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Abstract 18 

A key feature of the COVID-19 pandemic has been the emergence of SARS-CoV-2 variants with 19 

different transmission characteristics. However, when a novel variant arrives in a host population, it 20 

will not necessarily lead to many cases. Instead, it may fade out, due to stochastic effects and the 21 

level of immunity in the population. Immunity against novel SARS-CoV-2 variants may be 22 

influenced by prior exposures to related viruses, such as other SARS-CoV-2 variants and seasonal 23 

coronaviruses, and the level of cross-reactive immunity conferred by those exposures. Here, we 24 

investigate the impact of cross-reactive immunity on the emergence of SARS-CoV-2 variants in a 25 

simplified scenario in which a novel SARS-CoV-2 variant is introduced after an antigenically related 26 

virus has spread in the population. We use mathematical modelling to explore the risk that the novel 27 

variant invades the population and causes a large number of cases, as opposed to fading out with few 28 

cases. If cross-reactive immunity is complete (i.e. someone infected by the previously circulating 29 

virus is not susceptible to the novel variant), the novel variant must be more transmissible than the 30 

previous virus to invade the population. However, in a more realistic scenario in which cross-reactive 31 

immunity is partial, we show that it is possible for novel variants to invade, even if they are less 32 

transmissible than previously circulating viruses. This is because partial cross-reactive immunity 33 

effectively increases the pool of susceptible hosts that are available to the novel variant compared to 34 

complete cross-reactive immunity. Furthermore, if previous infection with the antigenically related 35 

virus assists the establishment of infection with the novel variant, as has been proposed following 36 

some experimental studies, then even variants with very limited transmissibility are able to invade 37 

the host population. Our results highlight that fast assessment of the level of cross-reactive immunity 38 
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conferred by related viruses on novel SARS-CoV-2 variants is an essential component of novel 39 

variant risk assessments. 40 

 41 

1 Introduction 42 

When a new SARS-CoV-2 variant first arrives in a host population, a key question for policy makers 43 

is whether or not it will become widespread. For this to occur, two steps are required: introduction 44 

and invasion. First, the variant must arrive in the host population, either through de novo mutation or 45 

importation from elsewhere (introduction). Second, the variant must then spread from person to 46 

person and cause a large number of cases, as opposed to fading out with few cases (invasion). 47 

Following introduction, a range of factors affect the risk that a novel variant will invade, including its 48 

inherent transmissibility and the connectivity of the location in which it is introduced [1,2]. An 49 

additional crucial factor in this process is the background level of immunity to the new variant in the 50 

host population. For example, a feature of the Omicron (B.1.1.529) variant that allowed it to become 51 

widespread is its ability to evade immunity from past infection or vaccination, at least partially, 52 

meaning that the background immunity level was low [3–5]. 53 

Mathematical modelling has often been used to explore the impact of cross-reactive immunity 54 

between pathogen strains on the dynamics of infectious disease outbreaks [6–11]. During the 55 

COVID-19 pandemic, models have provided real-time insights into the risk posed by novel variants. 56 

For example, Bhatia et al. [12] extended existing methods for estimating pathogen transmissibility 57 

[13–15] to enable the transmissibility of novel variants to be assessed, including estimating the 58 

infectiousness of the Alpha (B.1.1.7), Beta (B.1.351) and Gamma (P.1) variants relative to the wild 59 

type virus (the SARS-CoV-2 virus that first emerged in Wuhan, China). Dyson et al. [16] analysed 60 

epidemiological data from England, and projected the course of the outbreak in that country if a 61 

variant emerged with different transmission characteristics. They warned that a variant with high 62 
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transmissibility or substantial immune escape properties had the potential to generate large numbers 63 

of infections and hospitalisations. 64 

Meanwhile, experimental and statistical studies have explored the effects of prior infections with 65 

related viruses on infections with different SARS-CoV-2 variants. Some studies have found previous 66 

infections with other SARS-CoV-2 variants to have a protective effect. For example, Wratil et al. 67 

[17] demonstrated that a combination of infection and vaccination induced hybrid immunity is 68 

protective against SARS-CoV-2 variants including the Omicron variant. A recent analysis of 69 

infection data from Portugal found that previous SARS-CoV-2 infections were protective against 70 

infection with the BA.5 Omicron subvariant, with the level of protection particularly high in 71 

individuals who were previously infected by the BA.1 or BA.2 Omicron subvariants [18]. However, 72 

some studies have indicated that prior infection with other SARS-CoV-2 variants may instead have a 73 

detrimental effect on subsequent infections with novel SARS-CoV-2 variants. For example, earlier 74 

infection with the SARS-CoV-2 wild type was found to inhibit the immune response to infections 75 

with the Omicron variant among triple vaccinated healthcare workers [5]. 76 

Similarly to the cross-reactive immunity conferred by other SARS-CoV-2 variants, the impact of 77 

prior infections with seasonal coronaviruses on subsequent infections by SARS-CoV-2 is also 78 

unclear. Some analyses have found that previous infections with seasonal coronaviruses are likely to 79 

be protective against SARS-CoV-2 infection. The SARS-CoV-2 spike protein can be divided into the 80 

