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Abstract— A high-sensitivity and miniature open cavity 
Fabry–Perot interferometer (OCFPI) encapsulated with the 
polydimethylsiloxane (PDMS) film based on high-order 
harmonic Vernier effect is designed and experimentally 
investigated. To the best of our knowledge, PDMS is applied 
for the first time to fill the open cavity of Fabry–Perot 
interferometer to obtain high-temperature sensitivity. The 
resonant dip (peak) wavelength of the designed 
temperature sensor monotonically moves toward the 
shortwave direction as the temperature increases from 40°C 
to 60°C due to the effects of expansion and thermo–optic 
property of PDMS. The proposed OCFPI encapsulated with 
PDMS film provides the following excellent performance 
advantages. (1) Compared with traditional all-fiber air-cavity 
OCFPIs with temperature sensitivity of approximately 10 
pm/°C, the proposed OCFPI sensor has a much higher temperature sensitivity of −3.4 nm/°C at the temperature range of 
40°C–60°C with a magnification factor (M-factor) of approximately 11 when order of harmonic Vernier effect i = 4. (2) The 
proposed OCFPI exhibits good reversibility during the heating and cooling processes, and the measured M-factor 
matches well with the theoretically calculated M-factor. (3) The proposed OCFPI shows excellent stability with 
maximum wavelength deviation of 0.567 nm (internal envelope based on a fourth-order harmonic Vernier effect) and 
0.042 nm (upper envelope) within 450 min. (4) The proposed OCFPI is inexpensive, robust, easy to fabricate, and 
compact, which can be used in harsh environments. Therefore, it provides excellent potential in dynamic temperature 
measurement.  

Index Terms— High-order harmonic Vernier effect; M-factor; open cavity FPI; PDMS film; temperature. 

 

 

I.  INTRODUCTION 

N recent years, different types of optical-fiber temperature 

sensor structures have emerged and have been applied in all 

aspects of production and in everyday life [1-4]. Fabry–Perot 

interferometer (FPI) [5,6], Mach–Zehnder interferometer (MZI) 

[7], Michelson interferometer (MI) [8,9], side-polished fibers 

[10], long-period grating [11], fiber Bragg grating [12], and 

surface-plasmon resonance [13] sensors are the most common 

types of optical-fiber temperature sensors. Among these, 

Fabry-Perot (FP) sensors in optical fiber, as a promising 

sensing platform firstly proposed by the physicists Charles 

Fabry and Alfred Perot in 1897 [14], are the most commonly 

used structure owing to its low cost, simple fabrication, and 

ultra-compact in size [15,16]. Optical fiber based FPI is 

attracting wide research interests which includes intrinsic [17], 

and extrinsic FPI [18]. At present, two main types of 

optical-fiber temperature sensors are available, namely, 
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sensors coated with temperature-sensitive materials and those 

without coating. For sensors without a temperature-sensitive 

material coating, the refractive index (RI) and length of the 

optical-fiber change when the external temperature changes 

due to the thermal-optic and thermal-expansion effects of the 

silicon-dioxide material. For example, high-temperature MZI 

based on a few-mode fiber with a sensitivity of 48.2 pm/°C 

was proposed by Liu et al. [19]. A high-temperature sensor 

based on a hollow core fiber with a sensitivity of 33.4 pm/°C 

was reported by Liu et al. [20]. A high-temperature sensor 

based on reflective FPI with a low sensitivity of 20 pm/°C was 

proposed by Ge et al. [21]. To further improve the temperature 

sensitivity, temperature-sensitive materials were coated on the 

surface of the optical-fiber sensors, such as 

polydimethylsiloxane (PDMS), polymer–ultraviolet (UV) glue, 

and silicone. For example, an optical-fiber temperature sensor 

based on PDMS-covered microcavity with a sensitivity of 0.13 

dB/°C was proposed by Iván Hernández-Romano et al. [22]. 

An MI structure based on suspended core fiber that was 

partially filled with polymer–UV glue with a temperature 

sensitivity of −164 pm/°C was proposed by Mallik et al. [23]. 

