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Abstract

Statistical inferences from observed studies with error prone measurements are often bi-
ased. The bias is a consequence of the deviation of the probability distribution that
generates the observed data from that which generates the true unobserved data. For
example, in binary data where measurement error is a misclassification problem, an obser-
vation with a true value of 0 is observed as 1 or vice versa. Past research in this framework
often focuses on the use of a validation study to account for measurement error in the main
study. A shortcoming of this approach is a lack of validation data to inform the correc-
tion of measurement error in the main study. Another challenge is the non-availability of
ready to use statistical software in implementation. To overcome some of the challenges
of current approach to the analysis of binary data with measurement error, we investigate
the performance of the naive logistic regression model, which we refer to as the assumed
model, against a modified model. By modified model we mean an extended logistic regres-
sion model, where we introduced the probability of measurement error as a modification
weight. The modification weight introduced is in the direction of the nondifferential and
differential misclassification pattern. Following Cook’s (1986) normal curvature approach,
we derive an influence measure for the special cases of when the presence of binary out-
come Y ∗

i = 1 is error prone, and also for the absence of the outcome Y ∗
i = 0. The method

is applied to a dataset from the rehabilitation programme study for juvenile offenders,
where Y ∗

i = 0 is measured with error. As different compositions of measured values of
binary outcomes often exist in real studies, hence, we further conducted a simulation study
for different scenarios for the special cases Y ∗

i = 1 and Y ∗
i = 0. Our theoretical results

show that when there is no information about the error size, the assumed model appears
to be the most stable model compared to the modified models. But, the assumed model
estimates could be biased when measurement error is present. Thus, it is important to
investigate model stability and how model estimates behave within a plausible range of
error size, and report all the findings.
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Chapter 1

Introduction

Problems of model uncertainty and incomplete data arising from measurement error, con-
founding and missing data are fundamental problems in statistical sciences. As a result,
studies in many areas are prone to potential biases which threaten the validity of results.
In practice, studies will lead to misleading information if the impact of potential biases are
not considered in statistical techniques. However, most researchers normally assume that
the statistical model being considered is a true realisation from which the observations
or data are generated. Sometimes, a model is chosen for reasons of mathematical conve-
niences or because the model has been used by previous researchers (Copas and Egushi,
2010). Although it is never possible to completely capture all the potential biases, if a per-
turbation to the assumed model significantly affects the inference drawn from the analysis,
then this may indicates a further investigation into the model’s assumptions.

Most of the literature addresses each source of bias separately to achieve better under-
standing. For example, it is well known that missing data and confounding are frequent
issues in observational studies, surveys, and randomised controlled experiments. In the
case of missing data, the missing data mechanism can generally be characterised into
three types: missing at random (MAR), missing not at random (MNAR), and missing
completely at random (MCAR) (Little and Rubin, 2002). Therefore understanding and
addressing the reasons, mechanism of missingness, and methods to handle missing data is
essential for the methods used for inference. Hence, several methods have been developed
for handling incomplete data (see Diggle and Kenward, 1994; Little and Rubin, 2002;
Ibrahim et al., 2005; Molenberghs et al., 2008; Little and Zhang, 2011 for a review).

While incomplete (or missing) data and confounding are now increasingly taken into ac-
count by means of study design or modification in data analysis, the potential for hidden
bias due to measurement error, which can lead to inaccurate estimates of the parameter(s)
of interest, is more routinely disregarded. Many researchers incorporate the unknown mis-
classification probability in the likelihood function of an assumed model, and they mostly
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1.1 Binary Outcome Missclassification 2

performed sensitivity analysis in order to account for measurement error (for example,
Cook, 1986; Copas and Li, 1997; Copas and Shi, 2000; Molenberghs et al., 2001). In
this way, they were able to examine the influence of uncertainty both from the data and
model. This has been used in different ways for the same purposes in assessing the in-
fluence of potential biases in an assumed model. Copas and Eguchi, 2005; 2001 discussed
local sensitivity analysis when inference is based on missing observations. Zhu and Lee
(2001) considered an alternative to likelihood displacement based on the power and wide
applicability of the EM algorithm (for full detail on EM algorithm, see Dempster et al.,
1977), and proposed a method to assess the influence of a deviation in a model with miss-
ing data. The proposed method was extended to generalized linear mixed models and a
variety of complicated models. Lin et al. (2012) extended Copas and Eguchi’s work and
discussed the marginal model bias in confounder problems for generalized linear mixed
model with nonlinear link functions.

On the other hand, most literature on measurement error is based on methods used to
account for either error prone outcomes and/or covariate(s) which might be present in
observed data. Very little has been done to assess the local influence in a minor perturba-
tion of a binary model with outcome misclassification. Motivated by recent advances in
assessing local influence relating to incomplete data, the rest of this chapter presents the
overview of binary outcome misclassification, and an approach to account for the error is
highlighted in Section 1.1. In Section 1.2, the underlying existing methods of influence
analysis are illustrated. Followed by the aims and objectives in Section 1.3. The thesis
structure is presented in Section 1.4.

1.1 Binary Outcome Missclassification

There are inevitable problems in measurements where an observation(s) is classified or
measured in error for a variety of reasons. For example, in medical sciences, precise
classification may only rarely be possible. It has been suggested in the literature to
construct a mental health scale (Bross, 1954) with some critical points for classification of
whether an individual falls below or above the scale. For some diseases some classifications
may contain considerable risk of error, while some may involve almost no risk of error.
Some researchers are of the opinion that the effect of misclassfication would cancel out
and the usual (commonly referred to as naive) analysis can be done. On the other hand,
some argued that no conclusion can be drawn from naive analysis since data are prone to
error.

Suppose Yi is the unobserved true response variable, for i = 1, · · · , n with n being the
number of subjects and Xi are the true covariates. The unobserved true response variable
takes one of only two possible values, that is, yi = 1 represents presence of an attribute of
interest and yi = 0 otherwise. Suppose the true distribution for Yi is Yi|Xi ∼ Bin(1, πi),
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1.1 Binary Outcome Missclassification 3

and
πi = P (Yi = 1|Xi) =

exp(α+ θXi)

1 + exp(α+ θXi)

where θ is the unknown true parameter of interest, α is the nuisance parameter. In the
case of the observed data, the observed response variable is assumed to be measured with
error. When measurement error is not considered, the assumed logistic model (commonly
referred to as naive analysis) is Y ∗

i |Xi ∼ Bin(1, π∗i ), and

π∗i = P (Y ∗
i = 1|Xi) =

exp(α∗ + θ∗Xi)

1 + exp(α∗ + θ∗Xi)

where θ∗ is the observed parameter of interest for Y ∗
i . The corresponding log-likelihood

function is
ℓ(θ∗) =

n∑
i=1

y∗i log(π∗i ) + (1− y∗i ) log(1− π∗i ) (1.1.1)

However, it has been suggested in the literature that estimates of θ∗ obtained from naive
analysis (1.1.1) are biased for θ, since errors in the outcome variable can lead to loss of
essential information about covariate effects (see Baron, 1977; Greenland, 1980; Neuhaus,
1999; Carrol et al., 2006; Lyles et al., 2011).

Hence, there are several different approaches in the literature used to account for mea-
surement error. Some of these are regression calibration (see Carroll and Stefanski, 1990;
Thurston et al., 2003; Freedman et al., 2008), and multiple imputation (Cole et al., 2006).
Another approach used in literature to account for measurement error is maximum likeli-
hood estimation for the main study data with additional validation data (Karen and Loki,
2008; Lyles et al., 2011). A validation study can be internal or external. An internal valida-
tion study is a portion of observed (commonly referred to as main study in literature) data.
For example, suppose y∗1, ..., y∗k, ...y∗k+m, · · · , y∗n, x1, · · · , xk, · · · , xk+m, · · · , xn, yk, · · · , yk+m

is the observed data. Then y∗k, ...y
∗
k+m, xk, ..., xk+m, yk, ..., yk+m is the internal validation

data contained in the observed/main data. External validation data is a set of data out-
side of the main study data to help correct for measurement error, which contains for
example, y∗1, · · · , y∗v , y1, · · · , yv, x1, · · · , xv. In Chapter Two, we will show how to use the
internal validation subgroup combined with the main study to account for measurement
error.

However, when validation substudy data is not available, the most common approach
in literature is to vary the value of probability of measurement error between 0 and 1.
Here, we denote probabilities of measurement error to be ζ = P (Y ∗

i = 0|Yi = 1) and
γ = P (Y ∗

i = 1|Yi = 0). Thus, sensitivity is the probability of being observed to be true
(that is, Y ∗

i = 1) given that the unknown outcome is true Yi = 1. Similarly, the probability
of being observed to be false (that is, Y ∗

i = 0) given that the unknown outcome is false
Yi = 0, is referred to as specificity. The mechanism of measurement error of a binary
outcome is shown in Figure 1.1. An overview of some of the methods used in accounting
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for measurement error is described in Chapter Two.

xi

yi = 1 yi = 0

y∗i = 1 y∗i = 0y∗i = 1 y∗i = 0

πi 1− πi

γ (1− γ)(1− ζ) ζ

Figure 1.1: Mechanism of measurement error of binary outcome

Broadly, there are several papers in the literature where researchers have described fre-
quentist and Bayesian methods to account for measurement error in the response and/or
covariate(s). However, it appears there are very few approaches to assess the discrep-
ancy between naive (assumed) analysis and the underlying model from which the data
was generated using the above mentioned methods for accounting for measurement er-
ror. Therefore, it is important to investigate how stable an assumed or any other models
are under the influence of measurement error, especially when there is no validation sub-
group.

1.2 Influence Analysis

There is cause for concern if a slight modification to an assumed model influences key
results or conclusions drawn from an analysis. Otherwise the assumed model is said to be
robust if such modification will do no harm (Barnard, 1980). More confidence can be put
in an assumed model which is relatively stable under slight modification as highlighted by
(Cook, 1986). Hence, it becomes imperative to examine a sensitivity study or an influential
analysis of model assumptions as discussed by Critchley et al., (2001), since a statistical
model is more or less a realisation of a scientific process from which the data is generated
(Cook, 1986).

1.2.1 Case Deletion

Initially, measures such as studentized residuals, estimated variances of the predicted
values as illustrated by Behnken and Draper, 1972; and sum of squares of the variances
of the predicted values, a robust design approach developed by Box and Draper, 1975 are
used for detecting data point(s) that contributed or exert undue influence on summary
statistics arising from data analysis, especially in linear regression models. These measures
were believed to contain useful information such that, when a potential influential data
point has been detected, it follows that the analysis of the effects of deleting the data
point is next (Cook, 1977). However, one fundamental issue is the question of which
data point(s) is to be deleted from an observed data. As a result, a new measure that
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incorporates information from both studentized residuals and variances of the residuals
and predicted values was developed by (Cook, 1977). The measure is used to determine
the degree of influence each data point has on the estimated parameter of interest.

An example of influence analysis in case deletion of linear regression is as follows: Suppose
observed data containing n observations (y1, x1), · · · , (yn, xn). Let θ̂ represent the maxi-
mum likelihood estimate obtained from a linear regression model based on the full observed
data. Next, delete the i′th subject and recalculate the maximum likelihood estimate, de-
noted as θ̂i. If the removal of the i′th subject causes substantial change in the results
of the analysis, it may be necessary to inspect the effect or impact of the corresponding
subject. This suggests that the assumed linear regression model might be sensitive to
the modification. Hence, Cook (1977) provides a measure to judge the contribution of
each observed data point, which can be assessed by examining the difference between θ̂

obtained from the full data, and θ̂i a maximum likelihood estimate calculated from the
data without the i′th subject. This is commonly known as the Cook distance Di, defined
as

Di ≡
(θ̂i − θ̂)

′
X

′
X(θ̂i − θ̂)

ps2

where Di is obtained for each subject ith, p is the dimension of θ (that is, the number of
covariates for each subject), X is an n × p full rank design matrix including a constant,
with n being the number of subjects, and s2 is the mean squared error of the assumed
linear regression model. Di provides varying information in relation to the effect of the
ith subject on the fitted model, which can be used to determine observations not well
explained by the fitted model.

Furthermore, in the case of a logistic regression model, Pregibon (1981) highlighted that
asymptotic arguments suggest that the deviance and chi-squared statistics should identify
data point(s) dominating part of the fitted model and observations not well explained by
the assumed model. However, these statistics cannot measure the individual effects on
the many components of the fitted model, such as the estimated parameter(s), estimated
covariance matrix of the parameters, and individual standard errors. Hence, he suggested
two approaches for assessing the impact or effect of each data point on a fitted model. One
is assessment by deletion as described above, and the second is assessment by small modi-
fication. Examples of modifications include: A weight is attached to an individual subject
generally referred to as case weight, or changes in the individual parameter estimates.
Other modifications are possible.

However, the case deletion idea described above has major concerns since it allow only
one of two possibilities; either a case is retained or it is removed, which may cause a
considerable amount of change in the results obtained from an analysis. Rather than
deleting a case from the full observed data, we can perturb it by incorporating modification
in an assumed fitted model, where the ith subject becomes 0 when the case is deleted and
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1 otherwise.

1.2.2 Case Weight Modification

With modification, the case deletion idea was extended to accommodate varying weights
using sensitivity analysis rather than deleting cases. This is commonly referred to as a
case weight diagnostic procedure, where a modification parameter, say γ, is attached to
an assumed model, such that a case or the i’th subject is allowed to have possible values
of γ while the remaining cases have γ = 1. Hence, we can investigate the i’th subject over
the entire range of γ, using the more general influence statistics Dγ as proposed by Cook,
where Dγ is

Dγ =
∥Ŷ − Ŷγ∥

2

pσ2

where Ŷ and Ŷγ are the predicted values obtained from the assumed model and a model
over the specified range of values for weight γ respectively.

Since the modification parameter γ can be any well-defined q × 1 perturbation vector,
Cook (1986) developed a new approach for handling a variety of model modification. This
approach, generally known as local influence, is used for investigating how the results
of an analysis change when a statistical model is under minor modification. A general
discussion on using a likelihood approach to evaluate the consequences of model deviation
was highlighted by (Barnard, 1980). Thus, Cook’s concept of a local influence approach is
developed following the idea of likelihood displacement which is based on comparing the
likelihood function of an assumed model ℓ(θ∗) to the likelihood function ℓ(θγ) of modified
model (that is, a model where modification, or weights γ are introduced in the assumed
model, varying throughout space Ω, but bound to some Ω ⊂ Rq).

In influence analysis, curvature of likelihood displacement is used to study the behaviour of
the log-likelihood function of a model over the entire range of the modification parameter
γ. This provides different information from that of Cook’s distance. Hence, the concept
of curvature of likelihood displacement uses differentiation (see Chapter Three of this
thesis) rather than the method of differencing in subject deletion analysis. Likelihood
displacement is generally expressed as

LD(γ) = 2[ℓ(θ∗)− ℓ(θ|γ)]

In addition, the method uses normal curvature from differential geometry from its use of
an influence graph (that is a graph of LD(γ) versus γ) to measure the effect of influence.
An overview of Cook’s local influence is detailed in Section 3.1 of Chapter Three.

Poon and Poon (1999) pointed out that the computation of eigenvalues and eigenvectors
in Cook’s approach may be difficult in problems with large dimensions, where there may
be no objective criterion to judge the magnitude of normal curvatures and the relative size
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of the components of the corresponding directions. As a result, they developed another
measure (named conformal curvature) said to be a one-to-one function of normal curvature,
ranging between 0 and 1. The conformal curvature method is an effective measure of local
influence, which could be used as a criterion or benchmark to judge magnitude of curvature
and could enhance the applicability in a theoretical framework. Hence the computation
of eigenvectors is no longer necessary (Poon and Poon, 1999).

On the other hand, Cook’s concept of normal curvature has become a key means for
researchers to develop influence measures used to evaluate the difference between an as-
sumed model and a perturbed model. There is extensive research activity where normal
curvature has been used to detect influential data points. Cook’s (1986) concept of normal
curvature has a feature that relies on log-likelihood and differential geometry which pro-
vides a general framework for assessing influence of deviation in a statistical model. This
has been used to describe and propose diagnostic measures in a variety of ways. For exam-
ple: detection of influential observations when a weight is introduced in linear regression
(Cook, 1986); modification of the missing-at-random model assumption in the direction of
a non-random dropout model, this method provides a framework for non-random dropout
for incomplete longitudinal data (Verbeke et al., 2001); a statistic based on local influence
measures was proposed to identify influential data points and for checking the fit of a
model (Zhu and Zhang, 2004).

Verbeke et al. (2001) developed a measure to assess the influence of nonrandom dropout
on the parameter of interest in incomplete repeated continous data assumed to be under
the MAR (Missing-at-random) mechanism. A dropout in the analysis of a longitudinal
study occurs when some sequences of responses are missing or terminate early from the
study. The three major missingness techniques are Missing at random (MAR), Missing
not at random (MNAR) and Missing completely at random (MCAR). Comprehensive
information about missing data mechanisms can be found in Rubin, (1987). Verbeke et
al. (2001) illustrated how a missing at random model can be modified in the direction
of non-random dropout, in order to investigate subjects that have considerable influence
on the model parameters. The proposed influence measure is based on normal curvature,
an overview of which is presented in Chapter Three of this thesis. Verbeke et al. (2001)

emphasized to consider modification of the missing not-at- random process, and that the
study of local influence measures can provide essential information into which subject
influences model parameters.

Steen et al. (2001) followed Verbeke’s approach to propose a measure to assess the influence
of the parameter describing non-random dropout and the measurement process parameter
of incomplete repeated ordinal data. They used normal curvatures at the point γ = 0 (an
assumed model before perturbation) for each direction hj of γ1, · · · , γq as a measure to
assess influence.

Zhu and Zhang (2004) stated that most influence measures based on normal curvature
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proposed in the literature only identify influential subjects or observations, but that the
approach seemingly could not be used to assess the difference between the underlying
model and an assumed model which does not belong to the true model. Hence they pro-
posed a measure based on normal curvature for judging the adequacy of an assumed model
for a case weight modification scheme. Zhu and Zhang (2004) highlighted the measure as
a diagnostic approach for checking overall fit of the postulated model. Therefore it can be
adapted to generalised linear models.

Selecting an inappropriate modification vector to a statistical model may lead to misleading
inferences about the effect of the modification, since the perturbation vector is central to
the development of inference measures (Zhu et al., 2007). However, choice of a modification
vector has been widely neglected, and development of most influence measures is limited
to normal curvature of an objective function at a point with a zero first derivative (critical
point). This is another major drawback with conformal curvatures and Cook’s normal
curvature. Hence, Zhu et al.(2007) proposed a measure (named perturbation manifold)
based on the definitive clarity of metric tensors, and finely-adjusted connections to choose
an appropriate perturbation to a statistical model. In addition, the measure can assess
the local influence of minor modification to a statistical model by using the first and
second derivatives of likelihood displacement. Chen et al.(2010) applied the perturbation
selection method of Zhu et al, (2007) in the context of Generalized Linear Mixed Models.
Chen et al.(2010) considered four different modification scenarios but used metric tensors
to determine the appropriate perturbation, with second order measure in local influence
analysis (Chen et al.,2010).

Frequentist methods are not the only means used to assess influence of modification of a
statistical model. For example, Cho et al.(2009) developed case-deletion influence based
on the Kullback–Leibler (KL) divergence, to assess the influence of a case on joint and
marginal posterior distributions for Bayesian survival models with continuous survival
time data. The 3 key elements of Bayesian analysis are the data y = y1, · · · , yn, the
sampling distribution P (y|θ), where θ = (θ1, · · · , θp)T are the parameters of interest, and
the prior distribution p(θ) of the parameters. In order to identify outliers and influential
observation(s), the influence of an individual yi or a set of observations is often assessed by
deleting observation(s), and then comparing the predictive and/or posterior distribution
p(θ|y) based on the full data y1, · · · , yn compared to that of posterior and/or predictive
distribution of the deleted observation(s). With regard to the above-mentioned three key
elements of Bayesian analysis, there are three major formal influence methods for measur-
ing the degree of dependence to which posterior distributions are sensitive. These three are
case influence, global robustness and local robustness techniques (Berger, 1990, 1994). The
most popular case influence measures, including posterior probabilities of an outlying set of
observations, posterior outlier quantities, predictive diagnostics, and posterior diagnostics
for identifying outliers and influential points, are developed by using either modification
or deletion of observation(s) (Zhu et al., 2010). In the Bayesian literature, little research
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has been done on developing unifying influence measures based on the Bayesian approach
for assessing the effects of perturbing the prior, sampling distribution, or the data (Berger
et al. (2000)). Hence, a unifying geometric framework of influence measures based on
the Bayesian perturbation manifold is developed by Zhu et al., (2011). Their proposed
measure can be used to quantify the effect of various modification schemes on statistical
models, and is very much applicable for many complex Bayesian models.

Zhu et al. (2012) highlighted that Bayesian case influence measures using case deletion
are difficult to implement computationally in most models with missing data. Hence, they
suggest using Markov chain Monte Carlo (MCMC) samples from the posterior distribution
p(θ|y) based on the full data to compute first-order approximations to the Bayesian case
influence measures. This was examined and illustrated for latent variable models with
missing data (see Zhu et al., 2012).

1.3 Aims and objectives

In this thesis we aim to determine the sensitivity or robustness of a logistic regression
model to the impact of measurement error. The primary focus will be the use of normal
curvature from the differential geometry to provide essential information about any given
model, modified to account for outcome measurement error. A modification of a logistic
model in the direction of nondifferential and differential misclassification patterns (see
detail in Section 4 of Chapter Three, and Chapter Four) present in observed data with
binary outcomes will be explored. This will permit the introduction of measurement error
parameters in (1.1.1) (that is, the log-likelihood likelihood function of a logistic model,
assumed to be without error). Although several researchers accounted for misclassification
through the use of main/external or main/internal validation study data, we will assume
values from 0 to 1, since obtaining accurate values for misclassification probabilities might
be difficult. Each assumed value is a distinct model. Thus, assuming values from 0 to 1

will yield several models corresponding to each of the combinations of the assumed varying
values of ζ and/or γ.

1.3.1 Motivation

We consider a motivating example taken from a rehabilitation programme study for juve-
nile offenders. There are 2 groups of juvenile offenders who participated in the study, one
group joined the rehabilitation programme, the other did not. A cross-sectional analysis
of the data was considered, where rehabilitation programme status is the exposure X and
reoffending is the outcome of interest Y ∗. The primary objective of the study was to
examine whether the rehabilitation programme can reduce the reoffending rate amongst
juvenile offenders within 2 years. A naive analysis suggests a positive relationship between
reoffending and the rehabilitation programme. However, the problem of outcome misclas-
sification arising from undetected crime would distort the validity of the estimated odds
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ratios (ORs) and might lead to misleading conclusions, since the naive analysis ignores the
problem of measurement error. Figure 1.2 depicts the structure of the misclassification
rate present in the rehabilitation study data where;

• yi is the true response variable (0 if an offence has occurred, 1: otherwise)

• y∗i is the observed response variable (0 observed re-offence, 1: otherwise: non-
offending)

• Xi is a binary treatment variable (1; joined rehabilitation programme, 0 did not join
the programme)

• πi is the unknown true probability of not reoffending

• γ is the probability of undetected crime

yi = 1 y∗i = 1

xi

yi = 0
Measurement

error
y∗i = 1

y∗i = 0

πi

1− πi
γi

1− γi

Figure 1.2: Undetected Crime: Misclassification of occurrence of observed re-offence
y∗i = 0.

In addition, there is a fundamental issue about the choice of appropriate assumptions
surrounding the potential misclassification rate that may be present in the rehabilitation
programme data. The misclassfication pattern with respect to the outcome variable (that
is, reoffending) in our motivating example may assume nondifferential or a differential
approach. A nondifferential misclassification scheme assumes the unknown probability
of measurement error is constant based on a participant’s specific variable, while a dif-
ferential misclassification pattern assumes the error-prone variable is dependent on other
covariate(s) of interest. As a result, it is important to examine into the different measure-
ment error patterns in outcome Y ∗ and assess its impact in the stability of the assumed
fitted model or modified model. In our example, exploration into the misclassification
rate of reoffending may be invariant to exposure status as in the case of nondifferential
misclassification or may depend on whether an offender joined xi = 1 or did not join the
programme xi = 0.
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Therefore, to investigate the robustness of the model fitted from the naive analysis (as-
sumed model) in adjusting for undetected crime, the likelihood function of the assumed
model will be modified to account for potential measurement error present in the reha-
bilitation study data. This can be achieved by incorporating the unknown probability
of measurement error (that is, probability of undetected crime) in the standard logistic
regression model. In the literature there are existing methods used in accounting for
response measurement error. We adopted the maximum likelihood estimator approach
since it provides easy numerical optimisation with statistical software R used for our anal-
ysis. Further, the maximum likelihood technique has been proven to provide consistent
estimates compared to other methods such as regression calibration, SIMEX-Simulation
extrapolation method, moment reconstruction, or multiple imputation - MI, (see Karen
and Loki, 2008).

Each misclassification pattern assumed gives separate, or several, models since the prob-
ability of undetected crime varies under individual assumptions. Hence there is need to
examine how each model changes when misclassification is altered compared to the naive
or standard logistic regression fitted when no measurement error (undetected crime) is
considered. Cook’s normal curvature approach assesses how an assumed model changes
around its small neighbourhood when an observation(s) or subjects are deleted. However,
we extended the normal curvature approach to examine each model obtained under the
individual misclassification patterns.

1.3.2 Methodology

We first illustrated Cook’s influence approach using a simulation scenario from the moti-
vating example data. Cook’s influence method follows the idea of likelihood displacement
which is based on comparing between models. The illustration was carried out using a
simulation method where the binary response variable is mismeasured. In the illustration;
we provided an assumed model (commonly referred to as naive the model) which does not
account for measurement error, possible modified models, and an influence graph (likeli-
hood displacement versus γ, see Section 3.1). Each point on the graph represents different
models based on the value of misclassfication rate γ.

Next, an overview of curvature in differential geometry is introduced because our proposed
method is based on curvature. Cook used normal curvature of an influence curve or
surface to investigate if a modification to an assumed model would change results or
conclusions drawn from such analysis, and, most importantly, to find the cause of the
change if necessary. Cook’s concept of normal curvature has become a key means for
researchers in developing influence measures. In Section 3.2 of Chapter 3, we describe
how to calculate curvature of a plane curve. This is because a plane curve can be shown
from an analysis that incorporated a scalar modification parameter in an assumed model.
However, when more than one modification parameter is introduced in an assumed model,
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we showed a surface and not a plane curve. There are infinitesimal curves passing through
a point on a surface. As a result, there are infinitesimal curvatures associated with the
curves. In this case, it becomes necessary to present how to calculate normal curvatures
to study the properties of the curves. Hence, an overview of normal curvature (see Section
3.2) is presented.

From the curvature formula presented, we derived an influence measure for misclassified
binary outcome. The influence measure developed is based on normal curvature. There
are two fundamental misclassification patterns that may potentially invalidate estimates
obtained from an analysis.

1. Nondifferential Mislassification: This occurs when the unknown misclassification
probability of a variable in the study data is constant and does not depend on other
variables

2. Differential Misclassification: In this case, a differential misclassification pattern
assumes the potential probability of measurement error of a variable depends on
other variables, hence misclassification rates vary.

Next, an influence measure for nondifferential misclassification pattern (Section 3.4) present
in our motivating example is derived. Similarly, an influence measure based on normal
curvature under potential independent differential misclassification rates present in the
rehabilitation programme study data is described.

The influence method derived for the measurement error problems present in the moti-
vating example can be extended to other measurement error problem which may occur in
practice. Hence, a general framework based on our method is derived.

Furthermore, since there is no magic process telling us which model is correct as highlighted
by Copas (2005), we assessed the influence of measurement error in any given model since
a model is meant to account for measurement error. Most especially, the derived influence
measure is used to investigate the stability of any possible model.