S1 and S2 subunits. The S1 subunit contains an antigenically variable receptor binding domain, while 81 

the S2 subunit is more conserved between coronaviruses. Kaplonek et al. [19] showed that SARS-82 

CoV-2 S2 antibody responses are associated with milder COVID-19 symptoms, suggesting that 83 

previous infection with seasonal coronaviruses may lead to COVID-19 infections being less severe. 84 

Furthermore, strong and multispecific cross-reactive T-cell responses induced by seasonal 85 
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coronavirus infection prior to SARS-CoV-2 infection have been associated with protection against 86 

SARS-CoV-2 infection in seronegative healthcare workers [5,20]. 87 

In contrast, there is also evidence that previous infections with seasonal coronaviruses can have 88 

detrimental effects on susceptibility to and outcomes of infection with SARS-CoV-2. With respect to 89 

disease outcomes, McNaughton et al. [21] showed that prior immunity to seasonal coronaviruses was 90 

positively associated with fatal outcomes in individuals with severe COVID-19. Similar results were 91 

found by Smit et al. [22] in an independent cohort. Conflicting results to Kaplonek et al. [19] were 92 

found by Garrido et al. [23], who found that S2 antibody responses were associated with greater 93 

disease severity. With respect to susceptibility, Wratil et al. [24] demonstrated that cross-reactive 94 

immunity imparted by seasonal coronaviruses may increase susceptibility to SARS-CoV-2. 95 

Additionally, a modelling analysis by Pinotti et al. [25] has suggested that the general trend of 96 

increased severity of SARS-CoV-2 infections in older individuals may be explained by an increased 97 

chance that older individuals have been exposed to seasonal coronaviruses. 98 

Given this conflicting evidence in the literature, and to help understand the possible effects of prior 99 

infections on the risk of emergence of SARS-CoV-2 variants, in this study we develop a 100 

mathematical model considering two viruses: a novel SARS-CoV-2 variant and an antigenically 101 

related virus that has previously spread in the population. We investigate the factors affecting the risk 102 

that the novel variant invades the host population. We assume that infection with the previously 103 

circulating virus affects the chance of successful infection with, and subsequent transmission of, the 104 

novel variant, considering scenarios in which prior infection is either protective (partially or 105 

completely) or detrimental. We show that the level of cross-reactive immunity between novel SARS-106 

CoV-2 variants and antigenically r12/9/2022 5:01:00 PMelated viruses is a key factor determining 107 

whether or not a novel variant will invade the host population. This highlights the need to conduct a 108 

rapid assessment of the level of cross-reactive immunity between previously circulating viruses and 109 
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newly emerged SARS-CoV-2 variants whenever a novel SARS-CoV-2 variant is introduced into a 110 

new host population. 111 

 112 

2 Methods 113 

2.1 Epidemiological model 114 

We consider the introduction of a novel variant to a population consisting of 𝑁 hosts. We assume that 115 

prior immunity has been conferred by infections with a related virus that has already spread within 116 

the host population. Assuming that this previously circulating virus follows dynamics that are 117 

characterised by the standard (deterministic) SEIR model, the number of individuals in the 118 

population who have been previously infected by that virus is given by the solution, 𝑁𝑝, to the final 119 

size equation [8], 120 

𝑁𝑝 = 𝑁 − 𝑁e−
𝑅0𝑝𝑁𝑝

𝑁 .                (1) 121 

In this expression, 𝑅0𝑝 is the reproduction number of the previously circulating virus, which we 122 

assume accounts for any interventions that were introduced (prior to, or immediately after, its arrival 123 

in the host population) to limit its spread. We assume that 𝑁𝑝 individuals were previously infected by 124 

that virus (we round 𝑁𝑝 to the nearest integer value), and the remaining 𝑁 − 𝑁𝑝 individuals in the 125 

population are immunologically naïve (i.e. they do not carry any immunity against the novel variant). 126 

The dependence of 𝑁𝑝 on 𝑅0𝑝 is shown in Fig S1. 127 

We then model the emergence of the novel variant. If an individual has previously been infected by 128 

the related virus, their susceptibility to the novel variant is assumed to be modified by a 129 

multiplicative factor 1 − 𝛼 (relative to the susceptibility of a host who has not previously been 130 

infected by the related virus). Consequently, if 𝛼 > 0, prior infection with the related virus is 131 
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protective against infection with the novel variant. If instead 𝛼 = 0, then earlier infection with the 132 

related virus does not affect the risk of infection with the novel variant. If 𝛼 < 0, earlier infection 133 

with the related virus promotes infection with the novel variant. Similarly, the infectiousness of a 134 

host infected with the novel variant who has previously been infected by the related virus is modified 135 

by a multiplicative factor 1 − 𝜀 (relative to the infectiousness of a host who has not previously been 136 

