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Abstract: Inertial sensor-based human activity recognition (HAR) has a range of healthcare appli-

cations as it can indicate the overall health status or functional capabilities of people with impaired 

mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained 

with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in 

neurological populations due to, e.g., impaired patient mobility to perform many daily activities. 

This study proposes a novel framework to overcome the challenge of creating rich and diverse da-

tasets for HAR in neurological populations. The framework produces images from numerical iner-

tial time-series data (initial state) and then artificially augments the number of produced images 

(enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) 

architectures by utilizing image input. In addition, CNN enables transfer learning which enables 

limited datasets to benefit from models that are trained with big data. Initially, two benchmarked 

public datasets were used to verify the framework. Afterward, the approach was tested in limited 

local datasets of healthy subjects (HS), Parkinson’s disease (PD) population, and stroke survivors 

(SS) to further investigate validity. The experimental results show that when data augmentation is 

applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, 

respectively, compared to the no data augmentation state. In addition, data augmentation contrib-

utes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited 

local datasets. Findings also suggest that CNN architectures that have a small number of deep layers 

can achieve high accuracy. The implication of this study has the potential to reduce the burden on 

participants and researchers where limited datasets are accrued. 

Keywords: human activity recognition; inertial measurement units; data augmentation; 

convolutional neural networks 

1. Introduction

Human activity recognition (HAR, also termed activity pattern/classification) inves-

tigates objective detection of daily activities such as level walking or stair ascent [1–3]. 

HAR in neurological populations to identify periods of activity is important as it enables 

clinicians to better understand patients’ functional abilities, which may inform treatment 

or prognosis [4]. More broadly, HAR has previously been adopted in healthcare applica-

tions such as mobility and fall detection in older adults [5], adolescents with cerebral palsy 

[6], and stroke survivors (SS) [7] to better understand the quality of life-related outcomes. 

Camera and radar-based technologies are utilized in HAR applications but are lim-

ited due to high cost, privacy issues, and computational requirements [1,8,9]. Alterna-

tively, low-cost and lightweight wearable inertial measurement units (IMUs: 
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accelerometer and gyroscopes) enable researchers to cost-effectively quantify longitudinal 

mobility data in controlled and/or free-living environments (e.g., home) [3]. Wearable 

IMUs [1,8,10,11] (occasionally integrated with other sensing modalities, e.g., magnetome-

ter [12], electrocardiograph [13,14], and electromyography [15]) with contemporary clas-

sification architectures [10,11] provide highly accurate HAR. Typically, accelerometers are 

the dominant inertial sensor for HAR, but the inclusion of a gyroscope increases recogni-

tion accuracies by providing data from rotational activities of the trunk or legs, such as 

during turning, stair ascent, and descent [3]. Often, labeling wearable-based HAR data in 

clinics is performed manually because of the controlled conditions [16], i.e., clearly de-

fined (scripted) periods of walking with time stamps. Moving beyond the lab creates chal-

lenges that greatly impact the practicality and use of manual segmentation, such as vast 

amounts of unlabeled data [11]. Consequently, artificial intelligence (AI) such as deep 

learning (DL) based approaches have become key to automatically identifying daily/ha-

bitual activities [17,18], fall detection [19], and negating time-consuming manual segmen-

tation and data labeling. 

Performances of automated HAR approach depend on the complexity level of the 

recognition process and the predictive capacity of the AI recognition models adopted 

since each individual tends to perform activities in different ways due to, e.g., habits, per-

sonal preferences, age, and health [3]. Studies show that wearable IMUs attached to peo-

ple with neurological conditions generate different acceleration and angular velocity sig-

nals than healthy controls [20], and having such diverse data cause intra-class variations 

which impact model performance [21,22]. Previously, models that were trained with data 

belonging to healthy participants demonstrated significant drops in HAR accuracy when 

classifying activities of Stroke survivors (SS) [23] and people with Parkinson’s disease 

(PD) [24]. In order to overcome such limitations, previous studies suggested generating 

HAR models for each user profile [3], e.g., training a model specifically for SS and those 

with PD. However, accurate HAR of daily activities requires a diverse and balanced da-

taset [8]. Previous studies reported that existing public datasets have either a limited num-

ber of activities and participants or include data belonging to limited user profiles or lim-

ited and unbalanced data of neurological populations [3,8]. This can be attributed to: par-

ticipants having difficulty performing certain daily activities due to poor mobility, chal-

lenges of data collection in healthcare due to privacy issues [10] and/or; establishment of 

multidisciplinary teams to aid patient/participant recruitment that are well characterized 

i.e., with clinical notes/records. 

In this paper, we propose a methodology to investigate how limited data can be bet-

ter utilized to achieve accurate HAR/mobility classification in limited healthy, PD, and SS 

population-specific models. To the authors’ best knowledge, this is the first study that 

aims to solve low HAR performances in limited datasets of neurological populations. To 

achieve our goal, we propose numerical-to-image conversion as the fundamental compo-

nent within our proposed methodology. The use of data augmentation complements our 

framework by providing solutions to the limited dataset and overfitting problems. Finally, 

using transfer learning enable applications with small data to benefit from models that 

are more experienced and trained with big data. An investigation of the proposed 

method’s performance was initially performed on two public datasets. Results were com-

pared to the reference studies with and without data augmentation operations in the same 

datasets. Then, several pilot studies tested our numerical-to-image conversion approach 

along with a data augmentation technique on limited local datasets belonging to healthy, 

PD, and SS participants. Therefore, the contributions of this study are: 

1. Developing a novel framework that converts inertial sensor time-series data into im-

ages (activity images). 

2. Adopting established data augmentation techniques in image processing to artifi-

cially increase limited datasets for the purpose of better HAR in neurological popu-

lations (where access to data may be difficult). 
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3. Verifying the proposed approach in public datasets and conducting experimental pi-

lot studies for a single sensor-based HAR on limited HS, PD, and SS datasets. 

