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 Abstract— As pipelines take an increasingly important role in energy 

transportation, their health management is necessary. In-pipe inspection 

is a common pipeline life maintenance method. The signal obtained 

through internal inspection contains strong noise and interference where 

the internal environment of the pipeline is extremely complicated. Thus, 

it is challenging to accurately identify the defect signal. In this paper, a 

defect detection framework based on feature boosting is proposed by 

using the multi sensing pipeline pig as the detection signals. Through 

boosting construction of features and hierarchical classification, the 

framework can not only correctly classify various signals in the internal 

detection signals but also realize the accurate identification of defect 

signals. Concurrently, in order to demonstrate the high flexibility and 

robustness of the detection framework, experiments and verifications 

have been carried out on specimens in three different environments i.e., 

laboratory environment, simulated environment and actual environment. 

In the classification of actual environmental detection signals, 

quantitative evaluation with different algorithms have been undertaken 

using the F-score to demonstrate the effectiveness of the proposed 

framework. 

Index Terms— In-pipe inspection, Feature Boosting, Time series 

anomaly detection, Multi-sensor fusion. 

I. INTRODUCTION 

A time series is a collection of random variables indexed according 

to the order they are obtained in time [1]. It reflects the changing trend 

of one or more random variables over time, and describes the 

development of the phenomenon. Data mining is a significant 

meaningful method to obtain hidden information from time series for 

data analysis. Conventional data mining tasks can be divided into 

prediction, classification, clustering, correlation analysis, and anomaly 

detection. 

Anomaly detection is an important part of data mining and it has 

diverse applications such as credit card fraud detection, network 

security intrusion detection, and industrial fault diagnosis. The aims 

are to find suspicious data caused by a different mechanism from 

majority of normal data. In the past few decades, many new models 

based on machine learning have been proposed for tackling the 

problem. Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) [2] is a density-based algorithm that can be used to 

identify anomalies. Local Outlier Factor (LOF) [3] proposes a local 

outlier factor to measure the degree of local isolation of data in 

anomaly detection. Anomalies are often quite different from normal 

data since there exists a natural way to distinguish anomalies by 

 

 

proximity, such as K-nearest neighbor (KNN) [4]. By using different 

hyperplanes to separate anomalies and normal values, One-Class 
support vector machine (OC-SVM) [5-7] has achieved good results in 

anomaly detection. Without relying on calculating distance or density, 

Isolation Forest (iForest) [8] can identify anomalies by measuring the 

concept of isolation, and the processing time is much shorter. Robust 

Random Cut Forest (RRCF) [9] improves iForest in which enabling 

real-time processing of data streams as well as anomaly detection. In 

addition, anomaly detection using deep networks has been well 

implementation. Both Long Short-Term Memory (LSTM) [10] and 

Autoencoder [11] learn the normal time series patterns and predict 

future values. By modeling the prediction error, an outlier score is 

given to identify anomalies. In high-dimensional data, a limited 

number of outliers may not provide sufficient information to help the 

classifier determine a boundary, so as to effectively separate the 

outliers from normal data. For this reason, Single-Objective 

Generative Adversarial Active Learning (SO-GAAL) and Multiple-

Objective Generative Adversarial Active Learning (MO-GAAL) [11] 

can directly generate informative potential outliers based on the mini-

max model between a generator and a discriminator. The existing time 

series anomaly detection methods are either applied to specific fields 

or require ideal conditions that are difficult to achieve in real 

application. To solve this problem, Mengran et al. [13] proposed a 

generic policy-based RL framework to address the time series anomaly 

detection problem. It gradually learns optimal policies from the 

interaction with time series data without above constraints. Anomaly 

detection on multivariate time-series still has serious limitations. When 

the relationship between different time series cannot be clearly 

obtained, this leads to erroneous interpretation and incorrect decision. 

To alleviate the situation, Zhao et al. [14] introduced graph attention 

layers to obtain the relationship of multivariate time series.  

Non-destructive testing (NDT) belongs to a specific area of anomaly 

detection. It is a technique to evaluate the properties of a material, 

component or system without causing damage to the sample [15]. In-

pipe inspection is an important field of NDT applications. Its purpose 

is to detect defects in the pipeline to avoid accidents such as pipeline 

leakage. In recent years, different NDT methods have been developed 

for in-line pipeline inspection. These are visual inspection[16], 

magnetic flux leakage (MFL) testing, ultrasonic testing (UT), 

electromagnetic acoustic technology (EMAT), eddy current testing 

(EC)[17]. Compared with other technologies, EC is sensitive to 

multiple parameters and can reflect defect characteristics[18]. At the 

same time, the size of the eddy current probe is small while it can be 

used to measure small diameter pipes[17]. Therefore, this paper 

chooses to use EC for in-pipe detection in the experiment.  
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Many methods have been proposed to detect anomalies in eddy 

current signals. Gupta et al. [19]fused the eddy current and the 

microwave signals while it used the Reed-Xiaoli (RX) algorithm and 

fuzzy logic-based algorithms to detect anomalies in the signal image. 