infected by the related virus). Again, positive (negative) values of 𝜀 reflect scenarios in which prior 137 

infection with the related virus reduces (increases) the infectiousness of an individual who is infected 138 

with the novel variant. 139 

Transmission dynamics for the novel variant are also modelled using an SEIR model, but with two 140 

main differences compared to the dynamics of the previously circulating virus. First, the SEIR model 141 

for the novel variant is extended to account for cross-reactive immunity conferred by the related 142 

virus. Second, since we are modelling invasion, we use a stochastic model in which, in each 143 

simulation of the model, the novel variant may either invade the host population or fade out with few 144 

infections. The analogous deterministic model to the stochastic model that we consider for the novel 145 

variant is given by: 146 

𝑑𝑆𝑛

𝑑𝑡
=  −𝛽𝐼𝑛𝑆𝑛 − 𝛽(1 − 𝜀)𝐼𝑝𝑆𝑛, 147 

𝑑𝐸𝑛

𝑑𝑡
= 𝛽𝐼𝑛𝑆𝑛 + 𝛽(1 − 𝜀)𝐼𝑝𝑆𝑛 − 𝛾𝐸𝑛,   148 

𝑑𝐼𝑛

𝑑𝑡
=  𝛾𝐸𝑛 − 𝜇𝐼𝑛,  149 

𝑑𝑅𝑛

𝑑𝑡
= 𝜇𝐼𝑛, 150 

𝑑𝑆𝑝

𝑑𝑡
=  −𝛽(1 − 𝛼)𝐼𝑛𝑆𝑝 − 𝛽(1 − 𝜀)(1 − 𝛼)𝐼𝑝𝑆𝑝,  151 

𝑑𝐸𝑝

𝑑𝑡
= 𝛽(1 − 𝛼)𝐼𝑛𝑆𝑝 + 𝛽(1 − 𝜀)(1 − 𝛼)𝐼𝑝𝑆𝑝 − 𝛾𝐸𝑝, 152 

𝑑𝐼𝑝

𝑑𝑡
= 𝛾𝐸𝑝 − 𝜇𝐼𝑝,  153 
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𝑑𝑅𝑝

𝑑𝑡
= 𝜇𝐼𝑝.      (2) 154 

In these equations, the variables 𝑆𝑛, 𝐸𝑛, 𝐼𝑛 and 𝑅𝑛 refer to the infection status (with the novel variant) 155 

of individuals who have not been infected previously by the related virus, and 𝑆𝑝, 𝐸𝑝, 𝐼𝑝 and 𝑅𝑝 refer 156 

to the infection status of individuals who have previously been infected by the related virus. A 157 

schematic illustrating the transitions of individuals between these states, and the rates at which those 158 

transitions occur, is shown in Fig 1A. The parameter 𝛽 is the infection rate parameter, and the mean 159 

latent period and infectious period are 1/𝛾 days and 1/𝜇 days, respectively. We define the 160 

reproduction number of the novel variant to be 𝑅0𝑛 =
𝛽𝑁

𝜇
, reflecting the transmission potential of the 161 

novel variant if the host population is entirely immunologically naïve. For a full description of the 162 

stochastic model, see Text S1. 163 

2.2 Risk of invasion 164 

As noted above, since we are interested in the risk of invasion of the novel variant, we use the 165 

analogous stochastic model to system of equations (2) rather than solving the differential equations 166 

numerically. When we compute the risk of invasion by simulation, we run model simulations using 167 

the direct method version of the Gillespie stochastic simulation algorithm ([26]; see Text S1) until 168 

the novel variant fades out (i.e. 𝐸𝑛 + 𝐼𝑛 + 𝐸𝑝 + 𝐼𝑝 reaches zero). The parameter values used in our 169 

main analyses are given in Table 1. 170 

When the novel variant is introduced, we also approximate the probability that it invades the 171 

population analytically. To do this, we assume that infections occur according to a branching process 172 

[27–30]. Specifically, we denote by 𝑞𝑖𝑗 the probability that the novel variant fails to invade the host 173 

population, starting from 𝑖 currently infected individuals who are immunologically naïve and 𝑗 174 

currently infected individuals who were previously infected by the related virus. In this analysis, 175 

“currently infected” individuals refer to those who are either exposed or infectious, since exposed and 176 
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infectious individuals are each expected to infect the same number of other hosts in future. This is 177 

because exposed individuals are not yet infectious, and only start generating infections when they 178 

move into the infectious states in the model. 179 

We then consider the probability of the novel variant failing to invade the host population starting 180 

from a single currently infected individual who was previously immunologically naïve, 𝑞10. As in 181 

similar previous branching process analyses [31–34], we consider the various possibilities for what 182 

happens next: either that individual infects another individual who was also previously 183 

immunologically naïve (with probability 
𝛽(𝑁−𝑁𝑝)