2. Related Works 

Machine learning (ML) algorithms, such as Support Vector Machine (SVM) or Deci-

sion Tree (DT), rely on manual feature extraction and selection that greatly impact HAR 

accuracy. Prior works have shown that designing hand-crafted features in a specific ap-

plication requires human-based domain knowledge [25], and heuristically-defined fea-

tures may perform well in recognizing one activity but not others [26]. Furthermore, hand-

crafted features may not be sensitive to targeted cohorts and environments [27], i.e., mod-

els developed with a set of features in a lab lose accuracy when applied in freeliving (be-

yond the lab) due to the diversity of user’s habitual behavior and complexity of activities 

and environments. Equally, human expertise may not always select the best features, 

which can decrease accuracy and make it necessary to apply additional feature selection 

methods to reduce dimensionality [3]. The use of ensemble classifiers has been recom-

mended to increase classification accuracy [28,29], but studies utilized complex methods 

that were computationally inefficient. In order to optimize performance, IMU-based HAR 

approaches have generally converged on DL [8]. DL algorithms are capable of generating 

complex and high-level features that well represent raw data and do not require expert 

knowledge for feature extraction and selection [3,30]. DL methods are considered state-

of-the-art in computational processing [31] and have provided very accurate classification 

approaches [2,22]. 

Common DL approaches include Convolutional Neural Networks (CNN), which are 

able to learn multiple layers of feature hierarchies to provide high accuracy for the recog-

nition of repetitive activities with a long duration [8]. Compared to other AI methods, 

CNNs have a local dependency, an ability to identify the correlation between close signals 

and scale invariance with an ability to work with different frequencies in time series data 

[2]. CNN models have been used with other AI methods, such as Long-short-term 

memory (LSTM) recurrent neural networks, to capture time dependencies on features ex-

tracted by convolution operations. This kind of combined architecture outperformed 

other studies that used the same HAR dataset [32]. Additionally, spectrogram-based fea-

ture extraction methods using Short-Time Fourier transform (STFT) from raw IMU data 

have been proposed through data augmentation with down sampling and shuffling tech-

niques before classification with LSTM [33]. 

In both ML and DL models, the variety and size of data have the utmost importance 

in minimizing overfitting. Failing to provide a diverse and large data set will cause train-

ing and validation errors. Data augmentation is a powerful method to solve training, val-

idation errors, overfitting [34,35], and data sparsity problems. Previously, a two-stage 

end-to-end CNN model was proposed along with an augmentation technique to enhance 

datasets by inserting data points via linear interpolation [36]. The results of the proposed 

methodology outperformed previous studies in terms of classifying activities in a dataset 

of healthy participants. Another study used two different time series data augmentation 

techniques to investigate the impact on accuracy and reported that the use of data aug-

mentation significantly enhances recognition accuracy in three public datasets of healthy 

participants [37]. Alternatively, the Generative Adversarial Network (GAN) framework 

[38] was adopted to generate more data samples. Although GAN could improve the per-

formance of classifiers with limited labeled data, weaknesses such as lack of explicit rep-

resentation of the generator’s distribution and the need for model synchronization were 

reported [10]. Synthetic Minority Over-sampling technique (SMOTE) is another technique 

that uses oversampling to generate more data samples [39] and achieves better classifier 

performances in ML classifiers (such as Naive Bayes) but has not been fully investigated 

in DL classifiers and HAR of neurological populations. 

Interpretation of numeric IMU data as images has been implemented in very few 

HAR studies. In [5], IMU data was stacked row by row into an array (called a signal image) 
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before a 2D Discrete Fourier transform (DFT) was applied to generate activity images 

which were then input to a CNN. Elsewhere, frequency (activity) images were created 

from the raw IMU signals by applying STFT [22] and Fast Fourier Transform (FFT) [40] 

before being used as input to a CNN. However, the referenced studies performed HAR 

using activity images (spectrum) rather than a direct representation of numerical sensor 

values. Although these studies produced accurate HAR, the images (spectrum) used do 

not fully represent raw sensor data. Using raw sensor data to create images where pixel 

brightness increases/decreases with the numerical value of the IMU is a novel and poten-

tially more accurate alternative as it better represents raw (sample level) IMU data. Previ-

ously, images that were created with this approach provided very promising classification 

results of the survival status of the patient using a clinical record dataset [41]. 

Inertial Sensor-Based HAR in Neurologic Populations 

The use of inertial sensors in HAR eliminates immediate privacy and security con-

cerns and offers pragmatic data collection possibilities via various technologies such as 

commercially available devices, smartphones, and smartwatches. Despite providing 

unique opportunities, inertial sensor-based HAR also poses many challenges, such as ac-

curately recognizing the activity type from an unknown environment using an inertial 

signal [1]. Unlike camera-based HAR systems, inertial sensor-based HAR requires addi-

tional mechanisms such as video recording or scripted data collection protocol to label the 

data before training. Another challenge posed by inertial sensor-based HAR is the require-

ment of wearing multiple sensors. Although multiple inertial sensors-based HAR has pro-

vided highly accurate activity classification [22], wearing multiple devices may cause dis-

comfort while increasing computation and project costs. Accordingly, most studies utilize 

a single waist-mounted sensor [42]. 

Several publicly available benchmark datasets have been generated using a single 

sensor configuration to enable researchers to develop highly accurate HAR models 

[43,44]. However, those datasets were produced from healthy people only [2]. The lack of 

HAR benchmarking datasets for neurological populations force researchers to create local 

(project-specific) datasets. The creation of a local dataset that has diverse and sufficient 

data is challenging due to several reasons [10]. For example, researchers interested in HAR 

within neurological disorders may struggle with patient recruitment (due to a lack of clin-

ical partners) or ensure the longevity of recording to obtain sufficient data due to a lack of 

patient adherence. Additionally, data may be skewed as those with functional limitations 

may generally perform light activities only, such as level ground walking rather than stair 

ascent/descent or walking over uneven terrain due to fear of falling. These real-life impli-

cations result in datasets of SS [27,45], PD [24], and people with spinal cord injury [46] that 

may not be rich and diverse enough to achieve very high HAR accuracies on new data. 

Accurate HAR in neurological populations requires diverse data from multiple par-

ticipants with a broad range of ages, fitness levels, disease duration, mood, and health 

conditions to ensure inter-subject and intrasubject variability have minimal impact on 

recognition accuracy [47]. For example, people with different stroke types (e.g., ischemic, 

hemorrhagic) and post-stroke recovery durations may show different levels of impaired 

mobility during stair ascending/descending. Increasing the size of the dataset may also 

contribute to minimizing the impact of subject variability in classification models. 

