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Low Rank Tensor Completion Based on
Self-Adaptive Learnable Transforms

Tongle Wu, Bin Gao, Senior Member, IEEE, Jicong Fan, Jize Xue, and W.L. Woo, Senior Member, IEEE

Abstract—The tensor nuclear norm (TNN), defined as the sum
of nuclear norms of frontal slices of the tensor in a frequency
domain, has been found useful in solving low rank tensor recovery
problems. Existing TNN-based methods use either fixed or data-
independent transformations, which may not be the optimal
choices for the given tensors. As the consequence, these methods
cannot exploit the potential low rank structure of tensor data
adaptively. In this paper, we propose a framework called self-
adaptive learnable transform (SALT) to learn a transformation
matrix from the given tensor. Specifically, SALT aims to learn a
lossless transformation that induces a lower average-rank tensor,
where the Schatten-p quasi-norm is used as the rank proxy. Then
because SALT is less sensitive to the orientation, we generalize
SALT to other dimensions of tensor (SALTS), namely learning
three self-adaptive transformation matrices simultaneously from
given tensor. SALTS is able to adaptively exploit the potential
low rank structures in all directions.We provide a unified op-
timization framework based on alternating direction multiplier
method for SALTS model and theoretically prove the weak con-
vergence property of proposed algorithm. Experimental results
in hyperspectral image (HSI), color video, Magnetic Resonance
imaging (MRI), and COIL-20 datasets show that SALTS is
much more accurate in tensor completion than existing methods.
Demo code can be found at https://faculty.uestc.edu.cn/gaobin/zh_
CN/lwcg/153392/list/index.htm.

Index Terms—self-adaptive, learnable transform, low rank,
tensor completion

I. INTRODUCTION

AS a higher-order extension of matrix, N -th tensor (N ≥
3) is a useful mathematical form to represent a multiway

array along N modes and has attracted considerable attention
involving tasks of collection, processing, and analysis of high-
dimensional data. It is essential to investigate robust and effi-
cient algorithms to deal with tensors. The tensors often have
low rank structures in many areas such as computer vision and
neuroscience, which reveal that the data samples are generally
embedded in low-dimensional manifolds [1]. A number of
tensor methods utilizing the low rank structures have been
successfully applied to practical problems [2], [3] such as
color image and video processing [4]–[9], hyperspectral data
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recovery [10]–[13], collaborative filtering [14], recommender
system design, [15] clustering, etc [16], [17].

There are various definitions of tensor rank originating from
different tensor decomposition frameworks [18], which means
that the rank of tensor is different from the rank of matrix.
It is well known that the CP rank [19] and Tucker rank [20]
based on the CANDECOMP/PARAFAC(CP) [21] decomposi-
tion and Tucker decomposition [22] respectively. These two
kinds of tensor decompositions have been widely investigated
and have achieved competitive performance in low rank tensor
recovery. However, computing the CP rank is NP-hard [23],
[24] and computing the Tucker rank requires unfolding tensors
along each mode into matrices directly, which may destroy the
intrinsic high-order interactive information.

An intuitive extension of matrix singular value decomposi-
tion (SVD) for tensor has been proposed for third-order tensor
, which is known as tensor singular value decomposition (t-
SVD) [25]. t-SVD was initially derived from the novel defi-
nition of tensor-tensor(t-t) product [26], which could operate
integral third-order tensor rather than reshape the tensor into
matrices [27]. Subsequently Kernfeld [28] discovered that t-
t product based on circular convolution operator could be
transformed into matrix-matrix product by Discrete Fourier
Transform (DFT), which generates a transformed tensor in the
frequency domain using DFT along the third mode. Based on
the DFT transformed t-SVD, Zhang et al. [29], [30] proposed
novel methods for multilinear data completion and denoising
based on minimizing the tensor nuclear norm (TNN). Lu et al.
[31] defined the tensor average rank and proved that a tensor
always has low average rank if it has low tubal rank, which
was defined in [28]. Lu et al. also revealed that is the convex
envelope of the tensor average rank within the unit ball of
the tensor spectral norm and proved the theoretical guarantee
for the exact recovery in tensor robust principal component
analysis (TRPCA). Following the DFT transformed t-SVD, a
few variations of TNN such as weight TNN [32], partial sum
of TNN [33], Schatten-p norm TNN [34], p-shrinkage TNN
[35], tensor spectral k-support norm [36], have been proposed
and tensor factorization methods based on t-t product derived
from DFT have also been investigated in [17], [37]–[39].

In fact, three-dimensional data such as color images and
videos always possess a notable ‘spatial-shifting’ correlation
pattern and make similar spatial variation of data along tem-
poral orientation smooth, which makes the DFT obtain low
rankness in the frequency domain. [39], [40]. In this case,
TNN based on fixed DFT transformation may be sensitive to
data that violates the smooth pattern along the third mode.
Fig.1 shows the PSNR of different videos varying with the
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measurement of smoothness along frame direction. It can be
observed that the less degree of smoothness the video has, the
lower PSNR value tends to obtain. This phenomenon explains
that the effect of completion for TNN is dependent on the
smoothness of original data.

More specifically, for the data that is not smooth enough,
the frequency domain tensor obtained by DFT does not satisfy
fair low rank property, so the effect of completion based on
low rank tensor methods will be degraded. The simple case is
illustrated in Lemma 1, which shows a kind of tensors with
low rank under identity transformation while with full rank
under DFT transformation. In order to solve this problem, it
is expected to replace the fixed DFT with other transforms that
are not fixed but could be adaptively learned from the given
data. Besides the fixed DFT transformations, another limitation
of TNN is that the transformation is performed only along
the third mode. Thus the orientation-sensitive transformation
fails to capture the informative intra-mode and inter-mode
correlations in other two modes. Obviously, the limitation
becomes more significant for higher-order (e.g. N ≥ 4)
tensors. In this paper, our contributions are summarized as
follows, which aims to overcome these limitations
• We propose to learn a adaptive transformation matrix

from the given tensor data via minimizing the sum of the
Schatten-p quasi-norms of the frontal slices of the trans-
formed tensor. The learned transformation can induce a
minimum-rank tensor in the transformation domain and
hence has powerful potential in low rank tensor recovery.

• Due to the adaptive merit of learnable transformation,
we generalize self-adaptive learnable transform (SALT) to
the other modes of a given tensor to fully exploit the low
rank, namely SALTS. SALTS overcomes the disadvan-
tage of orientation sensitivity in TNN. More importantly,
SALTS shows superior performance in tensor completion.

• We develop an efficient alternating direction multiplier
method (ADMM) to solve the optimization of proposed
model for tensor completion, and provide a weak conver-
gence guarantee for the proposed algorithm, which is also
validated by the numerical results. Results in synthetic
data and several real datasets have further shown that the
self-adaptive learnable transform based TNN achieves the
state-of-the-art performance.