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
); or, that individual infects someone 184 

who was previously infected with the related virus (with probability 
𝛽(1−𝛼)𝑁𝑝

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
); or, that 185 

individual recovers without infecting anyone else (with probability 
𝜇

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
). Applying 186 

the law of total probability therefore gives 187 

𝑞10 =  
𝛽(𝑁−𝑁𝑝)

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
 𝑞20 +

𝛽(1−𝛼)𝑁𝑝

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
𝑞11 +

𝜇

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
𝑞00. 188 

Instead starting from a single currently infected individual who was previously infected by the related 189 

virus gives 190 

𝑞01 =  
𝛽(1−𝜀)(𝑁−𝑁𝑝)

𝛽(1−𝜀)(𝑁−𝑁𝑝)+𝛽(1−𝜀)(1−𝛼)𝑁𝑝+ 𝜇
 𝑞11 +

𝛽(1−𝜀)(1−𝛼)𝑁𝑝

𝛽(1−𝜀)(𝑁−𝑁𝑝)+𝛽(1−𝜀)(1−𝛼)𝑁𝑝+ 𝜇
𝑞02 +191 

𝜇

𝛽(1−𝜀)(𝑁−𝑁𝑝)+𝛽(1−𝜀)(1−𝛼)𝑁𝑝+ 𝜇
𝑞00. 192 

We then assume that infections occur according to a branching process (so that 𝑞20 = 𝑞10
2; as 193 

infection lineages failing to establish starting from two currently infected hosts requires the infection 194 

lineages from both currently infected hosts to fail independently [31–33]). Making similar 195 
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approximations throughout the equations above, and noting that 𝑞00 = 1 (since the novel variant will 196 

not invade if there are no currently infected individuals) gives 197 

𝑞10 =  
𝛽(𝑁−𝑁𝑝)

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
 𝑞10

2 +
𝛽(1−𝛼)𝑁𝑝

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
𝑞10𝑞01 +

𝜇

𝛽(𝑁−𝑁𝑝)+𝛽(1−𝛼)𝑁𝑝+ 𝜇
, 198 

𝑞01 =  
𝛽(1−𝜀)(𝑁−𝑁𝑝)

𝛽(1−𝜀)(𝑁−𝑁𝑝)+𝛽(1−𝜀)(1−𝛼)𝑁𝑝+ 𝜇
 𝑞10𝑞01 +

𝛽(1−𝜀)(1−𝛼)𝑁𝑝

𝛽(1−𝜀)(𝑁−𝑁𝑝)+𝛽(1−𝜀)(1−𝛼)𝑁𝑝+ 𝜇
𝑞01

2 +
𝜇

𝛽(1−𝜀)(𝑁−𝑁𝑝)+𝛽(1−𝜀)(1−𝛼)𝑁𝑝+ 𝜇
.    (3) 199 

The probability of invasion starting from one currently infected individual who was previously 200 

immunologically naïve, 𝑝10, and the probability of invasion starting from one currently infected 201 

individual who was previously infected by the related virus, 𝑝01, are then given by 𝑝10 = 1 − 𝑞10 and 202 

𝑝01 = 1 − 𝑞01, where 𝑞10 and 𝑞01 are the minimal non-negative solutions of system of equations (3) 203 

[35]. 204 

2.3 Special cases 205 

In general, we solve system of equations (3) numerically. However, an analytic solution can be 206 

obtained straightforwardly in some special cases.  207 

For example, in a scenario in which previous infection with the related virus is entirely protective 208 

against infection with the novel variant, then 𝛼 = 1. In that case, since a previously infected 209 

individual cannot be infected with the novel variant, then 𝑝01 does not apply. However, in that 210 

scenario, 𝑝10 = 1 −
𝜇

𝛽(𝑁−𝑁𝑝)
 (whenever 

𝛽(𝑁−𝑁𝑝)

𝜇
> 1; otherwise, the novel variant will never invade 211 

the host population). This can be seen by substituting 𝛼 = 1 into the first equation of system of 212 

equations (3), solving the resulting quadratic equation for 𝑞10 (taking the minimal non-negative 213 

solution [35]), and then calculating 𝑝10 = 1 − 𝑞10. In a scenario in which the related virus has not 214 

previously spread in the host population, then this solution for 𝑝10 is identical to the classic branching 215 

process estimate for the probability of a major outbreak, 𝑝10 = 1 −
1

𝑅0𝑛
  [28,36,37]. 216 
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Alternatively, we can consider a scenario in which prior infection with the related virus eliminates 217 

the infectiousness of a host infected by the novel variant (i.e. the individual can become infected, but 218 

the virus cannot then establish, so onwards transmission cannot occur). In that case, 𝜀 = 1 and so – in 219 

a similar fashion to above – we obtain 𝑝10 = 1 −
𝜇

𝛽(𝑁−𝑁𝑝)
 (whenever 

𝛽(𝑁−𝑁𝑝)