In this study, we hypothesize that converting numerical sensor data into activity im-

ages and implementing data augmentation techniques can alleviate diversity and data 

balance issues, thereby increasing the performance of DL methods by utilizing well-estab-

lished techniques in image processing [48]. The use of image data for training and testing 

models makes CNN models a viable choice because CNN models not only extract high-

level features from images but also present more compactly and robustly what the image 

essentially represents. 
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3. Methodology 

The proposed methodology developed for better HAR of people with neurological 

conditions is presented in Figure 1. Three limited local datasets and two independent 

benchmarking public datasets were used to verify the proposed methodology. In order to 

replicate the pragmatic problems in this domain, the local dataset has a limited number 

of participants, data sparsity, and class imbalance. In the proposed methodology, numer-

ical inertial sensor data were first normalized and then converted into images (initial 

state). Then, established image augmentation techniques were adopted to artificially in-

crease the number of images (enhanced state). Finally, generated images were fed into 

different CNN architectures. All steps are further detailed in this section. 

 

Figure 1. Data collection protocol and proposed framework: (a) Dataset illustration. The flow of the 

proposed HAR methodology with data augmentation and CNN architectures: (b) IMU data acqui-

sition, (c) data normalization, (d) numerical to image conversion, (e) resizing, (f) data augmentation, 

(g) CNN classification. 

3.1. Data Normalization and Numerical to Image Conversion (Initial State) 

Raw accelerometer and gyroscope signals experience different lower and upper lim-

its because of configuration (e.g., an accelerometer typically can collect data in the range 

of ±16 m/s2, whereas gyroscopes can sense up to ±2000°/s). Normalizing features with dif-

ferent upper and lower limits is a commonly used pre-process in AI, as extreme differ-

ences between different features may have a negative impact on learning abilities [49]. In 

the normalization step, a feature scaling-based normalization method is preferred due to 

its convenience. Here, raw IMU data (𝑥) is normalized (𝑥̂) considering max value (𝑥𝑚𝑎𝑥) 

and min value (𝑥𝑚𝑖𝑛), as depicted in Figure 1c. As a result of normalization, the value in 

matrices ranges between 0 and 1 for both accelerometer and angular velocity, Equation 

(1) 

max

ˆ min

min

x x
x

x x

−
=

−
 (1) 

After normalization, data were divided into sub-segments (windows), considering 

each sub-segment should contain sufficient characteristics that allow HAR to be success-

fully performed. A previous study [50] investigated windows size impact on HAR appli-

cation and reported that the ideal size for fixed windows ranges between 2 s and 5 s con-

sidering a frequency of 20 Hertz (Hz) to 50 Hz. Therefore, each activity was divided into 
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consecutive segments of fixed-length (≈2.5 s windows), considering that at least two 

strides are needed to recognize walking and stair ambulation. IMUs typically sense tri-

axial acceleration (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) and tri-axial angular velocity (𝑤𝑥, 𝑤𝑦 , 𝑤𝑧) in the 𝑡 moment 

(Equation (2)). Generally, popular CNN models are not suitable to use 1D datasets and 

require 2/3D images to feed input layers [51]. Therefore, many previous studies [32,52,53] 

extract IMU data features with 1D convolution layers and then evaluate those features 

with recurrent neural network-based methods. Here, we convert numerical IMU data to 

images to go beyond that limit, as shown in Figure 1d. 

t x y z x y zIMU = a ,a ,a ,w ,w ,w
t t t t t t

 
   

(2) 

Equation (3) represents 2D data (also can be referred to as an image) created by ver-

tical placement of accelerometer and gyroscope values recorded in 2.50 s window/250 

sample and 2.56 s windows/128 sample for the local dataset and UCI HAR dataset, respec-

tively. In the WISDM dataset, only accelerometer values were placed in a 2.50 s win-

dow/50 sample. Unlike previous studies [5,22,40], this study ensures that each numerical 

IMU value corresponds to a specific pixel in an image. The normalized values in the ma-

trices were multiplied by 255 to produce grey images with pixels ranging from 0 to 255. 

As a result, images whose brightness increases/decreases with the numerical value of the 

IMU are produced. However, image dimensions are not suitable to feed the input layer of 

CNN models since each CNN model’s input layer accepts images with a size of 224 × 224 

[51]. Therefore, resizing is applied by stretching the row length to obtain a square matrix 

from these images Figure 1e. 
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 
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(3) 

3.2. Data Augmentation 

Table 1 presents the number of occurrences along with class distribution in limited 

local datasets. In order to alleviate the problems related to small dataset size and prevent 

overfitting; data augmentation was applied to increase the number of generated images 

using established image processing techniques. In this sense, four different image position 

augmentation techniques (reflection, rotation, scale, and translation) were applied to each 

image to ensure data diversity and robust training, see Figure 1f. Reflection, also known 

as symmetry, is an image pre-processing operation that can occur in horizontal or vertical 

access. Rotation, scaling, and translation is other pre-processing operations that deal with 

spinning, resizing, and moving (right, left, up, and down) in given upper and lower limits, 

respectively. The lower and upper limit values of rotation, translation (pixel), and scale 

are ±30°, ±10°, and 0.9–1.1, respectively, since these values have proved to be efficient [41]. 

Consequently, the size of the original dataset in the initial state was enhanced by adding 

8 times more artificial data (4 different techniques with lower and upper limits). In this 

context, the number of occurrences for each class in the local datasets is increased, Table 

2. 
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Table 1. Class distributions in local datasets (initial state). 

Dataset Walking Ascent Descent Standing Total 

HS 50 (25) 50 (25) 49 (25) 50 (25) 199 (100) 

PD 81 (29) 64 (23) 60 (21) 75 (27) 280 (100) 

SS 49 (28) 18 (11) 31 (18) 75 (43) 173 (100) 

The number of occurrences/images (% class distribution). 

Table 2. Number of occurrences after data augmentation (enhanced state) in the local dataset. 

Dataset Walking Ascent Descent Standing Total 

HS 450 450 441 450 1791 

PD 729 576 540 675 2520 

SS 441 162 279 675 1557 

The number of occurrences/images (% class distribution). 