The rest of this paper is structured as follows. Section II
introduces the notations, preliminaries , and related works.
Section III presents the proposed method SALTS. Section IV
consists of the experiments. Finally, we conclude the work in
Section V.

II. NOTATIONS AND RELATED WORKS

A. Notations

In this section, we show the notations, definitions, and
preliminaries which are necessary to present the proposed
methods in this paper.

We use a, a, A, A to denote scalar, vector, matrix , and
tensor, respectively. The fields of real numbers and complex
numbers are denoted as R and C, respectively. Third-order
tensors have column, row, and tube fibers, which are denoted

Fig. 1: The relationship between the effect (PSNR) of com-
pletion and smoothness along the dimension of video’s frame
with sampling rate 0.3. The test videos are listed in the order:
1: Akiyo; 2: Bridge_close; 3: Carphone ; 4: Coastguard;
5: Suzie; 6: Miss-America in YUV data. The smoothness
is defined as:

∥∥∥LX(3)

∥∥∥
1
, X(3) ∈ RT×hw, Lii = 1 and

Lii+1 = −1 for i ∈ [1, T − 1] other elements of L is 0.

by A:ij , Ai:j , Aij:, respectively. The i-th horizontal, lateral,
and frontal slice of a third-order tensor, are presented as Ai::,
A:i:, A::i, respectively. Specially, the i-th frontal slice can also
be denoted as A(n).

The `1-norm and `∞ norm of a tensor An1×n2×n3 is defined
as
∥∥∥A∥∥∥

1
=
∑
ijk |Aijk| and

∥∥∥A∥∥∥
∞

= maxijk |Aijk|.
The inner product of two tensors is defined as 〈A,B〉 =∑
ijkAijkBijk.The Frobenius norm of tensor is defined as∥∥∥A∥∥∥
F

=
√∑

ijkA
2
ijk. We use

∥∥∥A∥∥∥
∗

=
∑
i σi(A) to denote

the nuclear norm of matrix A, where σi(A) is the i-th singular
values of A in descent order. The Schatten-p (quasi) norm of
matrix is defined as

∥∥∥A∥∥∥
Sp

= (
∑
i σ

p
i (A))

1
p , where p > 0.

a = diag(A), which means a(i) = Aii. A = diag(a), denotes
that Aii = a(i) and other elements of A is 0.

The symbol ⊗ stands for the Kroneck product. The mode-
n product of a tensor X ∈ RI1×I2···×IN between a ma-
trix A ∈ RJ×In is represented as B = X ×n A where
B ∈ RI1×···×In−1×J×In+1···×IN and [B]i1···in−1jin+1···iN =∑In
in=1 xi1···in−1inin+1···iNajin . The mode-n matricization of

X is defined as X(n) = unfoldn(X ), which is arranging
the fibers X i1···in−1:in+1···iN as the columns of X(n) and it’s
reverse operator is denoted by X = Foldn(Unfoldn(X )).
Then mode-n product could be represented as B(n) = AX(n).
The block circulant matrix bcirc(A) ∈ Rn1n3×n2n3 is defined
as

bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 (1)

Definition 1. (Trace norm (SNN)) [18] The trace norm of
tensor is sum of nuclear norms (SNN), defined as:∥∥∥A∥∥∥

SNN
=

N∑
n=1

αn

∥∥∥A(n)

∥∥∥
∗

(2)
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For v ∈ Rn, v = DFT (v) = Fnv ∈ Cn, where Fn
represents an n-dimension DFT transform matrix. [Fn]jk =

(e−
2πi
n )(j−1)∗(k−1) and F ∗nFn = nIn, i =

√
−1. fft(A, [ ]) =

A ∈ Cn1×n2×n3 denotes performing the DFT on all the tubes
of A ∈ Rn1×n2×n3 , whose mode-n expression is A = A×3

Fn3
. The inverse fft on A can turn into original tensor, i.e.

A=ifft(A, [ ], 3).

Definition 2. (Tensor Average Rank) [31] For A ∈
Rn1×n2×n3 , the tensor average rank, denoted as Ranka(A)
is defined as:

Ranka(A) =
1

n3

n3∑
k=1

Rank(A
(n)

) (3)

Definition 3. (Tensor Nuclear Norm) [29] Tensor nuclear
norm (TNN) of A ∈ Rn1×n2×n3 is sum of nuclear norm of
frontal slice matrices of DFT transformed tensor A defined
as: ∥∥∥A∥∥∥

TNN
=

1

n3

n3∑
n=1

∥∥∥A(n)
∥∥∥
∗

(4)

Definition 4. (Transform Induced Tensor Average Rank)
[41] Let L be any invertible linear transform and satisfies
LTL = LLT = lIn3 , tensor average rank of A ∈
Rn1×n2×n3 induced by L is sum of rank of frontal slices of
transformed tensor AL = A×3 L defined as:

RankLt (A) =
1

n3

n3∑
n=1

Rank(A
(n)

L ) (5)

Definition 5. (Transform Induced Tensor Nuclear Norm)
[41] Let L be any invertible linear transform and satisfies
LTL = LLT = lIn3 , tensor nuclear norm (TNN) of A ∈
Rn1×n2×n3 induced by L is sum of nuclear norm of frontal
sliced matrices of transformed tensor AL = A×3 L defined
as: ∥∥∥A∥∥∥

L∗
=

1

n3

n3∑
n=1

∥∥∥A(n)

L

∥∥∥
∗

(6)

B. Related Works

Although there are many low rank methods for tensor
completion, the intuition of proposed SALTS is derived from
t-SVD decomposition. Thus, the introduction of related works
mainly concentrates on t-SVD based low rank tensor comple-
tion.

Zhang et al. [29], [30] proposed novel methods for multi-
linear data completion based on minimizing the tensor nu-
clear norm. Liu et.al [39] proposed fast Tubal-AltMin for
the low-tubal-rank tensor completion problem and given the
theoretical performance guarantee. Wang et al. [42] defined the
generalized tensor Dantzig selector to recover a low-tubal-rank
tensor from noisy linear measurements. Hou et al. [43] studied
low-tubal-rank tensor recovery from binary measurements.
Jiang [44] provided convex method for low-tubal-rank tensor
completion with provable theoretical guarantee. Sun et al. [45]
defined a novel generalized tensor tubal rank to tensor com-
pletion. Zhang et al. [46] given the minimal number of linear
observations to reconstruct the low tubal rank tensor. Wang

et al. [47] considered the structural difference between the
observed data and missing data under t-SVD decomposition.