𝜇
> 1) and 𝑝01 = 0. 220 

Again, in a scenario in which a related virus has not previously spread in the population, this is the 221 

classic estimate for the probability of a major outbreak, 𝑝10 = 1 −
1

𝑅0𝑛
 [28,36,37]. 222 

Finally, in a scenario in which previous infection by the related virus does not affect the dynamics of 223 

the novel variant (so that 𝛼 = 𝜀 = 0), we expect the risk of novel variant invasion to be independent 224 

of whether or not the initial infected individual has previously been infected by the related virus. In 225 

other words, we expect 𝑞10 = 𝑞01. In this case, system of equations (3) reduces to a single quadratic 226 

equation for 𝑞10. Taking the minimal non-negative solution of that equation [35] indicates that 227 

𝑝10 = 𝑝01 = 1 − 𝑞10 = 1 −
1

𝑅0𝑛
 (whenever 𝑅0𝑛 > 1; otherwise the novel variant will never invade 228 

the host population). 229 

3 Results 230 

To investigate the effects of prior infection by an antigenically related virus on the epidemiological 231 

dynamics of a newly emerged variant, we first ran stochastic simulations of the analogous stochastic 232 

model to system of equations (2). Representative time series of the dynamics illustrate that, if the 233 

novel variant successfully spreads in the host population, outbreaks tend to have a lower peak 234 

number of infections and have a longer duration when cross-reactive immunity has a protective effect 235 

(Fig 1B), compared to when prior infection by the related virus has no effect (Fig 1C). In contrast, if 236 

prior infection by the related virus instead promotes infection by the novel variant, outbreaks tend to 237 

have a higher peak number of infections and a shorter duration (Fig 1D). 238 
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However, rather than focusing on the dynamics of outbreaks once the novel variant has invaded the 239 

host population, our main goal was to quantify the risk of the novel variant successfully invading in 240 

the first place (as opposed to fading out with few cases). We therefore calculated the risk of the novel 241 

variant invading the population, starting from the introduction of a single case to the population (Fig 242 

2). We not only calculated this quantity by numerically solving system of equations (3) (Fig 2 - red 243 

dotted and dashed lines), but also confirmed that these numerical approximations matched estimates 244 

of the invasion probability obtained using large numbers of simulations of the stochastic model (Fig 245 

2 - black dots and crosses). 246 

We found that, when previous infection with the related virus is completely protective against the 247 

novel variant (i.e. 𝛼 = 𝜀 = 1), then the reproduction number of the novel variant must be higher than 248 

the reproduction number of the antigenically related virus in order for the novel variant to invade. 249 

Specifically, in Fig 2A (in which 𝑅0𝑝 = 1.5, as marked by the vertical blue dotted line), the 250 

probability of the novel variant invading the host population is zero unless 𝑅0𝑛 > 𝑅0𝑝, and indeed 251 

remains zero whenever 𝑅0𝑛 is only slightly larger than 𝑅0𝑝. This can be explained analytically as 252 

follows. The previously circulating virus will spread around the population until sufficiently many 253 

individuals have been infected that herd immunity (to the previous virus) is reached. This occurs 254 

when 𝑁 (1 −
1

𝑅0𝑝
) individuals have become infected [38]. However, at this point, infections do not 255 

stop immediately: there is an “overshoot” in infections while transmission slows and the previously 256 

circulating virus fades out. As a result, a lower bound on the final size of the outbreak caused by the 257 

previously circulating virus is 𝑁𝑝 > 𝑁 (1 −
1

𝑅0𝑝
).  As noted in the Methods (Special cases), in a 258 

scenario involving complete cross-reactive immunity, the novel variant can only invade the 259 

population if 
𝛽(𝑁−𝑁𝑝)

𝜇
> 1, or equivalently 𝑅0𝑛 >

𝑁

𝑁−𝑁𝑝
. Substituting the lower bound for 𝑁𝑝 into this 260 

expression shows that invasion of the novel variant requires 𝑅0𝑛 > 𝑅0𝑝. 261 
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In contrast, if cross-reactive immunity is only partial, then the novel variant may invade for lower 262 

values of 𝑅0𝑛 than when cross-reactive immunity is complete (Fig 2B). This can include scenarios in 263 

which 𝑅0𝑛 < 𝑅0𝑝 (in some cases lying between those shown in Fig 2B and Fig 2C). As noted in the 264 

Methods, when previous infection by the antigenically related virus does not affect the 265 

epidemiological dynamics of the novel variant, then the novel variant can only invade if 𝑅0𝑛 > 1 266 

(Fig 2C), mirroring the classical result for models in which cross-reactive immunity is not accounted 267 

for [36]. Finally, in scenarios in which prior infection by the related virus promotes infection with the 268 

novel variant, the novel variant can invade even if 𝑅0𝑛 is small. This includes scenarios in which 269 