3.3. HAR via CNN 

Benchmarking analysis of various deep learning models was previously studied, and 

performance indices such as accuracy, model complexity, memory usage, computing 

power, and interference times were evaluated [51,54]. We determined our priority perfor-

mance indices as high accuracy rate, minimal computing power, and short prediction time 

to achieve an effective HAR framework. Therefore, we chose four optimal pre-trained net-

works GoogleNet [55], ResNet18 [56], ResNet50 [56], and MobileNet-v2 [57,58], in the Pa-

reto frontier as these architectures satisfy our requirements. Each CNN architecture used 

in this study differs from the others in layer, size, and parameters and is often preferred 

in benchmarking studies to evaluate CNN performances [59,60], Table 3. MATLAB® (2021, 

MathWorks, Inc., Natick, MA, USA) software on a laptop with Intel Core i7-7700HG CPU 

(2.80 GHz), 16 GB RAM, NVIDIA GeForce GTX 1050 4 GB was used to perform CNN 

training and testing. 

A residual network (ResNet) [56] was developed to improve unexpected low perfor-

mances of deeper network architectures by adding a skip connection (shortcut) to convey 

information between layers and avoid the vanishing gradient problem [60]. There are dif-

ferent ResNet variants (18-layer, 34-layer, 50-layer, 101-layer, 152-layer) proposed consid-

ering the number of layers and output sizes. ResNet18 and ResNet50 were implemented 

here. MobileNet was employed as it has low computation and fast operation by using 

depth-wise separable convolutions to reduce the number of parameters and computation 

time. Specifically, MobileNet-v2 [58] was implemented, which has 54-layers, distinguish-

ing it from MobileNet in using inverted residual blocks with bottleneck properties. Goog-

leNet [55] is 22-layer deep (excluding pooling) model designed with computational effi-

ciency and practicality. It uses the inception module to extract features more effectively 

using various filter sizes. And the computational load is reduced with a 1×1 convolution 

of the depth of the network. Minor adjustments, such as the use of fine-tuning networks 

were made to the existing architecture for the four-class classification problem in this 

study. In this context, a fully connected layer with four outputs and a classification layer 

was added to the existing structure, see Figure 1g. 

Table 3. Properties of pre-trained CNN architectures. 

CNN Architecture 
Layer 

(Depth) 
Size (Megabyte) 

Parameters (Mil-

lions) 
Input Image Size 

ResNet18 18 44 11.7 224 × 224 

ResNet50 50 96 25.6 224 × 224 

MobileNetv2 54 13 3.5 224 × 224 

GoogleNet 22 27 7 224 x 224 
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4. Datasets 

4.1. Local Datasets 

Ten HS (28.4 ± 7.0 years, 79.2 ± 14.4 kg, 176.8 ± 8.4 cm, 8 Male, M: 2 Female, F), five 

people with PD (61.5± 3.43 years, 82.9 ± 10.3 kg, 175.8 ± 4.6 cm, 5M) and three SS (72.3 ± 

3.1 years, 78.5 ± 12.1 kg, 176 ± 8.2 cm, 3M) were recruited, as illustrated in Figure 1a. Each 

participant was instructed to stand for 2-min (eyes open and comfortable standing), then 

walk over the level ground for 2-min around a 20-m circuit at their self-selected walking 

speed inside the lab. Afterward, participants ascended and descended stairs (15 steps) 

outside of the lab (in a generic university campus stairwell). 

Assessment and instrumentation were carried out by a physiotherapist and a trained 

researcher, respectively. Ethical consent was granted by the Northumbria University Re-

search Ethics Committee (REF: 21603). All participants gave informed written consent be-

fore participating in this study. Testing took place inside and outside of a gait labora-

tory/lab, Coach Lane Campus, Northumbria University, Newcastle, upon Tyne. 

Each participant wore a Shimmer3 IMU device (5.1 cm × 3.4 cm × 1.4 cm, 23.6 g) on 

the 5th lumbar vertebrae (L5), as shown in Figure 1b. IMU signals (tri-axial accelerometer 

and tri-axial gyroscope) were recorded at a sampling frequency of 100 Hz and configured 

with 16-bit resolution (±8 g, ±500°/s). IMU data were transferred to a workstation (Win-

dows 10) from the IMU device via proprietary software (Consensys, Shimmer). Labeling 

of activities in a continuous data stream was conducted via a wearable camera for PD and 

SS, whereas a scripted experimental protocol was used for HS. All participants performed 

the same protocol. Inertial data streams for each activity were segmented into 2.5 s (250 

sample points) windows with 50% overlap using a sliding window. 

4.2. UCI-HAR and WISDM Independent Benchmarking Datasets 

UCI-HAR dataset [44] was preferred to test the development methodology as it was 

created using the same data collection protocol as the local dataset. UCI-HAR dataset has 

an accelerometer and gyroscope recording of 30 HS (19–48 years), collected by a device 

attached at waist level. The dataset was randomly portioned into training and testing. 

Data were recorded at a sampling frequency of 50 Hz and segmented to fixed-width slid-

ing windows of 2.56 s (128 sample points) with 50% overlap. The WISDM dataset was 

created from 36 HS under controlled laboratory conditions. The dataset has tri-axial ac-

celerometer readings only recorded at 20 Hz. Accelerometer recordings were segmented 

to fixed-width sliding windows of 2.50 s with 50% overlap. 

Table 4 presents activity classes along with class distributions in the benchmarking 

datasets. Skewed class distributions are present in the public datasets. This typically limits 

the learning/training process by causing class overlapping, small sample size, or small 

disjuncts [61]. In addition, models trained with imbalanced datasets are often biased to-

wards the majority class, and therefore there is a greater misclassification rate for the mi-

nority class occurrences such as sitting and standing in the WISDM dataset [62]. Further-

more, the most common evaluation metric, accuracy, treats all classes as equally im-

portant, which makes it inefficient [3]. To alleviate the limitations of imbalanced public 

datasets, we utilized 500 occurrences from each class for training in public datasets. In 

total, 3000 occurrences were utilized for each dataset, and the train/test split ratio, along 

with occurrence numbers, are presented in Section 5. 

Table 4. Class distributions in benchmarking datasets (initial state). 

