physiology-Legacy Content, 6(1):31–

37, 1901.

[4] H.C. Berg and D.A. Brown. Chemotaxis in Escherichia coli analysed by Three-

dimensional Tracking. Nature, 239(5374):500–504, 1972.

[5] H.C. Berg and R.A. Andersen. Bacteria Swim by Rotating their Flagellar

Filaments. Nature, 245(5425):380–382, 1973.

[6] H.C. Berg. Bacterial behaviour. Nature, 254(5499):389–392, 1975.

[7] E.M. Purcell. Life at low Reynolds number. American Journal of Physics,

45(1):3–11, jan 1977.

[8] E Lauga, T Powers, The hydrodynamics of swimming microorganisms Rep.

Prog. Phys., 72 096601, 2009

[9] K. Bente, S. Mohammadinejad, M.A. Charsooghi, F. Bachmann, A. Codutti,
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