Sophian et al. [20] used Principal Component Analysis (PCA) to 

extract features of pulsed eddy current signals to detect abnormal 

signals. Ernest et al. [21] used the Gaussian sum method to generate 

Gaussian images and binarized them for anomaly detection where this 

proposed an automatic eddy current feature detection algorithm. 

D’Angelo et al. [22] used low definition Lissajous figures to extract 

features and performed automatic eddy current anomaly detection. 

However, there are several shortcomings with the above methods. 

First of all, most of the above experiments only used one feature for 

anomaly detection and hence they did not fully exploit multiple 

features of the data. Secondly, the experimental settings are mostly 

carried out in a laboratory environment by using standard specimens 

where the obtained data is relatively ideal. Thus, the detection 

capability in the real environment becomes uncertain. Additionally, the 

model obtained by training is more complicated, and the training effect 

of the model depends on the settings of many hyperparameters, which 

leads to disadvantages of poor robustness and lower generalization of 

the model. Lastly, the process of the inner detector inside the pipeline 

is uncertain. This will generate interference signals such as jitter, stuck 

static, and lift-off that cover up the defect signal. Additionally, the 

internal environment of the pipeline is complex and subject to change 

such as variation due to high temperature and high pressure, and even 

the residues inside the pipeline are similarly affected. Substances can 

also have an effect on the internal detector signal, and interfering 

further the identification of defect signals. The pipeline contains 

various pipe-making mechanisms, such as welds, elbows, flanges, etc. 

The amplitude of the signal generated by these structures exceed the 

amplitude of the defect signal, and to worsen the situation, their 

waveforms are relatively similar to the defect signal. Since the 

interference signal of the pipe-making structure is not stripped, the 

cluttered signals containing multiple signals can lead to direct 

misclassification as defective signals as well as losing small defect 

information. Thus, this will cause significant false and missed 

detection of the defective signals. Fig. 1 illustrates the pig system 

conduction for the real running pipe. 

    

Fig.1 (a)Complex pipeline scene. (b)Oil and residues. (c)Non-

standard transceiver device. (d)Pigging valve 

To ameliorate the above problems, this paper proposes the novel 

algorithm framework of features boosting structure, which adopts 

hierarchical feature engineering for gradually extracting the signal 

layer by layer. Each layer classifies the input complex signal through 

the extracted features, and divides it into the signal represented by the 

feature and the remaining signal. When the signal is input to the next 

layer from the previous layer, only the signal that has not been 

classified in the previous layer becomes the input. The complex signal 

is gradually decoupled in order to analyze the captured data in the real 

environment, and finally identify the target defect signal. This 

framework has the advantages of simplicity, efficiency, and extensible, 

which allows the system to achieve anomaly detection and 

classification through an end-to-end pipeline structure. Several 

experiments have been conducted and verified that the proposed 

framework has strong robustness and good generalization performance. 

In addition, for the challenge task for defective signal extraction, a new 

mathematical two-dimensional feature suitable for time series 

sequence is designed. It uses mathematical equations to map the time 

series to an image, whose two dimensions reflect the global and local 

characteristics of the sequence, respectively. Through a simple 

segmentation of this feature map, anomalous points in the time series 

can be easily found. In addition, it has a good representative effect for 

identifying most of the time series outliers. Three specimens in 

different environments were tested and trained. The results are 

compared with the current commonly used anomaly recognition 

algorithms. 

In summary, the main contributions of this paper are as follows: 

(i).  A new framework for anomaly detection in time series is 

proposed. This framework has the advantages of simplicity, 

efficiency, and extensible, which allows users to achieve 

anomaly detection and classification through an end-to-end 

pipeline structure. Concurrently, a number of experiments have 

verified that the proposed framework has strong robustness and 

good generalization performance. 
(ii). A new mathematical two-dimensional feature suitable for time 

series sequence is designed. It uses mathematical equations to 

map the time series to an image, whose two dimensions reflect 

the global and local characteristics of the sequence respectively. 

Through a simple segmentation of this feature map, anomalous 

points in the time series can be easily found. In addition, it has a 

good representative effect for identifying most of the time series 

outliers. 

The rest of the paper is organized as follows: Section II describes 

the structure of the system as well as the collected information. Section 

III describes the proposed method with detailed interpretation. 

Experiments and result analysis are shown in Section IV. Finally, 

Section V summarizes the work and highlights future work. 