In fact, Kernfeld et al. [28] advocated that the t-t product
can be modified to be equipped with any invertible transform
which can replace the DFT transform with any invertible
transform along the third mode. Following this research line,
researchers in [48], [49] adopted Discrete Cosine Transform
(DCT) which achieved superior performance than DFT in
tensor completion. They proposed that any TNN induced from
any invertible transform can be applied in TRPCA [50] and
low rank tensor completion with exact recovery [41], but they
did not give the specific transform. Authors in [51] proposed
that unitary transform like Haar Wavelet transform could
obtain sufficient low rank tensor in transformation domain.
Recently, Jiang et al. [52] proposed framelet F-TNN that used
the framelet representation of each tube to construct framelet
transformed tensor. They advocated that the representation
of each tube is represented sparsely due to redundancy of
framelet basis. Then Jiang et al. [53] proposed low rank
coefficient based on learnable dictionary derived from t-SVD
framework. Although Kong et al. [54] have defined new
tensor Q-rank based on novel data-dependent transformation
for tensor completion, their data-dependent transformation can
be learnt by principal component analysis, which is different
with the proposed SALTS. In addition, they have not extended
Q-rank to multi-modes and was only utilized in one dimension.

III. PROPOSED METHODS

A. Motivation

In this section, we provide the following Lemma 1 to show
an example of the limitation when minimizing TNN of vanilla
t-SVD with fixed Discrete Fourier Transform.

Lemma 1. For the set S = {Rank(X (:, :, k)) = 1,∀k ∈
[n]|X ∈ Cn×n×n}, there always exists a tensor X ∈ S, which
satisfies

Ranka(X ) =
1

n

n∑
k=1

Rank(X
(n)

) = n (7)

which means there always exists tensors ∈ Cn×n×n, whose
rank of each frontal slice is 1, while rank of each frontal slice
of DFT transformed tensor is full n.

Proof. Our proof is constructive. Denote A as the random full
rank matrix ∈ Rn×n. Then we construct a target tensor from
frequency domain, X is constructed as follows:

X(3) =


A(1, :) A(n, :) · · · A(2, :)
A(2, :) A(1, :) · · · A(3, :)

. . . . . .
. . . . . .

A(n, :) A(n− 1, :) · · · A(1, :)

 (8)

It can be observed that vectorization of each frontal slice of X
is corresponding to each row of A, which equals cyclic queues
of A. So we could get Ranka(X ) = 1

n

∑n
k=1 Rank(X

(n)
) =

n. Then we should verify that the tensor X in the frequency
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Fig. 2: Illustration of the framework of proposed SALTS compared with TNN. (a) Recovery tensor for three modes; (b) Fixed
Fourier tansform and learned adaptive transforms from our algorithms. (c) Tensors in transformed domain. (d) The distribution
of the top 100 largest singular values. (e) The distribution of the last 500 smallest singular values. Here, the singular values
are collecting from each frontal slice of transformed tensors and are sorted in descending order.

domain constructed above as X is in the set S by the inverse
Fourier transform.

X = ifft(X , [], 3) = X ×3 F
∗

X(3) = F ∗X(3)

(9)

Defining a new tensor T ∈ R1×n×n whose frontal slice is

T (:, :, i) = A(i, :) (10)

Then we could get X(3) = bcirc(T ), further the block
circulant matrix can be block diagonalize:

Fnbcirc(T )(F−1
n ⊗ In) =

T (:, :, 1)
T (:, :, 2)

. . .
T (:, :, n)

 (11)

we can conclude that there exists X

Rank(X (:, :, k)) = 1, then

n∑
k=1

Rank(X (:, :, k)) = n, (12)

Lemma 1 exposes the shortcoming of fixed Discrete Fourier
Transform. There exists kinds of tensors which is full average
rank in transformed domain by DFT, which prevents the
tensor nuclear norm(TNN) based methods [29]–[31] from
these tensor sets.

B. Self-Adaptive Learnable Transform along Mode-3 (SALT-
3) for Tensor Completion

The novelty of this paper is to learn self-adaptive transform
L and conduct the low rank tensor recovery simultaneously
under a unified optimization framework, which is achieved by
minimizing RankLt induced by L. Concretely, we learn L and
low rank induced tensor as follows:

min
Y,L,Z

RankLt (Y) + f(Y ,Z)

s.t. Y ∈ Cy, Z ∈ Cz,
(13)

where Cy and Cz are constraint sets. In (13), we aim to
learn a transform from the data itself to minimize the SALT
induced rank of Y plus a general function on Y and Z . More
specifically, Y denotes the structured tensor which needs to
be solved by (13) where Z is the observed corrupted tensor
data. Our intention is to illustrate that model (13) can be
employed to obtain the recovered tensor Y when given the
corrupted tensor Z . The first term in (13) utilizes the low rank
structure prior under adaptive transform L, while the second
term guarantees that recovered Y should fit the observed
corrupted Z . Problem (13) covers a few important topics such
as low rank tensor completion [30] and tensor robust PCA
[31]. In this paper, we focus on the application of SALT in
tensor completion. Given an incomplete D ∈ Rn1×n2×n3 , we
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propose to solve

min
Y,L

RankLt (Y)

s.t. πΩ(Y) = πΩ(D),
(14)

where πΩ : Rn1×n2×n3 → Rn1×n2×n3 is a linear operator
that keeps the entries in Ω unchanged and sets those outside
Ω(i.e., in Ωc) to zero. According to (5), we could reformulate
(14) into:

min
Y,X ,L,

k∑
n=1

Rank(X(n))

s.t. πΩ(Y) = πΩ(D)

X = Y ×3 L
T∥∥∥Y∥∥∥

F
=
∥∥∥X∥∥∥

F

(15)

L ∈ Rn3×k satisfies LTL = Ik, wherek ≤ n3. It is worth
noting that there are main three different points with (5). 1)
In (5), the L is fixed, predefined and independent with tensor
completion task. Our L is needed to learn by solving (15) to
minimize the induced tensor average rank. Although [54] also
proposed data-dependent, learnable transform L, our learning
approach is different. 2) In (5), L is square matrix and satisfies
LTL = LLT = lIn3

, however, our L is not necessarily a
square matrix, the k we set may k < n3. We only require L
as column orthogonal, which would reduce the computation
of multiple SVD. 3) We add another constraint that

∥∥∥X∥∥∥
F

=∥∥∥Y∥∥∥
F

, which keeps the power and information of original
tensor from being lost after being transformed by L. The last
two equality constraints may not hold simultaneously in (15).
The following lemma gives the condition that (15) has feasible
solution, which guides the setting of k.

Lemma 2. A necessary condition that ∃L makes X =

Y ×3 LT and
∥∥∥Y∥∥∥

F
=
∥∥∥X∥∥∥

F
achieve simultaneously is

k ≥ Rank(Y(3)).