1.4 Thesis structure

The rest of the thesis is structured as follows. Chapter Two reviews key existing literature
of methods used in accounting for measurement error, including occasions when a binary
response variable and/or covariate(s) is mis-measured. From the frequentist paradigm,
the likelihood functions developed under most of these methods that account for misclas-
sification are modifications of an assumed model. Chapters Three - Four of this thesis
focus on influence measures developed based on normal curvature for a logistic regression
model under the impact of measurement error. An overview of curvature both in R2 and
higher dimensions is presented. More specifically, in Chapter Three an influence measure
is developed under the impact of potential non-differential and differential misclassifica-
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tion patterns that may be present in the absence attribute (that is Y ∗
i = 0) of an observed

binary outcome with measurement error. In Chapter Four, we extend the method to when
only the presence of an observed binary outcome of interest is subject to error (that is,
Y ∗
i = 1). In this case, we derive curvature, and the analytical expressions for the influ-

ence measure methods are formulated. In Chapter Five, the method is applied to our
motivating example, and a simulation study is performed. For both cases Y ∗

i = 0 and
Y ∗
i = 1 presented in Chapter Three and Four, we investigated how stable an assumed or

modified model is under the impact of nondifferential and differential measurement error.
By assuming values for the probability of measurement error, we examine the behaviour
of each distinct model. In Chapter Six a conclusion for the work is presented, and possible
future work is highlighted.
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Chapter 2

Methods that account for
measurement error

There exists a breadth of literature on different approaches used to account for measure-
ment error. Cole et al. (2006) highlighted that all of these methods use information
that maps observed measurements to true values based on a validation study as proposed
by Spiegelman et al., (2001) or sensitivity analysis in which the mapping may be based
on prior information or speculation as highlighted by Greenland, (1996). Some of these
methods include regression calibration, maximum likelihood estimation for main study
data with internal or external validation data, multiple imputation and Bayesian method
where prior information is provided for sensitivity and specificity parameters. They can
be grouped into two, that is, maximum likelihood and Bayesian approach, depending on
their method of estimation. For example, in adjusting for covariate(s) misclassification,
validation-based design was used to compare maximum likelihood, multiple imputation
methods and regression calibration methods (Karen and Loki, 2008); Carroll and Stefan-
ski, (1990) proposed regression calibration method for adjusting for measurement error.
Cole et al. (2006) illustrate a multiple imputation approach to account for measurement
error in survival analysis. Lyles et al. (2011) demonstrate a likelihood-based approach
that makes use of main study, external, and internal validation data to account for mea-
surement error in response variable. From the Bayesian perspective, Gerlach et al. (2007)

and McInturff et al. (2004) incorporate prior assumption of misclassification probabilities
to augment mismeasured data; Richardson and Gilks (1993) used Gibbs sampling for stud-
ies with continous measurement error; Stamey et al. (2008) adjusted for misclassification
in poisson regression using Bayesian method. Although the methods for correcting mea-
surement error are based on both the freqentist and the Bayesian paradigm, the method
that is proposed in this thesis is based on maximum likelihood estimation principles. In
addition, the focus will be on measurement error/misclassification problem in binary data.
Consequently, we provide a review of the maximum likelihood method for correcting mea-
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2.1 Measurement Error in Covariates 15

surement error in binary data.

While some of the methods for correcting measurement error will not directly influence
the formulation of the proposed method presented in Chapter Three, their relevance in the
field of modifying a binary regression model in the direction of misclassification warrants
their inclusion. In this chapter, the aim is to provide the background of deviating an
assumed logistic model in the direction of a model that accounts for measurement error.
The structure of the rest of the chapter is as follows. In Section 2.1, some of the methods
used in adjusting for measurement error in exposure variables are illustrated. Section 2.2

shows how to account for misclassification when outcome variable is measured with error.
In real application, both exposure and response variables are measured with error. Thus,
in Section 2.3, measurement error adjustment based on different types of misclassification
patterns present in both error-prone outcome and exposure variables are demonstrated.
Bayesian perspectives of accounting for measurement error is highlighted in Section 2.4.
The structure of this chapter is summarised in Figure 2.1. The acronyms for the methods
to be discussed are listed below:

• RC - Regression Calibration

• MR - Moment Reconstruction

• MI- Multiple Imputation

• ND - Maximum likelihood based on Nondifferential misclassification

• IND - Maximum likelihood based on Independent Differential misclassification

• DD- Maximum likelihood based on Dependent Differential misclassification

2.1 Measurement Error in Covariates

When referring to measurement error, it has been noted that it does not only arise or
identify in response variable, but the problem of misclassification is common to covariates
as well in applied research. For instance, in an epidemiology setting where the primary
interest of analysis centers on the effect of exposure on disease outcome, exposure misclas-
sification may occur due to an imperfect condition of the measurement tool characterising
the observed exposure variable, or participants not wanting to give too much information.
In this case the relationship or association between the exposure factor and the disease
response is affected if measurement error is ignored, such that the estimated parameters
linking the exposure factor to the disease response are biased. There are a variety of
proposed methods which can be used to adjust for measurement error in covariates. In
this Section, five different approaches are illustrated. They are regression calibration, mo-
ment reconstruction, multiple imputation, maximum likelihood based on non-differential
covariate misclassification, and maximum likelihood based approach of differential mis-
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Measurement Error
Adjustment

Exposure

RC

MR

MI

ND

DD

Outcome

MI

ND

IND

Others

Both Outcome & Exposure

ND

IND

DD

Figure 2.1: Structure of Chapter Two. The methods discussed are� RC - Regression
Calibration, MR - Moment Reconstruction, MI- Multiple Imputation, ND - Maximum
likelihood based on Nondifferential misclassification, IND - Maximum likelihood based

on Independent Differential misclassification, DD- Maximum likelihood based on
Dependent Differential misclassification
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classification patterns associated with error-prone exposure variable(s). It is important to
know that some of these methods used information from a validation subgroup study in
estimating parameters of interest. A validation study can either be a subset from observed
data (internal validation) or from external sources.

2.1.1 Regression Calibration

One of the most commonly used method for accounting for measurement error in explana-
tory variables is Regression calibration (Carroll and Stenfaski, 1990; Gleser, 1990). The
main idea is to replace mismeasured measurements with substitute values and then per-
form analysis as would be used with an error-free measurement. The substituted value is
the expectation of the true measured value conditional on the observed or error-prone mea-
surements. For instance, when an observed response variable Y is associated by regression
model with an unknown error-free covariate X, but imprecise/mis-measured covariate X∗

is observed, then the main idea of regression calibration is to replace the unknown true
covariate X with an adjusted/estimated value in order to estimate the parameter of in-
terest(s). In applied research, the effect of bias is underestimated when one variable is
mis-measured. However, when one or more variables measured with error are included in
an analysis of data, estimates of the effect may be overestimated or underestimated for
error-free measured covariates (see Greenland, 1980; Rosner et al., 1990).

Suppose observed data yi, x∗i and zi contain misclassified covariate(s), where x∗i is assumed
to be misclassified or error-prone p1 × 1 covariates, zi is some other p2 × 1 covariate(s)
assumed to be error-free, and yi is a binary outcome (with yi = 0; presence of an attribute,
and yi = 1 otherwise) of interest measured without error as well. Let xi be the p1 × 1

corresponding vector of unknown true covariates. Suppose a logistic regression is assumed
for yi, xi and zi where yi is associated with zi, xi such that Yi ∼ Bin(1, πi) and

πi =
exp(α+ θ1xi + θ2zi)

1 + exp(α+ θ1xi + θ2zi)
(2.1.1)

where α is a nuisance parameter, and θ1, and θ2 are the 1 × p1 and 1 × p2 vectors of
parameters of interest for x and z respectively.

Since x∗ is prone to error, the distribution of the outcome variable Yi is Yi ∼ Bin(1, π∗i ),
and

π∗i =
exp(α∗ + θ∗1x

∗
i + θ∗2zi)

1 + exp(α∗ + θ∗1x
∗
i + θ∗2zi)

(2.1.2)

is fitted on the observed data yi, x
∗
i and zi, where the superscript ∗ in θ∗1, and θ∗2 in

(2.1.2) denotes the parameters are from observed data. Thus, the corresponding regression
coefficient θ∗1 will be imprecise. Consequently the corresponding true regression coefficients
θ1 in (2.1.1) will be underestimated (Rosner et al., 1990).

It follows that if there are more than one error prone covariates, each of the regression co-
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efficients will be imprecise and the precision of the covariates measured without errors will
also be affected. As a result, Rosner et al. (1990) developed their regression calibration
method to correct measurement error when one or more covariates are imprecise or mea-
sured with error. This method is suitable and can be used to estimate the true regression
coefficients or the parameters of interest from cohort studies with rare disease outcomes
and mismeasured continous covariates. The practical implementation of the regression
calibration method requires a validation study to include a subset of the main/observed
study commonly referred to as internal validation subgroup study or a distinct (or exter-
nal) study design. It is worth noting that the validation subgroup study contains both xi
and x∗i , where xi is the true covariate measured at the same time with other covariates x∗i
and zi. Some of the assumptions made by Rosner et al., (1990) for cohort design are

1. The conditional distribution of true covariate(s) xi given the observed covariates x∗i
and zi is assumed to be the same for the observed study and that of validation study

2. In addition, the distribution of observed covariates x∗i given true covariates xi is the
same for both cases. That is, yi = 1, and that of control group yi = 0. In otherwords,
P (x∗i |xi, yi = 1) = P (x∗i |xi, yi = 0)

And based on the assumption of rare disease outcome, Rosner et al. (1990) proposed the
following procedure to correct for measurement error present in multiple covariates. These
are described as follows;

• Fit a logistic regression model (2.1.2) to the observed study data (yi, x
∗
i , zi), and

obtain estimates of the regression coefficients θ̂∗1, θ̂∗2 which are assumed to be biased
coefficients.

• Suppose there exist a multivarate linear relationship between true covariates xi and
some other covariates x∗i , zi of the validation study data (yi, xi, x∗i , zi), such that

xi = α0 + α1x
∗
i + α2zi + ϵ (2.1.3)

where α0, α1, α2 corresponds to the p1 × 1, p1 × p1, p1 × p2 matrices of regression
coefficients. And ϵ ∼MVN (that is, ϵ follow multivariate normal distribution with
p1 × 1 mean vector 0 and p1 × p1 covariance matrix Σ). Hence, fit a multivariate
linear model to the validation study, so as to obtain estimates from (2.1.3).

• The parameters of interest are the unknown true regression coefficients θ = (θ1, θ2),
where θ1 is the 1 × p1 vector with respect to the unknown true log odds ratio
of outcome y on covariates x after adjusting for z. And θ2 is the 1 × p2 vector
with respect to the unknown true log odds ratio of outcome y on covariate z after
adjusting for x. The next step is to estimate the true parameters of interest which
is the vector of unknown regression coefficients θ = (θ1, θ2) from (2.1.1). The true
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estimated regression coefficients as shown in Rosner et al, (1990) is expressed as

θ̂ = α̂−1θ̂∗ (2.1.4)

where θ̂ = (θ̂1, θ̂2), θ̂∗ = (θ̂∗1, θ̂
∗
2),

α̂ =

(
α̂1 α̂2

0p2×p1 Ip2×p2

)

where 0p2×p1 is a p2 × p1 zero matrix (all entries are zero), and Ip2×p2 is a p2 × p2

matrix with 1 on the diagonal and 0 elsewhere commonly referred to as identity
matrix.

When the probability of the response variable is small, then

P (y|x, z) = exp(α+ θ1xi + θ2zi)

1 + exp(α+ θ1xi + θ2zi)
∼= exp(α+ θ1xi + θ2zi)

And
P (y|x∗, z) ∼= exp(c+ α1θ1x

∗
i + (θ2 + θ1α2)zi).

Thus, the estimate θ̂∗1 calculated from the naive analysis in (2.1.2) will be a consistent
estimate of θ1α1, and θ̂∗2; a consistent estimate of θ2 + θ1α2. This leads to the
multivariate linear approximation estimator θ in (2.1.4).

• Next is to calculate the variance covariance matrix Cov(θ̂1, θ̂2). Following the mul-
tivariate delta method described by Rao, (1973), from (2.1.4)

cov(θ̂k1 , θ̂k2)
∼= (V

′∑
θ∗

V )k1,k2 + θ̂∗
∑

Vk1,k2

θ̂∗
′

(2.1.5)

where

• V = α̂−1 as described in (2.1.4)

• k1, k2 are k1th and k2th columns of V , where k1, k2 = 1, · · · , p, and p = p1 + p2

• θ̂k1 and θ̂k2 are the unknown k1th and k2th true parameters of interest

•
∑

θ∗ is the p × p variance covariance matrix of estimate θ̂∗ obtained from naive
analysis model fitted to observed data in (2.1.2)

•
∑

Vk1,k2
is the p× p variance-covariance matrix based on the entries in the k1th and

k2th columns of V . This can be obtained by fitting a multivariate regression model
to the validation subgroup study as shown in (2.1.3)

In the following, as highlighted by Rosner et al,(1990) the derivative of
∑

Vk1,k2
can
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be obtained. From multivariate delta method (Rao, 1973), it follows that

cov(Vh1,k1 , Vh2,k2)
∼=

p∑
r=1

p∑
s=1

p∑
t=1

p∑
u=1

(
∂Vh1,k1

∂α̂rs

)(
∂Vh2,k2

∂α̂tu

)
cov

(
α̂rs, α̂tu

)
(2.1.6)

where Vhr,ks is the (hr, ks)th entries of matrix V from (2.1.5)

From Searle (1982), for any parameter say w, the p× p matrices ∂V
∂w , ∂α̂

∂w are related
by

∂V

∂w
= −V ∂α̂

∂w
V (2.1.7)

Using (2.1.7), (2.1.6) can be rewritten as

cov(Vh1,k1 , Vh2,k2)
∼=

p∑
r=1

p∑
s=1

p∑
t=1

p∑
u=1

Vh1rVk1sVh2tVk2ucov

(
α̂rs, α̂tu

)
(2.1.8)

Substituting (2.1.8) in (2.1.5) yields the result obtained from solution of (2.1.6).

To obtain (2.1.5), Rosner et al. (1990) assumed that θ̂∗ and α̂ are independent
(see Rosner et al. 1990 for detailed description), because the internal validation
subgroup and observed study are mutually exclusive subset from the same data, or
independent study data if in the case of an external validation and observe study.

Regression calibration is simple both in concept and in practical implementation. One
of the advantages attributed to the method is that, when obtaining standard errors and
confidence limits for the corrected regression parameters, error in the validation subgroup
estimates is accounted for (Rosner et al., 1990). However, there are some limitations
associated with this method. Some of which are as follows;

1. Regression calibration is closely consistent only in the case of non-linear regression
models. For example, Carroll et al. (1995b) shows that in logistics regression, re-
gression calibration is inconsistent.

2. The method is valid only when nondifferential misclassification pattern is assumed.
A nondifferential misclassification under this case is when the distribution of X∗

conditional on X equals the distribution of X∗ conditional on X and Y .

3. This method can only be used when validation subgroup study data is available.

4. Regression calibration is not appropriate for estimating properties of a regression
model (to include residual variance, classification error rate) except for regression
coefficients (see Freedman et al., 2004).
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2.1.2 Moment Reconstruction

Moment reconstruction is another method for correcting for measurement error especially
when the covariates are error-prone. It is simple both in concept and in the use of stan-
dard software in implementation. Another advantage of moment reconstruction is that
the method is valid when considering certain or specific types of differential misclassifi-
cation patterns. A differential misclassification pattern occurs when the probability of
measurement error of a variable depends on any other variables. Most importantly, the
method provides consistent estimates even when the residual variances differs by outcome
yi, and it is appropriate for estimating other properties of regression models, to include
residual variance. The idea of moment reconstruction involves substituting values for ex-
posure variable X similar to that of regression calibration. In moment reconstruction, the
first and second moment of the substituted values are the same as the first and second
moment of exposure variable X. Also, Freedman et al. (2004) proved that under linear
regression analysis, results obtained from moment reconstruction are the same as those
obtained from the regression calibration method (see Freedman et al., (2004) for the detail
of the test). However, one advantage of moment reconstruction over regression calibra-
tion is that, estimates obtained from moment reconstruction procedures are consistent
with logistic regression model fitted to case control study data, compared to regression
calibration (see full detail in Freedman et al., (2004)).

Suppose (n× 1) vector of response variable Y is associated with a (n× p) matrix of true
covariate X such that, for some unknown parameter of interest θ

E(Y |X, θ) = f(X, θ)

In real application, an error-prone X∗ is observed, but the idea of the moment reconstruc-
tion method is to substitute values in place of the error-prone covariate x∗i . Let

Xmm(X∗, Y ) = Xmm

be the substituted values. To obtain consistent parameter estimates, it is important
that;

1. The substituted values have the same distribution as that of the true covariates x,

2. The joint distribution of substituted value with outcome y is the same as the joint
distribution of exposure variable X with outcome Y

The difficulty of getting the correct substitution exists, hence, Freedman et al. (2004)

proposed to match the first and second moments of the joint distribution of substituted
value Xmm with observed Y . Assuming measurement error in X is such that

E(X∗|Y ) = E(X|Y )
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It follows that the first moment is

E(Xmm|Y ) = E(X∗|Y )(I −D) + E(X∗|Y )D (2.1.9)

= E(X∗|Y ) = E(X|Y )

where
D = D(Y ) = (cov(X∗|Y )

1
2 )−1cov(X|Y )

1
2 (2.1.10)

And from (2.1.9), the second moment is

Cov(Xmm|Y ) = DT cov(X∗|Y )D

Using (2.1.10),

Cov(Xmm|Y ) =
((
cov(X∗|Y )

1
2
)−1)T (

cov(X|Y )
1
2
)T × cov(X∗|Y )×

(
cov(X∗|Y )

1
2
)−1

cov(X|Y )
1
2

=
(
cov(X|Y )

1
2
)T
cov(X|Y )

1
2

= cov(X|Y ). (2.1.11)

It is obvious that from (2.1.11) and the assumptions stated above, the unconditional second
moment of substituted value Xmm is the same as unobserved X. Likewise, it follows
that the covariance of joint distribution of Xmm and response variable Y is the same as
covariance of joint distribution ofX an Y . As a result, if distributions of unobserved (X,Y )

and that of observed (X∗, Y ) are multivariate normal, it implies that both substituted
values (Xmm, Y ) and (X,Y ) have multivariate normal distributions, based on the first
and second moment of the defined distribution.

Freedman et al. (2004) highlighted that substituting estimate for E(X∗|Y ) and D = D(Y )

in (2.1.9) would produce estimated X̂mm. Thus, estimating E(X∗|Y ) and D = D(Y )

depends on

1. Regression model for (Y,X) data

2. Validation sub-study containing information about the measurement error in X∗

3. Measurement error model

Freedman et al. (2004) suggested that when X̂mm is consistent, the distribution of
(X̂mm, Y ) will keep the asymptotic properties of the first and second moment of the dis-
tribution of (X,Y ). As a result, if the normality assumption of (X∗|Y ) and (X|Y ) hold,
intuitively similar function of (X̂mm, Y ) and (X,Y ) will have same asymptotic properties
(see detailed example in Section 6 of Freedman et al., 2004).

Next is the illustration on how to obtain consistent estimates of θ. Here, for step 1 we are
interested in the logistic regression model of a binary response variable Y and covariate
X (X is not a matrix in this illustration). Freedman et al, (2004) assume that covariate
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X has a normal distribution with mean µ0 and covariance matrix
∑

xx among subjects in
the control group (that is, X = N(µ0,

∑
xx θ) for yi = 0). And among subjects in the case

group (yi = 1), covariate X = N(µ0 +
∑

xx θ,
∑

xx); has a normal distribution with mean
µ0 +

∑
xx θ and covariance matrix

∑
xx (see detail in Carroll et al., 1995b). Therefore,

(X|Y = y) = N(µ0 + y
∑

xx θ,
∑

xx).

In terms of the validation substudy carried out, Freedman et al. (2004) highlighted
that

• In a case control study design, participants are randomly sampled separately from
the populations of cases (Yi = 1) and controls (Yi = 0).

• In the cohort design, subjects are randomly sampled from a single population con-
taining both cases and control groups, and response variable Y is observed on these
subjects.

In both settings, when unobserved X and observed exposure variable X∗ given outcome
variable Y are multivariate normal, moment reconstruction produces consistent estimates
of θ.

For step 3, Freedman et al. (2004) assume for differential misclassification pattern where
the variance of measurement error is assumed to depend on the outcome Y , and classical
measurement error process. In the case of classical measurement error model,

X∗ = X +W (2.1.12)

where

• W has mean 0 and variance
∑

ww

• X has mean µx and covariance matrix
∑

xx

As a result, from (2.1.12), the covariance matrix of X∗ is given as∑
x∗x∗

=
∑
xx

+
∑
ww

In the case of a differential misclassification pattern, (W |Y = y) follows a multivariate nor-
mal distribution with mean vector of zeros and covariance

∑
ww,y, (that is, N(0,

∑
ww,y).

Hence, the classical error model, (X∗|Y = y) follows N(µ0+
∑

xx θy,
∑

xx+
∑

ww,y); mul-
tivariate normal with mean µ0 +

∑
xx θy and

∑
xx+

∑
ww,y.

Let ∑̂
xx

be a consistent estimate of variance of X conditional on Y

Under the case control study design, estimate of
∑̂

xx can be obtained by
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1. calculating sampling covariance matrix of x∗i within the case and control group

2. Subtract
∑̂

ww,y from the covariance matrix obtained from Step 1, where
∑̂

ww,y is
obtained from repeated measurements of X∗ observed from independent or separate
substudy

3. Based on the number of cases and controls, compute a weighted average of the
resulting estimates.

Similarly, in the case of cohort setting, let Ê(X∗|Y ) be the mean of X∗ within cases and
controls group, and D̂y is defined as,

D̂y =

(∑̂
xx

+
∑
ww,y

)− 1
2∑̂ 1

2

xx

Hence,
X̂mm = Ê(X∗|Y )(I − D̂y) + D̂y

since the joint distribution of (Xmm, Y ) is the same as the joint distribution of (X,Y ),
and X̂mm = X̂mm(Y,X∗) is consistent estimate of Xmm = Xmm(Y,X∗). Therefore, the
parameter estimate resulting from the moment reconstruction method is shown to be
consistent (see Section 4.2 of Freedman et al., 2004 for a simulation study comparing the
performance of moment reconstruction to regression calibration case).

2.1.3 Multiple Imputation with Misclassified Covariates

In this section, we illustrate the use of multiple imputation to account for measurement
error in exposure variable. Treating bias as a missing data issue leads to valid and easy
methods for correcting misclassification (Carroll et al., 1995). The missingness mechanism
adopted mostly are Missing At Random (MAR) and Missing Completely At Random
(MCAR), but there are three main missing data patterns or assumptions identified in the
literature. These are briefly described as follows;

• Missing Completely At Random (MCAR): This implies the probability of a data
point being missing is independent of the observed and/or unobserved data values
of the variable(s) considered. Missing Completely At Random pattern is a special
case of Missing At Random assumptions (Little and Rubin, 2002)

• Missing At Random (MAR): Here, missingness of data value is independent of the
unobserved data, but conditionally dependent on observed values. For clarity, sup-
pose a subset of values is missing from measurements (say variable Ti) obtained from
a participant in a study. The probability of values missing depends on the partially
observed data points, but is unrelated to the unobserved values.

• Missing Not At Random (MNAR): In this case, the missing pattern is neither missing
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at random (MAR) nor missing completely at random (MCAR). This is a bit com-
plex because the probability of a value(s) missing is dependent on the unobserved
observation(s).

Although the pattern of missingness can rarely be identified, the observed data can be
used to frame consistent assumptions about the pattern of the missing data. Rubin (1987)

suggested exploring the range of plausible missingness patterns, this provides essential
information on the different methods used for parameter estimate(s) which has an impact
on the conclusion drawn. Moreover it can be used to examine the robustness of model for
inference purposes.

Given that, from validation subgroup study, observed measures can be mapped to true
values, Cole et al. (2006) proposed multiple imputation, based on internal validation study
data, as a method for correcting measurement error in covariate(s). If validation subsample
participants are internal, then the missingness technique on the unknown observation on
covariate (say X) is missing completely at random (MCAR). However, if the validation
substudy participants are stratified on any other exposure variable (say Z), then the
missingness pattern will be missing at random (MAR) (Rubin, 1976; Little and Rubin,
2002). Cole et al. (2006) assumed the MAR pattern since subjects from the internal
validation study were random sample from the main/observed study group. Irrespective
of the missingness assumption made, the conditional distribution of X|Y,X∗, Z will be
similar for both validation, for whom exposure X is observed for each participant, and
main study subjects, for whom exposure X is missing (Rubin, 1976; Little and Rubin,
2002).

Suppose a logistic model is considered for a binary response variable Y which is related
to a vector of covariates X and other covariate variables Z such that Y ∼ Bin(1, π) and
π is

π = P (Y = 1|x, z) = exp(α+ θ1x+ θ2z)

1 + exp(α+ θ1x+ θ2z)

where α is nuisance parameter and θ are the parameters of interest.

However, in real application, error prone exposure variable X∗ is observed. Thus, the
main/observed study data contain response variable Y and X∗. The error prone X∗ is
related to X by a multivariate normal linear regression model commonly referred to as
measurement error (Karen and Loki, 2008). The measurement error model is defined
as

X∗ = Xδx + Zδz + ϵx∗

where δ are regression coefficients, ϵx∗ ∼ N(0, σ2x∗I) and is said to be independent of any
other variables except X∗.

Since true measureX is unobserved in the main study, in literature, observedX∗ is mapped
to true exposure variable from validation subgroup, so as to estimate the conditional
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distribution of X and X∗ and then use X∗ to predict unobserved exposure variable X.
Here, Karen and Loki (2008) assume vector of exposure variable X is X ∼MVN(0,

∑
x);

multivariate normal with mean vector zero and covariance matrix
∑

x. Thus, by using
standard normal theory (see standard normal theory in Anderson, 2003), it follows that
the conditional distribution of X given X∗ is multivariate normal. Hence, the exposure
variable X can be expressed as

X = X∗ωx∗ + Zωz + ϵx

where ϵx ∼ N(0,
∑

x|x∗) is dependent on X, but independent of other variables and ω are
parameters. These coefficients of measurement error (δ,

∑
x, σ2x∗ and ω

∑
x|x∗) can be

found from either the internal or external validation subgroup study.

Karen and Loki (2008) aim to compare maximum likelihood with multiple imputation
and regression calibrator estimator in accounting for measurement error in exposure vari-
ables. Hence, they employed the frequentist approach of the multiple imputation procedure
(where at each iteration, there are two steps; the imputation and parameter estimation
step) because it eases comparison between the estimators (see the detail of the comparison
and example in Karen and Loki, 2008). They used Gibbs sampling for the parameter and
imputation stages of the algorithm in developing the proposed method. Gibbs sampling is
one of the Markov Chain Monte Carlo (MCMC) techniques for generating samples from
posterior distribution (see Rubin, 1987; Schafer, 1997; Wang and Robin, 1998 for full
description of Gibbs sampling). Karen and Loki (2008) focused on the use of multiple
imputation in accounting for measurement error in exposure variables by combining in-
ternal substudy and main/observed study. In this case, the implementation of multiple
imputation is demonstrated as follows;

• Based on the main study data (Yi, Xi), at iteration (r − 1), let(
θ, ω.

∑
x|x∗

)(r−1)

, and X(Yi, X
∗
i )

(r−1)

be the current parameters and imputed data for an ith participant.

• Next is iteration r: First, Markov chain algorithm calculate
(
θ, ω.

∑
x|x∗

)(r)

; es-
timate parameter from combination of main and internal study likelihood function
defined as∑

i∈observed
l1(θ;Yi, X̃(Yi, X

∗
i )

(r−1)) + l2(ω,
∑
x|x∗

; X̃(Yi, X
∗
i )

(r−1), X∗
i ) (2.1.13)

+
∑

i∈internalval.
l1(θ;Yi, Xi) + l2(ω,

∑
x|x∗

;Xi, X
∗
i )
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where l1 and l2 are from logistic and normal regression models respectively. It follows
that an updated parameter (θ, ω,

∑
x|x∗)r is drawn from the normal distribution with

mean (θ̂, ω̂,
∑̂

x|x∗)r and variance of (2.1.13) estimated at (θ̂, ω̂,
∑̂

x|x∗)r by using
standard software.