A fiber-optic temperature sensor consisting of a 

multi-cladding special fiber coated with temperature-sensitive 

silicone with a temperature sensitivity of 240 pm/°C was 

reported by Pang et al. [24].  

PDMS, a cheap, safe, and nontoxic polymer with good light 
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transmission, has been widely used in the temperature sensing 

field owing to its excellent linear thermal-expansion and 

thermo–optic effects. For example, a high-sensitivity-fiber 

temperature sensor based on MZI coated with a PDMS film 

whose corresponding temperature sensitivity was 0.101 nm/°C 

was designed by Gong et al. [25]. The RI value of PDMS 

linearly varied with temperature, and it is expressed as 
4

1.41764.5 10PDMSn () −
= +−  

. Therefore, the RI value of 

PDMS linearly decreased as the temperature increased, and 

the thermo–optic coefficient of the PDMS was −4.5 × 10−4 

RIU/°C [26]. PDMS exhibits high structural flexibility owing 

to its low Young’s modulus, which can solve the fragility 

defect of optical-fiber sensors. For example, an optical-fiber 

blood-pressure monitoring sensor based on a 

single-mode–multimode–single-mode structure encapsulated 

with PDMS to protect the fiber was proposed by Pang et al. 

[27]. In addition, PDMS demonstrates good biocompatibility 

and chemical inertness; thus, it is often applied as a 

microfluidic channel [28-31]. Meanwhile, PDMS has also 

been utilized for chemical detection. For example, methane 

detection down to concentrations ~1 % in N2 has been 

demonstrated through the application of a ZIF-8/PDMS sensor 

coated on an optical fiber by Cao et al. [32]. 

The harmonic Vernier effect was first proposed by A. D. 

Gomes in 2019 [33]. The outstanding advantage of the 

harmonic Vernier effect is its capability to break the limitation 

of the strict optical-path-length matching condition, which 

reduces the difficulty of preparing Vernier effect sensors with 

more considerable fabrication tolerance than the traditional 

Vernier effect. However, although the theoretical research on 

harmonic Vernier effect is relatively perfect, its practical 

application is relatively few. At present, the harmonic Vernier 

effect is only employed in gas-pressure [34], relative-humidity 

[35], and temperature [36,37] applications. More importantly, 

the reported temperature sensor based on the harmonic Vernier 

effect is only on the first order. Therefore, the large advantage 

of the harmonic Vernier effect is not fully exploited. In the 

present study, a high-order (fourth-order) harmonic Vernier 

effect is first applied to temperature measurement that 

demonstrates performance advantages. 

This study proposes and has experimentally demonstrated a 

high-sensitivity open cavity FPI (OCFPI) encapsulated with 

the PDMS film based on a high-order harmonic Vernier effect. 

A short single-mode fiber (SMF) with a length of 67 m was 

spliced between lead-in SMF and 290-m SMF with a large 

lateral offset of 90 m to form a compact OCFPI 

configuration. The fabricated sensor was then encapsulated 

with the PDMS film in which a tightly connected open cavity 

filled with PDMS and a silica cavity with different free 

spectral ranges (FSRs) were used as the sensing and reference 

elements, respectively, to obtain a high-order harmonic 

Vernier effect. An ultrahigh temperature sensitivity of −3.4 

nm/°C with a magnification factor (M-factor) of 

approximately 11 was achieved based on the fourth-order 

harmonic Vernier effect. In addition, the temperature 

sensitivity, reproducibility, reversibility, and stability of the 

OCFPI were experimentally studied and discussed in detail. 

II. EXPERIMENTAL INVESTIGATION 

A. Fabrication of OCFPI and PDMS Film 

Short-section SMF (Corning, ITU-T G.652.D) was 

sandwiched between SMFs with a large offset of 90 m using 

a fusion splicer (Fujikura 80 C) to form OCFPI. Three FPIs 

were fabricated with three reflected interfaces (M1, M2, and 

M3), namely, open cavity (FPI1) with length L1, silica cavity 

(FPI2) with length L2, and hybrid cavity (FPI3) with length L3. 