In addition, L is easy to solve in the optimization, which will
be verified later. Because of the presence of the rank function,
it is NP-hard to solve (14) or (15). We use the Schatten-p
quasi-norm as a surrogate function of rank and consider the
following problem instead of (15):

min
Y,X ,L,

k∑
n=1

∥∥∥X(n)
∥∥∥p
Sp

s.t. πΩ(Y) = πΩ(D)

X = Y ×3 L
T∥∥∥Y∥∥∥

F
=
∥∥∥X∥∥∥

F

(16)

This is similar to the definition of t-Schatten-p norm in [34]
while their t-Schatten-p norm is based on DFT framework
which is different from our SALT paradigm. In addition, the
proposed optimization approach to minimizing the SALT is
different with theirs. We choose 0 < p ≤ 1 in our model since
this kind of non-convex norm can achieve a tighter bound
in approximating the tensor multi-rank and obtain higher

accuracy of solution [55], [56], which would guarantee the
sufficient low rank of the transformed tensor.

C. From SALT-3 to SALTS
The disadvantage of t-SVD is sensitivity of the orientation

due to the orientation of the low tubal rank definition. In real
multi-way data like images and videos, there are ubiquitous
“spatial-shifting” correlations (color channels and temporal
frames) making such data spatially smooth along the third
mode. This pattern can be exploited via performing DFT along
the third mode to get the low-multi-rank transformed tensor
[39] but the complex intra-mode and inter-mode correlations
in the other two orientations have not been explored [40].
Although work in [57] proposed a method called sum of tensor
nuclear norm (STNN) that applied DFT to all modes of a third-
order tensor, the smooth pattern may not always exist or be
captured by DFT in other two modes, which also makes STNN
lack of physical explanation on real datasets.

Since the proposed SALT-3 is merited by adaptivity, the
learned transformation is less orientation sensitive than DFT.
We generalize the SALT-3 to the other two orientations with
two main aims: overcoming the orientation sensitivity inherent
with DFT and exploiting the intrinsic low rank property along
the multi-orientations. This improves the limited representa-
tion ability and flexibility of TNN.

The relaxation model for learning the SALTS and achieving
tensor completion extends from SALT-3 (16) to SALTS as
follows:

min
Z,{Yi},{Li}

λ

2

3∑
i=1

∥∥∥Z −Yi

∥∥∥2

F
+
∥∥∥Yi ×i LTi

∥∥∥p
sp

s.t.
∥∥∥Yi ×i LTi

∥∥∥
F

=
∥∥∥Yi

∥∥∥
F
,

LTi Li = Ii, πΩ(Z) = πΩ(D)

(17)

where D ∈ Rn1×n2×n3 is observed incomplete tensor. Li ∈
Rni×ki satisfying LTi Li = Iki(i = 1, 2, 3) are the SALTS
learned by (17) along all modes. Model (16) only apply
transformation to third mode, while (17) generalizes the (16)
by applying three transformations to all modes of tensor
simultaneously.

The integral framework of our proposed SALTS for tensor
completion and illustration of it’s superiority are presented
in Fig.2. To understand the advantage of SALTS for tensor
recovery, we show the distributions of singular values of all
the frontal slices in the transformed tensor. As an example, we
conduct experiment on the chart and stuffed toy in CAVE
data with sample rate 0.1 in tensor completion task. The input
tensor size is 256 × 256 × 31 and pixels are normalized into
(0,1). The Fig.2 illustrate that singular values in SALTS are
much smaller than that of Fourier transform domain, which
reveals that transformed tensor via SALTS would achieve and
ensure sufficient and better low rank property.

In the next part, we will derive the optimization algorithm
based on alternative direction multiplier method (ADMM) to
solve the constrained minimization problems for relaxation of
(16) and (17). Because the relaxation of (16) is a special case
with only one SALT, so we only provide the optimization
algorithm of (17).
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D. Optimization Algorithm Based on ADMM

Actually, due to the orthogonal constraint on Li, it is a
challenge to solve above constrained optimization problem.
Usually, solving the Li needs to apply manifold optimization
method, which is time consuming. However, according to the-
orem 1 in [58], the optimization problem of (17) is equivalent
to the following optimization model, which means that the
solutions of the two optimization problems are equivalent.

min
{X i,Yi,Li},Z

λ

2

3∑
i=1

∥∥∥Z −Yi

∥∥∥2

F
+

3∑
i=1

∥∥∥X i

∥∥∥p
Sp

s.t. X i ×i Li = Yi, LTi Li = Ii,

πΩ(Z) = πΩ(D).

(18)

where X 1 = Y1 ×1 L1 ∈ Rk1×n2×n3 , X 2 = Y2 ×2

L2 ∈ Rn1×k2×n3 , X 3 = Y3 ×3 L3 ∈ Rn1×n2×k3 are
transformed tensors,

∥∥∥X 1

∥∥∥p
sp

=
∑k1
n=1

∥∥∥Xn::

∥∥∥p
sp

,
∥∥∥X 2

∥∥∥p
sp

=∑k2
n=1

∥∥∥X :n:

∥∥∥p
sp

,
∥∥∥X 3

∥∥∥p
sp

=
∑k3
n=1

∥∥∥X ::n

∥∥∥p
sp

. The corre-

sponding augmented Lagrange formulation converts the orig-
inal constrained optimization problem into an unconstrained
optimization problem as follows

Lµ(Z, {Yi,Li,X i}3i=1) =

3∑
i=1

〈Pi,X i ×i Li −Yi〉 (19)

+
µ

2

∥∥∥X i ×i Li −Yi

∥∥∥2

F
+
λ

2

∥∥∥Z −Yi

∥∥∥2

F
+
∥∥∥X i

∥∥∥p
Sp
. (20)

Pi(i = 1, 2, 3) are Lagrange multipliers and µ is an increased
positive penalty in iterative steps to achieve the holding of
equality constraints.
(1) Update {Yi}3i=1

Yk+1
i = arg min

Yi

µk

2

∥∥∥X k
i ×i L

k
i −Yi +

Pk
i

µk

∥∥∥2
F

+
λ

2

∥∥∥Zk −Yi

∥∥∥2
F

(21)
This quadratic objective function has an unique closed-form

solution, set the derivative of (19) with respect to Yk+1
i and

derive from first order optimal condition:

Yk+1
i =

µk(X k
i ×i Lki +

Pki
µk

) + λZk

µk + λ
(22)

(2) Update {Li}3i=1

Lk+1
i = arg min

LTi Li=Iki

µ

2

∥∥∥X k
i ×i Li −Yk+1

i +
Pk
i

µk

∥∥∥2

F

= arg max
LTi Li

〈(Y k+1
i(i) −

P k
i(i)

µk
)XkT

i(i),Li〉
(23)

let [Uk+1
i ,Sk+1

i ,V k+1
i ] = SV D((Y k+1

i(i) −
P k
i(i)

µk
)XkT

i(i)). From
the solution of well-known Orthogonal Procrustes [59]:

Lk+1
i = Uk+1

i V k+1T

i (24)