The associated imputed data for iteration r: From the conditional distribution of
unobserved X given the observed Yi and X∗

i , Markov chain algorithmn randomly
imputes X(Yi, X

∗
i ) for participants in the observed study at evaluated (θ, ω,

∑
x|x∗)r.

The conditional distribution of unobserved X given the observed Yi and X∗
i is pro-

portional to

f(x) =
exp (xθrYi)

1 + exp (xθr)
exp

(
−1

2
(x−X∗

i ω
r)

′ 1∑r
x|x∗

(x−X∗
i ω

r)

)

• After an adequate number of iterations, D imputed completed data are used for
estimation purposes. For individual complete data, maximum likelihood estimate θ̃i

is obtained from (2.1.13).

• The multiple imputation estimate ˆ̃
θ is obtained by averaging the individual estimate

θ̃i from each of the D complete dataset. Therefore, ˆ̃θ is,

˜̂
θ =

1

D

D∑
i=1

θ̃i

Rather than estimating variance from the imputation process described above, Karen and
Loki (2008) highlighted the use of the bootstrap estimate of variance because a multiple
imputation based variance estimator may be sensitive to the approximation of distribu-
tion. Hence, they did not demonstrate how to obtain a multiple imputation estimate of
variance.

One of the limitations of this approach is the difficulty of having a ready to-use software
that samples from the conditional distribution of the unobserved exposure variable X

given the observed Yi and X∗
i evaluated at (θ̂, ω̂,

∑̂
x|x∗)r (Karen and Loki, 2008). Hence,

implementing the multiple imputation approach using observed/internal subgroup study
data is computationally challenging in real studies.

2.1.4 Maximum Likelihood with Nondifferential Misclassified Covariates

In this section, we give an illustration of an observed study data said to have followed
a nondifferential misclassification pattern. When information about measurement error
or misclassification parameters of a variable is independent of any other variables, then
the observed study data show nondifferential measurement error pattern. Prior to Lyles
et al. (2007) work, methods that account for measurement error suggested the use of a
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closed form weighted average estimator of log odds ratio (see full description in Greenland,
1988; Spiegelman et al., 2001; and Thurston, 2003). These methods combined information
from both external/internal validation substudies in adjusting for nondifferential pattern
of measurement error when relating continous or binary response variables with continuos
mismeasured exposure variables. Although external data is cost effective (Lyles et al.
2007), a fundamental issue with any external validation subgroup is its lack of transporta-
bility, generally believed to be inefficient, thereby resulting to potential bias in estimating
parameters. Lack of transportability occurs when external validation studies are obtained
under conditions or a design different from the main study. Therefore, when using the
observed/main and external substudy, the design of the external validation data should
be looked into so as to ensure valid transportability.

Lyles et al. (2007) correct for nondifferential measurement error patterns using the main
study and a combination of internal/external validation design. Their focus is on binary
response Y and binary covariate X. In this case the covariate is univariate. They associate
the observed exposure variable X∗

i (assumed to be measured with error) in place of the
true measure covariate Xi to the response variable Yi. The observed covariate variable is
said to be binary with x∗i = 1; indicating the presence of exposure, and x∗i = 0 otherwise.
The observed study design considered in this section has a case control setting taken
from Lyles et al., (2007). Generally, the probabilities of no measurement error associated
with observed study data are commonly referred to as sensitivity and specificity. In this
chapter, in the case of measurement error in covariates, sensitivity is denoted as (1−ζX) =

P (X∗
i = 1|Xi = 1); the probability of observing the presence of mismeasured exposure

X∗
i = 1 given the presence of the true measure exposure Xi = 1, and specificity is denoted

as (1 − γX) = P (X∗
i = 0|Xi = 0); the probability of observing the absence of error-

prone exposure X∗
i = 0 given the absence of true measure exposure. The subscript X in

ζX and γX indicates that probabilities of measurement error of exposure variable X are
independent of other variables’ information.

In the following, we illustrate the method of combining main and internal and external
validation studies in a case control design to obtain the correct estimate of a parameter
when covariate variable X is misclasified. We begin with the data structure. Figure 2.2

shows the data structure of the main, external and internal substudies respectively. From
Figure 2.2, the main study data layout is the first figure containing (Yi, X

∗) where Yi is
a binary outcome assumed to be error-free and X∗

i is error-prone binary covariates with
X∗

i = 1 representing the presence of exposure, and X∗
i = 0 otherwise. It can be seen that

there are four groups that make up the observe study. The external validation substudy
is the middle figure containing (Xi, X

∗
i ) with four groups as well, where Xi is the true

covariate. The internal validation subgroup has eight groups containing (Yi, Xi, X
∗
i ) as

shown in the third figure.

Lyles et al. (2007) highlighted that the estimation of (1 − ζX) and (1 − γX) can be
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obtained from internal validation subgroup data, which can be used as a substitute for
true covariate Xi. Note that this is carried out separately for cases Xi = 1 and controls
Xi = 0 groups. When the estimation is carried out separately, it allows for correction
of differential measurement error pattern of covariates variables (Thomas et al., 1993).
When the misclassification rates of a variable depend on other variable(s), it is said to be
a differential measurement error process.

Lyles et al. (2007) focused attention on a nondifferential misclassification process of ex-
posure variable X and assumed both probabilities of measurement error from external
subgroups to be the same for internal validation substudies. Lyles et al. (2007) used
the combination of internal and external validation studies to estimate sensitivity and
specificity.

Next, in Lyles et al. (2007) a standard model that relates unobserved exposure X to
response variable Y is

P (X|Y ) = πX

However, in real studies, observed data contain potential measurement errors. Hence, they
considered the following analysis;

1. Naive analysis: A naive model often known for ignoring measurement error is fitted

y
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x∗i = 0

x∗i = 1

xi = 0

x∗i = 0

x∗i = 1
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ϕy1

x
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Figure 2.2: Data Structure: Main, External and Internal Validation Study Data for a
case control setting with Misclassified Covariate variable with corresponding

probabilities, where ϕy0 is the probability when (Yi, X
∗
i = 0) for ith participant from

main study, ϕx0 is the probability when (Xi, X
∗
i = 0) for ith participant from external

substudy, and ϕyx0 is the probability when (Yi, Xi, X
∗
i = 0) for ith participant from

internal study
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to the observed study data such that

P (X∗|X) = π∗X (2.1.14)

Estimate of parameter from (2.1.14) could be bias.

2. Combination of observe and internal substudies:

(a) First, they explore using the combination of observed study data and the pair
of (Y,X∗) only from internal validation subgroup, but the estimate is said to
be biased (Lyles et al., 2007)

(b) Furthermore, they combined the pair of true measures (Y,X) from internal
validation substudy and observed study. The estimate of parameters from the
analysis is valid, but inefficient (Lyles et al., 2007)

3. Combination of observe and internal and external substudies: Since the result of the
analysis carried out in step (2) is inefficient, they combined observed and internal
and external validation studies so as to obtain efficient estimates of parameters. This
was achieved by using the joint log-likelihood function of the combined study groups.
The overall log-likelihood function of the full data is defined as

ℓ =

1∑
y=0

1∑
x∗=0

nyx∗ log(ϕyx∗) +

1∑
y=0

1∑
x∗=0

1∑
x=0

nyx∗x log(ϕyx∗x) +

1∑
x∗=0

1∑
x=0

nx∗x log(ϕx∗x)

(2.1.15)
From (2.1.15), the first term is the log-likelihood of the observed study, followed
by the log-likelihood of the internal validation subgroup, and the last term is log-
likelihood of external substudy, where

• nyx∗ : Number of observations in each group from the observed study

• (ϕyx∗): The corresponding probabilities with regards to nyx∗ from the observed
study such that,

When X∗
i = 1; Case group

ϕy1∗ =P (X∗
i = 1|xi = 1)P (Xi = 1|y) + P (X∗

i = 1|xi = 0)(1− P (xi = 1|y))

= (1− ζX)πXi + γX(1− πXi)

And for the control group X∗
i = 0

ϕy0∗ =P (X∗
i = 0|xi = 1)P (Xi = 1|y) + P (X∗

i = 0|xi = 0)(1− P (xi = 1|y))

= ζXπXi + (1− γX)(1− πXi)

• nyx∗x: Number of observations in each group from internal subgroup
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• (ϕyx∗x): The corresponding probabilities with regards to nyx∗x from the internal
substudy such that

ϕy1∗1 = (1− ζX)P (Xi = 1|y) = (1− ζX)πXi

ϕy1∗0 = γX(1− P (Xi = 1|y)) = γX(1− πXi)

ϕy0∗1 = ζXP (Xi = 1|y) = ζXπXi

ϕy0∗0 = (1− γX)P (Xi = 1|y) = (1− γX)(1− πXi)

• nx∗x: number of observations in each group in external study

• (ϕx∗x): The corresponding probabilities in relation to nx∗x in the external val-
idation substudy. Each group in the external subsample has

ϕ1∗1 = (1− ζXext)πx,

ϕ1∗0 = γXext(1− πx),

ϕ0∗1 = ζXextπx,

ϕ0∗0 = (1− γXext)(1− πx).

where πx is classified as nuisance parameter in the external subgroup, and the
subscript ext indicates the probabilities of measurement error are from the
external subsample. In the case of transportability, misclassificate rates from
external substudies equal those from observed and internal validation such that
ζX = ζXext and γX = γXext (Lyles et al., 2007).

2.1.5 Maximum Likelihood with Differential Misclassified Covariate

When the probabilities of measurement error of a variable depend on other variable(s), it
is said to be differentially misclassified. An example can be seen in epidemiology research
where exposure variables are often prone to error. Here, we illustrate the maximum likeli-
hood approach of correcting the differential misclassification process for mismeasured ex-
posure. Morrissey and Spiegelman (1999) investigated the performance of matrix, inverse
matrix and maximum likelihood estimator under a differential misclassification pattern
of covariate measured with error. They used observed and internal validation substudies
to correct for measurement error in covariate variables, and suggested that the maximum
likelihood approach is optimal and often to be recommended when deciding which estima-
tor to apply when there is differential misclassification. However, there is a limitation to
the use of the maximum likelihood approach, namely its software implementation. This
is because the maximum likelihood approach under differential misclassification requires
iterative method which is inaccessible in standard software, then Lyles, 2002 modified
Morrissey and Spiegelman, 1999 work. Lyles (2002) suggested that in the case of differen-
tial measurement error process, the inverse method is similar to the maximum likelihood
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approach when an observed study is combined with interval validation subsample in a case-
control study. In this way, the limitation may be avoided, and the maximum likelihood
approach can be carried out without requiring sophisticated software.

In the following, we highlight the illustration in Lyles (2002) on how to correct for mea-
surement error in exposure variable X when the probabilities of measurement error are
dependent on response variable Y , using a combination of observe/main and internal
validation study.

Suppose a case control study is observed with n being the number of participants and
covariate X∗

i is mismeasured and the response variable Yi is assumed to be error-free.
Lyles (2002) assumes sampling is conditional on outcome variable Yi under the case of
differential measurement error process. If there are no measurement errors,

P (Xi = 1|y) = πXi =
exp (α+ θyi)

1 + exp (α+ θyi)
,

where θ is the unknown parameter of interest, and α is nuisance parameter.

However, when a naive analysis is performed on the observed study only, P (X∗
i = 1|y)

is
P (X∗

i = 1|y) = π∗Xi =
exp (α∗ + θ∗yi)

1 + exp (α∗ + θ∗yi)

where θ∗ is the parameter from the naive model expected to be biased, and α∗ is the
nuisance parameter.

For differential measurement error in covariates, we defined both classification rates; sen-
sitivity as (1− ζXy) = P (X∗

i = 1|Xi = 1, Y ) and specificity as (1−γXy) = P (X∗
i = 0|Xi =

0, Y ). The subscript Xy is to indicate the measurement error of exposure variable. This
depends on the response variable Y . When both probabilities of measurement error ζXy

and γXy are introduced in the naive model, P (X∗
i = 1|y) becomes

π∗Xi
= P (X∗

i = 1|y) = P (X∗
i = 1|Xi = 1)P (Xi = 1|yi) + P (X∗

i = 0|Xi = 0)P (Xi = 0|yi)

= ζXyπXi + γXy(1− πXi) (2.1.16)

In Lyles (2002), (2.1.16) is the same as the matrix method. However, Lyles (2002) in-
tention is to show the similarity between the inverse matrix method and the maximum
likelihood approach. Hence, under a differential measurement error process, the inverse
matrix method is developed in terms of classification parameters known as positive pre-
dictive values PPV , and negative predictive values NPV (Marshall, 1990; and Morrissey
an Spiegelman 1999). Let

PPV y = P (Xi = 1|X∗
i = 1, Y = y)NPV y = P (Xi = 0|X∗

i = 0, Y = y)
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It follows that
πXi = PPV yπ

∗
Xi + (1−NPV y)(1− π∗Xi)

The joint likelihood of observed and internal studies can be used to obtain an estimate
of parameters under the maximum likelihood approach. Hence, the joint log-likelihood is

ℓ ∝
n∑

i=1

log
(
P (X∗

i |yi)
)
+

nv∑
i=1

log
(
P (X∗

i |xi, yi)× P (Xi|yi)
)

(2.1.17)

In a case control study design,

• An observed/main study data (Y,X∗) has four groups. As shown in the first figure
of Figure 2.2, this includes (1, 1), (1, 0), (0, 1), (0, 0). The number of participants in
each group is denoted as n11, n12, n01 and n02 respectively.

• The third figure from Figure 2.2 shows that the internal validation data (Y,X,X∗)

has eight groups; (1, 1, 1), (1, 0, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1), (0, 0, 1), (0, 1, 0), (0, 0, 0).
The respective number of participants in each group in the internal subgroup are
n13, n14, n15, n16, n03, n04, n0 and n06

Although the maximum likelihood estimator is optimal, it is computationally intense.
Hence, Lyles et al. (2002) provided an alternative form of (2.1.17) in terms of π∗Xi

, PPV y,
and NPV y given as

ℓ =
1∑

y=0

(
ny1 log (π∗Xi

) + ny2 log (1− π∗Xi
) + ny3 log (PPV yπ

∗
Xi
)

+ ny4 log ((1− PPV y)π
∗
Xi
) + ny5 log

(
(1−NPV y)(1− π∗Xi

)
)
+ ny6 log

(
NPV y(1− π∗Xi

)
))

(2.1.18)

Lyles et al, (2002) highlighted that (2.1.18) is tractable, and when the algebra is excluded,
the maximum likelihood estimates can be obtained where

P̂PV y =
ny3

(ny3 + ny4)
,

N̂PV y =
ny6

(ny5 + ny6)
,

π̂∗Xi
=

(ny1 + ny3 + ny4)

nd
,

π̂Xi = P̂PV yπ̂
∗
Xi

+ (1− N̂PV y)(1− π̂∗Xi
),

2.2 Measurement Error in Outcome

In Section 2.1, we considered current methods used for accounting for measurement error
in exposure variables. In this section, we consider some of the proposed methods that
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account for measurement error in outcome variable. In real studies, observed data are
error-prone. Instead of obtaining true measures of outcome of interest Y (that is error-
free outcome), an alternative Y ∗ is sometimes observed. That is, in practice we could have
an observed data where only the response Y ∗

i is misclassified, but the exposure variable
X is without error.

Here, we described multiple imputation and maximum likelihood approaches that ac-
count for measurement error in response variable. More specifically, the maximum like-
lihood method illustrated are nondifferential and differential patterns of measurement
error.

2.2.1 Multiple Imputation with Misclassified Outcome

Multiple imputation is one of the techniques used in handling missing data (Rubin, 1987;
Little and Rubin, 2002). The method is well established for dealing with uncertainty or bias
associated with unobserved observations. It has also been used by researchers to develop
methods that account for measurement error. Multiple imputation involves three stages
namely; imputation, estimation and lastly pooling. The approach repeatedly imputes
values over time (say R times) for observation(s) missing from a dataset, which result in
R complete datasets. This method is developed purposely to recover (not ignore) missing
information or variability of imputed values for analysis, not necessarily to obtain correct
values for the unobserved. Each complete data is analysed, results are summarised within
and across each complete data over the r number of imputations using rules developed by
Rubin, (1987). During implementation, the imputed values must reflect the missingness
present in the observed data in order to obtain an accurate estimates.

We begin with the general overview of a multiple imputation procedure for missing data.
Suppose the primary objective is to obtain a single parameter estimate θ̂ from partially
observed data. Then, values are imputed for missing observation(s) in R iterations yielding
R complete datasets. An estimate θ̂r is obtained from each of the R dataset. Based on
the R iterated imputed datasets, the multiple imputation estimate ¯̂

θ is the average of the
individual estimates θ̂r from each of the R complete dataset. Hence, ¯̂θ is defined as

¯̂
θ =

1

R

R∑
r=1

θ̂r. (2.2.1)

Let V ar(θ̂r) denote the estimated variance of the individual complete dataset. It is impor-
tant to consider the mean of the variance from individual complete data. This is commonly
referred to as within-imputation variance defined as

Vwn =
1

R

R∑
r=1

V ar(θ̂r). (2.2.2)
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In addition, variance Vbn across the individual estimate is calculated. In practice, Vbn is
commonly referred to as between-imputation variance, defined as

Vbn =
1

R− 1

R∑
r=1

(θ̂r − ¯̂
θ)2. (2.2.3)

Therefore, the variance associated with multiple imputation estimate ¯̂
θ in (2.2.1) is denoted

as V ar(¯̂θ) which can be defined as

V ar(
¯̂
θ) =

1

R

R∑
r=1

V ar(θ̂r) +
1

R− 1

R∑
r=1

(θ̂r − ¯̂
θ)2(1 +

1

R
) (2.2.4)

= Vwn + Vbn(1 +
1

R
),

where (1 + 1
R) is the factor that corrects bias.

In the following, we describe the implementation of the multiple imputation method in
accounting for measurement error. It follows that mismeasured response is treated as a
missing data problem, where the unobserved response variable Y is said to be missing for
participants.

In our study, we used multiple imputation to account for misclasification rate in an outcome
variable, using our motivating example. It follows that,

• A random subset (that is, internal validation subgroup data) is drawn from a sim-
ulated data (yi, xi), where true outcome yi is available for subjects in the validation
subgroup study, but missing for those subjects not included in the internal validation
study

• A logistic model was fitted(applied) to the validation subgroup

• We assume the fitted parameter and covariance matrix obtained from the validation
data follow a multivariate distribution, and we draw coefficients for each number of
imputation (R = 40)

• We introduced an indicator variable ti: (ti = 1 if the subject is included in validation
study, 0 otherwise). We retain the true outcome yi where ti = 1 and imputed true
outcome values where ti = 0, using the regression coeffcients drawn from the fitted
logistic regression model

• Next, a model is fitted to each imputed response variable and the exposure variable

• To investigate multiple imputation under different scenarios, we performed sensi-
tivity analysis for different percentage of validation subgroup data and for different
γ = 0, 0.1, 0.3, 0.5, 0.7, 0.9)
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Edwards et al. (2013) proposed a method based on a multiple imputation procedure
to account for measurement error in outcome. Since observed response variable can be
mapped to unobserved response from a validation substudy, Edwards et al., (2013) il-
lustrated a multiple imputation method using observed study with an internal validation
study group. The proposed method assumed the observed (sometimes referred to as main)
study contained misclassified or error-prone outcome Y ∗, covariate or treatment variable
X and some other covariate(s) Z. In addition, each subject from the validation group is
assumed to have the unknown true outcome Yv, misclassified binary outcome Y ∗

v , treat-
ment variable Xv and other covariate(s) Zv. The subscript v being used to indicate that
the subject/participant is from the validation subgroup. Hence, a validation subgroup
study is assumed to contain a full or complete data, since subjects from the validation
study have true response variable measure, whereas these are missing for some subsets of
subjects from the observed study.

Furthermore, Edwards et al. (2013) assumed a nondiffrential and differential measurement
error pattern in their analysis. When the probability of measurement error is independent
of one or more variables, the misclassification is said to be nondifferential, and otherwise
for differential pattern. Edwards et al. (2013) examined the relationship between y∗v ,
yv, xv, and zv amongst subjects in the validation study. They relied on the information
from the validation study to impute values for other subjects in the observed study. The
algorithm explored is describe as follows;

• First, logistic regression was used to model the relationship between Yv and other
variables Y ∗

v , Xv, Zv contained in the validation data. The likelihood function for
the validation substudy denoted as Lv is

Lv =

nv∏
v=1

πyvv (1− πv)
1−yv ,

where nv is the number of participants from the validation subgroup, and πv =

P (yv = 1 | y∗v , xv, zv) is the probability of the outcome of interest in the validation
subgroup, defined as

πv =
exp(α+ β1y

∗
v + β2xv + β3y

∗
vxv + β4zv)

[1 + exp(α+ β1y∗v + β2xv + β3y∗vxv + β4zv)]
, (2.2.5)

where β are the parameters from the validation subgroup, α is the nuisance param-
eter.

• From the posterior predictive distribution of the parameter values, a set of regression
coefficients was drawn so as to impute values for the unknown true outcome missing
from the main study data. There is an assumption that the parameter values follow
multivariate gaussian distribution with mean vector (α̂, β̂1, β̂2, β̂3, β̂4) and covariance
matrix Σ̂ obtained from the model (2.2.5).
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• For imputation purposes, a new variable relative to true outcome, say yr, is created.
It follows that yr values for subjects in the main study are imputed based on the
regression coefficients drawn from the above step. Since validation study data contain
the true outcome yv, the supposed imputed outcome yr for subjects in the validation
group is yv. In otherwords, let yr denote imputed true outcome, subjects in the
main study would have imputed yr while validation group retains yv. This step is
repeated for each of R iterations.

• For each iteration, yr is assigned by a random draw with probability πr defined as

π̂r =
exp(α̂r + β̂r1y

∗ + β̂r2x+ β̂r3y
∗x+ β̂r4z)(

1 + exp(α̂+ β̂r1y
∗ + β̂r2x+ β̂r3y

∗x+ β̂r4z)
) .

• The last stage is the analysis of the imputed values given the other variables of
interest. Edwards et al. (2013) obtain estimates for each imputation using the
standard logistic model that should have been applied originally if the observed
study had complete data.

It follows that from (2.2.1), (2.2.2), (2.2.3) and (2.2.4) (that is, the general procedure
for multiple imputation described above), the estimate for R imputed values can be
derived. From the example provided by Edwards et al. (2013), they used logistic
regression to estimate odd ratio for the imputed response variable Yr given exposure
variable X and other covariates Z where

P (Yr = 1|x, z) = exp (θr0 + θr1x+ θr2z)

1 + exp (θr0 + θr1x+ θr2z)
.

For all the R imputation, the average of the estimated odd ratio of interest θ1 is
defined as

exp (θ̄1) = exp
(
1

R

R∑
r=1

θ̂r1

)
,

where θ̂r1 is the individual natural log of the estimated odd ratio from each of the R
complete datasets.

And the variance of θ̄1 is given as

V ar(θ̄1) =
1

R

R∑
r=1

V̂ar(θ̂r1) +
1

R− 1

R∑
r=1

(θ̂r1 − θ̄1)
2(1 +

1

R
).

2.2.2 Maximum Likelihood with Nondifferential Misclassified Outcome

In this section, we demonstrate the maximum likelihood approach of accounting for mea-
surement error in response variable Yi. More specifically, we considered a non differential
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pattern where the misclassified rates of Yi is independent on true measurements of expo-
sure X. Suppose a realization of true unknown binary response variable Yi assume two
possible attributes; with yi = 0 as the absence or failure of an attribute and yi = 1 other-
wise, for i = 1, · · · , n and n being the sample size. The study has two groups; the exposure
indicator variable is Xi = 1 for the treatment group and Xi = 0 for control group. The
true distribution for response variable is Yi|Xi ∼ Bin(1, πi), and πi is

πi = P (Yi = 1|Xi) =
exp(α+ θXi)

1 + exp(α+ θXi)

where θ is the unknown true parameter of interest, α is the nuisance parameters.

For the observed data, the assumed logistic model is

Y ∗
i |Xi ∼ Bin(1, π∗i ), log

(
π∗i

1− π∗i

)
= α∗ + θ∗Xi, (2.2.6)

where Y ∗
i is the observed response variable measured with error, and θ∗ is the observed

parameter. The corresponding log-likelihood function is

ℓ(θ∗) =
n∑

i=1

y∗i logπ∗i + (1− y∗i ) log(1− π∗i ), (2.2.7)

However, the conclusion from observed study based on θ∗ might be misleading as the
problem of measurement error was not considered. Therefore, we need to investigate how
the inference can be impacted by measurement error.

In this section, we denote sensitivity and specificity of response variable associated with
an observe study data as

(1− ζY ) = Pr(Y ∗
i = 1|Yi = 1)

(1− γY ) = Pr(Y ∗
i = 0|Yi = 0),

where

• The subscript Y indicate that probabilities of measurement error is with regards to
response variable Y .

• We denote sensitivity as (1 − ζY ): The probability of observing the presence of an
attribute y∗i = 1, given that a true measure response attribute is present yi = 1

• Specificity is denoted as (1 − γY ): The probability of observing the absence of an
attribute y∗i = 0, given that a true attribute is absent yi = 0

By assuming a nondifferential independent pattern for a main/observe study wherein only
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the response variable is misclassified,

P (Y ∗
i = 1|Xi) = P (Y ∗

i = 1|Yi = 1)P (Yi = 1|Xi) + P (Y ∗
i = 1|Yi = 0)P (Yi = 0|Xi)

= (1− ζY )πi + γY (1− πi)

The distribution of the observed outcome variable conditional on ζY and γY is

Y ∗
i |Xi ∼ Bin

(
1, (1− ζY )πi + γY (1− πi)

)
(2.2.8)

The corresponding log-likelihood for a given ζY and γY is

ℓ(θ | ζY , γY ) =
n∑

i=1

y∗i log
(
(1− ζY )πi + γY (1− πi)

)
+ (1− y∗i ) log

(
ζY πi + (1− γY )(1− πi)

)
(2.2.9)

Here, the probabilities of measurement error are ζY and γY , assume to be independent of
Xi and therefore remain constant. Thus, to consider the measurement error problem, both
probabilities of measurement error are introduced into (2.2.7) resulting to model (2.2.9).
Hence, from (2.2.9), we can obtain estimate of parameter of interest.

Note that it is practically impossible to calculate estimate of parameter in (2.2.9). How-
ever, both γY and ζY can be obtain either from

• Validation substudy: If there is validation data, information from validation sub-
group study can be use to map observed measures to true value for parameter esti-
mation (Lyles et al., 2011)

• Pre-specified values: By assuming correct values for ζY and γY would result to
unbiased estimate of the parameter of interest (Magder and Hughes, 1997)

2.2.3 Maximum Likelihood with Independent Differential Misclassified Out-
come

In this section, we consider a case of independent differential misclassification. The as-
sumption here is that the probability of measurement error is dependent on error-free
measurement of binary exposure variable xi. In this case, both sensitivity (1− ζYXi

) and
specificity (1− γYXi

) are dependent on true covariate Xi. The subscript YX indicates the
measurement error of response Y is dependent on X. Each combination of ζYXi

and γYXi

result to varying values for both probabilities of misclassification. The mechanism of inde-
pendent differential misclassification of response variable Y is shown in Figure 2.3.