II. RELATED WORK 

In order to realize the detection of defects in pipeline, an in-pipe 

detector, known as the intelligent pig has been developed. Fig.2(a) 

shows the entire system which can be approximated as a cylinder. The 

circuit system is encapsulated in a cylindrical metal shell, which 

integrates Inertial Measurement Unit (IMU), data acquisition module, 

data processing module and communication module. A mileage wheel 

is installed behind the metal casing to record the distance for the 

system travels in the pipeline. A rubber sealed outer housing is 

installed on the outside of the shell, the diameter of which is equal to 

that of the pipe, so that the entire system can be placed close to the 

inner wall of the pipe. The eddy current sensor is encapsulated in an 

elastic material and combined to form a probe, and multiple probes 

adopt a petal structure to form a probe set. At the same time, the entire 

system uses two front and rear probe sets to achieve full coverage of 

the inner wall of the pipeline. 

As shown in Fig. 2(b), when the intelligent pig is placed inside the 

pipeline, it will be pushed by the high-pressure gas from the rear to 

move inside the pipeline. With the movement of the intelligent pig, the 

petal-shaped probe will detect the pipe wall in real time. When a defect 

on the pipe wall is found, the signal received by the probe at the 

corresponding position will be significantly different from the 

background signal. This is characterized as the abnormal signal for 

detection. The petal-shaped probe can obtain both amplitude and phase 

signals. These are used for detecting defects through the changes of the 

collected signal. When the intelligent pig is running, the IMU 

integrated on the circuit board and the mileage wheel on the metal shell 

are also collecting data. Due to the residual magnetic field in the 



  

pipeline, the magnetometer cannot be used. However, this paper uses 

the MPU6050 six-axis sensor to calculate the attitude information of 

the intelligent pig. The distance obtained through mileage wheel can 

assist in the location of defects and verify the results. The signals 

obtained by the three sensors are depicted in Fig.2(c). 

In terms of the different types of sensor signal interpretation, the 

inner detector consists of eddy current sensing probes with ten 

channels position at the front and another ten channels position at the 

back end, inertial measurement unit IMU and mileage encoder. Among 

them, the eddy current sensing probe is designed in the shape of a petal, 

and the probe is evenly distributed on the inner detector around the 

central axis. The inertial measurement unit IMU and the mileage 

encoder are integrated inside the inner detector. The eddy current 

probes proposed follow the principle of eddy current non-destructive 

testing to detect defects on the inner wall of the pipeline. Each probe 

will output the voltage amplitude and phase of the corresponding eddy 

current signal in real series, which contains information of defect, weld, 

pipe shape, and etc. The IMU is mainly used to measure the rotation 

angle of the inner detector system inside the pipeline, and the output 

signal is the nine-axis information output by the basic IMU. This is 

used for supporting clarification of weld, position and pipe elbow. The 

mileage encoder is used to measure the distance traveled by the inner 

detector in the pipeline, and the output signal is the number of pulses. 

 

Fig. 2: Pipeline detection system. (a) Schematic diagram of an intelligent pig. 

(b) Schematic diagram of the work of the intelligent pig in the pipeline. (c) 

Signals collected by intelligent pig. 

III. METHODOLOGY 

In pipeline detection, the inner environment of the pipeline leads to 

complication of the received time series signal when it mixes with a 

variety of information. Taking eddy current sensing signal as example 

where it might consist of lift off impact from weld, dust interference, 

different kind of defects signals, to name a few. The question of how 

to gradually decouple this mixed signal and extract the target 

information is the purpose of the proposed layer feature boosting 

framework. The proposed framework draws on the idea of step 

boosting strategy. By selecting the appropriate features for boosting 

each step, the mixed time series can be decomposed into two parts at 

each step, the feature signal and the candidate residue. In the next 

round, new suitable features are selected to classify the previously 

unclassified candidate residue. After multiple rounds of feature 

iteration, a variety of information in the initial time series is extracted 

hierarchically. 

This paper considers the real pipeline inspection as test platform. 

Through the time series signal collection, the layer feature boosting 

framework is used to extract pipeline defect information, pipeline 

status information (pipe bends, welds, ramps) and movement 

information (stationary and moving). Fig. 3 shows the overall structure 

of the proposed framework. 

Fig.3 Proposed framework descriptions 

A. Generative Model 

As mentioned above, the signals collected in the real environment 

contain a variety of complex information. As such, this paper builds 

the following model to simulate the possible classification information 

detected in the pipeline: 
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where ( )
MXN

tw  represents the weight matrix calculated by the model 

at time t , M represents the number of signal categories that need to 

be classified, and N represents the number of sensor channels. 

x
( )

L

M M
tA represents the hierarchical matrix of the design at time t , and 

L  represents the -L th  layer in the frame. xN
( )

M
tS represents the 

typical signal matrix obtained after a large number of statistics, and 

( )tS  in xN
( )

M
tS  is a block matrix 

1 2 1
( ) [ ]

T

M M
t s s s s

−
=S , in 

which s represents a typical signal. ( 1)R L +  represents the residual 

signal after the -L th  layer classification, in other words, the ( 1)-L th+  

layer of the signal to be classified. When it comes to the final 

classification layer, ( 1)R L +  will usually be white noise. 