𝑅0𝑛 < 1 (Fig 2D). 270 

In Fig 2, we note that the immune status of the initial infected individual affects the risk that the 271 

novel variant will invade the host population. In particular, when cross-reactive immunity is 272 

protective, we found that the probability of invasion is higher if the initially infected host had not 273 

previously been infected by the related virus (Fig 2B). In contrast, if cross-reactive immunity 274 

promotes infection with the novel variant, then the probability of the novel variant invading is higher 275 

if the initial infection arose in an individual who had previously been infected with the related virus 276 

(Fig 2D). 277 

We then explored how the probability of invasion of the novel variant depends on the susceptibility- 278 

and infectiousness-modifying effects of cross-reactive immunity individually (Fig 3). We found that 279 

the values of 𝛼 and 𝜀 affect the probability of a major outbreak differently. This is because, starting 280 

from a single infected individual, the number of infections generated by that individual is crucial in 281 

determining whether or not a novel variant will invade. If the first infected host infects multiple 282 

others, then all of those individuals’ transmission lineages must fade out in order for invasion to fail 283 

to occur. Hence, invasion is more likely to occur if the first infected individual infects many 284 

individuals. Starting from a single infected individual who was not previously infected by the related 285 
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virus, only susceptibility-modifying immunity (characterised by 𝛼) affects the number of infections 286 

generated by the first infected individual. As such, the probability of invasion in this case is more 287 

sensitive to 𝛼 than to 𝜀 (Fig 3A).  288 

In contrast, if the first infected individual was previously infected by the related virus, then 289 

infectiousness-modifying immunity (characterised by 𝜀) also affects the probability of this individual 290 

infecting any other member of the population. In fact, 𝜀 then affects all potential transmissions 291 

generated by the first infected individual, whereas 𝛼 only affects potential transmissions to part of the 292 

population (those individuals who were previously infected by the related virus).  In that scenario, the 293 

probability of a major outbreak is therefore slightly more sensitive to 𝜀 than 𝛼 (Fig 3B). The different 294 

effects of susceptibility-modifying and infectiousness-modifying cross-reactive immunity therefore 295 

explain the asymmetric nature of the contours about the diagonal 𝜀 = 𝛼 in Fig 3.  296 

 297 

4 Discussion 298 

The epidemiological dynamics of the COVID-19 pandemic have been shaped by the emergence of 299 

different SARS-CoV-2 variants. However, not all variants that have appeared have spread widely and 300 

caused a large number of cases. Most novel variants have faded out, with relatively few variants 301 

being responsible for the vast majority of SARS-CoV-2 infections. 302 

Here, we have developed a mathematical model to investigate the impact of cross-reactive immunity 303 

(generated by previous infections by related viruses) on the probability that a newly introduced 304 

variant will invade the host population. We found that, if prior infection with a related virus has a 305 

strong protective effect, then the novel variant must be more infectious than the related virus to be 306 

able to invade the host population (Fig 2A). If instead, however, the previously circulating virus has a 307 

very weak protective effect or no protective effect on infection with the novel variant, then the risk of 308 
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invasion of the novel variant is unaffected by the outbreak of the related virus, and so the invasion 309 

probability matches the well-known estimate for the “probability of a major outbreak”  (Fig 2C) 310 

[28,36,37].  If prior infection with the related virus promotes infection by the novel variant, as has 311 

been indicated as possible in some studies exploring the impact of prior infections by SARS-CoV-2 312 

or seasonal coronaviruses on infections with SARS-CoV-2 variants, then even novel variants with 313 

limited transmissibility are able to invade (Fig 2D).  314 

We further showed that the immune status of the first individual in the population infected by the 315 

novel variant affects the probability that the novel variant invades (Figs 2 and 3). This is in turn 316 

influenced by the pathway by which the novel variant is introduced into the host population. If the 317 

variant is introduced from elsewhere, for example by an incoming traveller [1,15], then it may be 318 

introduced by someone who was not previously infected by the related virus. If instead it appears as a 319 

result of mutation from a related virus within the local population (as was likely the case for the 320 

emergence of the Alpha variant in Kent, England [39]), then the initial infected case would be an 321 

individual who was previously infected by the related virus. 322 

Previous modelling studies have explored the risk of a novel virus invading when it is introduced to a 323 

host population, including scenarios in which the pathogen evolves to facilitate emergence [40–44]. 324 

Of significant relevance to our study, Hartfield and Alizon [45] applied a branching process model to 325 

investigate the invasion probability in a scenario in which a resident pathogen strain that confers 326 

cross-reactive immunity is spreading in the host population, and considered Chikungunya virus as a 327 

case study. Those authors demonstrated that the standard estimate for the probability of a major 328 

outbreak overestimates the invasion probability in that scenario, due to the potential for depletion of 329 

susceptible individuals by the resident strain over the timescale of invasion of the novel virus. 330 