Suppose the probabilities of measurement error are

P (Y ∗
i = 0|Yi = 1, xi) = ζYX0 − ζYX0xi + ζYX1xi (2.2.10)

P (Y ∗
i = 1|Yi = 0, xi) = γYX0 − γYX0xi + γYX1xi (2.2.11)
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x

xi = 1

yi = 0

y∗i = 0

y∗i = 1

yi = 1

y∗i = 0
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y∗i = 0

y∗i = 1
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y∗i = 0

y∗i = 1
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γYX0

πi ζYX0

Figure 2.3: Mechanism of Independent Differential Misclassification of observed outcome

such that

P (Y ∗
i = 1|Yi = 0, xi) =

{
γYX0

, when xi = 0

γYX1
, when xi = 1

And,

P (Y ∗
i = 0|Yi = 1, xi) =

{
ζYX0

, when xi = 0

ζYX1
, when xi = 1

By assuming (2.2.10) and (2.2.11)

P (Y ∗
i |xi) = P (Y ∗

i = 1|Yi = 1, xi)P (Yi = 1|xi) + P (Y ∗
i = 1|Yi = 0, xi)P (Yi = 0|xi)

= (1− ζYX0 + ζYX0xi − ζYX1xi)πi + (γYX0 − γYX0xi + γYX1xi)(1− πi)

Hence, the distribution of the observed outcome variable conditional on ζYX0 and γYX0

is

Y ∗
i |Xi ∼ Bin

(
1, (1− ζYX0 + ζYX0xi − ζYX1xi)πi + (γYX0 − γYX0xi + γYX1xi)(1− πi)

)
To obtain an unbiased estimate of parameters under the case of independent differential
measurement error pattern, both misclassification rate ζYXi and γYXi

are introduced in
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(2.2.7). Therefore, the log-likelihood is

ℓ(θ|ζYX
, γYX

) =

n∑
i=1

y∗i log
(
(1− ζYX0 + ζYX0xi − ζYX1xi)πi

+ (γYX0 − γYX0xi + γYX1xi)(1− πi)

)
+ (1− y∗i ) log

(
(ζYX0 − ζYX0xi + ζYX1xi)πi

+ (1− γYX0 + γYX0xi − γYX1xi)(1− πi)

)
(2.2.12)

For simplicity of expression, we can further rewrite (2.2.12) as

ℓ(θ | ζYX
, γYX

) =

n∑
i=1

y∗i log
(
(1− ζYXi

)πi + γYXi
(1− πi)

)
(2.2.13)

+ (1− y∗i ) log
(
ζYXi

πi + (1− γYXi
)(1− πi)

)
Again, estimation of (2.2.13) can be achieved in two ways;

1. When there is lack of validation subgroup study, an assumed value can be pre-
specified for both misclassification rates. An assume correct values for ζYXi

and γYXi

would yield unbiased estimated parameter of interest and correct inferences can be
made from the analysis.

2. In addition, information about probabilities of measurement error ζYXi
and γYX

can
be obtained from validation (internal or external) subgroup study.

In the following, we described how to correct for measurement error in a binary response
variable assumed to be differentialy misclassified using observed and internal validation
substudy data. The implementation is illustrated as follows;

True outcome Yv measures are recorded or available for each participants from internal
subgroup (Lyles et al., 2011). As a result, participants from the validation substudy have
complete data (xv, yv, y

∗
v). By using the complete data from the validation study, Lyles et
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al. (2011) defined the likelihood function of the internal validation subgroup data as

Lv =

nv∏
v=1

((
P (y∗v = 1|yv = 1, xv)P (yv = 1|xv)

)y∗vyv

(
P (y∗v = 1|yv = 0, xv)P (yv = 0|xv)

)y∗v(1−yv)

(
P (y∗v = 0|yv = 1, xv)P (yv = 1|xv)

)(1−y∗v)yv

(
P (y∗v = 0|yv = 0, xv)P (yv = 0|xv)

)(1−y∗v)(1−yv)
)

The corresponding log-likelihood is

ℓv(θ | ζYXv
, γYXv

) =

nv∑
v=1

y∗vyv log
(
(1− ζYXv

)πv

)
+ y∗v(1− yv) log

(
γYXv

(1− πv)

)
+ yv(1− y∗v) log

(
ζYXv

πv

)
+ (1− y∗v)(1− yv) log

(
(1− γYXv

)(1− πv)

)
where ζYXv

and γYXv
are the probabilities of measurement error in the validation subgroup.

Both are assumed to be dependent on the true covariate Xv, and πv is from the validation
study.

Therefore, when using both observed and internal validation substudy, the full log-likelihood
can be use to account for measurement error in observed response variable. The full log-
likelihood is

ℓ =
n∑

i=1

(
y∗i log

(
(1− ζYXi

)πi + γYXi
(1− πi)

)
+ (1− y∗i ) log

(
ζYXi

πi + (1− γYXi
)(1− πi)

))

+

nv∑
v=1

(
y∗vyv log

(
(1− ζYXv

)πv
)
+ y∗v(1− yv) log

(
γYXv

(1− πv)
)

+ yv(1− y∗v) log
(
ζYXv

πv
)
+ (1− y∗v)(1− yv) log

(
(1− γYXv

)(1− πv)
))

An example is demonstrated by Lyles et al., (2011). They used observed and internal
validation data with one continous and binary covariate(s), to account for measurement
error where a response variable is assumed to be differentially misclassified.

2.2.4 Other Possible Misclassification Patterns

In practice, other different measurement error patterns exist. For instance, another exam-
ple of misclasification pattern could be that the probabilities of measurement error in Y

are independent on some subsets of the covariates, and dependent on others. It is nearly
impossible to list all the misclassification patterns potentially present in an observed data.
However, the likelihood specification would depend on the assumptions about the chosen
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misclasification pattern, and the data structure of the covariate(s) from the study.

2.3 Measurement error in Outcome and Covariates

In this section, we considered a case where both the response and exposure variable are
measured with error. When this happen, the validity of the estimates of parameters are
impacted by the probabilities of measurement error present in both response and expo-
sure variables. In this case, the pattern of misclassification rates appears to be complex
(as shown in Figure 2.4), but Tang et al., (2015) described a maximum likelihood frame-
work on how to account for measurement error using observed and internal validation
substudy.

zi

xi = 1

x∗i = 1

yi = 1

y∗i = 1

y∗i = 0

yi = 0

y∗i = 1

y∗i = 0

x∗i = 0

yi = 1

y∗i = 1

y∗i = 0

yi = 0

y∗i = 1

y∗i = 0

xi = 0

x∗i = 1

yi = 1

y∗i = 1

y∗i = 0

yi = 0

y∗i = 1

y∗i = 0

x∗i = 0

yi = 1

y∗i = 1

y∗i = 0

yi = 0

y∗i = 1

y∗i = 0

πX

1− ζX

πi

1− ζY

1− πi

γY

πi

1− ζY

γY

γX

πi

1− ζY

γY

πi

1− ζY

γY

Figure 2.4: Mechanism of misclassification of both outcome and covariate

Suppose a standard logistic regression model fitted to a realization of true measures
(Yi, Xi, Zi), for i = 1, · · · , n and n being the number of sample size. Both the response
Yi and covariate variable Xi are binary, and Zi are some other covariate(s). The true
distribution for response variable is Yi|Xi, Zi ∼ Bin(1, πi), and πi is

πi = P (Yi = 1|Xi, Zi) =
exp(α+ θXi + ψZi)

1 + exp(α+ θXi + ψZi)
, (2.3.1)
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where θ and ψ are unknown true parameters, α is nuisance parameter.

Here, observed study contain (Y ∗
i , X

∗
i , Zi) where both outcome Y ∗

i and exposure variable
X∗

i are potentially measured with error, but Zi is assumed to be some other error free
covariate(s).

For the observed study, the assumed logistic model is Y ∗
i |Xi, Zi ∼ Bin(1, π∗i ), and π∗i

is
π∗i = P (Y ∗

i = 1|X∗
i , Zi) =

exp(α∗ + θ∗X∗
i + ψ∗Zi)

1 + exp(α∗ + θ∗X∗
i + ψ∗Zi)

where θ∗ and ψ∗ are parameters. The corresponding log-likelihood function is

ℓ(θ∗) =

n∑
i=1

y∗i logπ∗i + (1− y∗i ) log(1− π∗i ), (2.3.2)

However, the conclusion of the study based on (2.3.2) might be misleading as the problem
of measurement error of both outcome Y ∗

i and covariate X∗
i was ignored. Therefore, there

is need to investigate how the conclusion can be impacted by misclassification. Tang et al.
(2015) used observed and internal validation subgroup in assessing complex measurement
error process arising from mismeasured exposure and outcome variables. They incorporate
probabilities of measurement error arising from both response and exposure variables
in the likelihood function of an observed/internal validation design. In the following
sections, we consider three types of potential misclassification in observed study. These
are nondifferential, independent differential and dependent differential measurement error
patterns.

2.3.1 Independent Nondifferential Misclasssification in both Outcome and
Covariate

In Sections 2.1.4 and 2.2.2, sensitivity and specificity of response Y ∗ is (1−ζY ) and (1−γY )
respectively, while sensitivity and specificity of exposure X∗ is (1− ζX) and (1− γX). In
this section, the assumption is that both sensitivity and specificity of Y ∗

i and X∗
i are

independent of Zi. By assuming probabilities of measurement error for both response
and covariate, it follows that in the case of independent nondifferential measurement error
mechanism,

P (Y ∗, X∗, Y,X|Z) = P (Y ∗|Y,X∗, X, Z)× P (X∗|X,Y, Z)× P (Y |X,Z)× P (X|Z)

= P (Y ∗|Y )× P (X∗|X)× P (Y |X,Z)× P (X|Z)

where

• P (Y ∗|Y ) is sensitivity and specificity of outcome variable Y , that is, (1 − ζY ) and
(1− γY )

• P (X∗|X) is sensitivity and specificity of exposure X, that is, (1− ζX) and (1− γX)
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• P (Y |X,Z): model (2.3.1)

• P (X|Z): Relates exposure variable X with some other covariate Z

The corresponding likelihood function for the observed study is

ℓ =

n∏
i=1

((
P (y∗i = 1|yi = 1)P (yi = 1|x∗i )P (x∗i = 1|xi = 1)P (xi|zi)

+ P (y∗i = 1|yi = 0)P (yi = 0|x∗i )P (x∗i = 1|xi = 1)P (xi|zi)

+ P (y∗i = 1|yi = 1)P (yi = 1|x∗i )P (x∗i = 0|xi = 1)P (xi|zi)

+ P (y∗i = 1|yi = 0)P (yi = 0|x∗i )P (x∗i = 0|xi = 1)P (xi|zi)

+ P (y∗i = 1|yi = 1)P (yi = 1|x∗i )P (x∗i = 1|xi = 0)P (xi|zi)

+ P (y∗i = 1|yi = 0)P (yi = 0|x∗i )P (x∗i = 1|xi = 0)P (xi|zi)

+ P (y∗i = 1|yi = 1)P (yi = 1|x∗i )P (x∗i = 0|xi = 0)P (xi|zi)

+ P (y∗i = 1|yi = 0)P (yi = 0|x∗i )P (x∗i = 0|xi = 0)P (xi|zi)
)y∗i

×
(
P (y∗i = 0|yi = 1)P (yi = 1|x∗i )P (x∗i = 1|xi = 1)P (xi|zi)

+ P (y∗i = 0|yi = 0)P (yi = 0|x∗i )P (x∗i = 1|xi = 1)P (xi|zi)

+ P (y∗i = 0|yi = 1)P (yi = 1|x∗i )P (x∗i = 0|xi = 1)P (xi|zi)

+ P (y∗i = 0|yi = 0)P (yi = 0|x∗i )P (x∗i = 0|xi = 1)P (xi|zi)

+ P (y∗i = 0|yi = 1)P (yi = 1|x∗i )P (x∗i = 1|xi = 0)P (xi|zi)

+ P (y∗i = 0|yi = 0)P (yi = 0|x∗i )P (x∗i = 1|xi = 0)P (xi|zi)

+ P (y∗i = 0|yi = 1)P (yi = 1|x∗i )P (x∗i = 0|xi = 0)P (xi|zi)

+ P (y∗i = 0|yi = 0)P (yi = 0|x∗i )P (x∗i = 0|xi = 0)P (xi|zi)
)(1−y∗i )

)

Using probabilities of measurement error ζY , γY , ζX , and γX ,

L =
n∏

i=1

((
(1− ζY )πi(1− ζX)πX + γY (1− πi)(1− ζX)πX + (1− ζY )πiζXπX + γY (1− πi)ζXπX

+ (1− ζY )πiγY πX + γY (1− πi)γXπX + (1− ζX)πi(1− γX)πX + γY (1− πi)γXπX

)y∗i
×
(
ζY πi(1− ζX(1− πX) + (1− γY )(1− πi)(1− ζXπX + (1− γY )πi(1− γX)πX

+ (1− γX)(1− πi)ζXπX + ζY πiγXπX + (1− γY )(1− πi)γXπX + ζY πi(1− γX)πX

+ (1− γY )(1− πi)(1− γX)πX

)(1−y∗i )
)
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To avoid complexity, Tang et al. (2015) assume logit link of P (X|Z);

logit(P (X = 1|Z1, · · · , Zg)) = ω0 +
G∑

g=1

ωgZg,

where ω0 and ωg are parameters that relates X to Z. Note that P (X|Z) should be specified
correctly, otherwise it could lead to biased results.

Hence, by using the total probability rule, the likelihood term of individual participant
from observed study is

P (Y ∗ = y∗, X∗ = x∗|Z = z) =

1∑
y=0

1∑
x=0

(
P (y∗|y, x∗, x, z)× P (x∗|x, y, z)× P (y|x, z)× P (x|z)

)
=

1∑
y=0

1∑
x=0

(
P (y∗|y)× P (y|x, z)× P (x|z)× P (x∗|x)

)
(2.3.1)

The general likelihood for the observe study under independent nondifferential measure-
ment error pattern is

L =

n∏
i=1

( 1∑
yi=0

1∑
xi=0

P (y∗i |yi)× P (yi|xi, ziy)× P (xi|zix)× P (x∗i |xi)
)

(2.3.3)

The subscript ix and iy represent version of covariates Z vector which may vary across
models so far as zix is a subset of ziy (Tang et al., 2015).

Prespecified values can be assumed for ζY , γY , ζX and γX , but Tang et al., (2015) combined
observed and internal validation substudy for estimation purposes. Each participants from
the internal validation subgroup is assumed to have complete data, (y∗v , yv, x∗v, xv). Hence,
the likelihood function of the validation subgroup is

ℓv =

nv∏
v=1

P (y∗v |yv)× P (yv|xv, zv)× P (xv|zv)× P (x∗v|xv) (2.3.4)

Therefore, the overall likelihood is ℓ× ℓv, that is, the product of (2.3.3) and (2.3.4).

2.3.2 Independent Differential Misclasssification in both Outcome and Co-
variate

In this section, the assumption is based on differential misclassification mechanism where
measurement error probabilities depend on true measures of other variables. In the fol-
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lowing, we illustrate the method from Tang et al, (2015). Let

P (Y ∗ = 1|Y = 1, X = x,Z = z) = (1− ζYZ
) (2.3.5)

P (Y ∗
i = 0|Yi = 0, X = x,Z = z) = (1− γYZ

) (2.3.6)

P (X∗ = 1|X = 1, Y = y, Z = z) = (1− ζXZ
) (2.3.7)

P (X∗ = 0|X = 0, Y = y, Z = z) = (1− γXZ
), (2.3.8)

be the sensitivity and specificity for both variables, where the subscript used in (2.3.5)

to (2.3.8) indicate that probabilities of measurement error of Y and X depend on true
measures of other covariates Z. Tang et al. (2015) highlighted that these probabilities are
functions of exposure X and some other covariates Z. Hence classification probabilities of
observed outcome variable y∗i is

(1− ζYZ
) =

exp (β0 +
∑G

g=1 βgZg + βR+1Y + βR+2X)

1 + exp (β0 +
∑G

g=1 βgZg + βR+1Y + βR+2X)
(2.3.9)

(1− γYZ
) =

1

1 + exp (β0 +
∑G

g=1 βgZg + βR+2X)
, (2.3.10)

where β’s are parameters obtained from modelling both of the measurement error proba-
bilities of mis-measured outcome y∗i . Similarly, it follows that

(1− ζXZ
) =

exp (ψ0 +
∑D

d=1 ψdZd + ψD+1X + ψD+2Y )

1 + exp (ψ0 +
∑D

d=1 ψdZd + ψD+1X + ψD+2Y )
(2.3.11)

(1− γXZ
) =

1

1 + exp (ψ0 +
∑D

d=1 ψdZd + ψD+1X + ψD+2Y )
, (2.3.12)

where ψ’s are parameters obtained from modelling both of the measurement error proba-
bilities of mis-measured covariate x∗i .

Therefore, the likelihood function of the observed study when both response and exposure
is independently differentially misclassified is

ℓ =

n∏
i=1

( 1∑
yi=0

1∑
xi=0

P (y∗i |yi, xi, ziy∗)×P (yi|xi, ziy)×P (xi|zix)×P (x∗i |xi, yi, zix∗)
)

(2.3.13)

Also, the likelihood function of the validation subgroup is

ℓv =

nv∏
v=1

(
P (y∗v |yv, xv, zvy∗)× P (yv|xv, zvy)× P (xv|zvx)× P (x∗v|xv, yv, zvx∗)

)
(2.3.14)

where the term ziy∗ and zvy∗ in both observed and internal validation likelihood function
indicate that the misclassification process of the observed response variable y∗ is condi-
tional on true measure of some other covariates. Likewise, zix∗ and zvx∗ indicate that the
misclassification process of the observed covariate x∗ is conditional on some true measure
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of covariate(s).

The overall likelihood is the product of (2.3.13) and (2.3.14). The difference between the
likelihood function in this Section and that of the nondifferential likelihood in Section 2.3.1

is as a result of the modelling of the probabilities of measurement error defined in (2.3.9)

to (2.3.12) (Tang et al., 2015).

2.3.3 Dependent Differential Misclasssification in both Outcome and Covari-
ates

In Section 2.3.2, sensitivity and specificity of response and exposure variables depend on
true measures of other variables. However, in this section, we consider the case in which
sensitivity and specificity of one variable may be dependent on other mismeasured vari-
ables. The pattern under this case is referred to as dependent differential misclassification.
Here, the assumption is that sensitivity and specificity of response Y ∗ is dependent on X∗

and vice versa.

Let

P (Y ∗ = y∗, X∗ = x∗|Z = z) =

1∑
y=0

1∑
x=0

P (y∗, x∗, y, x|z)

=

1∑
y=0

1∑
x=0

P (y∗|y, x, x∗, z)× P (x∗|x, y, z)× P (y|x, z)× P (x|z)

(2.3.15)

where

• From (2.3.15), P (y∗, x∗, y, x|z) is the sensitivity or specificity of Y ∗
i dependent on

error-prone exposure X∗
i conditional on (Yi, Xi, Zi).

From Tang et al. (2015), the likelihood function of individual participants from observed
study is

ℓ =
1∑

yi=0

1∑
xi=0

(
P (y∗i |yi, xi, x∗i , ziy∗)× P (yi|xi, ziy)× P (xi|zix)× P (x∗i |xi, yi, zix∗)

)
(2.3.16)

It follows that

ℓv = P (y∗v |yv, x∗v, xv, zvy∗)× P (yv|xv, zvy)× P (xv|zvx)× P (x∗v|xv, yv, zvx∗) (2.3.17)

where (2.3.17) is the likelihood of individual participants from internal validation sub-
study.

Hence, the overall likelihood is product of (2.3.16) and (2.3.17). The overall likelihood
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can be simplify further when correct model is selected for P (X|Z) or measurement error
models (Tang et al., 2015). This is because when exposure variables involve in X|Z or
measurement error models are excluded from an outcome model, the resulting estimate
could be biased. For example, suppose variable U is included in the X|Z, and Y is
dependent on U conditional on X and all other covariates in a real study. If U is excluded
from the outcome model, the validity of the analytic result is subject to bias (Tang et al.,
2015). Likewise, all variables of measurement error models should be accounted for in the
model (2.3.1), except there is evidence suggesting an assumption about the independency
of Y conditional on X and other covariates in the outcome variable model (2.3.1) (see an
empirical detail in Section 4.2 of Tang et al., 2015). Hence, it is important to account for
all variables involved in the measurement error models and the covariate(s) in the possible
relationship P (X|Z).

2.4 Bayesian Method

This research is placed within the Frequentist framework, hence the reason for the extensive
review illustrated in the previous sections. However, a brief review of Bayesian approach
in accounting for measurement error is highlighted in this section.

Bayesian concept of probability differs from Frequentists approach. In Bayesian context,
model parameters are treated as random variables, and probability distribution of param-
eter of a model is interpreted based on the degrees of believe about the parameter values.
Meanwhile in the Frequentist approach, parameters of model are fixed and probabilities
are treated as frequencies observed from an experiment. As a result, Bayesian methods on
accounting for measurement error is different from the methods illustrated in Section 2.1

to 2.3. Although Bayesian methods can be formulated in measurement error adjustment,
but the methods have not been widely used in many application (Breslow, 1990). This
might be due to computational and statistical difficulty in analyzing a particular case of
measurement error.

In Bayesian context, some assumptions are made when dealing with measurement error
of exposure variable. It is assume that at the beginning of a study, information about
the distribution of the unobserved exposure is available from the population (Richardson
and Gilks, 1993). This possible information leads to specification of prior distribution of
true X. However, if the study is from a different population, the prior distribution of
true X is imprecise. In addition, during the study it is assume that information obtained
from the observed exposure X∗ reduces uncertainty in the unobserved (Richardson and
Gilks, 1993). A bayesian perspective of measurement error is illustrated by Richardson &
Gilks (1993). They developed a parametric method in terms of conditional independence
modelling where different sources of information can be integrated for parameter estima-
tion using gibbs sampling (see Richardson & Gilks 1993). In the following we illustrate
the layout/design of measurement error using the approach from Richardson and Gilks,
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(1993).

Let Yi denote the outcome variable, Xi is unknown true covariate, X∗
i is error prone ex-

posure. There are two stages to conditional independence models of measurement error;
the structural and functional stage. First, is the structural stage of the model, followed
by functional part. One of the building blocks of structural part is conditional indepen-
dence assumptions, where all the uncertainties about X is accounted for, such that each
variable in the model is assumed to be related conditionally to a subset of other variables
(Richardson and Gilks, 1993). It is important to note that correct specification of condi-
tional independence assumptions would strengthen inference drawn from an analysis. And
in the functional part, all the required distribution are stated.

In the case of measurement error of X, Richardson and Gilks (1993) broke down the
conditional independence assumptions into two simpler components: a disease model and
measurement error model. The disease model relate X, and some other known covariates
U to Y , while measurement error model relates observed X∗ and the true measure X.
Thus, the following model conditions are the components of the structural part considered
by Richardson and Gilks, (1993)

outcome or disease model = Yi|Xi, Ui, θ (2.4.1)

measurement error model = X∗
i |Xi, ψ (2.4.2)

covariate model = Xi|Ui, π (2.4.3)

where θ, π, and ψ are the prior distributions of the parameters (that is, the respective
information available from the outset of the study).

Therefore, the product of all the conditional distribution models (commonly referred to as
joint distribution) can be used as the structural part of conditional independence model
when dealing with measurement error in bayesian context (Richardson and Gilks, 1993).
The joint distribution is given as

Joint distribution = [θ][π][ψ]
n∏

i=1

(Xi|Ui, π)
n∏

i=1

(X∗
i |Xi, ψ)

n∏
i=1

(Yi|Xi, Ui, θ) (2.4.4)

Richardson and Gilks (1993) highlighted that in general 2.4.4 can be said to have no local
dependencies other than those stated by the model (2.4.1), (2.4.2) and (2.4.3). In oth-
erwords, (2.4.4) implies there are other additional conditional independence assumptions
(see Section model conditionals of Richardson and Gilks, (1993) for more detail).

Next, is the functional part of the conditional independence model. The functional part
is the specification of the parametric form of all the conditional distributions. For in-
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stance, in this example, logistic regression can be defined for the response variable model
(2.4.1). Description of the parametric distribution mostly depends on the area of study or
investigators choice, but the distribution need to be define before estimation. Richardson
and Gilks (1993) suggested the use of sensitivity analysis when there is conflict about the
choice of parametrization.

Bayesian estimator is based on the posterior distribution of the parameters (that is, θ,
ψ,π and unobserved exposure X) given the data (Richardson and Gilks, 1993). They
are interested in the marginal posterior distribution of θ given the data, (that is, the
distribution of θ when other parameters are unknown), but computation was intractable.
Hence, Richardson and Gilks (1993) generated samples from the joint posterior distribution
of all of θ, ψ,π and unobserved exposure X using Gibbs sampling method. Inferences on
parameter θ can be made from samples drawn from the joint posterior distribution of
parameters given the study data.

McInturff et al. (2004) proposed a Bayesian method that can be used to account for a
nondifferential measurement error in a binary outcome. McInturff et al. (2004) account for
unknown sensitivity and specificity, while they include expert prior knowledge in the form
of a conditional mean prior in a model. They explored probit, logit and complimentary
log log link functions, and Bayes factor (see Kass and Raftery, (1995) for more detail on
Bayes factor) was used for comparison and model selection. The proposed method is as
follows;

Suppose a logistic model is considered for a binary response variable Y which is related
to a vector of covariates X such that Y ∼ Bin(1, π) and π is

π ≡ P (Y = 1|x) = exp(α+ θx)

1 + exp(α+ θx)

where α is a nuisance parameter, and θ is a vector of regression coefficients. Alternative
link functions include

probit; π ≡ Φ(θx)

complimentary log log; π ≡ 1− exp (− exp (θx))

Generally,
g(π) = θx

By using generalized linear model notation

π = g−1(θx) for monotone g(.)

where g(·) is the link function.

However, for an observed data (y∗i , xi), i = 1, · · · , n, y∗i is misclassified outcome and xi is
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row vector of exposure assumed to be error-free. For simplicity, McInturff et al. (2004)

assume yi|xi ∼ Bernoulli(π∗i ), with probability of success calculated from

π∗ = P (Y ∗ = 1|x) = π(1− ζY ) + (1− π)γY

The likelihood function is given as

ℓ(θ, (1− ζY ), (1− ζY )) =

n∏
i=1

(πi(1− ζY ) + (1− πi)γY )
yi (πiζY + (1− πi)(1− γY ))

1−yi

An independent normal distributions with zero mean and a large variance is a common
choice for specifying prior distribution for θ (McInturff et al., (2004). However, McInturff
et al. (2004) used conditional means prior approach illustrated by Bedrick et al. (1997) to
induce prior distribution for θ irrespective of the link function. Thus, the joint posterior
is given as

p((1− ζY ), (1− ζY ), θ|X,Y ∗) ∝ L((1− ζY ), (1− ζY ), θ)× p(θ)× p((1− ζY ))× p((1− γY ))

(2.4.5)
McInturff et al. (2004) highlighted that distribution in (2.4.5) is not identifiable, but
sampling is possible through Gibbs sampling. A common choice for modelling uncertainty
of a probability is to use Beta distribution Be(a, b). McInturff et al. (2004), and Bedrick
et al. (1997) highlighted that Be(a, b) distribution can be done by indicating parameters
a and b from an imaginary binomial trial in which a − 1 successes out of a + b − 2 trials
are observed. Following Bedrick et al. (1997) approach, McInturff et al. (2004) assumed
independent beta prior Be(a(1−ζY ), b(1−ζY )) and Be(a(1−γY ), b(1−γY )) for sensitivity and
specificity respectively. Then, Bayes factor was used to select which of the links function
is most appropriate.

Gerlach and Stamey (2007) highlighted that when misclassification of a variable depends
on covariate(s), and differential misclassification is assumed, the individual model involved
is large. Hence, Gerlach and Stamey (2007) proposed a Bayesian model selection to
determine what set of covariates to be included in such model.

Suppose an observed sample y∗ = y∗1, y
∗
2, ·, y∗s , where s is the number of distinct error-free

covariate patterns. For the observed data, the assumed logistic model

Y ∗
i ∼ Bin(ni, π

∗
i )

where π∗i = πi(1 − ζY ) + (1 − πi)γY , and πi is assumed to depend on a set of p exposure
variables X, through an assumed logistic model,

log
(

πi
1− πi

)
= θ1Xi, i = 1, · · · , s
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Gerlach and Stamey (2007) assume independent beta priors for ζY and γY . And in the
case of differential misclassification,

π∗i = πi(1− ζYXi
) + (1− πi)γY Xi

where 
ζYXi

log
(

ζYXi
1−ζYXi

)
= θ2Xi, i = 1, · · · , s

γYXi
, log

(
γYXi

1−γYXi

)
= θ3Xi, i = 1, · · · , s

Gerlach and Stamey (2007) assume validation data is available for the ith covariate pat-
tern, such that

zi ∼ Bin(nvi , πi)

ri|zi ∼ Bin(zi, ζYXi
)

ki|zi ∼ Bin(nvi − zi, γYXi
)

where zi is the total number of actual occurrences in covariate pattern i, nvi is the sample
size of a validation data, ri is the total number of actual occurrences labelled as non-
occurrences and ki is the number of actual non-occurrences labelled as occurrences (see
more detail in Section 2; Gerlach and Stamey, 2007).