B. Layer design 

The key idea of layer feature boosting is to use different features to 

classify complex signals hierarchically. Therefore, when designing 

each layer structure, how to make the layer pay attention to the target 

signal of this layer is the focus of the design. With the help of the model 

in (1), we assume that the signal to be classified in the -j th  layer is is . 

We can design the matrix 
x

( )
L

M M
tA  of the -j th layer as: 
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Combining (1) and (2), we can obtain the weight matrix 
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From (3), it can be seen that the focus of the model is on the target 

signal is  at time t . For the entire time series ( 1,2, ,t T= ), there is 

an attention vector 
j

W  for the attention signal is  of the -j th  layer. 

This extracts the effective data in the attention matrix 
j

W  by using a 

classifier to determine whether it belongs to the attention signal is , 

and obtain the classification result vector 
xT N

j
C . 

xT N

j
C  is an index 

whether the time series in the -j th  layer can be classified as the target 

signal i
s  or not, where the value of c

j

tn
 is 1 or 0 respectively (when 

classified as i
s , the value of c

j

tn
 is 1, otherwise it is 0). At this point, 

we can classify different typical signals through different layers. 
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C. Interlayer design 

Another key to layer feature boosting is that the next layer will 

classify the residual signal that is retained from the previous layer.  

From the perspective of the number of classified signals, since the 

target signal i
s  is classified by the upper layer, i

s  should be removed 

from the typical signal set in the following layer, and the number of 

typical signal sets in this layer is reduced compared to the upper layer. 

On the other hand, from the perspective of time series, according to the 

classification results of the upper level, the relevant sequences that 

have been classified as i
s  can be truncated. The intercepted time 

series no longer contains data related to i
s , and it is consistent with 

the remaining signal types in the typical signal set. The relationship 

between the -j th  layer and the ( 1)-j th+  layer is shown in (6). 
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From the above discussion, as the layer increases, the typical signal 

set and time series that enter each layer will gradually decrease. When 

reaching the later layers, the typical signal set will only contain the rare 

signal to be classified. Therefore, there will not be any sharp increase 

in the amount of computation caused by too many layers. 

D. New features for anomaly detection in time series 

In the establishment of the above model, this paper uses a typical 

data set xN
( )

M
tS . However, in actual pipelines, due to complexity 

factors of the environmental and hardware system, it is difficult to 

obtain consistent signals even if the same test piece is repeatedly tested. 

Therefore, it is inaccurate to directly use the typical data set to classify 

the target signal. Thus, it is more reliable to extract the features of 

typical signals and then use the meaning features to classify signals. In 

other words, ( )tS in (1) will become: 
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where F represents the extracted feature matrix. i
F  represents the 

feature vector extracted from the typical signal i
s . In the layer feature 

boosting framework, correct features selection at each level is 

important. The selected features of each layer need to identify the 

signals that match the selected features as much as possible. In addition, 

it is required to avoid missing data due to interfere with the next round 

of identification. At the same time, the features of each level are 

independent in which case there is no mutual interference of features 

between multiple layers that would result in uncertain classification. 

Classifying defective signals from normal signals can be drawn as 

an anomaly detection problem. Time series anomaly detection is 

usually divided into two categories, namely point anomalies and 

anomaly series [23]. For these anomaly detections, a variety of time 

series features based on different dimensions are proposed. Statistical 

analysis treats time series as random variables, and uses statistics such 

as mean, variance, extreme value, quantile, slope and autocorrelation 

as the characteristics of time series. Another method is to use time 

series information in the temporal dimension as features, such as using 

a sliding window method to extract hour-level features or day-level 

features. However, statistical features that are based on global data 

statistics can obscure the impact of local outliers. While the temporal 

dimension feature takes into account local outliers, it cannot measure 

the impact of local changes on global variables. In addition, for 

temporal dimension features, the issue of selecting a time interval of a 

After classifying a target signal i
s  

i
s occupies a points in the time series 

 

Extract Features 



  

suitable length for subsequent feature establishment remains a 

challenge. 

To solve the above problems, this paper also proposes a new 

structure feature that transforms the entire time series to two-

dimensional polar coordinates. The length (i.e. magnitude) of the polar 

diameter direction measures the abnormal level of the point in the 

entire sequence (i.e., in a global sense), and the polar angle is used to 

indicate the abnormal level of the point in the local sequence (i.e., in a 

local sense) as depicted in Fig. 4. 

 

Fig.4 Example of the proposed feature in time series anomaly detection 

For a long-term series, the normal value is usually stable within a 

normal range. Fig. 5 shows the normal range of a long-term time series. 

For a data point that lies outside the normal range, it can be considered 

that the cause of this data point has changed. For a data point that lies 

outside the normal range, it can be considered that the cause of this 

data point has changed.  