To generate the harmonic Vernier effect, the lengths of the 

open (L1) and silica (L2) cavities were precisely controlled and 

designed as 67 and 290 m, respectively. To ensure accuracy 

of the cleaved cavity length, the whole cleaving process was 

monitored using an optical microscope. The schematic 

diagram of the sensor structure and corresponding microscopic 

image are shown in Figs. 1(a) and (b), respectively. Then, the 

fabricated OCFPI sensor was encapsulated with a 2-mm-thick 

PDMS film (which is a temperature-sensitive material) whose 

schematic diagram is shown in Fig. 1(c).  

The detailed preparation and encapsulation steps of the 

PDMS film are described as follows. 

1) A Sylgard 184 silicone elastomer base was thoroughly 

mixed with a curing agent at a ratio of 10:1 and stirred for 10 

min. Subsequently, the mixed liquid was allowed to stand for 

1 h to remove the bubbles generated during stirring. 

2) The OCFPI was cleaned three times using ethanol and 

deionized water, and the sensor surface was kept clean. 

3) The mixed liquids were poured into a customized 

C-shaped glass circular groove with a diameter of 2 mm where 

the cleaned optical-fiber sensor was placed at the middle of the 

groove. The schematic diagram is shown in Fig. 1(d). 

4) The abovementioned customized C-shaped glass circular 

groove with an optical-fiber sensor was heated at 70°C for 12 

h in a vacuum drying oven to completely cure the PDMS and 

obtain good stability. Figs. 1(e)–(g) show the images of the 

fabricated OCFPI encapsulated with the PDMS film (a 

transparent solid film) obtained by an optical microscope. In 

Fig. 1, the image (e) is the top view and images (f) and (g) are 

the side view. 
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Fig. 1. (a) Schematic diagram of OCFPI. (b) Microscopic image of the 
sensor structure. (c) Schematic diagram of OCFPI encapsulated with 
PDMS. (d) Schematic diagram of the sensor encapsulated with a PDMS 
film with the customized glass circular groove. Fabricated OCFPI with a 
PDMS film. (e) Microscope image in X view. (f) and (g) Microscope 
image in Y view. 

B.  Experimental Setup and Working Principle 

Fig. 2 shows a schematic diagram of the experimental setup 

for the temperature measurement. The OCFPI encapsulated 

with the PDMS film was placed in a vacuum drying oven 

(DZT-6022, Shanghai Yiheng Scientific Instrument Co., Ltd). 

The fabricated temperature sensor was linked to a broadband 

light source [BBS (FiberLake ASE)] and the optical-spectrum 

analyzer [OSA (AQ6370C)] through a circulator. RI (nPDMS) of 

the PDMS filled within the FPI varied from 1.3996 to 1.3907 

when the temperature increased from 40℃ to 60℃ [26]. The 

silica cavity was a reference cavity with RI = 1.45 (n2). The 

temperature change caused a change in RI (nPDMS) and the 

length in the open cavity (L1), resulting in the monotonical 

shift of the reflection spectrum. Therefore, the proposed 

OCFPI sensor could be used for temperature sensing. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Schematic diagram of the experimental setup for temperature 

sensing. 

When the optical-path difference (OPL) of one 

interferometer increased by a multiple (i times) of OPL in the 

second interferometer, harmonics of the optical Vernier effect 

are generated [33]. For the ith-order harmonic Vernier effect, 

(1) is satisfied, where i is an integer related to ith OPL of the 

sensing cavity and the reference cavity expressed in (2) [38]. ∆ 

is defined as the OPL detuning between the sensitive and 

reference cavities. The M-factor of the ith-order harmonic 

Vernier effect is defined as the FSR ratio of the internal 

envelope to the spectrum of the sensitive cavity (open cavity) 

calculated by (3), where FSRint and FSRopen are the FSRs of 

the internal envelope and FPI1, respectively [39]. 
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Fig. 3. (a) Spectra of the internal envelope based on the fourth-order 
harmonic Vernier effect and upper envelope of the fabricated OCFPI 

encapsulated with PDMS film at 60℃. (b) Spatial-frequency spectra 

based on linear-in-wavenumber resampling using fast Fourier transform 
in (a). (c) Filtering spectrum corresponding to peak 1. (d) Filtering 
spectrum corresponding to peak 2. (e) Filtering spectrum corresponding 
to peak 3. 