Hogg et al, (2017) proposed a simple Bayesian approach for the analysis of pair-matched
study subject to response misclassification. They considered the association between a
binary exposure variable X and an outcome Y in a pair-matched case-control setting.
Here, Y is true, but not observable, X is true, and Y ∗

i is observed such that Y ∗
i = 1

is the case, and Y ∗
i = 0 is the control. In the case of matched sampling, Y ∗

i = 1 are
chosen from the population of interest, and Y ∗

i = 0 are matched to cases on a set of
error-free covariates or factors that might influences the association of X and Yi. Under
matched case control sampling, the model incorporates positive P (Y = 1|Y ∗

i = 1) and
negative P (Y = 0|Y ∗

i = 0) predictive values as a measure of misclassification, rather than
sensitivity and specificity into the analysis.

2.5 Choice of Correct Model

These existing approaches of dealing with measurement error appears to have something
in common, and that is, introducing misclassification probabilities in a standard logistic
model. The process of modification yield many models based on the potential measurement
error pattern assume. The choice of correct model is rather arbitrary (Copas, 2010), and
there is no magical method of knowing the correct model. Hence, in Chapter Three
we study the stability of an assumed and modified models. The approach is based on
normal curvature, and using the motivating example described in Chapter One, we derived
influence measure.
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Chapter 3

Influence Measure for Misclassified
Absence of Binary Outcome

This Chapter is the core of our research, which focuses on using curvature to study local
influence and model stability. The Chapter is structured as follows. Section 3.1 introduces
the general theory of local influence approach. In Section 3.2, curvature is introduced,
followed by the development of an influence measure when a perturbation is incorporated
in the general likelihood function of an assumed model in Section 3.3. More specifically, in
Section 3.4, the approach is extended to a binary model where response variable Y ∗

i = 0

is subject to misclassification.

3.1 Motivating Example

Here is an example we use to illustrate the concept of Cook’s local influence approach.
Consider a study of assessing the effectiveness of rehabilitation programme on juvenile
offenders. We take the outcome for the ith subject in the study to be Y ∗

i = 1 if there is
no reconviction observed, otherwise Y ∗

i = 0. The study has two groups. The exposure
indicator variable is Xi = 1 for the rehabilitation group and Xi = 0 for the control group.
For the observed data, the assumed logistic model is

Y ∗
i |Xi ∼ Bin(1, π∗i ), log

(
π∗i

1− π∗i

)
= α∗ + θ∗Xi, (3.1.1)

where α∗ is the intercept and θ∗ is the observed effect of rehabilitation programmes in
reducing the odds of juvenile offence. The log-likelihood function is

ℓ(θ∗) =
n∑

i=1

y∗i logπ∗i + (1− y∗i ) log(1− π∗i ), (3.1.2)
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where n is the sample size. The estimate of θ∗ with its p-value or confidence interval is
used to judge whether the rehabilitation programme can reduce the juvenile reoffending
rate or not.

However, the conclusion of the study based on θ̂∗ might be misleading as the problem of
undetected crimes/measurement error was not considered. If there are some undetected
offences in the study, the true effect of the rehabilitation programme can be over or
under estimated. Therefore, we need to investigate how the inference can be impacted by
undetected crimes.

Under the problem of undetected crimes, there is measurement error in the observed
response variable Y ∗

i . Let Yi be the unknown true outcome variable, which equals 0 if
offence have occurred, and 1 otherwise. The true distribution for Yi is

Yi|Xi ∼ Bin(1, πi), log
(

πi
1− πi

)
= α+ θXi, (3.1.3)

where θ is the unknown true effectiveness of the rehabilitation programmes of interest.
We make the reasonable assumption that there is no reconviction if there is no offence, so
Y ∗
i = 1 if Yi = 1, but an actual offence may not lead to detection and reconviction, i.e.

when Yi = 0, Y ∗
i is either 0 or 1. In other words, there is no measurement error if there is

no offence, but there may be measurement error if there is an offence.

We assume the probability of non-detection to be γ = P (Y ∗
i = 1|Yi = 0). The mechanism

of measurement error is shown in Figure 3.1.

yi = 1 y∗i = 1

xi

yi = 0
Measurement

error
y∗i = 1

y∗i = 0

πi

1− πi
γ

1− γ

Figure 3.1: Mechanism of measurement error for the motivating example

By assuming the probability of non-detection γ,

P (Y ∗
i = 1|Xi) =P (Y

∗
i = 1|Yi = 1)P (Yi = 1|Xi) + P (Y ∗

i = 1|Yi = 0)P (Yi = 0|Xi)

=πi + γ(1− πi)
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The distribution of the observed outcome variable conditional on γ is

Y ∗
i |Xi ∼ Bin (1, πi + γ(1− πi)) . (3.1.4)

The corresponding log-likelihood for a given γ is

ℓ(θ|γ) =
n∑

i=1

y∗i log
(
πi + γ(1− πi)

)
+ (1− y∗i ) log

(
1−

(
πi + γ(1− πi)

))
(3.1.5)

We call (3.1.1) the assumed model, where the superscript ∗ indicates the parameters/variables
are for the observed data only which are prone to measurement error. To consider the
measurement error problem, we introduce the probability of measurement error γ as a
modification weight into (3.1.1) and this results to the modified model (3.1.4). The true
value of γ is unknown, but we can vary the value of γ between 0 and 1 to assess the
impact of measurement error by comparing the assumed and modified models, likelihoods
or estimates. When γ = 0, (3.1.4) is equal to (3.1.1), ℓ(θ∗) = ℓ(θ|γ) and θ∗ = θ. When
γ > 0, the modified model is deviated from the assumed model and ℓ(θ∗) ̸= ℓ(θ|γ). Each
value assigned to γ corresponds to a distinct model. Different values of γ > 0 perturb the
assumed model (3.1.2) to be different modified models.

Here, γ is a scalar modification weight. But later, we will show that γ can be extended
to a vector of modification weights, say γ = (γ1, ..., γq) bound to some Ω ⊂ Rq, with
the assumption that there is a vector of weights, say γ0, in Ω such that ℓ(θ∗) = ℓ(θ|γ).
An example is when γ depends on all or subset of covariates, we will have a vector of
modification weights rather than a scalar.

3.1.1 Cook’s Local Influence Approach

In this section, we now consider to use the Cook’s likelihood displacement (Cook, 1986)
to measure the difference between assume model (3.1.2) under the impact of measure-
ment error and the modified model (3.1.5). Cook’s concept of local influence approach
is developed following the idea of likelihood displacement given in (3.1.6) which is based
on comparing the maximum likelihood with the estimate of parameter θ̂∗ obtained from
an assumed model to the maximum likelihood with the estimate θ̂ obtained from when
a modification weights γ is incorporated in assumed model. The likelihood displacement
studies the behaviour of the log-likelihood function of a model over the entire range of
modification parameter γ given as

LD(γ) = 2[ℓ(θ̂∗)− ℓ(θ̂|γ)] (3.1.6)

Note that the extension of (3.1.6) to include all quantities that affect LD depends on
the modification of interest. Table 3.1 shows few rows of likelihood displacement LD(γ)

obtained from a simulated data under model (3.1.5). Data were simulated under conditions
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following the motivating example.

Table 3.1: Extract of Likelihood displacement results from a simulated data with γ
ranges from 0 to 1

γ LD(γ)
0 0

0.14 9.22
0.39 128.79
0.55 470.90
0.63 1051.67
0.67 2111.70
0.71 60749.91
0.75 79272.82
0.82 109246.20
0.87 128956.00
0.94 154457.70
0.99 171335.30

The response variable Yi was simulated from model (3.1.3), with the true value θ = 1

and α = −0.5 with n = 1000 being the number of participants. The exposure indicator
variable is Xi ∼ Bin(1000, 1, 0.5). The parameters used are one of the possible range of
values for this study. Based on the assumption that there is no measurement error if there
is no offence, the observed response variable Y ∗

i was generated as Y ∗
i = 1 if Yi = 1, but

there may be measurement error if there is an offence, thus Y ∗
i |Yi = 0 ∼ Bin(1, 0.5).

Modified model were generated from varying the value of γ from 0 to 1 using model
(3.1.5). The assumed model estimate was calculated using log-likelihood function (3.1.2),
and modified model is from log-likelihood (3.1.5). Hence, likelihood displacement (3.1.6)

was evaluated from the simulated data. As shown in Table 3.1, there is a break point from
when γ = 0.68. This could be a cut off value for the range of error size.

The graph of likelihood displacement LD(γ) versus γ conventionally referred to as influence
graph is illustrated in Figure 3.2. A point on the curve in Figure 3.2 is the difference
between the assumed model (where γ = 0) and a modified model with a distinct γ ̸= 0. The
influence graph gives us how large the difference between the likelihoods of the assumed
and modified models will change as the value of γ increases from 0 to 1. Discussion (and
Figures) on how model estimates behave when a slight change in γ is introduced in an
assumed model is shown in Chapter Five.

3.2 Introduction of Curvature

When more than one modification weights, γ = (γ1, · · · , γq) for q > 1, is introduced in an
assumed model, the plot of LD(γ) against (γ1, · · · , γq) is a q-dimensional object in a Rq+1

space (e.g. a surface in a R3 space). As a results, in the cases q > 1, we are not able to plot
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Figure 3.2: Influence Graph: Likelihood Displacement vs γ for simulation study
mimicking our motivating example

an influence graph like the one in Figure 3.2, and it is difficult to describe the influence of
varying γ on the models. To solve this problem, Cook (1986) proposed to use curvature as
a measure which characterizes the behaviour of an influence graph around a selected point
on a surface or higher dimensional object in space parameterised in (γ1, · · · , γq, LD(γ)).
In our setting, each point on the surface of (γ1, · · · , γq, LD(γ)) represents a distinct model
different from the assumed model, while the assumed model is represented by the origin
of the surface at LD(γ) = γ1 = γ2 = · · · = γq = 0. Curvature can be used to measure how
curvy a surface is at a point with respect to slight change in γ = (γ1, · · · , γq). This can
be used to measure how sensitive or stable a distinct model on the surface is under the
impact of slight modification in γ = (γ1, · · · , γq).

In differential geometry, curvature, denoted by κ, is the rate of change of a unit tangent
vector at any given point, turning in direction along a curve with respect to an arc length
(that is, the size of a tiny step along a curve). As the example shown in Figure 3.3,
consider a circle with radius R is inscribed to a curve at point p, the curvature at the
point p is then equals to 1

R . However, this definition is difficult to manipulate and to
express in formulas. A more general form of curvature κ at a point along a curve in R2 is
expressed as

κ =

∥∥∥∥∂T∂s
∥∥∥∥ , (3.2.1)

where T (t) represents a unit tangent vector along a curve in the arc length s, as detailed
as follows, and ||.|| is the notation of the norm or magnitude of ∂T

∂s . Suppose a curve is
parameterized by a function ⇀

r(t) with each respective components dependent on parameter
t, where t lies within an interval a ≤ t ≤ b. For example, the curve in Figure 3.2 is
parameterized by the function ⇀

r(γ) = (γ, LD(γ)), where γ lies within an interval 0 ≤ γ ≤ 1.
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Figure 3.3: Osculating Circle: Curvature at a point: A circle with radius R inscribed to
a curve at a given point p. The curvature at point p is equivalent to the curvature of the
inscribed circle define as 1

R , and γ̇ is a unit tangent vector at point p. Figure from Lee,
(1997).

A tangent or velocity vector at any given point t is the derivative of the function ⇀
r(t)

with respect to t at that point. Again, for the curve in Figure 3.2, the tangent vector
∂
⇀
r(γ)
∂γ =

(
1, ∂LD(γ)

∂γ

)
.

Normalising a tangent vector does not change the direction, but changes its length to 1

resulting to a unit tangent vector defined as

T (t) =

⇀

r′(t)

∥
⇀

r′(t)∥
, (3.2.2)

where ∥
⇀

r′(t)∥ is the magnitude or length of
⇀

r′(t), which can be obtain by taking the square-
root of the sum of the squared of components of ∂

⇀
r(γ)
∂γ . In our example, for instance, the

components of tangent vector ∂
⇀
r(γ)
∂γ are 1 and ∂LD(γ)

∂γ , hence, the magnitude of tangent
vector ∂

⇀
r(γ)
∂γ is

∥
⇀

r′(t)∥ =

∥∥∥∥∂⇀
r(γ)

∂γ

∥∥∥∥ =

√
1 +

(
∂LD(γ)

∂γ

)2

.

The unit normal vector N(t) points in the direction (up or down) the curve is turning,
and N(t) is defined as

N(t) =
T ′(t)

∥T ′(t)∥
. (3.2.3)

The cross product of tangent and normal vector is referred to as binormal B(t) defined as
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B(t) = T (t)×N(t). (3.2.4)

The arc length s in (3.2.1) is the size of a tiny step or distance travelled along a curve
within an interval t1 ≤ t ≤ t2 is defined as

s =

∫ t2

t1

∥
⇀

r′(t)∥∂t. (3.2.5)

3.2.1 Plane Curve

In this section, we will give an example of curvature for a plane curve. Let

⇀
r(t) = (x(t), y(t)),

be a plane curve in a two dimension R2 space parameterized by t for any general func-
tion ⇀

r(t), such that the x component and y component is given as x = x(t), y = y(t)

respectively. Differentiating ⇀
r(t) with respect to t gives a tangent vector

⇀

r′(t) = (x′(t), y′(t)).

And the magnitude of
⇀

r′(t) is

∥
⇀

r′(t)∥ =
√
(x′(t))2 + (y′(t))2.

From (3.2.2), the unit tangent vector T(t) is given by

⇀

T (t) =

(
x′(t)√

(x′(t))2 + (y′(t))2
,

y′(t)√
(x′(t))2 + (y′(t))2

)
.

As a result,
⇀

T (t) can be rewritten as

⇀

T (t) =

⇀

r′(t)

||
⇀

r′(t)||
. (3.2.6)

Within interval t1 ≤ t ≤ t2, the arc length s is defined by

s =

∫ t2

t1

√
(x′(t))2 + (y′(t))2∂t.

From (3.2.5),
∂s

∂t
= ||⇀r′(t)||. (3.2.7)
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Using (3.2.7), T (t) in (3.2.6) can be rewritten as

⇀

T (t) =

⇀

r′(t)
∂s
∂t

. (3.2.8)

Thus, the curvature κ of a plane curve in two dimension R2 given in (3.2.1) can be rewritten
in terms of arc length as

κ =

∥∥∥∥∥
⇀

T ′(t)
∂s
∂t

∥∥∥∥∥ . (3.2.9)

Using (3.2.7), curvature κ can also be expressed as

κ =
||

⇀

T ′(t)||
||⇀r′(t)||

.

However, in practice, tangent vectors
⇀

T (t) and its first derivative
⇀

T ′(t) are expressed in
terms of t. Hence, calculating curvature κ in terms of arc length as defined in (3.2.9) may
be inconvenient. From (3.2.8), ⇀

r′(t) can be rewritten as

⇀
r′(t) =

⇀

T (t)
∂s

∂t
.

With product rule, differentiating ⇀
r’(t) gives

⇀
r′′(t) =

∂2s

∂t2
⇀

T (t) +
⇀

T ′(t)
∂s

∂t
.

Multiplying ⇀
r′(t)×⇀

r′′(t) gives

⇀
r′(t)×⇀

r′′(t) =

[
∂s

∂t

∂2s

∂t2
⇀

T (t)×
⇀

T (t)

]
+

[(
∂s

∂t

)2
⇀

T ′(t)×
⇀

T (t)

]
. (3.2.10)

Since the cross product
⇀

T (t)×
⇀

T (t) = 0, (3.2.10) reduces to

⇀
r′(t)×⇀

r′′(t) =

[(
∂s

∂t

)2
⇀

T ′(t)×
⇀

T (t)

]
. (3.2.11)

From (3.2.3)

T ′(t) = N(t)||T ′(t)||. (3.2.12)

With chain rule, differentiating T (t) gives

T ′(t) =
∂T

∂t
=
∂s

∂t

∂T

∂s
. (3.2.13)

As a result, using (3.2.13), T ′(t) in (3.2.12) can be rewritten as

T ′(t) = N(t)
∂s

∂t

∥∥∥∥∂T∂s
∥∥∥∥ . (3.2.14)
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Since κ =
∥∥∂T

∂s

∥∥ in (3.2.1), T ′(t) in (3.2.14) is

T ′(t) = N(t)
∂s

∂t
κ

Hence, from (3.2.11), ⇀
r′(t)×⇀

r′′(t) can be rewritten as

⇀
r′(t)×⇀

r′′(t) =

[(
∂s

∂t

)2

N(t)
∂s

∂t
κ×

⇀

T (t)

]

=

(
∂s

∂t

)3
⇀

T (t)N(t)κ.

From (3.2.4), B(t) =
⇀

T (t)N(t). As ∂s
∂t = ||⇀r′(t)|| and curvature κ are both magni-

tudes,

||⇀r′(t)×⇀
r′′(t)|| =

∥∥∥∥∥
(
∂s

∂t

)3

B(t)κ

∥∥∥∥∥
=

(
∂s

∂t

)3

||B(t)||κ. (3.2.16)

Since both T (t) and N(t) have unit length, B(t) has a unit length, as a result (3.2.16) is,

||⇀r′(t)×⇀
r′′(t)|| =

(
∂s

∂t

)3

κ. (3.2.17)

From (3.2.7), ∂s
∂t = ||⇀r′(t)||, such that

(
∂s
∂t

)3
= ||r′(t)||3. Dividing both sides of (3.2.17) by

||⇀r′(t)||3 gives the curvature κ of a plane curve in two dimension R2 as

κ =
||r′(t)× r′′(t)||

||r′(t)||3
(3.2.18)

3.2.2 Normal Curvature

In the case of R3 (or higher dimension), we will have a surface (or a higher dimensional
object) rather than a plane curve. Curvature in these cases is called normal curvature,
whose idea is a bit complicated. We use Figure 3.4 below to give a brief introduction of
normal curvature. Consider a surface S and an arbitrary curve C through a point P of
the surface. The curve C has the tangent vector v at the point P . Let N be the normal
vector (often simply called the normal), which is the vector perpendicular to the surface S
at the point P . Let π be the normal plane formed by the tangent vector v and the normal
vector N . The intersection of the normal plane π with the surface S is a curve Cn named
normal section. The curvature of Cn at the point P is called normal curvature.

When q > 1, the influence graph is a surface S in Rq+1 formed by modification weights
γ = (γ1, ..., γq) and the likelihood displacement, i.e. S = (γ1, ..., γq, LD(γ)). To calculate
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Figure 3.4: Normal Section. Figure from Ioan, (2010)

a normal curvature at a point, say P = (γP1 , ..., γ
P
q , LD(γP )), on the influence graph,

consider a straight line in the range of γ = (γ1, ..., γq), i.e. Ω, passing through the point
γP = (γP1 , ..., γ

P
q ). The straight line is represented by γP + ah, where a is a constant

magnitude of the line and h ∈ Rq is a vector of unit length, which can be thought of as
the direction of the line. The straight line γP + ah generated a lifted line on the influence
graph S passing through the point P . The lifted line has a tangent vector at the point
on the surface and hence corresponds to a normal plane, a normal section and a normal
curvature. Following Cook (1986), the normal curvature κh of the normal section from
the lifted line in the direction h can be obtained by

κh =

∣∣∣h∂2LD(γ)
∂γ∂γT hT

∣∣∣{
1 +

∣∣∣∂LD(γ)
∂γ

∣∣∣2} 1
2

h

[
I + ∂LD(γ)

∂γ

{
∂LD(γ)

∂γ

}T
]
hT

.

Since LD(γ) = 2
{
l(θ̂∗)− l(θ̂|γ)

}
and l(θ̂∗) does not contain γ, the normal curvature κh

associated with the direction h can be written as

κh =
2
∣∣∣h∂2l(θ̂|γ)

∂γ∂γT h
T
∣∣∣{

1 + 4
∣∣∣∂l(θ̂|γ)∂γ

∣∣∣2} 1
2

h

[
I + 4∂l(θ̂|γ)

∂γ

{
∂l(θ̂|γ)
∂γ

}T
]
hT

. (3.2.19)

At a point P , the curvature is evaluated at γP = (γP1 , ..., γ
P
q ) and the corresponding

θ̂.

It can be understood that there are infinitely many directions h range over all unit vectors
in Rq and therefore at a point on the surface, there are infinitely many curvatures asso-
ciated with the infinitely many directions. To study the characterization of the normal
curvatures along different directions, in this thesis, we follow Steen et al., (2001) and use
the sum of curvatures along the q directions of the modified weights γ1, ..., γq.
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3.3 Influence Measure using curvature

In Section 3.1, likelihood displacement was introduced to explain the concept of comparing
two models using an influence graph (Figure 3.2) in two dimensional space R2. More
specifically, likelihood displacement compares the difference in the likelihoods between an
assumed model and a modified model. This is shown in Table 3.1 where the assumed
model (at γ = 0) is compared with a modified model (when γ ̸= 0).

However, in the following sections, we will focus on influence measures derived from the
curvature of likelihood displacement rather than the likelihood displacement itself. This
is because for q > 1, the influence graph is a surface (or a q-dimensional object in a
Rq+1 space), where influence analysis based on the plane curve of likelihood displacement
(Figure 3.2) is not applicable.

It should be noted that using curvature as an influence measure leads to different inter-
pretations. First, as shown in (3.2.19), the calculation of curvature depends on the first
and second derivatives of the likelihood displacement with respect to γ. As a result, the
curvature only relates to the modified model and is independent of the choice of assumed
model. Second, each point on the influence surface (or the q-dimensional object) represents
a distinct assumed or modified model. The curvature measures how curvy the surface is
at a point (or a distinct model). Therefore, when using curvature as an influence measure,
it can be used to interpret how stable or sensitive a model is with respect to slight changes
in (γ1, · · · , γq) (or say the slight change in the model assumption of measurement error),
while the likelihood displacement compares the difference between an assumed model and
a modified model. This is the difference when using curvature rather than the likelihood
displacement as an influence measure.

3.3.1 One modification weight

We first consider the case when a scalar of modification weight γ is incorporated in an
assumed model. The influence graph is a plane curve parameterised by γ for a given
function ⇀

r(γ) = (γ, LD(γ)) in two dimensional R2. It follows that the tangent vector of
⇀
r′(γ) is

⇀
r′(γ) =

(
1,
∂LD(γ)

∂γ

)
.

And the corresponding second order derivative with respect to γ is

⇀
r′′(γ) =

(
0,
∂2LD(γ)

∂γ2

)
.

The magnitude (commonly referred to as norm) of ⇀
r′(γ) is

||⇀r′(γ)|| =
(
1 +

(
∂LD(γ)

∂γ

)2) 1
2

.
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Therefore, from (3.2.18), the curvature κ at any given point on the curve r(γ) can be
expressed as

κ =

∣∣∣(1, ∂LD(γ)
∂γ

)
×
(
0, ∂

2LD(γ)
∂γ2

)∣∣∣(
1 +

(
∂LD(γ)

∂γ

)2) 3
2

=

∣∣∣∂2LD(γ)
∂γ2

∣∣∣(
1 +

(
∂LD(γ)

∂γ

)2) 3
2

.

Since LD(γ) = 2(ℓ(θ̂∗) − ℓ(θ̂|γ)), and ℓ(θ̂∗) does not contain γ, the curvature κ at any
given point on the curve r(γ) can be written as

κ =
2
∣∣∣∂2ℓ(θ̂|γ)

∂γ2

∣∣∣(
1 + 4

(
∂ℓ(θ̂|γ)

∂γ

)2) 3
2

(3.3.1)

Later in Section 4, we will use this formula (3.3.1) of curvature to study how an assumed
or modified logistic regression model is stable under measurement error.

3.3.2 More than one modification weights

We now consider the case when a q dimensional modification vector γ = (γ1, · · · , γq) is
introduced in an assumed model. In this case, the influence graph is no longer a plane
curve, but rather a surface (or a q-dimensional object in a q + 1 space). In otherwords,
when q > 1, Figure 3.2 is not applicable. In this case, there are infinitely many curvatures
from the infinitely many curves passing through a given point on the surface as explained
in Section 3.2. Hence, a new measure or quantity to summarise the information from all
the curvatures is needed to access the stability of a model.

Let’s first consider two modification weights, say γ = (γ0, γ1), are introduced in an as-
sumed model. Let γ0, γ1 and LD(γ0, γ1) be the three axes of a R3 space to embed the
2-dimensional influence surface S = (γ0, γ1, LD(γ0, γ1)). The curvatures along the direc-
tions of γ0 and γ1 can be derived as follows. Let the unit vectors along the directions of
γ0 and γ1 respectively be hγ0 = [1, 0] and hγ1 = [0, 1]. From (3.2.19), the curvature along
the direction of γ0 is

κhγ0
=

2

∣∣∣∣∣∣
[
1 0

]∂2ℓ(θ̂|γ)
∂γ2

0

∂2ℓ(θ̂|γ)
∂γ0∂γ1

∂2ℓ(θ̂|γ)
∂γ1∂γ0

∂2ℓ(θ̂|γ)
∂γ2

1

[1
0

]∣∣∣∣∣∣1 + 4

{√(
∂ℓ(θ̂|γ)
∂γ0

)2
+
(
∂ℓ(θ̂|γ)
∂γ1

)2}2
 1

2 [
1 0

]1 + 4
(
∂ℓ(θ̂|γ)
∂γ0

)2
4∂ℓ(θ̂|γ)

∂γ0

∂ℓ(θ̂|γ)
∂γ1

4∂ℓ(θ̂|γ)
∂γ1

∂ℓ(θ̂|γ)
∂γ0

1 + 4
(
∂ℓ(θ̂|γ)
∂γ1

)2
[1

0

]

=
2
∣∣∣∂2ℓ(θ̂|γ)

∂γ2
0

∣∣∣√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2{
1 + 4

(
∂ℓ(θ̂|γ)
∂γ0

)2} (3.3.2)
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Similarly, the curvature along the direction of γ1 is

κhγ1
=

2

∣∣∣∣∣∣
[
0 1

]∂2ℓ(θ̂|γ)
∂γ2

0

∂2ℓ(θ̂|γ)
∂γ0∂γ1

∂2ℓ(θ̂|γ)
∂γ1∂γ0

∂2ℓ(θ̂|γ)
∂γ2

1

[0
1

]∣∣∣∣∣∣1 + 4

{√(
∂ℓ(θ̂|γ)
∂γ0

)2
+
(
∂ℓ(θ̂|γ)
∂γ1

)2}2
 1

2 [
0 1

]1 + 4
(
∂ℓ(θ̂|γ)
∂γ0

)2
4∂ℓ(θ̂|γ)

∂γ0

∂ℓ(θ̂|γ)
∂γ1

4∂ℓ(θ̂|γ)
∂γ1

∂ℓ(θ̂|γ)
∂γ0

1 + 4
(
∂ℓ(θ̂|γ)
∂γ1

)2
[0

1

]

=
2
∣∣∣∂2ℓ(θ̂|γ)

∂γ2
1

∣∣∣√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2{
1 + 4

(
∂ℓ(θ̂|γ)
∂γ1

)2} (3.3.3)

The sum of normal curvatures along the directions γ0 and γ1 is

1∑
j=0

κhγj
= κhγ0 + κhγ1

=
2
∣∣∣∂2ℓ(θ̂|γ)

∂γ2
0

∣∣∣√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2{
1 + 4

(
∂ℓ(θ̂|γ)
∂γ0

)2}

+
2
∣∣∣∂2ℓ(θ̂|γ)

∂γ2
1

∣∣∣√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2{
1 + 4

(
∂ℓ(θ̂|γ)
∂γ1

)2}

=

2
∣∣∣∂2ℓ(θ̂|γ)

∂γ2
0

∣∣∣ /{1 + 4
(
∂ℓ(θ̂|γ)
∂γ0

)2}
√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2 +

2
∣∣∣∂2ℓ(θ̂|γ)

∂γ2
1

∣∣∣ /{1 + 4
(
∂ℓ(θ̂|γ)
∂γ1

)2}
√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2

=

2

[∣∣∣∂2ℓ(θ̂|γ)
∂γ2

0

∣∣∣ /{1 + 4
(
∂ℓ(θ̂|γ)
∂γ0

)2}
+
∣∣∣∂2ℓ(θ̂|γ)

∂γ2
1

∣∣∣ /{1 + 4
(
∂ℓ(θ̂|γ)
∂γ1

)2}]
√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2

=

2
∑1

j=0


∣∣∣∣∣ ∂2ℓ(θ̂|γ)∂γ2

j

∣∣∣∣∣
1+4

(
∂ℓ(θ̂|γ)
∂γj

)2

√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2 (3.3.4)

For a q dimensional modification vector γ = (γ1, · · · , γq), it can be shown that the sum of

March 23, 2022



3.4 Stability under Misclassification of absence of an attribute 67

curvatures along the directions γ1, · · · , γq is

q∑
j=1

κhγj
=

2
∑q

j=1


∣∣∣∣∣ ∂2ℓ(θ̂|γ)∂γ2

j

∣∣∣∣∣
1+4

(
∂ℓ(θ̂|γ)
∂γj

)2

√
1 + 4

∑q
j=1

(
∂ℓ(θ̂|γ)
∂γj

)2 (3.3.5)

Later in Section 3.4, we will show how to use the sums of curvatures, (3.3.3) and (3.3.4),
to study how stable an assumed or modified model is under the impact of a potential
differential measurement error in binary response variable.