 

 Fig.5 Normal range of some example signals 

It can be considered that the cause of this data point has changed. In 

other words, the point may be an abnormal point. Therefore, the ratio 

of the amplitude of each point to the normal range of the sequence can 

be used to measure the degree of abnormality of a point. In addition, 

considering that the amplitude of anomalous points in certain 

sequences will have considerable leap of multiple times compared to 

the normal range of the sequence, the logarithm of their ratio is used 

to compress them so as to be displayed in the polar chart. 

Mathematically, features that measure the degree of global anomaly 

can be obtained as: 
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In (8), GF is the abbreviation of global feature, the subscript i
x  

represents the -i th  point on the time series.
ix

Amp  represents the 

amplitude of i
x , and nr

AMP  represents the normal range amplitude of 

the entire time series. With this global feature, the normal points will 

concentrate in a circle with a small radius after polar coordinate 

mapping, while abnormal points disperse on a circle with larger radius. 

This paper adopts the use of polar angle in the polar coordinate 

system to reflect the local change rate of the time series. Given a time 

series ( 1,2, , )
i

x i n=    , a sliding window is used to extract its local 

feature sequence ( 1,2, , )
i

LF i n=    , as shown in Fig.6. The window 

length is specified as l  where l  points in the time series are sent to 

the feature extraction function ( )g z  to obtain the feature value 

corresponding to the -l th point. Each time the window slides one point 

until the feature of the last point of the time series is obtained. Since it 

is necessary to ensure that the length of the feature sequence and the 

time sequence are equal, padding data with a length of 1l −  is added 

to the head of the original time series. This is to ensure that it will not 

affect the future trend of the time series. The value is the first value of 

the time series to avoid the disturbance to the data caused by the 

additional value. 

 

Fig.6 Schematic diagram of local feature extraction 

In order to measure the local change rate of the time series, the 

feature extraction function ( )g z  in each window computes the 

variance (given in (9)), normalize the value and convert it to radians 

according to (10) to obtain the polar angle. Using (10), the point with 

a small local rate of change can be mapped to the polar coordinate 

graph [0, / 2] , the point with a moderate rate of change is mapped to 

[ / 2,3 / 4]  , the points with a large rate of change are mapped to 

[3 / 4,2 ]   part. If the standardized variance sequence is directly 

mapped, the points with small local rate of change will only occupy a 

very small part of the polar angle. This poses an issue where these 

variance features cannot be clearly detected on the feature map. 
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E. Loss function 

For the data points detected by the eddy current sensor, each data 

point might belong to any of the multiple classification categories. 

Taking the signal in Fig. 3 as an example, there are five common 

categories that need to be identified in the pipeline, including normal, 

static, weld, bend, and defect. The loss function of each point can be 

defined as: 
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where 
i

L  represents the loss function of each point, M represents the 

types that may appear, and icp is the predicted probability of point i  

belonging to category c . The loss function of the entire time series 

can be defined as: 
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In (12), N is the length of the entire time series, and L  represents 

the loss function of the entire time series, which is the sum of the 

classified time series loss function and the unclassified time series loss 

function. The number of points in the classified time series is j . Since 

it has been classified, the probability 1p = , then log( )p  is 0, while 

the classified loss function is 0. The number of points in the 

unclassified time series is i , and the loss function of the unclassified 

time series is obtained by adding the loss functions of i  unclassified 

points. It should be noted that the classification results of the previous 

layer in the framework will cause the 
ic

p  of the next layer to change, 

and each layer needs to be recalculated.  

F. Quantitative Detectability Assessment 

Since pipeline detection is a commercial service, the use of data is 

confidential and so far, there is no public dataset available. Therefore, 

this paper first builds a dataset. The constructed dataset contains not 

only the time series of various sensors collected by the inner detector, 

but also the label values for the defect signals and target signals. 

If the label of a specific signal corresponds to the result and appears 

in the same position, it is considered that the signal corresponding to 

the position is classified correctly. In this paper, we use the F-score to 

estimate the detection capability of the algorithm. F-score can be 

expressed as: 
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P R
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where P is precision and R is recall given by: 
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where TP is true positive, FP is false positive, FN is false negative, and 

TN is true negative. The value of   in the F-score will have an impact 

on accuracy and recall. For the pipeline inspection in this paper, we 

need to detect defects as much as possible to avoid potential safety 

hazards caused by missed inspections. Therefore, the recall is more 

important, so the value of   is adjusted to 2. 

IV. EXPERIMENT AND RESULT ANALYSIS 

A. Experimental Setup and Samples Preparation 

 Experiments have been carried out using the internal pipe pig 

system as described in Section II. The overall experiment is divided 

into two parts, the laboratory environment and the real pipe detection. 

As shown in Fig. 7(a), the eddy current probe is loaded on the XYZ's 

workbench and performs defect detection on the flat specimen. In Fig. 