(3) Update {X 1,X 2,X 3}

X k+1
i = arg min

X i

∥∥∥X i

∥∥∥p
sp

+
µk

2

∥∥∥X i ×i L
k+1
i −Yk+1

i +
Pk

i

µk

∥∥∥2
F

(25)
It is non-trial to use proximal operator because there is a

linear transform L in front of X

f(X i) =
µk

2

∥∥∥X i ×i L
k+1
i −Yk+1

i +
Pk

i

µk

∥∥∥2
F
≤ f(X k

i )+

〈(X k
i ×i L

k
i −Yk+1

i +
Pk

i

µk
)×i L

k+1T

i µk,X i

−X k
i 〉+

µk

2

∥∥∥X i −X k
i

∥∥∥F
=f(X k

i ) +
µk

2

∥∥∥X i − (Yk+1
i − Pk

i

µk
)×i L

k+1T

i

∥∥∥F
(26)

Then, instead of (25), we use

X k+1
i = arg min

X i

∥∥∥X i

∥∥∥p
Sp

+
µk
2

∥∥∥X i −Ak
i

∥∥∥2

F
, (27)

where Ak
i = (Yk+1

i − P
k
i

µk
) ×i Lk+1T

i and i ∈ {1, 2, 3}.
Specifically, we have

X k+1
1 = arg min

X 1

k1∑
n=1

∥∥∥X 1::n

∥∥∥p
Sp

+
µk
2

∥∥∥X 1n::: −Ak
1

∥∥∥2

F

(28)
This can be formulated as the generalized singular value
thresholding [60], [61] of each frontal slices of Ak

1 , i.e.,

X k+1
1n:::

= arg min
X1n:::

min(n2,n3)∑
i=1

1

µk
σi

p(X 1n:::) +
1

2

∥∥∥X 1n::: −Ak
1n:::

∥∥∥2
F

(29)
where X k+1

1n:::
= Uk

1nΣ
k+1
1n V k

1n
T and Uk

1nS
k
1nV

k
1n
T is the SVD

of Ak
1n:::

. Σk+1
1n = diag(σ1, · · · , σmin(n2,n3)) is optimal for

the following problem:

min(n2,n3)∑
i=1

1

µk
σpi +

1

2
(σi − σi(Ak

1n:::
))2 (30)

we adapt generalization of soft-thresholding
(GST) in [62] to solve (30) effciently, Σk+1

1n =
diag(GST (diag(Sk1n), µk, p, J)), the GST is summarized in
Algorithm 1.

X k+1
2 = arg min

X 2

k2∑
n=1

∥∥∥X 2:n:

∥∥∥p
Sp

+
µk
2

∥∥∥X 2:n:
−Ak

2

∥∥∥2

F

X k+1
3 = arg min

X 3

k3∑
n=1

∥∥∥X 3::n

∥∥∥p
Sp

+
µk
2

∥∥∥X 3::n −Ak
3

∥∥∥2

F
.

(31)
The updating of X k+1

2 and X k+1
3 is similar to that of X k+1

1 .
(4) Update Z

Zk+1 =
Yk+1

1 + Yk+1
2 + Yk+1

3

3
,

πΩ(Zk+1) = πΩ(D).

(32)

(5) Update the multipliers {Pi}3i=1

Pk+1
i = Pk

i + µk(X k+1
i ×i Lk+1

i −Yk+1
i ). (33)

The optimization for (18) is summarized in Algorithm 2.
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TABLE I: RE Comparsion on Two Types of Synthetic Data under Different SRs. For Synthetic Data-1: n1 = n2 = 50, n3 =
20, r = 5 (Upper) and For Synthetic Data-2: n1 = n2 = 100, n3 = 50, r = 10 (Bottom). The Best RE Values Are Highlighted
in Red.

Method
SR 20% 30% 40% 50% 60% 70% 80%

HaLRTC [18] 0.8964 0.8372 0.7757 0.7085 0.6303 0.549 0.4372
TMac [63] 0.9232 0.8709 0.8203 0,7680 0.7103 0.7312 0.7755
TCTF [37] 2.4466 2.3018 2.1166 1.9429 1.7688 1.5548 1.3055

TRLRF [64] 1.1781 0.9601 0.8128 0.679 0.591 0.4967 0.3997
t-SVD [65] 0.9574 0.889 0.8127 0.7236 0.6303 0.5255 0.4075
FTNN [52] 1.0123 0.9686 0.9234 0.8809 0.8421 0.8049 0.7664

ESP-LRTC [66] 0.9233 0.8821 0.8367 0.7916 0.7425 0.6889 0.6331
KBR-TC [67] 0.9237 0.8812 0.7166 0.5759 0.7413 0.3474 0.2316
OITNN [40] 0.8946 0.8352 0.7718 0.7079 0.6329 0.5476 0.4435

SALTS 0.635 0.2386 6.07e-9 2.20e-11 2.10e-12 3.81e-14 1.43e-15
HaLRTC [18] 0.8946 0.8372 0.775 0.6926 0.613 0.5255 0.4243

TMac [63] 0.9364 0.9099 0.8927 0.8761 0.9246 0.9865 0.7467
TCTF [37] 2.4752 2.2578 2.00 1.7077 1.3845 1.1124 0.9282

TRLRF [64] 0.9513 0.865 0.7839 0.7035 0.6227 0.5400 0.4396
t-SVD [65] 0.9775 0.9166 0.8473 0.7708 0.6836 0.5886 0.4780
FTNN [52] 1.0171 0.9823 0.9455 0.9073 0.8685 0.8281 0.7883

ESP-LRTC [66] 0.9222 0.8817 0.8366 0.7912 0.7426 0.6902 0.6345
KBR-TC [67] 0.9223 0.8352 0.7719 0.6912 0.5821 0.4788 0.3671
OITNN [40] 0.8940 0.8362 0.7742 0.7059 0.6315 0.5466 0.4468

SALTS 0.6196 0.2333 8.29e-12 1.72e-11 1.30e-12 2.74e-14 2.85e-15

TABLE II: The Average Five Trials of Performance Comparison of 10 Competing TC Methods with SR 3%, 5%, 10%, 20%
on 32 MSI in CAVE Data.