Dataset  Walking Ascent Descent Sitting Standing Laying Jogging Total 

UCI-HAR Original 1226 (17) 1073 (15) 986 (13) 1286 (17) 1374 (19) 1407 (19) - 7352 

 Utilized  500 (16.6) 500 (16.6) 500 (16.6) 500 (16.6) 500 (16.6) 500 (16.6) - 3000 

WISDM Original 424,400 (38.6) 122,869 (11.2) 100,427 (9.1) 59,939 (5.5) 48,395 (4.4) - 34,217 (31.2) 756,030 

 Utilized  500 (16.6) 500 (16.6) 500 (16.6) 500 (16.6) 500 (16.6) - 500 (16.6) 3000 

Number of occurrences/images (% class distribution). 
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5. Analytical Procedures 

This section presents the results of the classification models in the initial state (after 

numerical to image conversion) and enhanced state (after data augmentation). In local 

datasets, 80% of the data (occurrence/images) were used for training and 20% for testing. 

In UCI-HAR and WISDM public datasets, a total of 3000 occurrences (500 for each class) 

were utilized for each dataset, where 80% (2400 occurrence/images) were used for train-

ing, and 20% (600 occurrence/images) were used for testing. Five quantitative metrics are 

used to evaluate the performance of each model, Equations (4)–(8). Accuracy is the most 

common metric and gives a general representation of model performance, but it can be 

inefficient when used in unbalanced datasets. Accordingly, sensitivity and specificity 

were also calculated as additional evaluation matrices to evaluate classes separately. F1-

measure deals with a score resulting from the combination of precision and recall value, 

where TP: true positive, TN: true negative, FP: false positive, and FN: false negative. In 

addition, Matthew’s correlation coefficient (MCC) was included as it includes TN, unlike 

F1-measure. Total execution time was also calculated for enhanced states of all models. 

TP+ TN
Accuracy = ×100

TP+ FP+ TN+ FN  
(4) 

TP
Sensitivity =

TP+ FN  
(5) 

TN
Specicificity =

TN+ FP  
(6) 

2 TP
F1- score =

2 TP+ FP+ FN




 (7) 

( )
(TP TN) (FP FN)

=
(TP+ FN) (TN+ FP) (TP+ FP) (TN+ FN)

Matthew's correlation coefficient MCC
 − 

  
 (8) 

6. Results 

6.1. UCI-HAR Datasets 

Table 5 presents the results of performance metrics for initial and enhanced states in 

UCI-HAR. In the initial state, ResNet18 architecture slightly outperformed its counter-

parts in all performance metrics. Moreover, the data augmentation operation provided 

slight improvements in the performance metrics of each architecture, whereas the largest 

improvement was observed in GoogleNet. In the enhanced state, ResNet50 architecture 

provided slightly higher performances compared to other CNN architectures and reached 

97% accuracy. However, comparing execution time reveals that GoogleNet classifies HAR 

activities faster than its counterparts. Table 6 presents the ResNet50 confusion matrix of 

the UCI-HAR dataset in the initial and enhanced states as it outperforms other architec-

tures in terms of all performance metrics except execution time. Here, notable improve-

ments are observed after data augmentation, especially in static activities (sitting, stand-

ing, and laying). 
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Table 5. HAR performance metrics in UCI HAR dataset. 

  Initial State   Enhanced State 

DL-CNN  

Epochs: 5  

Iteration: 3750  

Learning rate: 

0.001  

Batch size: 32 

Pre-trained net-

work 
Acc. (%) Sens. Spec. F1 MCC Acc. (%) Sens. Spec. F1_ MCC 

Training time 

(min) 

ResNet18 93.3 0.929 0.987 0.928 0.915 96.1 0.960 0.992 0.961 0.953 89.26 

ResNet50 91.8 0.914 0.984 0.911 0.897 97.0 0.970 0.994 0.970 0.964 165.38 

MobileNet-v2 90.7 0.903 0.982 0.899 0.883 96.2 0.962 0.992 0.962 0.954 143.41 

GoogleNet 81.0 0.803 0.962 0.800 0.771 91.9 0.919 0.984 0.918 0.903 75.55 

Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score. 

Table 6. Confusion matrix of UCI HAR- ResNet50 (initial results—left, final results—right). 

 Walking Ascent Descent Sitting Standing Laying  Walking Ascent Descent Sitting Standing Laying 

Walking 106 0 0 0 0 0 Walking 494 0 1 0 0 0 

Ascent 0 108 0 0 0 0 Ascent 1 547 3 0 0 0 

Descent 0 1 106 0 0 0 Descent 1 0 477 0 0 0 

Sitting 0 0 0 89 3 12 Sitting 0 0 1 465 12 17 

Standing 1 1 0 14 66 11 Standing 0 0 0 19 461 11 

Laying 0 0 0 2 4 76 Laying 0 0 0 15 8 467 

6.2. WISDM Datasets 

Table 7 presents the classification results of the four CNN architectures using the 

WISDM dataset in initial and enhanced states. In the initial state, ResNet50 architecture 

classified HAR activities better than ResNet18 and MobileNet-v2, whereas GoogleNet 

showed a notably poorer performance. However, this is not valid for specificity metrics 

which experienced similar values in all architectures. After data augmentation is imple-

mented, significant improvements are observed in all architectures. ResNet18 reached 

95.8% accuracy with the shortest training time, whereas ResNet50 and MobileNet-v2 pro-

vided slightly lower accuracies but in a much longer time (≥130 min). Although Goog-

leNet is improved in its enhanced state, it is still the poorest in activity recognition com-

pared to other architectures. Table 8 presents the confusion matrix for the best-enhanced 

state (ResNet18). Comparing activity recognition performances for each class in the initial 

and enhanced state reveals that the largest improvements are obtained in the accurate 

recognition of static activities (sitting and standing). 

Table 7. HAR performance metrics in the WISDM dataset. 