7(b), it illustrates the inner pipe pig system by machine pulling. 
To verify the robustness of the proposed algorithm in the real 

environment, we have conducted experiments on oil pipelines in the 

real environment. As shown in Fig.7(c), the inner pipe pig is propelled 

by high pressure gas, and the running speed in the pipeline is around 

0~10 m/s. The sampling frequency is 2344 Hz, and the minimum 

abnormal detection size can reach 4.27 mm. 

Fig.7 (a)Flat specimen detection. (b) Artificial pipe inspection. 

(c) Idle pipeline inspection. (d) Real pipe inspection. 

Different specimens have been used in different environments and 
they are summarized in Table I. The first test data (shown in Table I 
specimen number 1) is collected from the laboratory environment. In 
the laboratory environment, a relatively ideal signal with less noise can 
be obtained. The tested samples are various flat test pieces or half-pipe 
test pieces engraved with artificial defects. The used sensor is only a 
single eddy current sensor. The purpose is to test the detection ability 
of the eddy current sensor for defects, and the ability of the algorithm 
to identify defects. During the test, we fix the eddy current sensor on 
the XYZ worktable to ensure that the probe sweeps across the surface 
of the specimen stably and uniformly under the premise of maintaining 
a fixed lift-off. After that, experiments are carried out in an artificial 
simulation environment as shown in Fig.7(b). In the artificial 
simulation environment, the inner detector is pulled by the motor, so 
that the inner detector moves at a constant speed of 0.5/m s in the 
pipeline. Many defects are engraved in the pipeline for the pulling 
experiment, and the specific location of the defects is known a priori 
for test validation. The welds exist between different pipe sections 
while the device used for signal acquisition is the internal detector as 
introduced in Section IV. 

The second test data (shown in Table I specimen number 2,3) is 

collected from the artificial simulation experiment. Compared with the 

experiment in the laboratory environment, the signal has changed from 

single channel to multi-channel, and there exists more interference 

signals of the welding seam as well as different type of defects. At the 

same time, the movement speed of the inner detector is faster than that 

of the XYZ table. The difficulty of detection has increased. 

Finally, the third test data (shown in Table I specimen number 4,5,6) 

is collected from the real environment. In the detection of the real 

environment, the inner detector is driven by high-pressure gas, and the 

speed cannot be controlled manually. Its running speed is 0~10/m s, 

and the speed change cannot be simulated in the first two environments. 

At the same time, compared with the artificial simulation environment, 

the real pipeline has new structures such as elbows, and the situation 

in the pipeline is more complex. There are potentially more dust and 

residual oil interference, which lead to large noise and therefore 

introduce huge challenges for accurate identification of defects. In 

particular, the exact location of the defects in the real pipeline is not 

known before detection, that is to say, it is not only required to 

successfully detect the defects, but it is also demanded to identify the 

accurate position of the defects, so as to facilitate the subsequent 

manual verification of the defect detection effect. The experiments in 

the real environment can be subdivided into two cases. In the first case, 



  

as shown in Fig.7 (c), the pipeline is an idle pipeline with a total length 

of around 200m and a total of 7 turns. Since the pipeline is idle, the 

inside of the pipeline is relatively clean and the signal quality is 

relatively low. In the second case, as shown in Fig.7(d), the oil and gas 

pipelines in actual use are detected. There are many impurities inside 

the pipelines, and the long-distance pipeline detection (up to 10km or 

more) causes high-pressure gas to push the inner detector. The forward 

momentum is insufficient, so the acquired signal is extremely noisy 

and jittery. In this paper, we will show the obtained results using 

verified data. 

 

 

 

 

 

 

 

Table I Description of the experimental specimen 

Parts 
Specimen 
number 

Pictures Indication Size Defect information 

Laboratory 

1 

  

Unit: mm 

250x250x10 

a: Depth(mm):5 Angle(°):30/45/60 

b: Depth(mm):4 Radius(mm):5/7/10 

c: Depth(mm):4/6/8 

d: Depth(mm):2 Width(mm):2/3/4 

2 

  

Radius: 35mm 

Length:367cm 

Thickness:7mm 

See Appendix A 

 for more details 

3 

  

Radius: 43mm 

Length: 524cm 

Thickness:7mm 

Real 
Environment 

4 

  

Radius: 35mm 

Length: 28.37m 

Thickness:7mm 

/ 5 

  

Radius: 35mm 

Length: 31.12m 

Thickness:7mm 

6 

  

Radius: 35mm 

Length: 36.13m 

Thickness:7mm 

 

B. Effects of the proposed feature 

Due to the complex environment in real pipelines, the quality of the 

signal acquired by the pig system is poor. In addition, it is difficult for 

the high-pressure gas to push the inner pig system stably and uniformly 

whereas the signal will appear irregular jitter. The above factors are 

unavoidable as they contribute interference to the detection of the 

defect signal. Traditional anomaly detection algorithms that use 

statistical features based on global data statistics will obscure the 

impact of local outliers. Since the temporal dimension feature takes 

into account local outliers, it cannot measure the impact of local 



  

changes on global variables. Additionally, for temporal dimension 

feature, the issue of selecting a time interval of a suitable length for 

subsequent feature establishment is a critical challenge. 