Method 3% 5% 10% 20% Times/sPSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS
HaLRTC [18] 20.31 0.6216 0.7767 526.26 24.88 0.7266 0.8300 341.68 29.68 0.8460 0.8930 200.71 34.88 0.9251 0.9460 114.20 13.50
TMac [63] 24.74 0.6585 0.8176 328.05 26.17 0.7260 0.8461 281.90 29.82 0.8537 0.8979 207.33 35.14 0.9299 0.9477 114.74 19.43
TCTF [37] 14.65 0.0481 0.4019 1204.05 20.81 0.4433 0.6803 488.94 22.87 0.5437 0.7370 391.82 24.53 0.6293 0.7926 312.95 53.44
TRLRF [64] 25.99 0.5407 0.7334 292.67 30.81 0.7879 0.8607 159.65 33.37 0.8663 0.9063 116.55 38.01 0.9408 0.9546 69.60 457.23
t-SVD [65] 27.76 0.7506 0.8441 235.52 30.29 0.8202 0.8835 180.58 34.60 0.9046 0.9344 114.21 40.05 0.9616 0.9718 63.83 551.95
FTNN [52] 30.31 0.8453 0.8977 189.35 33.68 0.9087 0.9354 129.18 38.31 0.9590 0.9682 76.45 43.63 0.9847 0.9872 43.01 348.77
ESP-LRTC [66] 30.42 0.8385 0.8871 171.44 35.49 0.9107 0.9381 100.35 41.79 0.9708 0.9776 47.14 47.49 0.9897 0.9921 25.11 190.61
KBR-TC [67] 31.11 0.8437 0.8960 168.10 36.15 0.9272 0.9485 95.64 42.48 0.9761 0.9820 46.42 48.62 0.9928 0.9946 23.23 168.24
OITNN [40] 31.15 0.8832 0.9163 164.01 34.20 0.9280 0.9455 114.90 39.23 0.9692 0.9749 67.23 45.56 0.9894 0.9909 35.50 132.41
SALTS 33.74 0.8974 0.9319 119.80 38.60 0.9579 0.9703 72.04 44.36 0.9862 0.9897 38.58 51.35 0.9971 0.9974 17.05 477.29

Algorithm 1 Generalization of Soft-Thresholding(GST)
Input: s, µ, p, J .

1: τGST
p (µ) = (2µ(1− p))

1
2−p + µp(2µ(1− p))

p−1
2−p ;

2: if |s| ≤ τGST
p (µ) then

3: SGST
p (s;µ) = 0 ;

4: else
5: k = 0,x(k) = s ;
6: for k = 0, 1, · · · , J do
7: x(k+1) = s− µp(x(k))p−1 ;
8: k = k + 1;
9: end for

10: SGST
p (s;µ) = x(k)) ;

11: end if
Output: SGST

p (s;µ).

E. Convergence Analysis

Because the SALTS model in (18) is a non-convex and non-
smooth optimization problem with more than two variables. As
the convergence analysis of the original ADMM algorithm has
not been established for non-convex problems or for convex
problems with more than two block variables in general cases,
it is difficult to determine the global convergence under the
framework of ADMM [68], [69]. However in this paper we
will prove the weak convergence of Algorithm 2 in Theorem

Algorithm 2 SALTS for tensor completion
Input: Observation samples Dijk of tensor D ∈ Rn1×n2×n3

,(i, j, k) ∈ Ω, transform rank k1, k2, k3 .
1: Initialize: ε = 1e− 7, µ0 = 1e− 2, µmax = ρmax = 1e10, η =

1.01,Li
0 = X 0

i = Y0
i = E0 = Y0, Maxiter=800 .

2: while not convergence and k ≤ Maxiter do
3: k = k + 1 ;
4: for i = 1; i ≤ 3; i+ + do
5: Update Yk

i by (22);
6: Update Lk

i by (24);
7: Update X k

i by (28), (30) and GST in Algorithm 1;
8: end for
9: Update Zk by (32);

10: Update the multipliers {Pk
i } by (33);

11: Update µk = min(µmax, ηµ
k−1);

12: Check the convergence conditions:
∥∥∥Zk −Zk−1

∥∥∥
∞
< ε

13: end while
Output: Completion Tensor Z .

1 which is essential to guarantee that the iterative sequence
can attain stable solution. In addition, the stable convergence
of algorithm and efficiency of the proposed method will be
validated in the experimental section.

Theorem 1. Let {{X k
i }, {Lki }, {Y

k
i },Z

k, {Pk
i }}∞k=1 be the
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TABLE III: The Average Performance Comparison of Different SRs with 5%, 10%, 20%, 30% for 9 Competing TC Methods
on Akiyo, Container, Hall, Grandma Color Videos.

Video metric HaLRTC [18] TMac [63] TRLRF [64] t-SVD [65] FTNN [52] ESP-LRTC [66] OITNN [40] KBR-TC [67] SALTS

Akiyo

PSNR 26.40 31.51 34.07 33.71 35.53 36.76 36.12 37.19 39.13
SSIM 0.8118 0.8905 0.9185 0.9450 0.9640 0.9615 0.9724 0.9657 0.9832
FSIM 0.8886 0.9329 0.9534 0.9686 0.9778 0.9779 0.9807 0.9798 0.9889
ERGAS 129.04 71.79 56.60 56.15 46.53 40.33 44.04 41.10 32.26

Container

PSNR 24.50 29.73 32.39 34.56 34.47 37.49 36.88 37.81 39.08
SSIM 0.8023 0.8766 0.9159 0.9404 0.9530 0.9579 0.9650 0.9585 0.9736
FSIM 0.8544 0.9212 0.9512 0.9678 0.9727 0.9786 0.9797 0.9785 0.9867
ERGAS 134.07 76.87 58.59 47.98 46.32 33.90 38.92 35.34 29.61

Hall

PSNR 24.08 29.46 31.97 32.05 33.71 32.98 33.68 33.38 35.14
SSIM 0.7790 0.8798 0.9229 0.9385 0.9617 0.9314 0.9637 0.9425 0.9692
FSIM 0.8450 0.9072 0.9472 0.9604 0.9719 0.9538 0.9729 0.9608 0.9782
ERGAS 147.84 78.78 61.02 58.59 51.70 53.28 50.00 53.61 43.41

Grandma

PSNR 26.81 31.39 34.78 34.78 36.43 37.07 37.44 37.93 38.96
SSIM 0.7803 0.8560 0.9209 0.9352 0.9521 0.9426 0.9645 0.9530 0.9696
FSIM 0.8535 0.9163 0.9518 0.9562 0.9660 0.9665 0.9716 0.9716 0.9787
ERGAS 152.45 98.79 61.55 58.23 52.30 49.66 46.65 45.66 39.92

Average Time/s 13.10 22.35 500.73 304.64 575.40 180.96 127.17 183.50 599.25

(a) Original image (b) Missed image (c) SALTS (d) HaLRTC (e) TMac (f) TCTF

(g) tSVD (h) FTNN (i) TRLRF (j) OITNN (k) ESP-LRTC (l) KBR-TC

Fig. 3: (a) Original image selected from the band at 700nm of chart and stuffed toy in CAVE; (b) The corresponding sampled
image with sampling rate 5% percent; (d)-(l) Completing images obtained by 9 competing algorithms. (c) Completing results
by proposed SALTS.

sequences generated by Algorithm 2. If ∂
∥∥∥X k

i

∥∥∥p
Sp
,∀i, k is

bounded, then we have:
(a) the sequence {{X k

i }, {Lki }, {Y
k
i },Z

k, {Pk
i }}∞k=1 is

bounded;
(b) the sequence {{X k

i ×i Lki }, {Y
k
i },Z

k}∞k=1 is Cauchy
sequence.