Echoing this result in a single strain setting, Sachak-Patwa et al. [46] showed that simple estimates 331 

for the probability of a major outbreak are overestimates if the pathogen enters the host population 332 
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during a vaccination campaign, again due to depletion of susceptible individuals occurring within the 333 

period of the pathogen either invading or fading out. Other researchers have investigated the 334 

emergence of a novel pathogen strain that is introduced to the population when a resident strain is 335 

endemic [47]. In contrast to previous studies, we focus on a scenario in which a related virus has 336 

already spread widely around the host population and caused a completed outbreak, rather than being 337 

resident in the host population. An additional novel aspect of the current study is that we conduct a 338 

thorough investigation of the effects of different levels of cross-reactive immunity, including 339 

scenarios in which prior infection with an antigenically related virus can promote infection with the 340 

novel variant. Although such scenarios may seem counterintuitive, recent evidence suggests that 341 

there is a clear possibility that infection-promoting cross-reactivity may occur, as described in the 342 

Introduction.  343 

To understand general principles governing the relationship between cross-reactive immunity and the 344 

risk of invasion of a novel variant, we constructed the simplest possible model in this study. Further 345 

developments could involve including additional epidemiological and evolutionary detail in our 346 

transmission model, particularly if it is to be used to predict emergence of specific variants rather 347 

than to understand general principles. For example, in the model considered here, the infectious 348 

period of individuals infected by the novel variant is assumed to follow an exponential distribution. 349 

However, gamma distributions have been found to represent observed epidemiological periods more 350 

accurately than exponential distributions [48–50], and gamma-distributed infectious periods can be 351 

incorporated into calculations of invasion probabilities [51,52]. We also assumed a fixed level of 352 

cross-reactive immunity for all individuals who were previously infected by the related virus. In 353 

reality, immunity is heterogeneous between previously infected hosts, and is likely to wane over time 354 

[53,54]. The level of cross-reactive immunity in any individual may depend on a range of factors, 355 

including whether or not the individual is immunocompromised or has underlying comorbidities 356 
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[55], and the characteristics of their previous infection [56]. Waning immunity has been included 357 

previously in a range of epidemiological models [57,58], and is a target for future addition to the 358 

modelling framework presented here, along with consideration of heterogeneity in immunity between 359 

previously infected hosts. Additionally, similar investigations to those conducted here could be 360 

undertaken for scenarios in which multiple viruses are co-circulating (potentially allowing for 361 

superinfection [59]). This could include analyses of epidemiological dynamics beyond the early 362 

phase of the outbreak of the novel variant, after it has invaded the host population. 363 

A key challenge going forwards is to develop reliable approaches for inferring the level of cross-364 

reactive immunity between previously circulating viruses and newly emerged SARS-CoV-2 variants 365 

(i.e. the values of the parameters 𝛼 and 𝜀 in our model). Serological studies measuring correlates of 366 

immune responses in infected patients (e.g. ELISA analyses of cross-reactive antibody responses 367 

[21]) have the potential to determine broadly whether previous infections might be protective or 368 

detrimental. This may be sufficient to approximate the risk that a new variant will invade host 369 

populations in which it is not yet widespread (in Fig 3A, for example, if the values of 𝛼 and 𝜀 are 370 

both negative, then the probability of the novel variant invading if it is introduced to new host 371 

populations is high). More precise estimates of the level of cross-reactive immunity may require 372 

substantial epidemiological investigations. As an example, Altarawneh et al. [60] used data from 373 

national databases in Qatar to estimate the effect of previous SARS-CoV-2 infection on the risk of 374 

symptomatic reinfection by specific SARS-CoV-2 variants. If similar analyses can be carried out in 375 

locations in which novel variants first emerge, then estimates of the probability of those variants 376 

invading other locations can be refined. We note, however, that there is currently substantial 377 

uncertainty in estimates of the level of cross-reactive immunity between different viruses. 378 

Altarawneh et al. estimated that previous infection with other SARS-CoV-2 variants has around 56% 379 

effectiveness at preventing symptomatic reinfection by the Omicron variant [60], whereas other 380 
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analyses have suggested that previous infections by other variants have only a limited effect on 381 

reinfection rates by the Omicron variant [3]. This uncertainty needs to be resolved before the 382 

modelling approach described here can be used to make precise quantitative predictions rather than 383 

demonstrating qualitative principles about the general impacts of cross-reactive immunity. 384 

In summary, understanding the risk posed by a novel variant requires the degree of cross-reactive 385 

immunity between previously circulating viruses and the new variant to be assessed. In scenarios in 386 

which previous infections by antigenically related viruses have a limited effect, or promote infection 387 

with the novel variant, then the risk of the variant invading the host population is substantially higher 388 

than in scenarios in which previous infections by related viruses are protective. Given the impact that 389 

different variants have had on transmission and control during the COVID-19 pandemic, fast 390 

detection and analyses of novel variants is essential for both national and global public health.  391 
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Figures 392 

 393 

Figure 1. Dynamics of the novel variant invading a population in which a related virus has previously spread. A. 394 