3.4 Stability under Misclassification of absence of an attribute

Our main interest is to use the influence measure shown in Section 3.2, to investigate the
stability of logistic regression model fitted to an observed study, in which the observed
outcome variable is under the problem of measurement error. An observed binary response
variable Y ∗

i has two attributes; with y∗i = 0 as the absence or failure of an attribute and
y∗i = 1 otherwise. There are three possible scenarios where an observed binary response
variable may be subject to measurement error. These are when;

• Case 1: Both attributes of response variable (that is, y∗i = 1 and y∗i = 0) are subject
to measurement error.

• Case 2: Only the absence of an attribute; y∗i = 0 may potentially be error-prone.
The mechanism of this case is shown in Figure 3.1.

• Case 3: The presence of an attribute; y∗i = 1 may be subject to measurement error.

In this section, we use the influence measure first to assess how stable a logistic model
is under Case 2. For instance, an example under this case is our motivating example
highlighted in Section 3.1 above. As stated in Section 3.1, inferences from assumed model
(3.1.1) may be subject to potential bias, since measurement error is not considered. Thus,
to assess the impact of measurement error, assume model is modified. Here, we considered
modification based on nondifferential and differential misclassification process:

• Nondifferential Misclassification: Under Case 2, a nondifferential misclassification
process assume the probability of measurement error γ does not depend on the
covariate variable Xi.

• Differential Misclassification: By assuming that the probability of measurement er-
ror γ depends on true exposure variable Xi, we say the observed study is under
differential misclassification pattern

This section is structured as follows. In Section 3.4.1, we derived influence measure under
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nondifferential measurement error pattern. In Section 3.4.2, we derived influence measure
under a special case of differential misclassification process based on a binary covariate
variable. More generally, in Section 3.4.3, the approach is extended to an influence measure
under a general framework. Note that the model stability investigated below is not only
applicable to our motivating example, but a general method of assessing how robust a
logistic model is when observed study has an error-prone binary response variable Y ∗

i =

0.

3.4.1 NonDifferential Misclassification

Here, we considered the case of when the misclassification pattern is nondifferential. To
account for nondifferential measurement error, the probability of measurement error γ
is incorporated in an assumed model (3.1.1). The resulting model is a modified model
(3.1.4) where γ is assume to be independent of Xi, thus γ is a scalar modification weight
introduced in an assumed model. As a result, from (3.3.1), an influence measure based
on curvature can be derived under nondifferential measurement error pattern. Hence, the
graph of curvature κ versus γ is a plane curve which can be used to study assume model
(that is, the curvature around γ = 0) under a slight modification to γ caused by the impact
of potential nondifferential measurement error. Beyond this, the measure derived can be
used to investigate other modified models (that is, when γ ̸= 0).

From (3.1.5), ℓ(θ|γ) can be rewritten as

ℓ(θ|γ) =
n∑

i=1

ℓi, (3.4.1)

where ℓi is the log-likelihood of the modified model for individual subjects from the ob-
served study, defined as

ℓi = y∗i log(π∗i ) + (1− y∗i ) log(1− π∗i )

π∗i = πi + γ(1− πi)

such that,
1− πi =

(
1

1− γ

)
(1− π∗i ). (3.4.2)

Next, is the derivative of ℓi with respect to γ

1. The first derivative of ℓi is given as

∂ℓi
∂γ

=
∂ℓi
∂π∗

∂π∗i
∂γ

=

(
y∗i
π∗i

− 1− y∗i
1− π∗i

)
(1− πi)
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It follows that from (3.4.1),

∂

∂γ
ℓ(θ|γ) =

n∑
i=1

∂ℓi
∂π∗i

∂π∗i
∂γ

=

n∑
i=1

(
y∗i
π∗i

− 1− y∗i
1− π∗i

)
(1− πi)

Using (3.4.2),

∂

∂γ
ℓ(θ|γ) =

n∑
i=1

(
1

1− γ

)
(1− π∗i )

(
y∗i
π∗i

− 1− y∗i
(1− π̂∗i )

)
(3.4.3)

2. The second derivative

∂2ℓi
∂γ2

= −(1− πi)
2

(
y∗i
π∗i

2 +
1− y∗i

(1− π∗i )
2

)

similarly, it follows that

∂2ℓ(θ|γ)
∂γ2

=
n∑

i=1

(1− πi)
2

(
y∗i
π∗i

2 +
1− y∗i

(1− π∗i )
2

)

and using (3.4.2),

∂2ℓ(θ|γ)
∂γ2

=

n∑
i=1

(
1

1− γ

)2

(1− π∗i )
2

(
y∗i
π∗i

2 +
1− y∗i

(1− π∗i )
2

)
(3.4.4)

Using (3.4.3) and (3.4.4), curvature κ in (3.3.1) is

κ =

∣∣∣∣2∑n
i=1

(
1

1−γ

)2
(1− π̂∗i )

2
(

y∗i
π̂∗
i
2 +

1−y∗i
(1−π̂∗

i )
2

)∣∣∣∣(
1 + 4

(∑n
i=1(

1
1−γ )(1− π̂∗i )

(
y∗i
π̂∗
i
− 1−y∗i

(1−π̂∗
i )

))2) 3
2

=
2( 1

1−γ )
2
∑n

i=1(1− π̂∗i )
2
(

y∗i
π̂∗
i
2 +

1−y∗i
(1−π̂∗

i )
2

)
(
1 + ( 1

1−γ )
24
(∑n

i=1(1− π̂∗i )
(

yi
π̂∗
i
− 1−y∗i

(1−π̂∗
i )

))2) 3
2

(3.4.5)

This curvature can be used to assess the stability of each distinct model (assumed and
modified models) under a slight change in γ. The larger a curvature is, the faster the
curve is turning, which means the model with large curvature is sensitive to measurement
error. A plot of curvature against γ for a random simulated data shows that the assumed
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model has the lowest curvature among all the models (as shown in Figure 3.5 and Table
3.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
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γ

κ

Curvature under a Nondifferential Misclassification

Figure 3.5: Influence Measure based on Curvature results from a simulated data under a
Nondifferential Misclassification with varying γ ranges from 0 to 1

Table 3.2: Extract of curvature results from a simulated data under a Nondifferential
Misclassification mimicking motivating example (see detail in Section 3.1) with γ ranges

from 0 to 1. Each γ represents a distinct model with assumed model at γ = 0, and
modified models when γ ̸= 0

γ Curvature
0 737.13

0.14 996.66
0.39 1981.01
0.55 3640.16
0.63 5384.46
0.67 6768.89
0.71 8764.95
0.75 11794.12
0.82 22751.00
0.87 43617.30
0.94 204759.01
0.99 7371324.35

According to the random simulation result, it indicates that the assumed mode with γ = 0
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is the most stable model compared with any other modified models with γ ̸= 0.

We can also prove this result mathematically. Let

A = 2
n∑

i=1

(1− π̂∗i )
2

(
y∗i
π̂∗i

2 +
1− y∗i

(1− π̂∗i )
2

)

B = 4

[
n∑

i=1

(1− π̂∗i )

(
y∗i
π̂∗i

− 1− y∗i
(1− π̂∗i )

)]2

D(γ) =

(
1

1− γ

)2

,

such that curvature κ in (3.4.5) can be rewritten as

κ =
D(γ)A

[1 +D(γ)B]
3
2

= AD(γ) [1 +BD(γ)]−
3
2 . (3.4.6)

The derivative of κ in (3.4.6) with respect to γ is

∂κ

∂γ
= A

[
∂D(γ)

∂γ
(1 +BD(γ))−

3
2 +D(γ)

(
−3

2

)
(1 +D(γ)B)−

5
2B

∂D(γ)

∂γ

]
= A

∂D(γ)

∂γ

{
[1 +D(γ)B]2 − 3

2D(γ)B

[1 +D(γ)B]
5
2

}

= A
∂D(γ)

∂γ

{
1 + [D(γ)B]2 + 2D(γ)B − 3

2D(γ)B

[1 +D(γ)B]
5
2

}

= A
∂D(γ)

∂γ

{
1 + [D(γ)B]2 + 1

2D(γ)B

[1 +D(γ)B]
5
2

}

A =


2
∑n

i=1

(
1−π̂∗

i
π̂∗
i

)2

, when y∗i = 1

2
∑n

i=1

(
1−π̂∗

i
1−π̂∗

i

)2

= 2n, when y∗i = 0

And,

B =


4

(∑n
i=1

(
1−π̂∗

i
π̂∗
i

))2

, when y∗i = 1

4

(∑n
i=1

(
1−π̂∗

i
1−π̂∗

i

))2

= 4n2, when y∗i = 0

Since 0 ≤ γ ≤ 1, A ≥ 0. Similarly, B ≥ 0. Also D(γ) =
(

1
1−γ

)2
≥ 0 and

∂D(γ)

∂γ
=

2

(1− γ)3
≥ 0.

Therefore, ∂κ
∂γ ≥ 0 for 0 ≤ γ ≤ 1. It means κ is a monotonically increasing function of

γ, for γ between 0 and 1 (like it shows in Figure 3.5). Hence, κ is minimized at γ = 0.
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This proves that an assumed model (at γ = 0) under a nondifferential misclassification is
the most stable model under the problem of error prone Y ∗

i . In otherwords, the assumed
model with γ = 0 is the most stable model compared with other modified models with
γ ̸= 0. Although, Figure 3.5 and Table 3.2 was based on a simulated random data, our
proof here shows that κ is minimize at γ = 0 for any random data under the problem of
mismeasured response Y ∗

i = 0.

3.4.2 Differential Misclassification based on binary covariate

In this section we consider a special case of differential misclassification. The assumption
here is that the probability of measurement error is dependent on the error-free measure-
ment of binary exposure variable xi.

Suppose the modification weights introduced are γ = (γ0, γ1) and the probability of mea-
surement error is

P (Y ∗
i = 1|Yi = 0, xi) =γ0(1− xi) + γ1xi

=γ0 − γ0xi + γ1xi (3.4.11)

such that the probability depends on the binary exposure variable xi, i.e.

P (Y ∗
i = 1|Yi = 0, xi) =

{
γ0, when xi = 0

γ1, when xi = 1

By assuming (3.4.11),

P (Y ∗
i |xi) = P (Y ∗

i = 1|Yi = 1, xi)P (Yi = 1|xi) + P (Y ∗
i = 1|Yi = 0, xi)P (Yi = 0|xi)

= πi + (γ0 − γ0xi + γ1xi)(1− πi). (3.4.12)

The distribution of the observed outcome variable conditional on γ0 and γ1 is hence

Y ∗
i |Xi ∼ Bin(1, πi + (γ0 − γ0xi + γ1xi)(1− πi)), (3.4.13)

and the log-likelihood for the modified model with the weights γ = (γ0, γ1) is

ℓ(θ|γ) =
n∑

i=1

y∗i log
(
πi + (γ0 − γ0xi + γ1xi)(1− πi)

)
+ (1− y∗i ) log

(
(1− γ0 + γ0xi − γ1xi)(1− πi)

)
(3.4.14)

When we assume (γ0, γ1) = (0, 0), there is no measurement error, (3.4.12) is equal to the
assumed model (3.1.1), ℓ(θ∗) = ℓ(θ|γ) and θ∗ = θ. When we assume (γ0, γ1) ̸= (0, 0), the
modified model is deviated from the assumed model and ℓ(θ∗) ̸= ℓ(θ|γ). The modification
weights γ = (γ0, γ1) are bounded by Ω = [0, 1]2. The assumed model corresponds to the
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point at γ = (0, 0), and all the other points in Ω correspond to the infinitely many distinct
modified models.

In this special case, the sum of normal curvatures (3.3.4) along the directions of γ0 and
γ1 can be used to assess how stable a model (assumed or modified) is under the impact
of differential misclassification as specified in (3.4.11). Figure 3.6 shows the influence
surface S = (γ0, γ1, LD(γ)) of the sum of normal curvatures (3.3.4) against γ0 and γ1

respectively.

Figure 3.6: Influence Surface under a Differential Misclassification pattern. Sum of
curvatures for both directions of γ0 and γ1 from a simulation study with γ0 = 0.1 and

γ1 = 0.3 under the impact of a Differential Misclassification pattern

Similar to Figure 3.5, Figure 3.6 shows that the assumed model has the lowest sum of
curvatures among all the models. This indicates that for the special case of Section 3.2,
when there is no information about the error size, the assumed model is still the most
stable model under the potential impact of differential misclassification. Again, we can
prove this rigorously.

Proof. We will use convergence in probability to prove that the assumed model is asymp-
totically the most stable model under the special case of Section 3.2. The proof requires
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the use of average log-likelihood function, therefore, we need to re-write (3.4.13) as

ℓ(θ̂|γ) = 1

n

n∑
i=1

ℓi(θ̂|γ) (3.4.15)

where ℓi(θ̂|γ) is the likelihood function of individual subjects under the probability of
measurement error (γ0, γ1) defined as

ℓi(θ̂|γ) =y∗i log
(
π̂i + (γ0 − γ0xi + γ1xi)(1− π̂i)

)
+ (1− y∗i ) log

((
1− π̂i

)(
1− γ0 + γ0xi − γ1xi

))
(3.4.16)

Note that using the average log-likelihood does not change the maximum likelihood esti-
mates.

For simplicity of expression, we can further rewrite (3.4.16) as

ℓi(θ̂|γ) = y∗i log(π̂∗i ) + (1− y∗i ) log(1− π̂∗i ) (3.4.17)

and now with assumed (γ0, γ1), π̂∗i can also be written as

π̂∗i = π̂i + (γ0 − γ0xi + γ1xi)(1− π̂i). (3.4.18)

The reason we can re-write π̂∗i as (3.4.18) is because from (3.4.12)

π̂i + (γ0 − γ0xi + γ1xi)(1− π̂i) = P̂ (Y ∗
i |xi) = π̂∗i

It should be noted that the estimated α̂∗, θ̂∗ and

π̂∗i =
exp(α̂∗ + θ̂∗xi)

1 + exp(α̂∗ + θ̂∗xi)

are based on the observed y∗i and xi and therefore do not vary with different assumptions
of γ0 and γ1. Thus in (3.4.18), the value of π̂∗i is constant when y∗i and xi are observed,
but the value of π̂i can change with different values of (γ0, γ1).

Due to the consistency of MLEs,

α̂∗ P→ α∗

θ̂∗
P→ θ∗
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and using Slutsky’s and continuous mapping theorems, we have

π̂∗i =
exp(α̂∗ + θ̂∗xi)

1 + exp(α̂∗ + θ̂∗xi)

P→ exp(α∗ + θ∗xi)

1 + exp(α∗ + θ∗xi)
= π∗ (3.4.19)

To obtain the asymptotic property of the sum of curvatures (3.3.4), we first need to use
(3.4.19) to derive the limits of the first two derivatives of l(θ̂|γ) with respect to γ0 and γ1.
Again using Slutsky’s and continuous mapping theorems, it follows

∂ℓ(θ̂|γ)
∂γ0

=
1

n

n∑
i=1

∂ℓi
∂π̂∗i

∂π̂∗i
∂γ0

=
1

n

n∑
i=1

1− π̂∗i
1− γ0 + γ0xi − γ1xi

(
y∗i
π̂∗i

− 1− y∗i
(1− π̂∗i )

)
(1− xi)

P→ E

[
1− π∗i

1− γ0 + γ0Xi − γ1Xi

(
Y ∗
i

π∗i
− 1− Y ∗

i

(1− π∗i )

)
(1−Xi)

]

= E

[
1− π∗i

1− γ0 + γ0Xi − γ1Xi

(
E(Y ∗

i |Xi)

π∗i
− 1− E(Y ∗

i |Xi)

(1− π∗i )

)
(1−Xi)

]

= E

[
1− π∗i

1− γ0 + γ0Xi − γ1Xi

(
π∗i
π∗i

− 1− π∗i
(1− π∗i )

)
(1−Xi)

]
= 0 (3.4.20)

and

∂2ℓ(θ̂|γ)
∂γ20

= − 1

n

n∑
i=1

(
1− π̂∗i

1− γ0 + γ0xi − γ1xi

)2( y∗i
π̂∗i

2
+

1− y∗i
(1− π̂∗i )

2

)
(1− xi)

2

P→ −E

[(
1− π∗i

1− γ0 + γ0Xi − γ1Xi

)2( Y ∗
i

π∗i
2
+

1− Y ∗
i

(1− π∗i )
2

)
(1−Xi)

2

]

= −E

[(
1− π∗i

1− γ0 + γ0Xi − γ1Xi

)2(E(Y ∗
i |Xi)

π∗i
2 +

1− E(Y ∗
i |Xi)

(1− π∗i )
2

)
(1−Xi)

2

]

= −E

[(
1− π∗i

1− γ0 + γ0Xi − γ1Xi

)2( π∗i
π∗i

2 +
1− π∗i

(1− π∗i )
2

)
(1−Xi)

2

]

= −E

[(
1

1− γ0 + γ0Xi − γ1Xi

)2(1− π∗i
π∗i

)
(1−Xi)

2

]
(3.4.21)
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Similarly,

∂ℓ(θ̂|γ)
∂γ1

=
1

n

n∑
i=1

∂ℓi
∂π̂∗i

∂π̂∗i
∂γ1

=
1

n

n∑
i=1

1− π̂∗i
1− γ0 + γ0xi − γ1xi

(
y∗i
π̂∗i

− 1− y∗i
(1− π̂∗i )

)
xi

P→ E

[
1− π∗i

1− γ0 + γ0Xi − γ1Xi

(
Y ∗
i

π∗i
− 1− Y ∗

i

(1− π∗i )

)
Xi

]

= E

[
1− π∗i

1− γ0 + γ0Xi − γ1Xi

(
E(Y ∗

i |Xi)

π∗i
− 1− E(Y ∗

i |Xi)

(1− π∗i )

)
Xi

]

= E

[
1− π∗i

1− γ0 + γ0Xi − γ1Xi

(
π∗i
π∗i

− 1− π∗i
(1− π∗i )

)
Xi

]
= 0 (3.4.22)

and

∂2ℓ(θ̂|γ)
∂γ21

= − 1

n

n∑
i=1

(
1− π̂∗i

1− γ0 + γ0xi − γ1xi

)2( y∗i
π̂∗i

2
+

1− y∗i
(1− π̂∗i )

2

)
x2i

P→ −E

[(
1− π∗i

1− γ0 + γ0Xi − γ1Xi

)2( Y ∗
i

π∗i
2
+

1− Y ∗
i

(1− π∗i )
2

)
X2

i

]

= −E

[(
1− π∗i

1− γ0 + γ0Xi − γ1Xi

)2(E(Y ∗
i |Xi)

π∗i
2 +

1− E(Y ∗
i |Xi)

(1− π∗i )
2

)
X2

i

]

= −E

[(
1− π∗i

1− γ0 + γ0Xi − γ1Xi

)2( π∗i
π∗i

2 +
1− π∗i

(1− π∗i )
2

)2

X2
i

]

= −E

[(
1

1− γ0 + γ0Xi − γ1Xi

)2(1− π∗i
π∗i

)
X2

i

]
(3.4.23)

Using (3.4.20) and (3.4.22), we have in (3.3.4)

1 + 4

(
∂ℓ(θ̂|γ)
∂γj

)2
P→ 1 for j = 0 and 1 (3.4.24)√√√√1 + 4

1∑
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2
P→ 1 (3.4.25)
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With (3.4.21), (3.4.23), (3.4.24) and (3.4.25), the limit of the sum of curvatures (3.3.4) is

1∑
j=0

κhγj
= κhγ0 + κhγ1

=

2
∑1

j=0


∣∣∣∣∣ ∂2ℓ(θ̂|γ)∂γ2

j

∣∣∣∣∣
1+4

(
∂ℓ(θ̂|γ)
∂γj

)2

√
1 + 4

∑1
j=0

(
∂ℓ(θ̂|γ)
∂γj

)2
P→ 2E

[(
1

1− γ0 + γ0Xi − γ1Xi

)2(1− π∗i
π∗i

)
(1−Xi)

2

+

(
1

1− γ0 + γ0Xi − γ1Xi

)2(1− π∗i
π∗i

)
X2

i

]

= 2E

[(
1

1− γ0 + γ0Xi − γ1Xi

)2(1− π∗i
π∗i

)(
(1−Xi)

2 +X2
i

)]
. (3.4.26)

When Xi = 0, the limit (3.4.26) is

1∑
j=0

κhγj
P→ 2

( 1

1− γ0

)2
1− eα

∗

1+eα∗

eα∗

1+eα∗

 = 2

[(
1

1− γ0

)2

e−α∗

]
, (3.4.27)

which is minimized at γ0 = 0 for 0 ≤ γ0 ≤ 1.

When Xi = 1,

1∑
j=0

κhγj
P→ 2

( 1

1− γ1

)2
1− eα

∗+θ∗

1+eα∗+θ∗

eα∗+θ∗

1+eα∗+θ∗

 = 2

[(
1

1− γ1

)2

e−α∗−θ∗

]
, (3.4.28)

which is minimized at γ1 = 0 for 0 ≤ γ1 ≤ 1.

The limit of the sum of curvatures (3.4.26) is then

1∑
j=0

κhγj

P→ 2e−α∗

(
{1− P (Xi = 1)}

[(
1

1− γ0

)2
]
+ P (Xi = 1)

[(
1

1− γ1

)2

e−θ∗

])
,

which is minimized at (γ0, γ1) = (0, 0) for (γ0, γ1) ∈ [0, 1]2.

The proof above shows that the sum of curvatures,
∑1

j=0 κhγj
, is asymptotically mini-

mized at (γ0, γ1) = (0, 0). This means that the assumed model with (γ0, γ1) = (0, 0) is
asymptotically more stable than the modified models with (γ0, γ1) ̸= (0, 0).

3.4.3 General case of Misclassification

In Section 3.4.1 and 3.4.2 respectively, we considered the nondifferential misclassification
and a special case of differential misclassification which depends on a binary covariate.
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In this section, we consider the setting below, which is general for both the nondiffer-
ential misclassification and the differential misclassification conditional on an arbitrary
(continuous or/and discrete) vector of covariates, say xi = (xi1, xi2, ..., xip)

tr.

To set up the general misclassification, let

γi = P (Y ∗
i = 1|Yi = 0, xi)

be the probability of measurement error for the ith subject conditional on xi = (xi1, xi2, ..., xip)
tr.

For a sample size of n, the probabilities of measurement error are (γ1, ..., γn). As the no-
tation γi has been used for the probability of measurement error, to avoid confusion, we
need now to introduce the new notations ω = (ω1, ..., ωq) as the modification weights,
which influence the individual probability of measurement error γi through a function g,
i.e.

P (Y ∗
i = 1|Yi = 0, xi) = γi = g(ω;xi) = g(ω1, ..., ωq;xi) (3.4.29)

As shown below, the setting (3.4.29) is general to the case of nondifferential misclassi-
fication in Section 3.4.1 and the special case of differential misclassification in Section
3.4.2:

(a) In Section 3.4.1, all the individuals have the same probability of measurement error γ.
To see how the general setting (3.4.29) can cover the case of nondifferential misclas-
sification, consider q = 1 and the modification weight is ω = ω1, which can influence
the probability of measurement error by

γ1 = ... = γn = γ = g(ω;xi) = g(ω1) = ω1.

In this way, the setting (3.4.29) is general to the case of nondifferential misclassification
by letting g(ω1) = ω1 = γ. Here the modification weight ω = ω1 is bound by [0, 1] ∈ R.

(b) In Section 3.4.2, misclassification is differential based on a binary xi. In this special
case, q = 2 and the modification weights ω = (ω1, ω2) influence the probability of
measurement error through the function g:

γi = g(ω;xi) = g(ω1, ω2;xi) = ω1(1− xi) + ω2xi for i = 1, ..., n.

Under this function g, ω1 = γ0, ω2 = γ1 and the vector of weights ω = (ω1, ω2) is
bound by [0, 1]2 ∈ R2.

Under the general setting of misclassification (3.4.29), the average log-likelihood function
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based on the assumed modification weights ω = (ω1, ..., ωq) is

l(θ̂|ω) = 1

n

n∑
i=1

li(θ̂|ω) =
1

n

n∑
i=1

y∗i log{π̂i + γi(1− π̂i)}+ (1− y∗i ) log{1− π̂i − γi(1− π̂i)},

(3.4.30)
where

π̂i =
exp(α̂+ θ̂xi)

1 + exp(α̂+ θ̂xi)

and α̂ and θ̂ = (θ̂1, ..., θ̂p) are estimated under the assumed ω = (ω1, ..., ωq).

Different assumed values of ω lead to different values of α̂, θ̂, π̂i and the log-likelihood
function (3.4.30). The different values of (q + 1)× 1 vector

ω1

...
ωq

LD(ω) = 2[l(θ̂∗)− l(θ̂|ω)]


as ω varies throughout some Ω ∈ Rq form the influence surface. There is one point or a
vector of weights in Ω, say

ω∗ = {ω : g(ω;xi) = γi = 0 for i = 1, ..., n}

corresponds to the assumed model, l(θ̂∗) = l(θ̂|ω = ω∗). All the other points that ω ̸= ω∗

in Ω correspond to the infinitely many distinct modified models, l(θ̂|ω ̸= ω∗).

The sum of curvatures of the influence surface along the directions of ω = (ω1, ..., ωq) can
be used to assess how stable a model is around each particular point in Ω. By substituting
γ in (3.3.5) with ω, the sum of curvatures is

q∑
j=1

κhωj
=

q∑
j=1

2


∣∣∣∣∣ ∂2ℓ(θ̂|ω)

∂ω2
j

∣∣∣∣∣
1+4

(
∂ℓ(θ̂|ω)
∂ωj

)2

√
1 + 4

∑q
j=1

(
∂ℓ(θ̂|ω)
∂ωj

)2 (3.4.31)

To understand the asymptotic property of (3.4.31), again we need to derive the limits
of the first two derivatives of l(θ̂|ω) with respect to ωj . Using multivariate and higher
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derivatives chain rule, it follows

∂l(θ̂|ω)
∂ωj

=
1

n

n∑
i=1

∂li(θ̂|ω)
∂γi

∂γi
∂ωj

(3.4.32)

∂2l(θ̂|ω)
∂ω2

j

=
1

n

n∑
i=1

∂2li(θ̂|ω)
∂γ2i

(
∂γi
∂ωj

)2

+
1

n

n∑
i=1

∂li(θ̂|ω)
∂γi

∂2γi
∂ω2

j

, (3.4.33)

where

∂li(θ̂|ω)
∂γi

= {1− π̂i}
[

y∗i
π̂i + γi {1− π̂i}

− 1− y∗i
1− π̂i − γi {1− π̂i}

]
(3.4.34)

∂2li(θ̂|ω)
∂γ2i

= −{1− π̂i}2
(

y∗i
[π̂i + γi(1− π̂i)]2

+
1− y∗i

[1− π̂i − γi{1− π̂i}]2

)
(3.4.35)

and ∂γi/∂ωj = ∂g(ω1, ..., ωq;xi)/∂ωj and ∂2γi/∂ω
2
j = ∂2g(ω1, ..., ωq;xi)/∂ω

2
j .