The proposed feature map alleviates the above problems by 

determining a suitable tradeoff. In the first experiment, three anomaly 

detection algorithms i.e., iForest, OC-SVM, and Autoencoder, are 

selected. When the parameters of the same algorithm are controlled 

unchanged, the effect of recognition is shown in Fig. 8. Fig. 8 shows 

the prediction graphs of each classifier in two columns. The left 

column is the prediction result without adding the features proposed in 

this paper, and the right column is the prediction result after adding the 

feature. It is seen that the addition of features can not only detect 

abnormality normally, but also suppress the occurrence of false 

detection. Table II quantitatively analyzes the performance 

improvement of the three anomaly algorithms after adding the 

proposed feature. It can be seen from the table that for the three 

anomaly detection algorithms with completely different principles, the 

defect precision rate after adding the new feature has been improved, 

with a minimum improvement of 2.82 times and a maximum 

improvement of 13.33 times. The average increase is 4.97 times. 
According to the F-score, the three anomaly detection algorithms 

perform better. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Schematic diagram of the influence of proposed features on anomaly detection algorithms 

Table II The impact of proposed feature on anomaly detection algorithms 

 
iForest OC-SVM Autoencoder 

Precision recall F-score Precision recall F-score Precision recall F-score 

Signal 

1 
No feature 0.2 1 0.56 0.11 1 0.38 0.17 1 0.51 

Add feature 1 1 1 0.25 1 0.625 1 1 1 

Signal 

2 
No feature 1 1 1 0.07 1 0.27 0.17 1 0.51 

Add feature 1 1 1 0.2 1 0.56 1 1 1 

Signal 
3 

No feature 0.21 1 0.57 0.03 1 0.15 0.24 1 0.61 
Add feature 1 1 1 0.4 0.4 0.4 1 1 1 

 

The data set in this paper is manually labeled, and the length of the 

label is affected by human factors. Different people have different 

criteria for determining the starting position of signals such as defects, 

welds, and elbows. Therefore, there might be differences between the 

prediction results of the model and the front as well as the rear 

positions of the corresponding labels.  

If the evaluation is made in the way of point-to-point 

correspondence, there will be a large bias. Therefore, the undertaken 

experiment adopts the evaluation method of event-correspondence 

evaluation. If there are one or more predicted events within the range 

corresponding to the labeled event, it is considered that the labeled 

event has been successfully predicted. Otherwise, there is no such 

event, the interpretation is shown in Fig.9. 

 
Fig.9 Relationship between labels and predicted events 

In Fig.9, the blue line represents the tagging data that contains three 

tagging events. The red line represents the prediction result, and there 

are 7 corresponding prediction events in total. Since there are predicted 

events 1 and 2 at the corresponding positions of the marked event 1, 

the identification of the marked event 1 is successful detected. 

Autoencoder(no/add) 

 

OC-SVM(no/add) 

 

IForest(no/add) 

 

Label 

 

Signal 

 



  

Similarly, marked events 2 and 3 are identified successfully as well. In 

addition, the correctness of all indicators in this paper is based on the 

judgment of time. 

C. Experiments Results and Discussion 

The proposed training process is to construct a data set from all the 

detection data, and manually label it to obtain labeled data. Finally, K-

fold cross-validation is used for training. Thus, a diverse range of 

different pipes as well as defects are covered in the training of model. 

The proposed algorithm framework is to solve the abnormal 

identification of time series signals in pipeline non-destructive testing. 

Therefore, whether it is an oil pipeline or a natural gas pipeline, as long 

as the output detection signal is in the format of time series, the 

proposed framework can be readily used or adapted for such 

identification.  

1) Real Pipe validation  

The focus of laboratory experiments is to verify whether the 

algorithm can extract the required target signal according to the 

purpose in a relatively ideal environment. The experimental analysis 

in the laboratory environment can be viewed in Appendix B. 

The experiments conducted in the laboratory serve to verify that our 

framework has a certain classification effect on complex pipeline 

signals. To further verify the robustness of the proposed framework, 

we will demonstrate the validity in detecting defects in oil pipelines in 

the real environment. Compared with the laboratory environment, the 

signals collected in the real pipe exhibit more complex behavior. There 

are environmental noise and mechanically-induced signals. There are 

also new structural parts such as bends. Therefore, the objective of the 

field experiment is to verify whether the proposed framework can 

achieve the ability of correctly classifying the target signal. 