  Initial State   Enhanced State 

DL-CNN  

Epochs: 5  

Iteration: 3750  

Learning rate: 

0.001  

Batch size: 32 

Pre-trained net-

work 
Acc. (%) Sens. Spec. F1 MCC Acc. (%) Sens. Spec. F1 MCC 

Training time 

(min) 

ResNet18 83.5 0.832 0.967 0.828 0.799 95.8 0.958 0.992 0.958 0.949 72.2 

ResNet50 86.0 0.854 0.972 0.854 0.827 95.4 0.953 0.991 0.953 0.944 163.49 

MobileNet-v2 82.7 0.821 0.965 0.821 0.787 95.4 0.953 0.991 0.953 0.944 129.52 

GoogleNet 71.5 0.719 0.943 0.718 0.678 89.3 0.891 0.979 0.892 0.871 80.27 

Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score. 

Table 8. Confusion matrix of WISDM dataset-ResNet18 (initial results—left, final results—right). 

 Jogging Walking Ascent Descent Sitting Standing  Jogging Walking Ascent Descent Sitting Standing 

Jogging 100 2 0 3 0 1 Jogging 488 3 3 1 0 0 

Walking 0 106 0 2 0 0 Walking 0 546 0 5 0 0 

Ascent 3 4 85 12 0 3 Ascent 5 6 453 8 2 4 

Descent 3 4 8 79 5 5 Descent 0 6 20 457 4 8 

Sitting 0 0 0 1 60 32 Sitting 0 0 3 1 468 19 

Standing 0 1 0 0 10 71 Standing 0 0 4 2 21 463 
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6.3. Local Datasets (HS Model) 

Table 9 shows the initial and enhanced state results of HAR in the local dataset cre-

ated from HS. In the initial state, MobileNet-v2 architecture outperforms its counterparts 

in terms of each performance metric, whereas GoogleNet architecture performs poorly in 

recognition of HAR activities. Significant improvements are observed in the enhanced 

state where ResNet50 reaches the highest accuracy with 100%, especially GoogleNet ac-

curacy is more than doubled in the enhanced state. Table 10 presents the confusion matrix 

created from ResNet50 architecture, which experienced misclassification in recognition of 

stair activities in the initial state. After data augmentation, ResNet50 architecture better-

adopted stair classes and corrected the misclassifications. 

Table 9. HAR performance in local HS dataset. 

  Initial State  Enhanced State  

DL-CNN  

Epochs: 5  

Iteration: 190  

Learning rate: 

0.001  

Batch size: 32 

Pre-trained 

network 

Acc. 

(%) 
Sens. Spec. F1 MCC 

Acc. 

(%) 
Sens. Spec. F1 MCC 

ResNet18 80.0 0.821 0.936 0.803 0.753 99.7 0.997 0.999 0.997 0.996 

ResNet50 82.5 0.827 0.942 0.822 0.765 100.0 1.000 1.000 1.000 1.000 

MobileNet-v2 85.0 0.863 0.951 0.852 0.810 97.5 0.975 0.991 0.975 0.967 

GoogleNet 42.5 0.358 0.798 0.313 0.224 95.3 0.953 0.984 0.952 0.937 

Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score. 

Table 10. Confusion matrix of HS local dataset– ResNet50 (initial results—left, final results—

right). 

 Ascent Descent Walking Standing  Ascent Descent Walking Standing 

Ascent 9 2 1 0 Ascent 86 0 0 0 

Descent 2 5 0 0 Descent 0 95 0 0 

Walking 0 2 11 0 Walking 0 0 91 0 

Standing 0 0 0 8 Standing 0 0 0 87 

6.4. Local Datasets (PD Model) 

Table 11 presents the initial and enhanced results of HAR in those with PD. In the 

initial state, all CNN architectures experience comparable results where ResNet18 and 

ResNet50 outperform other architectures. Later in the enhanced state, notable improve-

ments were observed in all architectures, but MobileNet-v2 achieved the highest perfor-

mance. Table 12 presents a confusion matrix belonging to the classification result of Mo-

bileNet-v2, where misclassification in stair descent and walking activities were improved 

in the enhanced state. 

Table 11. HAR performance metrics in local PD dataset. 

  Initial State  Enhanced State  

DL-CNN  

Epochs: 5  

Iteration: 190  

Learning rate: 

0.001  

Batch size: 32 

Pre-trained 

network 

Acc. 

(%) 
Sens. Spec. F1 MCC 

Acc. 

(%) 
Sens. Spec. F1 MCC 

ResNet18 94.6 0.949 0.982 0.947 0.929 98.8 0.987 0.996 0.987 0.983 

ResNet50 94.6 0.940 0.981 0.945 0.928 99.0 0.989 0.997 0.990 0.986 

MobileNet-v2 92.9 0.936 0.976 0.931 0.908 99.2 0.992 0.997 0.992 0.989 

GoogleNet 89.3 0.895 0.964 0.896 0.864 97.61 0.973 0.991 0.978 0.975 

Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score. 
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Table 12. Confusion matrix of PD local dataset– MobileNet-v2 (initial results—left, final results—

right). 

 Ascent Descent Walking Standing  Ascent Descent Walking Standing 

Ascent 15 1 0 2 Ascent 121 1 0 2 

Descent 1 10 0 0 Descent 0 99 0 0 

Walking 0 0 13 0 Walking 0 0 135 0 

Standing 0 0 0 14 Standing 0 0 1 145 

6.5. Local Datasets (SS Model) 

Table 13 shows performances from initial and enhanced states in the local SS dataset. 

In the initial state, ResNet18, ResNet50, and MobileNet-v2 experience accuracies just 

above 70%, whereas GoogleNet shows the poorest performance with 65.7% accuracy. In 

the enhanced state, all architectures except GoogleNet experience significant improve-

ments and reach over 95% accuracy. On the other hand, GoogleNet also experiences im-

provements but with a small margin compared to its counterparts. Table 14 presents the 

confusion matrix of ResNet50 from initial and enhanced states. In the SS group, stair as-

cent occurrences were mostly misclassified, whereas stair descent and walking activities 

suffered from low recognition. In the enhanced state, notable improvements were ob-

served, especially in stair activities. 

Table 13. HAR performance in local SS dataset. 

  Initial State  Enhanced State  

DL-CNN  

Epochs: 5  

Iteration: 190  

Learning rate: 

0.001  

Batch size: 32 

Pre-trained 

network 

Acc. 

(%) 
Sens. Spec. F1 MCC 

Acc. 