Since
π̂∗i = P̂ (Y ∗

i = 1|xi) = π̂i + γi{1− π̂i} and 1− π̂i =
1− π̂∗i
1− γi

,

(3.4.34) and (3.4.35) can be simplified as

∂li(θ̂|ω)
∂γi

=

(
1− π̂∗i
1− γi

)(
y∗i
π̂∗i

− 1− y∗i
1− π̂∗i

)
(3.4.36)

∂2li(θ̂|ω)
∂γ2i

= −
(
1− π̂∗i
1− γi

)2( y∗i
π̂∗i

2 +
1− y∗i

(1− π̂∗i )
2

)
(3.4.37)

From (3.4.32) and (3.4.36), and using Slutsky’s and continuous mapping theorems

∂l(θ̂|ω)
∂ωj

=
1

n

n∑
i=1

∂li(θ̂|ω)
∂γi

∂γi
∂ωj

=
1

n

n∑
i=1

(
1− π̂∗i
1− γi

)(
y∗i
π̂∗i

− 1− y∗i
1− π̂∗i

)
∂γi
∂ωj

P−→E

{(
1− π∗i
1− γi

)(
Y ∗
i

π∗i
− 1− Y ∗

i

1− π∗i

)
∂γi
∂ωj

}
=E

{(
1− π∗i
1− γi

)(
E(Y ∗

i |Xi)

π∗i
− 1− E(Y ∗

i |Xi)

1− π∗i

)
∂γi
∂ωj

}
=E

{(
1− π∗i
1− γi

)(
π∗i
π∗i

− 1− π∗i
1− π∗i

)
∂γi
∂ωj

}
=0 (3.4.38)

Similarly, in (3.4.33), the first component on the right hand side converges in probability
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to

1

n

n∑
i=1

∂2li(θ̂|ω)
∂γ2i

(
∂γi
∂ωj

)2

=− 1

n

n∑
i=1

(
1− π̂∗i
1− γi

)2( y∗i
π̂∗i

2 +
1− y∗i

(1− π̂∗i )
2

)(
∂γi
∂ωj

)2

P−→− E

{(
1− π∗i
1− γi

)2( Y ∗
i

π∗i
2 +

1− Y ∗
i

(1− π∗i )
2

)(
∂γi
∂ωj

)2
}

=− E

{(
1− π∗i
1− γi

)2(E(Y ∗
i |Xi)

π∗i
2 +

1− E(Y ∗
i |Xi)

(1− π∗i )
2

)(
∂γi
∂ωj

)2
}

=− E

{(
1− π∗i
1− γi

)2( π∗i
π∗i

2 +
1− π∗i

(1− π∗i )
2

)(
∂γi
∂ωj

)2
}

=− E

{(
1− π∗i
1− γi

)2( 1

π∗i
+

1

(1− π∗i )

)(
∂γi
∂ωj

)2
}

=− E

{(
1− π∗i
1− γi

)2 1

π∗i (1− π∗i )

(
∂γi
∂ωj

)2
}

=− E

{(
1

1− γi

)2(1− π∗i
π∗i

)(
∂γi
∂ωj

)2
}

(3.4.39)

and the second component on the right hand side converges in probability to

1

n

n∑
i=1

∂li(θ̂|ω)
∂γi

∂2γi
∂ω2

j

=
1

n

n∑
i=1

(
1− π̂∗i
1− γi

)(
y∗i
π̂∗i

− 1− y∗i
1− π̂∗i

)
∂2γi
∂ω2

j

P−→E

{(
1− π∗i
1− γi

)(
Y ∗
i

π∗i
− 1− Y ∗

i

1− π∗i

)
∂2γi
∂ω2

j

}

=E

{(
1− π∗i
1− γi

)(
E(Y ∗

i |Xi)

π∗i
− 1− E(Y ∗

i |Xi)

1− π∗i

)
∂2γi
∂ω2

j

}

=E

{(
1− π∗i
1− γi

)(
π∗i
π∗i

− 1− π∗i
1− π∗i

)
∂2γi
∂ω2

j

}
=0 (3.4.40)

Therefore, the components in (3.4.31) converge in probability respectively to

∂2l(θ̂|ω)
∂ω2

j

P−→ −E

{(
1

1− γi

)2(1− π∗i
π∗i

)(
∂γi
∂ωj

)2
}

(3.4.41)
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based on the results (3.4.33), (3.4.36), (3.4.37), (3.4.39) and (3.4.40), and

1 + 4

(
∂ℓ(θ̂|ω)
∂ωj

)2
P−→ 1 (3.4.42)√√√√1 + 4

q∑
j=1

(
∂ℓ(θ̂|ω)
∂ωj

)2
P−→ 1 (3.4.43)

based on the results (3.4.32), (3.4.36) and (3.4.38).

The results (3.4.41)-(3.4.43) together lead to the limit of the sum of curvatures:

q∑
j=1

κhωj

P−→2

q∑
j=1

E

{(
1

1− γi

)2(1− π∗i
π∗i

)(
∂γi
∂ωj

)2
}

=2E


(
1− π∗i
π∗i

)(
1

1− γi

)2 q∑
j=1

(
∂γi
∂ωj

)2
 (3.4.44)

Note that in (3.4.44), π∗i = P (Y ∗
i = 1|Xi) only depends on the true distribution of Y ∗

i

conditional on Xi, and therefore is invariant with respect to the assumed ω and γi. The
sum of curvatures are minimized when

(
1

1−γi

)2∑q
j=1

(
∂γi
∂ωj

)2
are minimized. By given the

function g, one can derive
∑q

j=1

(
∂γi
∂ωj

)2
and use (3.4.44) to find the most stable model

with the lowest sum of curvatures.

Again using the special cases in Section 3.4.1 and 3.4.2 as examples:

(a) In Section 3.4.1, γ1 = ... = γn = γ = ω1. It follows that

∂γi
∂ωj

=
∂γ

∂ω1
= 1 and

q∑
j=1

(
∂γi
∂ωj

)2

= 1

Therefore, (
1

1− γi

)2 q∑
j=1

(
∂γi
∂ωj

)2

=

(
1

1− γ

)2

and hence the curvature are minimized at γ = 0 for 0 ≤ γ ≤ 1. As already proved in
Section 3.4.1, the assumed model with γ = 0 is the most stable model as it has the
lowest curvature.

(b) In Section 3.4.2, γi = ω1(1−Xi) + ω2Xi. It follows that

∂γi
∂ω1

= (1−Xi),
∂γi
∂ω2

= Xi, and
q∑

j=1

(
∂γi
∂ωj

)2

= {(1−Xi)Xi}2
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Therefore, (
1

1− γi

)2 q∑
j=1

(
∂γi
∂ωj

)2

=

(
1

1− γi

)2

{(1−Xi)Xi}2

and hence the sum of curvatures are minimized at ω1 = ω2 = 0 and γi = 0 for
0 ≤ γi ≤ 1. Although, the assumed model has the lowest curvature when there is no
information about the error size, it is important to assess stability and the robustness
of model estimates within a plausible range of error size.
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Chapter 4

Influence Measure for Misclassified
Presence of Binary Outcome

In Section 3.4 of Chapter Three, we derived influence measures that can be used to in-
vestigate how stable an assumed or modified model is under the impact of error-prone
Y ∗
i = 0. This Chapter shows a special case of a binary outcome where only the presence

of an attribute; Y ∗
i = 1 is subject to measurement error. Following the general case of

misclassification setting introduced in Section 3.4.3 of Chapter Three, we assess how stable
an assume or modified model is under nondifferential and differential misclassified Y ∗

i = 1.
The final results will be largely similar to the description provided in Section 3.4.3, but
there are important differences along the line of the derivation.

The chapter is structured as follows. In Section 4.1, we provide the study design. Following
the general setting in Section 3.4.3, we described how to derive influence measure for
nondifferential and differential misclassification in Section 4.2.

4.1 Study Design

In Chapter Three, we introduced the log-likelihood function of a true response variable Yi
as

ℓ(θ) =

n∑
i=1

yi log(πi) + (1− yi) log(1− πi), (4.1.1)

The assumed logistic model for an observed response Y ∗
i is

Y ∗
i |Xi ∼ Bin(1, π∗i ), log

(
π∗i

1− π∗i

)
= α∗ + θ∗Xi. (4.1.2)

Here, the focus is on error-prone Y ∗
i = 1. In this case, the probability of measurement

error ζ = Pr(Y ∗
i = 0|Yi = 1). The mechanism of measurement error of Y ∗ = 1 is shown
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in Figure 4.1.

yi = 1
Measurement

error

xi

yi = 0 y∗i = 0

y∗i = 1

y∗i = 0
πi

1− πi

1− ζ

ζ

Figure 4.1: Mechanism of Misclassification of the presence of an outcome attribute

By assuming the probability of measurement error to be ζ,

P (Y ∗
i = 1|Xi) =P (Y

∗
i = 1|Yi = 1)P (Yi = 1|Xi) + P (Y ∗

i = 1|Yi = 0)P (Yi = 0|Xi)

=(1− ζ)πi

The distribution of the observed response variable conditional on ζ is

Y ∗
i |Xi ∼ Bin

(
1, (1− ζ)πi

)
, (4.1.3)

And the corresponding log-likelihood for a given ζ is

ℓ(θ|ζ) =
n∑

i=1

y∗i log
(
(1− ζ)πi

)
+ (1− y∗i ) log

(
1−

(
(1− ζ)πi

))
(4.1.4)

To consider a measurement error problem in this special case, we introduced the probability
of measurement error ζ as a modification weight into (4.1.2) and this results to the modified
model (4.1.3). The true value of ζ is unknown, but we can vary the value of ζ between 0

and 1 to assess the impact of measurement error, by comparing the assumed and modified
models, likelihoods or estimates. When ζ = 0, (4.1.3) is equal to (4.1.2), ℓ(θ∗) = ℓ(θ|ζ)
and θ∗ = θ. When ζ > 0, the modified model is deviated from the assumed model and
ℓ(θ∗) ̸= ℓ(θ|ζ). Each value assigned to ζ corresponds to a distinct model. Different values
of ζ > 0 perturb the assumed model (4.1.2) to be different modified models.

In the following, we derive influence measure for the special case of Y ∗
i = 1 under the

impact of nondifferential and differential misclasification patterns.
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4.2 Influence Measure using General case of Misclassification

Following the notations introduced in Section 3.4.3, we consider modification weights
ω = (ω1, · · · , ωq) which influence individual probability of measurement error ζi. Here,
the general setting (3.4.29) to the case of misclassified Y ∗

i = 1 is

P (Y ∗
i = 0|Yi = 1, xi) = ζi = g(ω;xi) = g(ω1, ..., ωq;xi) (4.2.1)

where

• The modification weight ω = ω1 which can influence the probability of measurement
error in the case of nondifferential misclassification is

ζ1 = · · · = ζn = ζ = g(ω;xi) = g(ω1) = ω1

• And in the case of differential misclassification, the vector of modification weights
ω = (ω1, ω2) which can influence the probability of measurement error through
function g:

ζi = g(ω;xi) = g(ω1, ω2;xi) = ω1(1− xi) + ω2xi

Therefore, the average log-likelihood function is

l(θ̂|ω) = 1

n

n∑
i=1

li(θ̂|ω) =
1

n

n∑
i=1

y∗i log{π̂i(1− ζi)}+ (1− y∗i ) log{1− ((1− ζi)π̂i)}, (4.2.2)

where
π̂i =

exp(α̂+ θ̂xi)

1 + exp(α̂+ θ̂xi)

and α̂ and θ̂ = (θ̂1, ..., θ̂p) are estimated under the assumed ω = (ω1, ..., ωq).

Again, to assess how stable a model is around each particular point in Ω, we follow the
asymptotic property of the sum of curvatures, i.e

q∑
j=1

κhωj
=

q∑
j=1

2


∣∣∣∣∣ ∂2ℓ(θ̂|ω)

∂ω2
j

∣∣∣∣∣
1+4

(
∂ℓ(θ̂|ω)
∂ωj

)2

√
1 + 4

∑q
j=1

(
∂ℓ(θ̂|ω)
∂ωj

)2 (4.2.3)

In the case of misclassified Y ∗
i = 1, the final results of the limits of the first two derivatives

of l(θ̂|ω) with respect to ωj is largely similar to proof in Section 3.4.3, but there are
important differences along the line of the derivation. Using multivariate and higher
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derivatives chain rule, it follows

∂l(θ̂|ω)
∂ωj

=
1

n

n∑
i=1

∂li(θ̂|ω)
∂ζi

∂ζi
∂ωj

(4.2.4)

∂2l(θ̂|ω)
∂ω2

j

=
1

n

n∑
i=1

∂2li(θ̂|ω)
∂ζ2i

(
∂ζi
∂ωj

)2

+
1

n

n∑
i=1

∂li(θ̂|ω)
∂ζi

∂2ζi
∂ω2

j

, (4.2.5)

where

∂li(θ̂|ω)
∂ζi

= −π̂i
[

y∗i
(1− ζi)π̂i

− 1− y∗i
1− (1− ζi)π̂i

]
(4.2.6)

∂2li(θ̂|ω)
∂ζ2i

= −π̂2i
(

y∗i
[(1− ζi)π̂i]2

+
1− y∗i

[1− (1− ζi)π̂i]2

)
(4.2.7)

and ∂ζi/∂ωj = ∂g(ω1, ..., ωq;xi)/∂ωj and ∂2ζi/∂ω
2
j = ∂2g(ω1, ..., ωq;xi)/∂ω

2
j .

Since
π̂∗i = P̂ (Y ∗

i = 1|xi) = (1− ζi)π̂i and π̂i =
π̂∗i

1− ζi
,

(4.2.6) and (4.2.7) can be simplified as

∂li(θ̂|ω)
∂ζi

= −
(

π̂∗i
1− ζi

)(
y∗i
π̂∗i

− 1− y∗i
1− π̂∗i

)
(4.2.8)

∂2li(θ̂|ω)
∂ζ2i

= −
(

π̂∗i
1− ζi

)2( y∗i
π̂∗i

2 +
1− y∗i

(1− π̂∗i )
2

)
(4.2.9)

From (4.2.4) and (4.2.8), and using Slutsky’s and continuous mapping theorems

∂l(θ̂|ω)
∂ωj

=
1

n

n∑
i=1

∂li(θ̂|ω)
∂ζi

∂ζi
∂ωj

=− 1

n

n∑
i=1

(
π̂∗i

1− ζi

)(
y∗i
π̂∗i

− 1− y∗i
1− π̂∗i

)
∂ζi
∂ωj

P−→− E

{(
π∗i

1− ζi

)(
Y ∗
i

π∗i
− 1− Y ∗

i

1− π∗i

)
∂ζi
∂ωj

}
=− E

{(
π∗i

1− ζi

)(
E(Y ∗

i |Xi)

π∗i
− 1− E(Y ∗

i |Xi)

1− π∗i

)
∂ζi
∂ωj

}
=− E

{(
π∗i

1− ζi

)(
π∗i
π∗i

− 1− π∗i
1− π∗i

)
∂ζi
∂ωj

}
=0 (4.2.10)

Similarly, in (4.2.5), the first component on the right hand side converges in probability
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to

1

n

n∑
i=1

∂2li(θ̂|ω)
∂ζ2i

(
∂ζi
∂ωj

)2

=− 1

n

n∑
i=1

(
π̂∗i

1− ζi

)2( y∗i
π̂∗i

2 +
1− y∗i

(1− π̂∗i )
2

)(
∂ζi
∂ωj

)2

P−→− E

{(
π∗i

1− ζi

)2( Y ∗
i

π∗i
2 +

1− Y ∗
i

(1− π∗i )
2

)(
∂ζi
∂ωj

)2
}

=− E

{(
π∗i

1− ζi

)2(E(Y ∗
i |Xi)

π∗i
2 +

1− E(Y ∗
i |Xi)

(1− π∗i )
2

)(
∂ζi
∂ωj

)2
}

=− E

{(
π∗i

1− ζi

)2( π∗i
π∗i

2 +
1− π∗i

(1− π∗i )
2

)(
∂ζi
∂ωj

)2
}

=− E

{(
π∗i

1− ζi

)2( 1

π∗i
+

1

(1− π∗i )

)(
∂ζi
∂ωj

)2
}

=− E

{(
π∗i

1− ζi

)2 1

π∗i (1− π∗i )

(
∂ζi
∂ωj

)2
}

=− E

{(
1

1− ζi

)2( π∗i
1− π∗i

)(
∂ζi
∂ωj

)2
}

(4.2.11)

and the second component on the right hand side converges in probability to

1

n

n∑
i=1

∂li(θ̂|ω)
∂ζi

∂2ζi
∂ω2

j

=− 1

n

n∑
i=1

(
π̂∗i

1− ζi

)(
y∗i
π̂∗i

− 1− y∗i
1− π̂∗i

)
∂2ζi
∂ω2

j

P−→− E

{(
π∗i

1− ζi

)(
Y ∗
i

π∗i
− 1− Y ∗

i

1− π∗i

)
∂2ζi
∂ω2

j

}

=− E

{(
π∗i

1− ζi

)(
E(Y ∗

i |Xi)

π∗i
− 1− E(Y ∗

i |Xi)

1− π∗i

)
∂2ζi
∂ω2

j

}

=− E

{(
π∗i

1− ζi

)(
π∗i
π∗i

− 1− π∗i
1− π∗i

)
∂2ζi
∂ω2

j

}
=0 (4.2.12)

Therefore, the components in (4.2.5) converge in probability respectively to

∂2l(θ̂|ω)
∂ω2

j

P−→ −E

{(
1

1− ζi

)2( π∗i
1− π∗i

)(
∂ζi
∂ωj

)2
}

(4.2.13)
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based on the results (4.2.5), (4.2.8), (4.2.9), (4.2.11) and (4.2.12), and

1 + 4

(
∂ℓ(θ̂|ω)
∂ωj

)2
P−→ 1 (4.2.14)√√√√1 + 4

q∑
j=1

(
∂ℓ(θ̂|ω)
∂ωj

)2
P−→ 1 (4.2.15)

based on the results (4.2.4), (4.2.8) and (4.2.10).

The results (4.2.13)-(4.2.15) together lead to the limit of the sum of curvatures:

q∑
j=1

κhωj

P−→2

q∑
j=1

E

{(
1

1− ζi

)2( π∗i
1− π∗i

)(
∂ζi
∂ωj

)2
}

=2E


(

π∗i
1− π∗i

)(
1

1− ζi

)2 q∑
j=1

(
∂ζi
∂ωj

)2
 (4.2.16)

Note that in (4.2.16), π∗i = P (Y ∗
i = 1|Xi) only depends on the true distribution of Y ∗

i

conditional on Xi, and therefore is invariant with respect to the assumed ω and ζi. The
sum of curvatures is minimized when

(
1

1−ζi

)2∑q
j=1

(
∂ζi
∂ωj

)2
is minimized.

In the following, we show how to use the sums of curvatures, (4.2.16) to study how stable
an assumed or modified model is under the impact of potential measurement error ζ.

4.2.1 Stability under Nondifferential Misclassification

In this section, we consider the case of nondifferential misclassification where all the indi-
viduals have the same probability of measurement error ζ. Here, q = 1 and the modifica-
tion weight is ω = ω1, which can influence the probability of measurement error by

ζ1 = ... = ζn = ζ = g(ω;xi) = g(ω1) = ω1.

Given function g, we can derive
∑q

j=1

(
∂ζi
∂ωj

)2
and use (4.2.16) to find the most stable

model with the lowest sum of curvatures.

It follows that
∂ζi
∂ωj

=
∂ζ

∂ω1
= 1 and

q∑
j=1

(
∂ζi
∂ωj

)2

= 1

Therefore, (
1

1− ζi

)2 q∑
j=1

(
∂ζi
∂ωj

)2

=

(
1

1− ζ

)2

and hence the curvature are minimized at ζ = 0 for 0 ≤ ζ ≤ 1.
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Although, the result suggests that when there is no information about the measurement
error, the assumed model with ζ = 0 has the lowest curvature, it is important to assess
the robustness of model estimate(s) or conclusion(s) within a plausible range of ζ, and
report all the findings.

4.2.2 Stability under Differential Misclassification

Differential misclassifcation is based on a binary xi where the modification weights ω =

(ω1, ω2) influence the probability of measurement error through the function g:

ζi = g(ω;xi) = g(ω1, ω2;xi) = ω1(1− xi) + ω2xi for i = 1, ..., n.

In differential case, q = 2 and through function g, ω1 = ζ0, ω2 = ζ1 such that, the vector
of weights ω = (ω1, ω2) is bound by [0, 1]2 ∈ R2.

Again we can use (4.2.16) to find the most stable model with the lowest sum of curvatures.
In this special case, ζi = ω1(1−Xi) + ω2Xi. It follows that

∂ζi
∂ω1

= (1−Xi),
∂ζi
∂ω2

= Xi, and
q∑

j=1

(
∂ζi
∂ωj

)2

= {(1−Xi)Xi}2

Therefore, (
1

1− ζi

)2 q∑
j=1

(
∂ζi
∂ωj

)2

=

(
1

1− ζi

)2

{(1−Xi)Xi}2

and hence the sum of curvatures are minimized at ω1 = ω2 = 0 and ζi = 0 for 0 ≤i≤
1.

Again, it is important to assess model stability and quality of model estimates within
plausible range of error size.
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Chapter 5

Application and Results

This Chapter shows the illustrative example with binary data. The influence measurement
method from our research is demonstrated in the analysis of our motivating example,
designed to study the effect of a rehabilitation programme on juvenile offenders. Given
that different compositions of measured values of binary outcomes often exist in real
studies, we conducted simulation studies for different scenarios for the special cases of
binary outcome investigated in both Chapters Three and Four.

In our study, there is no prior information about the error size. Hence, the true value
of measurement error (either γ or ζ) is unknown in the analyses illustrated. Thus, for
model development and in order to empirically assess model stability under the impact of
measurement error, the values of the error size range from 0 to 1. Note that in a specific
context, extreme values of the error size may not be plausible. In that case, if measurement
error is suspected, a set of plausible values can be incorporated in the model, otherwise,
one possible solution is to consider range of values between 0 and 1.

The Chapter is structured as follows. In Section 5.1, we present the analysis and results
from the rehabilitation programme study. We next consider four different simulation
studies. In Section 5.2, we first present analysis and results (of the influence measure
methods in Section 3.4.1 in Chapter Three) from simulation study I, where the absence
attribute of outcome Y ∗

i = 0 is based on nondifferential misclassification assumption.
This is followed by simulation study II, which is based on a differential measurement
error assumption of Y ∗

i = 0, the absence of outcome in Section 5.3. In Section 5.4, we
consider simulation III, where the underlining assumption is that error-prone Y ∗

i = 1 is
nondifferentially misclassified. Analysis and results from simulation IV is presented in
Section 5.5. The Simulation IV setting follows a differential misclassification of Y ∗

i = 1,
the presence of attribute of outcome.
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5.1 Application to Rehabilitation Programme study 92

5.1 Application to Rehabilitation Programme study

The first numerical implementation is as follows. To illustrate the stability of an assumed
model under the impact of a measurement error of Y ∗

i = 0, we apply the influence measure
method to the rehabilitation programme study data. The motivating example study is
taken from a rehabilitation programme designed for juvenile offenders. This study was
conducted as a result of an increase in the number of crimes being committed by juveniles,
which leads to the research question of how effective a rehabilitation programme can be.
The study was used to examine if a rehabilitation programme can reduce the reoffending
rate amongst juvenile offenders. Prior to the study, the participants had an episode of
committed crimes or they were something of a risk to public security. The outcome
variable of interest is a binary attribute of participants either reoffending with Y ∗

i = 1

in the case of no reconviction observed, or Y ∗
i = 0 otherwise. We make the reasonable

assumption that there is no reconviction if there is no offence, so Y ∗
i = 1 if Yi = 1, but

an actual offence may not lead to detection and reconviction, that is, when Yi = 0, Y ∗
i

is either 0 or 1. In other words, there is no measurement error if there is no offence, but
there may be measurement error if there is an offence. The treatment and control group
profiles of the rehabilitation programme study are shown in Table 5.1, where exposure
variable X is binary with xi = 1 being those participants who joined the rehabilitation
programme, and xi = 0 otherwise. As shown in Table 5.1, hypothetical data relating to a
total of 2000 participants was used in the study. There are two groups (either control or
treatment) of juvenile offenders in the study. The treatment group has 1000 participants
who joined the rehabilitation programme. The remaining 1000 did not join. Amongst the
treatment group who underwent the programme, 300 out of 1000 participants reoffended.
Meanwhile in the control group, 400 participants did reoffend, while 600 who had not
joined the programme did not reoffend.

Table 5.1: Hypothetical Data: Rehabilitation Programme

Treatment group Control group
No Re-offence 700 600

Re-offence 300 400

The goal of the rehabilitation study is to compare reoffending between the group that
joined the programme and those who did not join. Note that predictors such as gender,
race, and education could play a role, but for the purpose of illustrating the influence
measure method from our research we performed a univariable analysis. For the motivating
data, we sought to test the effect of the rehabilitation programme on juvenile offenders by
using a logistic model to perform the significance test(s).
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5.1.1 Naive Analysis

First, a standard logistic model is fitted to the study data, and the results of the analysis
are shown in Table 5.2. The estimate of the parameter of interest θ̂∗ is the log odd ratio
comparing reoffending amongst participants that joined the rehabilitation programme to
reoffending amongst those who did not join. From the naive analysis results, it can be seen

Table 5.2: Naive analysis results from the Rehabilitation Programme

θ̂∗(Std.Err) PValue 95%
Naive Analysis

0.44(0.09) < 0.01 (0.26, 0.63)

that the effect of the rehabilitation programme is significant (95% confidence interval (CI):
0.26, 0.63), but the response variable Y ∗

i = 0 could be error-prone, and the naive analysis
assumes no measurement error. Hence, this suggests that θ̂∗ (the observed effectiveness of
the rehabilitation programme) may be inaccurate due to undetected crime or measurement
error. As a result, we can say that the conclusion drawn from the assumed model may
be imprecise due to potential undetected crimes in the outcome. Therefore, we need to
investigate how the inference can be impacted by undetected crimes.

We assumed that there is no measurement error if there is no offence, but there may be
measurement error if there is an offence. By assuming the probability of non-detection to
be γ, we introduced γ in the assumed model, and the resulting model is such that, the
distribution of the observed outcome variable conditional on γ is Y ∗

i |Xi ∼ Bin(1, πi +

γ(1 − πi)). The true value of γ is unknown and there is no prior information about γ.
Hence, for model development we vary the value of γ between 0 and 1 to empirically assess
model stability and biasedness of model estimates under the impact of undetected crimes
or measurement error.

To do this, we applied the influence method under both the nondifferential and differential
misclassification patterns described in Chapter Three to the rehabilitation data. We cal-
culated model estimates and curvature under the individual measurement error pattern.
The model estimates and curvature results are used as a measure to illustrate how the sta-
bility evaluation and parameter estimation behave under the impact of slight modification
to γ.