Due to space limits, the detailed proof of Theorem 1 is in
Supplementary Material.

F. Computational Complexity

Without loss of generality, for the tensor Y , we assume
n1 = n2 = n3 = n and k1 = k2 = k3 = k. The main
computational complexity of Algorithm 2 is the updating for
{X i}, which needs to compute the SVD of multiple matrices.
For X i, computation of SVD is O(kn3), which is because
there are k slices of n×n needed to compute full SVD occu-
pying O(n3). It is worth mentioning that the time complexity
of SVD can be reduced significantly when using partial SVD.

The time complexity of SVD occupied by updating {Li} is
O(k2n). The last computational complexity is multiplication
operation of updating {Yi}, which occupies O(kn3). Thus the
overall time complexity of Algorithm 2 in O(6kn3 + 3nk2).
In addition, the space complexity of Algorithm 2 is O(n3),
owing to storage requirement of X i,Yi,Pi,Z,D,Li, 1

α .

IV. EXPERIMENTAL RESULTS

In order to validate the effectiveness of the proposed SALTS
in tensor completion task, we consider the following datasets:
Synthetic Data, Hyper-Spectral Image (HSI), Color Video Se-
quence, Magnetic Resonance Imaging data (MRI), and COIL-
20. Due to the limitation of space, the experimental results
in verification of robustness , analysis of low rank structure
learned, parameters of robustness, convergence verification
and more detailed results for proposed SALTS are placed
in Supplementary Material. We compare proposed methods
with nine recently developed algorithms of low rank tensor
completion: tSVD [65], FTNN [52] TCTF [37], OITNN [40],
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(a) Original image (b) Missed image (c) SALTS (d) HaLRTC (e) TMac (f) TCTF

(g) tSVD (h) FTNN (i) TRLRF (j) OITNN (k) ESP-LRTC (l) KBR-TC

Fig. 4: (a) Original image selected from the band at 700nm of fake and real lemons in CAVE; (b) The corresponding sampled
image with sampling rate 3%; (d)-(l) Completing images obtained by 9 competing algorithms. (c) Completing results by
proposed SALTS.

HaLRTC [18], TMac [63], ESP-LRTC [66], KBR-TC [67],
TRLRF [64].

In addition to the intuitive visual display, we apply four
quantitative image quality indices used in [67] to evaluate
performance of all algorithms numerically, including peak
signal-to-noise ratio (PSNR), structure similarity (SSIM), fea-
ture similarity (FSIM), erreur relative globale adimensionnelle
de synthèse (ERGAS). The larger former three indices, the
better recovery performance. On the contrary, smaller ERGAS
means better recovery performance. The parameters of all
algorithms are well tuned to provide their best performance
as possible according to guidance in their reference papers or
codes. All experiments are conducted in MATLAB 2020a in
Windows 10 on a computer with Intel(R) Core(TM) i9-9900K
CPU@3.60GHz and 128GB RAM. In addition, we record the
time costs of all methods.

A. Synthetic Data

We generate tensor X ∈ Rn1×n2×n3 with lrank r for
each frontal slice, which means X (:, :, n) = randn(n1, r) ∗
randn(r, n2) by MATLAB commands. Then we construct
the random orthogonal square transform L3 ∈ Rn3×n3

along the third dimension. The ground-truth tensor is gen-
erated by transformation as Y = X ×3 L3. We test
two synthetic data: synthetic data-1 with n1 = n2 =
50, n3 = 20, r = 5 and synthetic data-2 with n1 = n2 =
100, n3 = 50, r = 10 with different sampling rates (SRs) in
{20%, 30%, 40%, 50%, 60%, 70%, 80%}. We use the relative
error (RE) to quantitatively evaluate the performance of all
methods:

RE =
∥∥Y − Ŷ

∥∥
F
/
∥∥Y∥∥

F
(34)

where Y and Ŷ are the original tensor and the recovered
tensor, respectively. The RE values are summarized in Table I
for synthetic data-1 and synthetic data-2, respectively. We use

red color to highlight the best result in each case. Obviously,
our method SALTS achieved the minimum RE across all SRs.
Even in case of SR ≥ 40%, the proposed SALTS could achieve
almost exactly recovery, while all other methods fail.

B. HSI Completion

CAVE 1 is a open-source dataset hyperspectral image (HSI)
used to test algorithms in many papers. It contains 32 different
hyperspectral objects and each size is 512× 512× 31, where
512 and 31 denote the spatial resolution and number of spectral
bands, respectively. For efficient comparison, we resize each
HSI into 256×256×31 and normalize pixel values into [0,1].
Because all the methods achieve very accurate recovery results
when the sampling rate (SR) is high, so we test four different
SRs: 3%, 5%, 10% and 20%. The average metric of each tested
algorithm for all 32 hyperspectral objects under these four
SRs are reported in TABLE II, which shows that our SALTS
outperforms all competing methods under all SRs with respect
to all metrics. Selected visual results in Fig.4 and Fig.3 from
fake and real lemons and chart and stuffed toy reveal the
superiority of the SALTS, both are in the completion of finer-
grained textures and coarser-grained structures. The values of
four metric PSNR, SSIM, FSIM and ERGAS across all bands
in Supplementary Material. It can be seen that the proposed
SALTS obtains the best metric in all bands.

C. Color Video Completion

We select four color video sequences Akiyo, Hall, Con-
tainer, and Grandma from open-source YUV video dataset2.
For comparing efficiently, we choose the first 100 frames
of each video to test all algorithms. As the color video in

1http://www1.cs.columnbia.edu/CAVE/databases/multispectral/
2http://trace.eas.asu.edu/yuv/
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(a) Original image (b) Missed image (c) SALTS (d) HaLRTC (e) TMac (f) TCTF

(g) tSVD (h) FTNN (i) TRLRF (j) OITNN (k) ESP-LRTC (l) KBR-TC

Fig. 5: (a) Original image selected from the 76-th frame of Hall color video; (b) The corresponding sampled image with
sampling rate 5%; (d)-(l) Completing images obtained by 9 competing algorithms. (c) Completing results by proposed SALTS.

(a) Original image (b) Missed image (c) SALTS (d) HaLRTC (e) TMac (f) TCTF

(g) tSVD (h) FTNN (i) TRLRF (j) OITNN (k) ESP-LRTC (l) KBR-TC

Fig. 6: (a) Original image selected from selected from the 120-th frame of MRI data; (b) The corresponding sampled image
with sampling rate 5%; (d)-(l) Completing images obtained by 9 competing algorithms. (c) Completing images by our proposed
SALTS.