(%) 
Sens. Spec. F1 MCC 

ResNet18 74.3 0.690 0.917 0.643 0.591 96.2 0.944 0.987 0.948 0.936 

ResNet50 71.4 0.667 0.903 0.629 0.558 98.1 0.968 0.993 0.973 0.967 

MobileNet-v2 74.3 0.690 0.913 0.650 0.590 97.4 0.960 0.992 0.960 0.952 

GoogleNet 65.7 0.500 0.874 0.563 0.516 79.8 0.655 0.927 0.656 0.647 

Acc.: accuracy, Sens.: sensitivity, Spec.: specificity, F1: F1_score. 

Table 14. Confusion matrix of SS local dataset– ResNet50 (initial results—left, final results—right). 

 Ascent Descent Walking Standing  Ascent Descent Walking Standing 

Ascent 1 1 1 4 Ascent 36 0 0 3 

Descent 0 4 0 1 Descent 1 51 0 1 

Walking 0 0 12 0 Walking 0 0 120 0 

Standing 1 2 0 8 Standing 0 1 0 99 

7. Discussion 

The computational performance of the framework was deemed acceptable for data 

preparation (normalization, generally having low computational cost). Specifically, nor-

malization of each segmented IMU window took approx. 5.4 milliseconds which was then 

converted into the activity image within approx. 2.1 milliseconds are, resulting in total 

data preparation for each occurrence of about 7.5 milliseconds. However, model training 

was prolonged and is discussed in Section 7.3, Limitations. Here, we first verify the pro-

posed approach in benchmarking datasets and compare it with reference studies, Section 

7.1. This tests whether the proposed numerical-to-image conversion approach is a valid 

and reliable approach in independent datasets. Results suggest that the proposed frame-

work can classify activity classes in both benchmarking datasets with high accuracy, es-

pecially after data augmentation. The pre-trained networks used in this study can achieve 

better or comparable classification accuracies against reference studies even when the net-

works are trained with a portion of the original datasets. 

After promising results are obtained in benchmarking datasets, we provide an eval-

uation regarding the pilot studies (in HS, PD, and SS), which test the proposed approach 
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(numerical to image conversion and data augmentation) on limited local datasets. In ad-

dition, we present an analysis regarding why some CNN architectures perform better 

than others and recommend the necessary properties a pre-trained network needs to 

achieve sufficient learning. 

7.1. Verification of the Results in Public Datasets 

Table 15 compares the proposed framework against several reference studies with 

and without data augmentation in the same public datasets. Overall, numerical-to-image 

conversion, along with data augmentation, significantly improves the performance of 

CNN architectures in HAR. This study utilized 500 occurrences/instances for each class to 

provide unbiased evaluation metrics, as detailed in 4.2. Therefore, our findings should be 

considered in this context. 

Table 15. Reference studies with benchmarking datasets. 

Study Method Augmentation 
Accuracy (%) 

UCI WISDM 

Alawneh et al. [37] RNN Moving average and the exponential smoothing  97.9–80.0 * 97.13–83.4 * 

Huang et al. [36] CNN 
Step detection based novel augmentation technique- 

not appropriate for passive activities 
- 95.7–86.4 * 

Yen et al. [63] CNN NA 95.99 - 

Jiang and Yin [5] CNN NA 97.59 - 

Li and Trocan [64] CNN NA 95.75 - 

Cho and Yoon [65] CNN Data sharpening 97.62 - 

Proposed framework CNN Numerical image conversion + image augmentation 97.0–93.3 * 95.8–86.0 * 

* Represents initial results where available. 

7.1.1. UCI-HAR Dataset 

Comparing our initial results with a reference study [37] initial results in the same 

dataset reveals that the proposed numerical-to-image conversion approach is an effective 

method. Here, ResNet18 architecture reaches 93.3 % accuracy, which is superior to 80% 

accuracy [37]. In the enhanced state of the UCI-HAR dataset, the methodology proposed 

here provides similar or better results compared to the reference studies, Table 15. Com-

paring the training times with a reference study [37] that uses an exponential smoothing 

augmentation technique reveals that our approach reaches 97.0% accuracy in 166 min 

training duration, whereas the reference study reaches 97.9% accuracy in 210 min. This 

suggests that the proposed framework can provide comparable accuracies with smaller 

training data with shorter durations. The difference in the training times could be at-

tributed to the preferred data augmentation technique. For example, the exponential 

smoothing approach assigns exponentially decreasing weights for older observations. 

However, our framework uses raw numerical data to produce activity images that are 

independent of the numerical values in the data stream. Producing images (e.g., activity 

images or spectrogram) directly from raw sensor data was proved to be effective in HAR 

[5,22,40]. 

7.1.2. WISDM Dataset 

In the initial state, our numerical-to-image conversion technique with ResNet50 

reaches 86% accuracy, which is superior to 83.4% in [37] and comparable to 86.4% in [36]. 

In the enhanced state, our accuracy reaches 95.8% with ResNet18 architecture, which is 

comparable to 95.7% in [36] but poorer than 97.1% in [37]. Comparing the training time 

with a reference study [37] reveals that our proposed framework reaches comparable ac-

curacies with smaller training data and shorter training duration. 
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7.2. Verification in Local Datasets 

We tested the proposed approach (initial state and enhanced state) on local datasets 

of HS, PD, and SS groups. In the initial state, in terms of accuracy, CNN architectures 

provide higher performances in the PD dataset compared to HS and SS. This could be 

associated with the fact that the PD dataset is more balanced than SS and larger than both 

HS and SS. In addition, majority classes (walking and standing) are better recognized than 

minority classes (ascent and descent) in the PD dataset. When the sizes of the datasets 

were artificially increased with data augmentation techniques in the enhanced state, im-

provements were achieved in all CNN architectures. It is important to highlight that data 

augmentation has no impact on the balance of a dataset because each class is enhanced at 

the same rate. 