Fig. 3(a) shows the reflection spectrum of the OCFPI 

encapsulated with a PDMS film at 60℃, which is a typical 

spectrum of the fourth-order harmonic Vernier effect. This 

spectrum included five internal envelopes that are labeled as 

env-1, env-2, env-3, env-4, and env-5 using the internal 

envelope fitting method, which could be obtained from our 

previous work [25], and one upper envelope with FSR of 

12.88 nm. The spatial-frequency spectra based on 

linear-in-wavenumber resampling using fast Fourier transform 

[Fig. 3(b)] could be obtained from Fig. 3(a), which contained 

three frequency-domain peaks (peak1, peak2, and peak3) that 

corresponded to three FP cavities, namely, FPI1 (open cavity), 

FPI2 (silica cavity), and FPI3 (hybrid cavity) [40]. Fig. 3(b) 

shows that OPL of FPI2 was 11 times that of FPI1, which 

satisfied (1). Therefore, the proposed OCFPI induced an 

optical harmonic Vernier effect. By substituting the specific 

OPD values of FPI1 and FPI2 (92.8 and 420.25 m) into (1), 

we could observe that the optimal order of the designed 

OCFPI was four, and the corresponding detuning ∆ value was 

−43.75 m with M-factor of 11. The FSR of FPI1, FPI2, and 

FPI3 (12.94, 2.84, and 2.38 nm, respectively) computed using 

(4) agreed well with the results (12.96, 2.86, and 2.34 nm, 

respectively) achieved by filtering peak 1, peak 2, and peak 3, 

respectively, as shown in Fig. 3(c) [41]. The reflected 

spectrum of the OCFPI shown in Fig. 3(a) was generated by 

the superposition of the three spectra [Figs. 3(c)–e)]. 

According to the previously reported literature [42], the upper 

envelope of the OCFPI was entirely determined by the single 

open cavity (FPI1), which confirmed that the upper envelope 

of the OCFPI fully reflected the FPI1 information. The 

information of the sensitive cavity (FPI1) could be directly 

obtained by tracking the upper envelope. Figs. 3(a) and (c) 

show that FSR of FPI1 (12.96 nm) obtained by filtering peak1 

was equal to the upper envelope FSR (12.88 nm), which 

conformed to the basic principle.  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Temperature Measurement and Repeatability 

During the heating process, the temperature gradually 

increased from 40℃ to 60℃ at a step change of 2℃, and each 

temperature value was stabilized for 1 h. Fig. 4(a) shows that 

the fitted upper envelope of the OCFPI reflection spectrum 

exhibited a significant blue shift as the temperature increased 

from 40℃ to 60℃. The main reason for this shift was the RI 

change in PDMS from 1.3996 to 1.3907 as the temperature 

increased from 40℃ to 60℃ [26]. The excellent linear 

relationship between the wavelength shift of the upper 

envelope and temperature is shown in Fig. 4(b). The 

measurement was repeated three times to study the 

repeatability of the temperature sensor. The average 

temperature sensitivity was −0.32 nm/℃ with a linear 

correlation coefficient of 0.999. We could observe that the 

proposed OCFPI exhibited good repeatability. 
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Fig. 4. Heating process. (a) Spectral response of the OCFPI upper 

envelope as the temperature varies from 40℃ to 60℃. (b) Measured 

wavelength shift and calculated sensitivity of the OCFPI upper envelope 
versus temperature for three times. (c) Spectral response of OCFPI 
env-1 based on the fourth-order harmonic Vernier effect as the 

temperature varies from 40℃ to 60℃. (d) Measured wavelength shift 

and calculated sensitivity of OCFPI env-1 based on the fourth-order 
harmonic Vernier effect versus temperature for three times. 