TABLE IV: The Performance Comparison 9 Competing TC Methods with 5%, 10% and 20% on MRI Data.
Method 5% 10% 20% Times/sPSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS
HaLRTC [18] 16.75 0.2814 0.6283 557.94 19.57 0.4246 0.7182 404.61 23.89 0.6488 0.8246 244.78 46.69
TMac [63] 17.25 0.3348 0.6564 553.39 23.40 0.5891 0.7901 262.30 29.43 0.8041 0.8743 125.91 30.45
TRLRF [64] 22.30 0.4256 0.7289 296.50 25.50 0.5744 0.7922 201.73 29.22 0.7371 0.8623 130.84 302.66
t-SVD [65] 22.40 0.4647 0.7380 308.39 25.22 0.6131 0.7995 222.83 29.29 0.7822 0.8746 139.89 496.36
FTNN [52] 24.02 0.6771 0.8275 250.66 27.08 0.7969 0.8814 171.91 31.27 0.9032 0.9353 104.55 981.15
ESP-LRTC [66] 23.27 0.5484 0.7789 262.21 30.88 0.8634 0.8977 108.51 35.46 0.9456 0.9478 63.73 157.87
KBR-TC [67] 25.82 0.7259 0.8306 195.13 32.17 0.9090 0.9223 92.96 36.57 0.9648 0.9651 55.65 530.90
OITNN [40] 25.00 0.6951 0.8218 217.65 28.47 0.8286 0.8838 144.80 32.85 0.9244 0.9383 87.23 356.18
SALTS 29.55 0.8304 0.8985 124.88 33.18 0.9214 0.9432 82.38 36.97 0.9657 0.9724 53.24 1806.72

RGB format is fourth-order tensor 144 × 176 × 3 × 100,
we convert RGB video into 3D video 144 × 176 × 100
in YUV format as the input of all algorithms and finally
the visual results are transferred back to RGB format for
presentation. Table III and Fig.5 show that the performance of
our proposed SALTS in color video completion is superior to
compared methods in both metric and intuitive visual results.
Espectially, the dynamic foreground of the moving persons in

videos is restored more clearly and completely by the proposed
algorithm. To further validate the effectiveness of the proposed
method, we plot the values of metric across all the frames
on Akiyo, Hall in Supplementary Material. This is easy
to observe that the proposed SALTS obtains the best metric
almost in all frames of tested color videos.
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TABLE V: The Average Performance Comparison of 10 Competing TC Methods with 10%, 20%, 30% on 3 Objects in
COIL-20 Data.

Method 10% 20% 30% Time/sPSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS
HaLRTC [18] 17.89 0.5196 0.7294 382.84 21.55 0.6625 0.8112 256.67 24.11 0.7852 0.8646 194.48 15.96
TMac [63] 18.24 0.5253 0.7352 369.85 22.98 0.6584 0.7596 217.86 25.46 0.7549 0.8459 163.80 11.37
TRLRF [64] 23.37 0.7420 0.8393 212.66 26.19 0.8353 0.8936 155.80 28.28 0.8861 0.9250 123.43 186.67
t-SVD [65] 20.10 0.4934 0.7222 302.47 22.84 0.6536 0.7933 222.70 25.03 0.7213 0.8462 175.06 62.97
FTNN [52] 22.20 0.6981 0.8165 244.35 25.06 0.8096 0.8777 177.44 27.22 0.8724 0.9146 139.47 185.81
ESP-LRTC [66] 24.81 0.7320 0.8408 184.98 27.26 0.7999 0.8799 141.88 29.28 0.8569 0.9140 113.49 79.29
KBR-TC [67] 25.33 0.7570 0.8525 173.64 27.86 0.8309 0.8968 132.82 30.10 0.8923 0.9321 103.79 92.70
OITNN [40] 23.37 0.7420 0.8393 212.66 26.19 0.8348 0.8936 155.80 28.28 0.8861 0.9250 123.43 41.34
SALTS 25.93 0.8025 0.8829 161.32 28.66 0.8837 0.9281 119.84 30.70 0.9221 0.9514 96.11 477.37

(a) Original image (b) Missed image (c) SALTS (d) HaLRTC (e) TMac (f) TCTF

(g) t-SVD (h) FTNN (i) TRLRF (j) OITNN (k) ESP-LRTC (l) KBR-TC

Fig. 7: (a) One object’s original images from 721-th frame to 792-th frame of COIL-20 ; (b) The sampled images with
sampling rate 5%; (d)-(l) Completing results obtained by 9 competing algorithms. (c) Completing results by proposed SALTS.

D. Magnetic Resonance Imaging (MRI) Completion

In this subsection, we use the MRI data with volume
181 × 217 × 181 from Simulated Brain Database3, which
contains a set of realistic MRI data volumes produced by an
MRI simulator used by the neuroimaging community widely.
We set SR as 10%, 20%, and 30% for MRI. Table IV and
Fig.6 show the quantitative assessments and recovered results
of all methods for the 120-th slice, respectively. It is observed
from visual images that not only can the contour of missed
MRI be best restored, but also the details of the images are
inpainted with more fullness and integrity by our proposed
method. In order to fully verify the recovery effect in all
frames of MRI, we plot the four metrics across all frames
for all competitive methods in Supplementary Material. In
addition, our algorithm achieves much superior performance
of restoration on all frames in all metrics.

E. COIL-20 Data Completion

In this subsection, we adapt COIL-204, which includes 1440
various images of different 20 objects taken from different
angles and the size of each image is 128 × 128. We select
3 different objects from 20 objects with all 72 pictures of

3http://brainweb.bic.mni.mcgill.ca/brainweb/
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.PHP

each from different angles, which means that each selected
object’s tensor data size is 128×128×72. We set SR as 10%,
20%, 30% for each object, respectively. For visual comparison,
we set the SR as 5% for object 2 with comparison of all
methods and the corresponding visual, average metric of three
objects for different SRs and metrics across all angles for
object 2 are reported in Fig.7, TABLE V and Supplementary
Material, respectively. In comparison, the proposed algorithm
obtains the optimal restoration result from all aspects of the
experimental verification.

V. CONCLUSION

In this paper, we have proposed a novel multiple self-
adaptive learnable transforms (SALTS) based tensor nuclear
norm and developed an efficient ADMM to update multiple
learnable transforms and transformed tensors along all modes
alternately. In the proposed framework, SALTS are jointly
learned with transformed tensors by minimizing its induced
Schatten-p quasi norms, which are data-dependent and flexibly
adaptable to a wide range of data. Due to the adaptation of
SALTS, its insensitivity of orientation guarantees sufficient
low rank structure of transformed tensors along multiple
modes. The visual and numerical results on four benchmark
datasets have shown the superiority of the proposed SALTS.
In future work, we will apply our SALTS to tensor robust
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principal component analysis, which is another fundamental
topic in tensor data processing.
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