Figure 2 presents the average performances of all CNN architectures from Tables 9, 

11, and 13. Sensitivity and specificity values were normalized to 0–100 to present compa-

rable results against accuracy. Comparing initial and enhanced results considering the 

overall performance of all CNN architectures in the local datasets reveals that the largest 

improvement in terms of accuracy is observed in HS with 25.6%, followed by SS with 

21.4% and PD with 5.8%, as seen in Figure 2. Comparing accuracy, sensitivity, and speci-

ficity reveals that data augmentation had the largest improvement in sensitivity at 18.81%, 

followed by the accuracy at 17.62% and relatively small improvements in specificity at 

5.99%. This finding could be associated with the nature of the limited and imbalanced 

local datasets. In the initial state, the number of true positive (TP) and true negative (TN) 

in the classification were relatively low. After data augmentation, models experienced 

better performance in predicting positive classes compared to negative classes. This re-

sulted in a larger increase in TP compared to TN. Consequently, improvements in sensi-

tivity were found to be significantly larger than specificity, Equations (4)–(6). 

 

Figure 2. Comparison of performance matrices between initial and enhanced states in the local da-

taset. Sensitivity and specificity values are normalized to 0–100 to provide comparable results with 

accuracy. 

All four CNN architectures showed a test accuracy exceeding 90% in the enhanced 

state. ResNet50 outperformed all other architectures in the enhanced state, whereas Mo-

bileNet-v2 achieved the best result in the initial state. Although GoogleNet architecture 

experienced the sharpest enhancement after data augmentation, overall performance in 

both initial and enhanced states is poorer than its counterparts, as shown in Figure 3. In-

terpreting these outcomes with the properties of pre-trained CNN architectures (Table 3) 

could provide useful information regarding the most suitable CNN architecture. Initially, 

comparing ResNet18 (18 layers) with ResNet50 and MobileNet-v2 (50 and 54 layers) re-

veals that a higher network layer does not necessarily provide better accuracy because 

ResNet18 achieved comparable results, aligning with the findings of a previous study that 

employs the same CNN architectures [60]. This suggests that network size and the number 
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of parameters that a network can learn also have an impact on accuracy. Among the two 

architectures with the greatest number of deep layers, ResNet50 (larger size and more 

parameters) provides better classification than MobileNet-v2 (smaller size and fewer pa-

rameters) in the enhanced state. Alternatively, MobileNet-v2 (smaller size and fewer pa-

rameters) achieves better results than ResNet50 (larger size and more parameters) in the 

initial state where the dataset is limited and unbalanced. This phenomenon can also be 

partially observed when two architectures with the lowest number of deep layers are com-

pared. ResNet18 (larger size and more parameters) achieves higher performance than 

GoogleNet (smaller size and fewer parameters) in the enhanced state. As a result, findings 

of enhanced state suggest that CNN architectures require approximately 22 deep layers 

and 7 million parameters (GoogleNet) to classify walking, standing, ascent, and descent 

activities with more than 90% accuracy. In order to achieve better accuracy, the number 

of deep layers and/or the number of parameters needs to be increased. The maximum 

accuracy can be potentially achieved with approximately 50 deep layers and 25.6 million 

parameters (ResNet50) or approximately 54 deep layers and 3.5 million parameters (Mo-

bileNet-v2) because ResNet50 and MobileNet-v2 were found superior in HS, SS, and PD 

datasets, respectively. On occasions when training time is considered as important as ac-

curacy, ResNet18 architecture could be potentially a more suitable choice because this ar-

chitecture has fewer deep layers and fewer parameters (fewer computation costs) than 

ResNet50. However, inconsistencies can occur, as the previous study [51] reports that not 

all CNN architectures use their parameters with the same level of efficiency. 

 

Figure 3. Comparison of CNN architectures in terms of accuracy in initial and enhanced status in 

the local datasets (HS-SS-PD combined). 

Our findings revealed that walking and standing are recognized with higher accu-

racy compared to stair activities, as shown in Figure 4. We also found stair ascent is the 

activity with the lowest recognition accuracy, aligning with many previous studies that 

use a single waist device [23,36,66]. Moreover, the figure reveals that data augmentation 

contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respec-

tively. These findings align with a similar study [36] where data augmentation was shown 

to be effective in recognizing stair activities. Recognition of basic daily life activities in PD 

and stroke populations with high accuracy has the potential to provide more robust and 

accurate movement analysis in real life. This framework can be used to accurately classify 

walking bouts and assist the extraction of clinically important spatiotemporal parameters 

during walking. Moreover, it can also provide a better picture of the functional capabili-

ties of people with PD and stroke by recognizing stair ambulation activities more accu-

rately. 
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Figure 4. Recognition accuracy comparison of each activity in the initial result of the local dataset. 

This graph was derived from the architectures that provide the best performances in enhanced re-

sults. 

7.3. Limitation and Future Work 

A limitation of the work includes total model training time. Deep learning models 

are structurally different from traditional machine learning models and involve signifi-

cantly more training parameters, Table 3. Therefore, deep learning-based CNN models 

are more complex than traditional machine learning models [67]. This computational com-

plexity can be observed in training times in Tables 5 and 7. Although the training time 

reported in this study is shorter than a reference study [37], it still needs improvements. 

In this study, the framework was examined within the context of four basic mobility 

tasks only. In addition, the dataset was created in a semi-controlled environment with a 

scripted experimental protocol, i.e., all participants walked in the same route while wear-

ing the same device. Future studies will aim to investigate the performances of more com-

plex daily activities in free-living environments (e.g., home). In addition, this framework 

can be deployed to advanced microcontrollers (Raspberry pi 4- 1.5 GHz) to perform real-

time HAR. However, this could still be slower than offline computing as a faster CPU 

(Core i7-7700HG-2.80 GHz) is used in this study. 

8. Conclusions 

HAR models typically suffer from low recognition accuracy in neurological popula-

tions due to the limitations in data collection. Although highly accurate models have been 

developed in HAR of healthy people, these models have been found to be limited when 

recognizing the activities of people with walking impairments. The lack of suitable da-

tasets for those with neurological movement disorders is a major limitation in HAR re-

search. This study proposes a framework to enhance limited HAR datasets, which will 

have utility in those with a neurological movement disorder. Results showed significant 

improvements in HAR. The implication of this study can complement future HAR studies 

where the creation of diverse and balanced data sets may not be feasible. Making maxi-

mum use of limited data is important to ensure those with physical impairments may not 

need to perform difficult dynamic tasks for longer periods to create rich datasets. There-

fore, the proposed framework also has the potential to reduce the participant and re-

searcher burden to generate complex and diverse datasets. 
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