To verify whether the designed OCFPI achieved sensitivity 

amplification, the spectral response of the temperature sensor 

was analyzed by tracking env-1 based on the fourth-order 

harmonic Vernier effect. Figs. 4(c) and (d) show that the 

spectrum of env-1 based on the fourth-order harmonic Vernier 

effect demonstrated a monotonic blue shift tendency when the 

temperature increased from 40℃ to 60℃ with an average 

temperature sensitivity of −3.4 nm/℃ and a good linear 

correlation coefficient of 0.999, respectively. The temperature 

sensitivity of the OCFPI upper envelope was equal to that of 

the single sensitive cavity (FPI1). Therefore, M-factor of the 

OCFPI was calculated to be approximately 11, which was 

consistent with the theoretical calculation using (3). The 

temperature sensitivity of OCFPI improved from −0.32 to 

−3.4 nm/℃ with the help of the fourth-order harmonic Vernier 

effect, which was much higher than the traditional internal- 

and external-cavity FPIs with low sensitivity of 3.5 pm/℃ 

[42]. 

B. Reversibility of OCFPI 

Reversibility, as an important parameter, characterizes the 

performance of temperature sensors. To verify the OCFPI 

reversibility, the temperature was designed to decrease from 

60℃ to 40℃ at a step change of 2℃ for three times. The 

spectral response of the upper envelope during the cooling 

process is shown in Fig. 5(a). The spectrum evidently moved 

toward the long-wave direction when the temperature 

decreased from 60℃ to 40℃. The average temperature 

sensitivity of the upper envelope was −0.325 nm/℃ with a 

good linearity of 0.999, as shown in Fig. 5(b), which was 

consistent with the heating process (−0.32 nm/℃). The spectra 

of tracked env-1 based on the fourth-order harmonic Vernier 

effect are shown in Fig. 5(c), which indicated an obvious red 

shift as the temperature decreased from 60℃ to 40℃. The 

average temperature sensitivity was −3.42 nm/℃, as shown in 

Fig. 5(d). We could observe that the OCFPI coated with 

PDMS demonstrated excellent reversibility and repeatability. 

The M-factor value of the OCFPI based on the fourth-order 

harmonic Vernier effect in the experiment was approximately 

11, which agreed well with the heating process and 

theoretically calculated value using (3). 

 

 

 

 
Fig. 5. Cooling process. (a) Spectral response of the fitted upper 

envelope as the temperature varies from 60℃ to 40℃. (b) Measured 

wavelength shift and calculated sensitivity of the OCFPI upper envelope 
versus temperature for three times. (c) Spectral response of OCFPI 
env-1 based on the fourth-order harmonic Vernier effect as the 

temperature varies from 60℃ to 40℃. (d) Measured wavelength shift 

and calculated sensitivity of OCFPI env-1 based on the fourth-order 
harmonic Vernier effect versus temperature for three times. 

C. Stability of OCFPI 

In addition, stability, as an important indicator, is used to 

determine the performance of temperature sensors. The OCFPI 

stability was experimentally tested for 450 min when the 

temperature remained at 40℃ and 60℃. The experimental 
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data of the spectral monitoring were recorded every 30 min for 

every experimental data. The spectral responses of the tracked 

upper envelope and env-1 based on the fourth-order harmonic 

Vernier effect at 0 and 450 min are shown in Fig. 6(a) when 

the temperature values were 40℃ and 60℃, respectively. 

However, no obvious wavelength shift was observed in the 

spectrum (within 450 min of continuous monitoring). The 

summarized wavelength deviation of the temperature sensor 

within 450 min is shown in Fig. 6(c). The maximal dip 

wavelength fluctuations of the upper envelope and env-1 

based on the fourth-order harmonic Vernier effect were 0.042 

and 0.567 nm, respectively, which revealed that the proposed 

temperature sensor had a relatively good stability. Fig. 6(c) 

shows that the wavelength shifts of env-1 based on the 

fourth-order harmonic Vernier effect was very much larger 

than that of the upper envelope at the same temperature 

interval. More importantly, the wavelength shifts of env-1 

based on the fourth-order harmonic Vernier effect (72.5 nm) 

from 40℃ to 60℃ was approximately 11 times that of the 

upper envelope (6.9 nm), which was in accordance with the 

theoretical calculated value of the M-factor and the 

aforementioned experimental results. This result proved that 

the proposed temperature sensor could provide good 

performance advantages that are extremely suitable for 

applications in environments that require high stability. 