For real pipe signals, we have used the proposed three-layers feature 

boosting framework, and the detection result of specimen 4 in Table I 

is shown in Fig.10. The results of other specimens are shown in 

Appendix C. It is seen that the signal classified in the previous layer 

has been intercepted and will not be used as the input of the signal in 

the next layer. With the idea of multi-level classification, the target 

information in complex signals can be extracted step by step. The 

actual and predicted results for all specimens are shown in Appendix 

D, as a confusion matrix. It can be seen from the confusion matrix that 

for all types of anomalies (except for suspected defects), the 

recognition accuracy under the proposed framework is better. 

The existing misidentification mainly occurs in the connection 

position of abnormal signal and normal signal whereas the proportion 

of misidentification is low. The category of suspected defects has a 

high misrecognition rate because there are few signals of this type in 

the model training. Although these are misidentified as defects, it is 

still acceptable within the industry standard since suspected defects are 

early signs of defects, and it is important to detect them early on. 

When the defect detection is carried out directly without removing 

the weld signal, the signal amplitude of the weld is quite large 

compared to the defect other status signals. If the anomaly detection 

algorithms are directly applied, the weld will be falsely detected as a 

defect signal. At this time, defects and other status signals will be 

regarded as normal signals. As the contrast effect of (a) and (b) in Fig. 

11, the red dots mark the detected abnormal signals.  

Considering the case of after removing the weld signal, and the 

defect detection is carried out when the status signals are still present. 

Since the amplitude and waveform of the status signals are similar to 

the defect signal, the status signals will be mistakenly detected as a 

defect signal, resulting in the misidentification of defects, as shown in 

Fig 11 shown in (c) and (d). 

 

Fig.10 Schematic diagram of Feature Boosting applied to real pipeline detection 

 



  

 
(a) (b) (c) (d) 

Fig.11 (a) Defect detection without removing weld signal. (b) Defect detection under welding signal removal.  

(c) Defect detection without removing status signals. (d) Defect detection under the condition of removing status signals 

 

2) Comparison with other models 

According to several signals that often appear in the pipeline 

inspection, the multi-classified signals are determined as normal 

signals, static signals, weld signals, elbow signals, defect signals and 

suspected defect signals. 

The multi-classification algorithms compared with our proposed 

framework include classical methods in machine learning (i.e., KNN, 

decision tree, Bayesian classifier, random forest), traditional neural 

networks in deep learning (i.e., MLP, LSTM), and Multi-Scale 

Convolutional Neural Networks (MSCNN) [24], which currently 

performs well in time series multi-classification. The selected 

comparison models in this paper range from the classical machine 

learning model to the state-of-the-art deep learning model which works 

well in multi-classification of the time series signal. These models are 

the optimal models obtained by training different types of signals 

through labeled data, and then compared with the proposed feature 

boosting model. 

Using F-score with 2=  as the evaluation metric, the comparative 

effects of different multi-classification algorithms are shown in Table 

Ⅲ. It can be seen from Table Ⅲ that for the complex signals in the real 

pipeline, each classifier has a good recognition rate for signals with 

large amplitudes in the original time series such as static signals, weld 

signals, and bend signals. However, it is generally difficult to identify 

signals with small amplitudes in the original time series such as defect 

signals. Among them, Bayesian classifiers and LSTM-based multi-

classification networks fail to identify the defect signals. 

Our proposed method leverages the method of hierarchical 

classification of complex signals. Thus, it is shown to achieve better 

identification results for defect signals with small amplitudes. In 

addition, this structure also ensures that each layer is focused on 

detecting the target signal, which improves the precision rate and 

reduces the occurrence of missed detection events. Compared with 

KNN, which has the best effect in the multi-classification algorithms, 

our proposed framework not only guarantees the detection of static, 

weld, bend and other signals, but also the most relevant defect signals 

in practice with increased performance by more than 13%, and the 

detection of suspected defect signals increased by more than 41%. 

Table Ⅲ F-values obtained from multi-classification algorithm processing field pipeline signals 

 KNN Decision Tree 
Bayesian 

Classifier 
Random Forest MLP LSTM MSCNN Ours 

Normal signal 1 0.99 0.06 0.99 0.85 0.88 0.99 1 

Defect signal 0.62 0.46 0 0.54 0.20 0 0.49 0.70 

Suspected 

defect signal 
0.27 0.17 0 0.24 0.11 0 0.29 0.38 

Static signal 1 1 0.92 1 0.95 0.96 0.97 0.99 

Weld signal 1 0.74 0.13 0.62 0.93 0.70 0.77 0.91 

Bend signal 1 0.98 0.88 1 0.64 0.93 0.74 0.86 

 

V. CONCLUSION 

This paper has proposed a time-series anomaly detection framework 

based on feature boosting. The framework extracts the target signal 

layer by layer for the complex signals, and realizes the automatic 

detection of defects in the real pipeline signal. The multi-classification 

experiments of real signals show that the proposed framework has a 

positive effect on identifying various target signals in complex signals. 

In addition, the proposed new feature considers the global information 

as well as the local information of time series signals, which 

significantly improves the anomaly detection effect of time series. 
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