Schematic showing the transitions (and their rates) in the stochastic model of novel variant invasion (the analogous 395 

stochastic model to system of equations (2)). B. Realisations of 50 stochastic simulations of the model, for 𝑅0𝑛 = 2 and 396 

with protective cross-reactive immunity (𝛼 = 𝜀 = 0.5; other parameter values are as stated in Table 1). Orange lines 397 

represent the number of individuals infected by the novel variant who were previously infected by the related virus (𝐼𝑝), 398 

and blue lines represent the number of individuals infected by the novel variant who were previously immunologically 399 

naïve (𝐼𝑛). C. Analogous to panel B, but with no cross-reactive immunity (𝛼 = 𝜀 = 0). D. Analogous to panel B, but with 400 

cross-reactive immunity instead promoting infection with the novel variant (𝛼 = 𝜀 = −0.5). Simulations were initiated 401 

with a single infected, previously immunologically naïve individual (𝐼𝑛 = 1), with all other individuals susceptible (𝑆𝑛 =402 

𝑁 − 𝑁𝑝 − 1 and 𝑆𝑝 = 𝑁𝑝, where 𝑁𝑝 is the solution of the final size equation for the previously circulating virus, equation 403 

(1), rounded to the nearest integer value). 404 
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 405 

Figure 2. Probability of the novel variant invading the host population, starting from the introduction of a single 406 

infectious individual. A. The probability of the novel variant invading under an assumption of perfectly protective cross-407 

reactive immunity (𝛼 = 𝜀 = 1). Results are shown both for analytic approximations of the invasion probability calculated 408 

using system of equations (3) (either starting from a single infected individual who was previously immunologically 409 

naïve (red solid) or starting from a single infected individual who was previously infected by the related virus (red 410 

dashed)) and for the invasion probability calculated using stochastic simulations (either starting from a single infected 411 

individual who was previously immunologically naïve (black dots) or starting from a single infected individual who was 412 

previously infected by the related virus (black crosses)). The vertical blue dotted line represents the reproduction number 413 

of the previously circulating virus (𝑅0𝑝 = 1.5). B. Analogous results to panel A, but with partial protective cross-reactive 414 

immunity (𝛼 = 𝜀 = 0.5). C. Analogous results to panel A, but with no cross-reactive immunity (𝛼 = 𝜀 = 0). D. 415 

Analogous to panel A, but with cross-reactive immunity instead promoting infection with the novel variant (𝛼 = 𝜀 =416 

−0.5). In the simulations, the probability of invasion was calculated as the proportion of simulations in which the number 417 

of simultaneously infected individuals (𝐼𝑛 + 𝐼𝑝) exceeded 15 at any time (analyses for different values of this threshold 418 

are shown in Figs S2 and S3, with similar results). As in Fig 1, the division of the host population between individuals 419 
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who were previously immunologically naïve and those who were previously infected by the related virus was calculated 420 

based on the final size equation for the previously circulating virus (equation (1)). Other parameter values used are shown 421 

in Table 1. 422 

 423 

 424 

Figure 3. Probability of the novel variant invading the host population, starting from the introduction of a single 425 

infectious individual, for different levels of cross-reactive immunity affecting susceptibility and infectiousness 426 

individually. The invasion probability is approximated analytically by solving system of equations (3) numerically. A. 427 

The probability of the novel variant invading, starting from a single infected individual who was previously 428 

immunologically naïve. B. Analogous to panel A, but starting from a single infected individual who was previously 429 

infected by the related virus. White lines represent contours of constant probability of invasion of the novel variant. As in 430 

Fig 1, the division of the host population between individuals who were previously immunologically naïve and those who 431 

were previously infected by the related virus was calculated based on the final size equation for the previously circulating 432 

virus (equation (1)). In this figure, 𝑹𝟎𝒑 = 𝟏. 𝟓 and 𝑹𝟎𝒏 = 𝟐 (analyses for other values of 𝑹𝟎𝒑 and 𝑹𝟎𝒏 are shown in Fig 433 

S4). Other parameter values used are shown in Table 1. 434 

 435 

 436 

 437 
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Table 438 

Table 1. Illustrative parameter values used in model simulations. 439 

Parameter Meaning Value used 

N Size of local host population 100,000 

1/𝛾 Mean latent period of novel variant 5 days [61,62] 

1/𝜇 Mean infectious period of novel 

variant 
8 days [63–65] 

𝑅0𝑝 
Reproduction number of previously 

circulating virus (accounting for 

interventions) 

1.5, so that 𝑁𝑝 = 58,281 individuals 

are assumed to have been infected by 

the previously circulating virus 

(approximately 58% of the 

population) 

𝑅0𝑛 Reproduction number of novel 

variant (accounting for interventions) 
Varies (see figures) 

𝛽 Transmission rate of novel variant Set so that 𝑅0𝑛 =
𝛽𝑁

𝜇
 

𝛼 
Reduction (positive) or increase 

(negative) in susceptibility due to 

cross-reactive immunity 

Varies (see figures) 

𝜀 
Reduction (positive) or increase 

(negative) in infectiousness due to 

cross-reactive immunity 

Varies (see figures) 
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