 

 

 

Fig. 6. Stability test. (a) Spectral response of the upper envelope at 0 

and 450 min when the temperature is stable at 40℃ and 60℃. (b) 

Spectral response of env-1 based on the fourth-order harmonic Vernier  

effect at 0 and 450 min when the temperature is stable at 40℃ and 60℃. 

 (c) Stability test: measured wavelength shifts of the upper envelope and 
env-1 based on the fourth-order harmonic Vernier effect within 450 min. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 lists the summary of the temperature sensitivity and 

difficulty of preparation of the different optical-fiber 

temperature sensors. By comparison, the sensitivity of our 

proposed sensor is higher than those listed in Table 1. 

IV. CONCLUSION 

This work has proposed and experimentally studied OCFPI 

encapsulated with the PDMS film based on the high-order 

harmonic Vernier effect. First, the OCFPI sensor was designed 

to be 67 and 290 m according to the principle of the 

harmonic Vernier effect. The OCFPI sensor was encapsulated 

with the PDMS film, and the corresponding reflection spectral 

components were analyzed in detail using fast Fourier 

transform. The OCFPI encapsulated with the PDMS film was 
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TABLE 1 
PERFORMANCE COMPARISON OF DIFFERENT OPTICAL-FIBER 

TEMPERATURE-SENSOR STRUCTURES 

Fiber Structure Materials 

 

Sensitivity 

(dB/℃ or 

nm/℃) 

 

Operational 

complexity 

 

References 

air-microbubble 

FPI 

PDMS 2.7035 nm/℃     complex [43] 

Dual HCF-based 

FPI 

No −0.481 

nm/◦C 

simple [44] 

peanut-shape 

structure 

No 0.073 nm/°C simple [45] 

few-mode 

dual-concentric-c

ore fiber 

 

No 

 

52.79 pm/°C 

 

simple 

 

[46] 

D-shaped 

polarization-main

taining fiber 

No 130 pm/°C simple [47] 

singlemode–corel

ess–singlemode 

(SCS) fiber 

structure-based 

fiber ring cavity 

laser 

No 11 pm/°C simple [48] 

multimode 

microfiber-based 

dual MZI 

No −0.193 

nm/°C 

complex [49] 

Etched PCF FPI 

Micromachined 

by a 157-nm 

Laser 

No 0.45 pm/°C complex [50] 

Batch-producible 

all-silica 

fiber-optic FP 

sensor 

No 0.435 nm/°C complex [51] 

OCFPI PDMS -3.4 nm/°C simple Proposed in 

 this paper 
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placed in a vacuum drying oven for temperature measurement. 

The spectral response of the OCFPI encapsulated with the 

PDMS film exhibited a significant blue shift when the 

temperature increased from 40℃ to 60℃ for three times. The 

average temperature sensitivities of env-1 based on the 

fourth-order harmonic Vernier effect and upper envelope were 

−0.32 and −3.4 nm/℃, respectively, with an M-factor value of 

11 and a small error bar. In addition, the proposed temperature 

sensor demonstrated good reversibility and repeatability with a 

similar temperature sensitivity during the heating and cooling 

processes. Furthermore, the stability of the OCFPI 

encapsulated with the PDMS film based on a high-order 

harmonic Vernier effect was experimentally investigated. The 

maximum wavelength shifts of env-1 based on the 

fourth-order harmonic Vernier effect and upper envelope were 

only 0.567 and 0.042 nm, respectively, within 450 min, which 

proved that the proposed temperature sensor can provide 

excellent stability.  
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