5.1.2 Influence Methods Analysis: Nondifferential Misclassification

In this section, we applied the influence measure under nondifferential misclassification
of Y ∗

i = 0 to the rehabilitation programme data. To illustrate the stability and param-
eter evaluation of an assumed or modified model under a nondifferential mechanism, we
obtained the model estimates and curvature for each distinct (assumed and modified)
model. Note that in the case of a nondifferential measurement error pattern, the mod-
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ification weight introduced in the assume model is scalar. Thus, we used the curvature
derived in (3.4.5) from Chapter Three to calculate curvature. Values ranging from 0 to
1 are assumed for γ during the analysis. The model estimates and curvature (in log
transformation) results are shown in Table 5.3 and Figure 5.1. We use the logarithmic
transformation because the plain curve shown in Figure 5.1(b) is more visible in log trans-
formation than the original values. Table 5.3(a) shows an extract of the model estimates

Table 5.3: Application to rehabilitation study: Extract of model estimates and curvature
results of distinct models under a nondifferential misclassification pattern. The

probability of non-detection γ is allowed to range from 0 to 1. Each γ represents a
distinct model with the assume model at γ = 0 and modified models when γ ̸= 0. (a)

Extract of Model Estimates. (b)Extract of Curvatures.

γ θ̂|γ 95%C.I P-value
0 0.44 (0.26,0.63) <0.001

0.14 0.48 (0.28,0.69) <0.001
0.39 0.68 (0.39,0.97) <0.001
0.55 1.47 (0.65,2.28) <0.001
0.63 13.55 (12.55,14.55) <0.001
0.67 14.63 (13.25,16) <0.001
0.71 0.25 (-1.44,1.93) 0.77
0.75 -0.49 (-1.03,0.05) 0.07
0.82 -0.82 (-1.09,-0.55) <0.001
0.87 -0.92 (-1.13,-0.71) <0.001
0.94 -1 (-1.17,-0.83) <0.001
0.99 -1.04 (-1.19,-0.89) <0.001
(a) Model Estimates. CI;Confidence

Interval.

γ log(κ)
0 7.692

0.14 7.997
0.39 8.693
0.55 9.314
0.63 9.715
0.67 9.951
0.71 10.218
0.75 10.526
0.82 11.216
0.87 11.912
0.94 13.663
0.99 16.882

(b) Curvature under a Nondifferential
Misclassification.

under a nondifferential misclassification. It can be seen that the model estimate increases
as γ increases from 0 to about when γ = 0.6, but then breaks. Each γ represents a distinct
model with an assumed model at γ = 0 and modified models when γ ̸= 0. Table 5.3(b)
shows an extract of curvature results from the influence measure under nondifferential
misclassification of Y ∗

i = 0. In general, curvature κ increases as the value of probability
of non-detection γ increases, with the lowest curvature at γ = 0 and highest curvature
at γ = 1. In otherwords, as specificity (1 − γ) = P (Y ∗

i = 0|Yi = 0) decreases, curvature
increases. It follows that at assumed model γ = 0, specificity is 100% with the lowest cur-
vature value 7.692. However, at modified model γ = 0.67, specificity is 33% with higher
curvature 9.715.

The left plot in Figure 5.1 depicts the model estimates. The solid black line is the estimates,
while the red dashed lines indicate the 95% confidence interval. The blue horizontal line
is at when ˆtheta = 0, while the green line indicates the intersection of the blue line and
the confidence interval. Although there are at least one intersection, there is a break at
γ = 0.6 and wide confidence interval between γ = 0.6 and γ = 0.8. The intersection point
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(the green line) might suggests a cut off value for the unknown γ. In otherwords, the
plausible range of error size might be from 0 to 0.6.
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Figure 5.1: Application to rehabilitation study: Model estimates and curvature under a
nondifferential misclassification of Y ∗

i = 0. The assumed model is at γ = 0 and modified
models when γ ̸= 0

The right plot (Figure 5.1b) is the influence measure (that is, a plane curve of curvature κ
against γ) under the nondifferential miclassification of Y ∗

i . A point on the curve represents
a distinct model with the assumed logistic model at γ = 0, and modified models otherwise.
The plot shows how curvy the plane curve is at each distinct model. The larger a curvature
is, the faster the curve is turning, which means the model with large curvature appears
to be sensitive to measurement error. From Figure 5.1, we can see that there is a clear
increasing pattern as γ increases.

Table 5.3 shows model estimates from γ = 0 to γ = 0.6 are unbiased, but the curve of the
curvature increases within these values. Although the lowest curvature is at when γ = 0,
it is important to validate or find prior information about γ when measurement error is
suspected. On the other hand, if there is no prior information about γ, based on these
results, the standard logistic regression model seems more stable compared to modified
models.

5.1.3 Influence Methods Analysis: Differential Misclassification

Here, we use the rehabilitation programme study data to illustrate the influence measure
under a differential misclassification of Y ∗

i = 0. In this section, we obtained model esti-
mates, and used the sum of curvatures (3.4.26) from Chapter Three, with assumed values
for γ0 and γ1, to calculate the normal curvatures along the direction of γ0 and γ1. The
model estimates are shown in Table 5.4. The normal curvatures results in log transforma-
tion for each of the directions κhγ0 and κhγ1 , and that of the sum of the normal curvatures
for both directions

∑1
j=0 κhγj are depicted in Table 5.5.
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Table 5.4: Application to rehabilitation study: Extract of model estimates results of
distinct model at different values of γ under a nondifferential undetected crime or

measurement error process. The probability of non-detection γ is allowed to range from
0 to 1. Each γ represents a distinct model with assumed model at γ = 0 and modified

models when γ ̸= 0.

[ Misc. rate]
γ0 γ1 θ̂|γ0, γ1 95%CI P-value
0 0 0.4 (0.26,0.63) <0.001

0.1 0.29 (0.10,0.48) 0.003
0.3 -0.12 (-0.33,0.09) 0.27
0.5 -0.81 (-1.08,-0.54) <0.001
0.7 -8.78 (-298.49,280.93) 0.95
0.9 -12.35 (-64.06,39.35) 0.64

0.1 0 0.62 (0.43,0.82) <0.001
0.1 0.47 (0.27,0.67) <0.001
0.3 0.06 (-0.15,0.28) 0.56
0.5 -0.63 (-0.90,-0.36) <0.001
0.7 -8.39 (-244.06,227.28) 0.94
0.9 -12.60 (-76.52,51.33) 0.69

0.3 0 1.13 (0.91,1.36) <0.001
0.1 0.98 (0.75,1.21) <0.001
0.3 0.58 (0.33,0.82) <0.001
0.5 -0.12 (-0.41,0.18) 0.44
0.7 -6.47 (-64.16,51.23) 0.83
0.9 -17.83 (-1149.41,1113.74) 0.98

0.5 0 2.23 (1.83,2.64) <0.001
0.1 2.08 (1.67,2.48) <0.001
0.3 1.67 (1.26,2.09) <0.001
0.5 0.98 (0.53,1.43) <0.001
0.7 -5.93 (-106.39,94.54) 0.91
0.9 -14.88 (-461.96,432.21) 0.95

0.7 0 11.07 (-18.08,40.23) 0.46
0.1 11 (-18.66,40.65) 0.47
0.3 10.79 (-17.45,39.04) 0.45
0.5 10.45 (-27.61,48.5) 0.59
0.7 7.22 (-3594.28,3608.71) 0.99
0.9 1.69 (-3392.54,3395.92) 0.99

0.9 0 11.17 (-8.21,30.56) 0.26
0.1 11.10 (-8.85,31.04) 0.28
0.3 10.89 (-9.51,31.3) 0.29
0.5 10.55 (-15.38,36.47) 0.43
0.7 7.88 (-4375.01,4390.77) 0.99
0.9 1.71 (-2902.27,2905.69) 0.99
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Table 5.5: Application to rehabilitation study: Influence measure under differential
measurement error pattern. Each combination of γ0 and γ1 is a distinct model.

(a)Extract of normal curvatures for direction γ0 and γ1. (b)Extract of sum of normal
curvatures arranged from lowest to highest.

[Misc. rate]
Model γ0 γ1 log(κhγ0)log(κhγ1)

∑1
j=0 log(κhγj )

1 0 0 7.195 6.754 13.949
2 0.1 7.195 6.964 14.159
3 0.3 7.195 7.467 14.662
4 0.5 7.195 8.139 15.335
5 0.7 7.195 9.162 16.357
6 0.9 7.195 11.359 18.554
7 0.1 0 7.406 6.754 14.159
8 0.1 7.406 6.964 14.371
9 0.3 7.406 7.467 14.873
10 0.5 7.406 8.139 15.546
11 0.7 7.406 9.162 16.568
12 0.9 7.406 11.359 18.765
13 0.3 0 7.909 6.754 14.662
14 0.1 7.909 6.964 14.873
15 0.3 7.909 7.467 15.376
16 0.5 7.909 8.139 16.049
17 0.7 7.909 9.162 17.070
18 0.9 7.909 11.359 19.268
19 0.5 0 8.582 6.754 15.335
20 0.1 8.582 6.964 15.546
21 0.3 8.582 7.467 16.049
22 0.5 8.582 8.139 16.722
23 0.7 8.582 9.162 17.743
24 0.9 8.582 11.359 19.941
25 0.7 0 9.603 6.754 16.357
26 0.1 9.603 6.964 16.568
27 0.3 9.603 7.467 17.070
28 0.5 9.603 8.139 17.743
29 0.7 9.603 9.162 18.765
30 0.9 9.603 11.359 20.962
31 0.9 0 11.801 6.754 18.554
32 0.1 11.801 6.964 18.765
33 0.3 11.801 7.467 19.268
34 0.5 11.801 8.139 19.941
35 0.7 11.801 9.162 20.962
36 0.9 11.801 11.359 23.159

(a) Normal curvatures for direction γ0 and γ1.

[Misc. rate]
γ0 γ1

∑1
j=0 log(κhγj )

0 0 13.949
0.1 14.159

0.1 0 14.159
0.1 14.371

0 0.3 14.662
0.3 0 14.662
0.1 0.3 14.873
0.3 0.1 14.873
0 0.5 15.335

0.5 0 15.335
0.3 0.3 15.378
0.1 0.5 15.546
0.5 0.1 15.546
0.3 0.5 16.049
0.5 0.3 16.049
0 0.7 16.357

0.7 0 16.357
0.1 0.7 16.568
0.7 0.1 16.568
0.5 0.5 16.722
0.3 0.7 17.07
0.7 0.3 17.07
0.5 0.7 17.743
0.7 0.5 17.743
0 0.9 18.554

0.9 0 18.554
0.1 0.9 18.765
0.7 0.7 18.765
0.9 0.1 18.765
0.3 0.9 19.268
0.9 0.3 19.268
0.5 0.9 19.941
0.9 0.5 19.941
0.7 0.9 20.962
0.9 0.7 20.962
0.9 0.9 23.159
(b) Sum of normal curvatures

arranged from lowest to highest.
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Table 5.4 shows an extract of model estimates under a differential misclassification. We
can identify significant models with unbiased estimates, to include (γ0, γ1)=(0,0), (0,0.1),
(0.1,0), (0.1,0.1)). Meanwhile model estimates from when (γ0, γ1)=(0.5,0.7) are insignifi-
cant. Table 5.5a (left Table) displays extracts of the results of normal curvatures for each
of the direction γ0 and γ1 and their sums under the differential measurement error mech-
anism of Y ∗

i = 0. Each combination of γ0 and γ1 (represented under Miscl rate column)
is a distinct model. Model 1 is the assumed model when γ0 = 0 and γ1 = 0, while the
modified models are from model 2 to 36. The normal curvature at each direction helps
explain which of the directions dictate a substantial change to the modification introduced
into a distinct model. It can be seen that a slight change in γ1 of a distinct model either
increases or decreases in κhγ1 (the normal curvature in the direction of γ1), while κhγ0
remains constant. For example, an increase in γ1 of model 5 increases in κhγ1 , and it
follows that a decrease in γ1 of model 5 decreases in κhγ1 . In other words, κhγ1 ; the nor-
mal curvature in the direction of γ1 of model 5:(γ0 = 0, γ1 = 0.7) is 9.162, it increases to
11.359 when γ1 increases to 0.9 (model 6), but decreases to 7.467 when γ1 decreases to 0.3

(model 3). Similarly, an increase/decrease in γ0 of a model either increases or decreases
in κhγ0 . In general, the results shown in Table 5.5a reveal that each distinct model is
influenced by slight changes in the direction of γ0 and γ1. As a result, an increment in γ0
and γ1 increases normal curvature for both directions. Likewise, a decrement in γ0 and γ1
decreases normal curvature for both directions.

Table 5.5b (right Table) is the arrangement of each of the distinct models shown in Table
5.5a, based on their sum of normal curvatures

∑1
j=0 log(κhγj ) in ascending order. From

Table 5.5b, when direction γ0 alternates with direction γ1, the sum of curvatures is equal.
For example, the sum of normal curvatures;

∑1
j=0 log(κhγj ) = 14.873 for model 9 is equal

to the sum of curvatures for model 14; (γ0 = 0.3, γ1 = 0.1).

Figure 5.2(a) shows the combination of γ0 and γ1 in relation to model estimates. The
γ0 and γ1 values are displayed along the X and Y axes respectively. The extreme model
estimates are in the top left and bottom right corner. The range of error (γ0, γ1) values
that produce these extremes might not be plausible in the criminology context. It can
be seen that the contour lines become tightly spaced from the middle near contour line
2 (from γ1 = 0.5) and contour line 2 (from γ0 = 0.5). This means the model estimates
changes more quickly in relation to changes in γ0 and γ1. Hence, the plausible error range
to consider could be combinations of γ0 and γ1 that fall between contour lines 0 and
4.

Figure 5.2(b) shows the influence measure of the sum of normal curvatures
∑1

j=0 log(κhγj )
under a differential misclassification pattern. The plot displays the sum of curvatures in
logarithmic transformation under different combinations of γ0 and γ1 ranging from 0 and
1. The assumed model is at the origin of the plot, otherwise the modified model.

The contour lines join models (combinations of γ0 and γ1) with the same sum of curvatures.
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In other words, we can identify models that produce equal values of sum of curvatures using
the contour lines. For instance, from Figure 5.2b, we can see that model (γ0 = 0, γ1 = 0.4)

has the same
∑1

j=0 log(κhγj ) = 15 with model (γ0 = 0.4, γ1 = 0). And we can see that
tighter spaced lines occur from around model (γ0 = 0.76, γ1 = 0.78), which indicate that
the sum of curvatures changes more quickly with changes in γ0 and γ1. The contour bands
indicate ranges of

∑1
j=0 log(κhγj ) in both directions of γ0 and γ1. Figure 5.2b shows that

the highest sum of curvatures occurs near model (γ0 = 0.9, γ1 = 0.9), while the origin
(γ0 = 0, γ1 = 0) has the lowest sum of curvatures.

Figure 5.2: Application to rehabilitation study: Model estimates and Sum of curvatures
for both directions of γ0 and γ1 under the influence of Differential Misclassification of

Y ∗
i = 0

As shown in Table 5.4 and Figure 5.2b, the estimates from the models that fall between
contour lines 0 and 4 appear to be unbiased. Although the assumed model has the lowest
sum of curvatures, it is important to investigate how the conclusion changes along these
values, and report all findings regardless of prior information about γ0 and γ1.

5.2 Simulation I: Absence of the Outcome under Nondifferential Misclassi-
fication

In this section, we used a simulation study to illustrate model stability under the impact
of a nondifferential misclassification assumption of Y ∗

i = 0. We considered six different
scenarios under nondifferential settings, with varying values of γ = (0, 0.1, 0.3, 0.5, 0.7, 0.9).
During the analysis, the probability of measurement error γ remains constant (is invariant)
for the individual subject in each simulation.

This section is structured as follows. First, we provide the data generation and carry out
(conducted) naive and modified analysis. The simulation study is used to demonstrate the
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finite sample properties of estimation under a nondifferential misclassification mechanism
of Y ∗

i = 0. Then we apply to the generated data the influence measure method under the
nondifferential misclassification in Section 3.4.1 shown in Chapter Three.

5.2.1 Data Generation I

One exposure variable X is generated by distribution Xi ∼ Bin(n, 1, 0.5), of two sam-
ple sizes n = 1000 and n = 5000, and X is assumed to be without error. True mea-
sures of the response variable Y is generated from a logistic regression model Yi|Xi ∼
Bin(1, πi),with logit(θi) = α + θXi, with α = −0.5 and θ = 1. Values α = −0.5 and
θ = 1 are one of the possible range of parameters that could accomplish the aim of the
simulation. .

Based on the assumed probability of measurement error γ, and the true measure re-
sponse Yi; which will have a misclassified response variable Y ∗

i , we then simulated Y ∗
i as

Y ∗
i = 1 if Yi = 1, but there may be measurement error of Y ∗

i = 0, thus Y ∗
i |Yi = 0 ∼

Bin (1, πi + γ(1− πi)). Each datasets scenario is generated based on Y, Y ∗, X and the
assumed value of γ. In other words, the settings of the six generated datasets are based
on nondifferential misclassication, thus each dataset varies.

5.2.2 Naive Analysis I

First, a naive model is applied (fitted) to each of the simulated datasets, and the extract
of the summaries of results is shown in Table 5.6. The Simdata γ column represents the
probability of measurement error γ present in each of the datasets, in which each row
corresponds to a distinct dataset.

For each simulated dataset, we obtain the point estimate θ̂∗, and demonstrate the finite
sample properties. We also calculate E(θ̂∗); the average estimated parameter, E(Std Err(θ̂∗));
the average standard error, and the 95% confidence interval coverage. The estimated pa-
rameter θ̂∗ results are summarised over 1000 iterations with E(θ̂∗) = 1

R

∑R
r=1 θ̂

∗
r . The

interval estimate provides a range of plausible values for the unknown true parameter θ
with a degree of confidence, thus we obtained 95% confidence interval coverage so as to
consider the variation in θ̂∗ from one run to another run, that is from one iteration to
another. As a result the proportion of simulations, in which the estimated Wald-type In-
terval endpoints included the true value, gives the confidence interval coverage. For each
dataset, and sample size n = 1000, n = 5000, each result averages out (average) across
1000 iterations. In general, it can be seen that as the probability of measurement error γ
increases in a study, the effects of estimates of parameters are biased when measurement
error is not considered. As γ increases, the spread of the estimated parameter tends to
increase for sample size n = 1000 and n = 5000. As expected, the spread of parame-
ter estimates for larger sample sizes = 5000 is smaller compared to that of n = 1000.
The confidence interval coverage obtained for each dataset scenario in the simulation is
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Table 5.6: Naive Analysis I: Extract of results from the simulation study under
nondifferential misclassification of Y ∗

i = 0. Results summarised over 1000 iterations, with
E(θ̂∗) = 1

R

∑R
r=1 θ̂

∗
r , and E(Std.Err(θ̂∗)) = 1

R

∑R
r=1 Std.Err(θ̂∗r), where R represents the

number of iterations.

SIMdata n = 1000 n = 5000

γ E(θ̂∗r) E(Std.Err(θ̂∗r)) 95% E(θ̂∗r) E(Std.Err(θ̂∗r)) 95%
0 1.0006 0.1307 94.7 0.9986 0.0584 94.9

0.1 0.9062 0.1433 91 0.9051 0.064 69.7
0.3 0.7628 0.182 80.7 0.7646 0.0813 10.1
0.5 0.6623 0.2643 87.9 0.6655 0.1178 6.4
0.7 0.5947 0.4956 99.7 0.5865 0.2205 57.8
0.9 0.5396 2.2558 100 0.5291 0.9859 100

< 95%, except the dataset with γ = 0 which is approximately the closest to 95% coverage
for both sample sizes. Although the coverage obtained for the other dataset scenarios for
sample size N = 1000 is better than N = 5000, overall the coverage is poor. Therefore,
from Table 5.6, it can be seen that the assumed logistic model returns biased estimates of
parameters when the potential probability of measurement error γ contained in observed
data is ignored during analysis.

5.2.3 Modified Model Analysis I

Due to the biased results from the naive model, we investigate how inference can be
impacted by measurement error. Hence, for each simulated dataset, with an assumed value
of γ the modified estimate θ̂|γ was calculated using (3.1.5) from Chapter Three.

Table 5.7 shows the results of the modified model under the nondifferential measurement
error mechanism of Y ∗

i = 0. The Miscl rate column indicates possible distinct models
that could be applied to each of the datasets generated in column one (SIMdata). For
each distinct model applied, the estimated parameter and its coverage was calculated for
sample size n = 1000 and n = 5000. From Table 5.7, it can be seen that for each of
the six datasets, as γ increases, the estimated parameter increases, but then breaks at
γ = 0.9 when n = 5000, likewise the spread of the parameters increases. In general,
when an incorrect model is applied during analysis, the estimate and the coverage is poor,
otherwise the results look good. For example, when Miscl rate γ ̸= 0.3 is applied (fitted)
to dataset with SIMdata γ = 0.3, the results are biased.

5.2.4 Influence Method Analysis I

Here, we apply the influence measure under nondifferential misclassification of Yi = 0 to
the simulated datasets. Also, we establish the link between model stability and parameter
estimation. Table 5.8 shows extract of model estimates and curvature results from the
simulated datasets. The model estimates and curvature κ of the assumed model is at
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Table 5.7: Modified model I: Extract of results from simulation study I under a
Nondifferential Misclassification of Y ∗

i = 0. Results are summarised over 1000 iterations,
with E(θ̂|γ) = 1

R

∑R
r=1 θ̂

∗
r , and E(Std.Err(θ̂r|γ)) = 1

R

∑R
r=1 Std.Err(θ̂r|γ)

SIMdata Miscl n = 1000 n = 5000
rate

γ γ E(θ̂r|γ) E(Std.Err(θ̂r|γ)) 95% E(θ̂r|γ) E(Std.Err(θ̂r|γ)) 95%
0 0.1 1.1342 0.1366 81.1 1.131 0.0609 42.5

0.2 1.3726 0.1605 36.2 1.365 0.0711 0.4

0.1 0.1 1.0005 0.1454 95 0.9988 0.0649 94.6
0.3 1.4569 0.316 74.5 1.4455 0.1169 0.7
0.4 2.6878 0.949 21.4 2.4028 0.1296 0.3

0.3 0.1 0.8117 0.1749 85.8 0.8134 0.0781 29.3
0.3 0.9979 0.1811 95.5 0.9989 0.0807 94.5
0.4 1.2159 0.2501 93.8 1.2138 0.1086 48.4

0.5 0.1 0.6875 0.2648 86.6 0.6909 0.11 9.1
0.3 0.7722 0.2184 87.7 0.7759 0.0974 34.6
0.5 0.9998 0.2323 95.2 1.0029 0.1033 94.8
0.6 1.3868 1.4326 98.2 1.3739 0.304 98.9

0.7 0.1 0.6064 0.4549 98.9 0.598 0.2025 47.1
0.5 0.7209 0.3072 92.5 0.7105 0.1369 42.5
0.7 1.0225 0.3247 95.2 1.0005 0.1429 96.1
0.8 3.3528 0.822 36.1 2.5811 0.1947 2.6

0.9 0.1 0.5427 2.0431 100 0.5321 0.8932 100
0.7 0.6127 0.7844 100 0.6013 0.3445 96.2
0.9 1.0613 0.6557 96.8 1.008 0.2646 95.6
0.95 -2.0424 0.8664 6.4 -2.6133 0.1498 3.3
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when Miscl rates γ = 0, otherwise modified models (that is, when Miscl rates γ ̸= 0).
From Table 5.8a, for each dataset, the model estimates increase as the error size increases,
except for when Miscl rates γ = 0.95. In addition, these estimates are not close to the
assigned true parameter (θ = 1) which was used as input to the simulator. But when
correct model is applied, the estimate appears to be closer to 1 and unbiased. Table
5.8b shows curvature for each simulated dataset. It can be seen that as γ increases, the
curvature increases.

Table 5.8: Model Estimates and Curvature results from simulation I under the
nondifferential misclassification of Y ∗

i = 0. Each SIMdata γ represents a distinct dataset
where n = 1000, and Miscl rates γ represents potential models that could be fitted to

each datasets.(a)Extract of model estimates (b)Extract of curvatures

SIMdata Miscl rates
γ γ θ̂|γ 95%CI PValue
0 0 1.01 (0.75,1.26) <0.001

0.1 1.14 (0.84,1.43) <0.001
0.2 1.34 (0.98,1.71) <0.001

0.1 0 0.9 (0.65,1.16) <0.001
0.1 0.99 (0.71,1.28) <0.001
0.3 1.37 (0.95,1.8) <0.001
0.4 2.03 (1.19,2.87) <0.001

0.3 0 0.76 (0.49,1.02) <0.001
0.1 0.81 (0.52,1.09) <0.001
0.3 0.99 (0.64,1.35) <0.001
0.4 1.21 (0.76,1.66) <0.001

0 .5 0 0.69 (0.39,0.98) <0.001
0.1 0.71 (0.41,1.02) <0.001
0.3 0.8 (0.46,1.14) <0.001
0.5 1.03 (0.58,1.48) <0.001
0.6 1.39 (0.72,2.07) <0.001

0 .7 0 0.59 (0.24,0.94) <0.01
0.1 0.6 (0.24,0.96) <0.01
0.5 0.72 (0.29,1.15) <0.01
0.7 1.04 (0.39,1.68) <0.01
0.8 2.89 (-1.89,7.67) 0.24

0 .9 0 0.62 (0.03,1.21) 0.04
0.1 0.62 (0.03,1.22) 0.04
0.7 0.71 (0.04,1.38) 0.04
0.9 1.15 (0.02,2.27) 0.05
0.95 -0.6 (-2.44,1.25) 0.5

(a) Model Estimates.CI;Confidence
Interval.

SIMdata Miscl rates
γ γ log(κ)
0 0 7.633

0.1 7.854
0.2 8.089

0.1 0 7.394
0.1 7.615
0.3 8.118
0.4 8.426

0.3 0 7.03
0.1 7.251
0.3 7.754
0.4 8.062

0 .5 0 6.509
0.1 6.729
0.3 7.232
0.5 7.905
0.6 8.351

0 .7 0 5.903
0.1 6.123
0.5 7.299
0.7 8.32
0.8 9.131

0.9 0 4.682
0.1 4.892
0.7 7.099
0.9 9.199
0.95 10.682

(b) Curvature under a Nondifferential
Misclassification.

Figures 5.3 and 5.4 depict the model estimates and curvature from the first three (SIMdata
γ = 0, SIMdata γ = 0.1, and SIMdata γ = 0.3) and the last three (SIMdata γ = 0.5,
SIMdata γ = 0.7, and SIMdata γ = 0.9) datasets respectively. Each of the left graph
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(d) Curvature from SIMdata with γ = 0.1
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(e) Model estimates from SIMdata with
γ = 0.3
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(f) Curvature from SIMdata with γ = 0.3

Figure 5.3: Simulation Ia: Model Estimates and Influence Measure under a
Nondifferential Misclassification of Y ∗

i = 0 of the first three datasets. Figures (a)-(b);
Model Estimates and Curvature from SIMdata γ = 0, (c)-(d); Model Estimates and
Curvature from SIMdata γ = 0.1, and (e)-(f); Model Estimates and Curvature from

SIMdata γ = 0.3
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(b) Curvature from SIMdata with γ = 0.5
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(c) Model Estimates from SIMdata with
γ = 0.7
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(d) Curvature from SIMdata with γ = 0.7
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(e) Model Estimates from SIMdata with
γ = 0.9
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(f) Curvature from SIMdata with γ = 0.9

Figure 5.4: Simulation Ib: Model Estimates and Influence Measure under a
Nondifferential Misclassification of Y ∗

i = 0 of the last three datasets. Figures (a)-(b);
Model Estimates and Curvature from SIMdata γ = 0.5, (c)-(d); Model Estimates and
Curvature from SIMdata γ = 0.7, and (e)-(f); Model Estimates and Curvature from

SIMdata γ = 0.9
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depicts the model estimates, while the right graph is the curvature. From the left graph,
model estimates are represented as solid black line, and the red dashed lines are the
corresponding 95%CI confidence interval. The top blue horizontal line is the assigned true
parameter θ̂ = 1 used as input to the simulator, while the bottom blue horizontal line is
at when γ = 0. The first green line indicates the intersection of the top blue line and
the confidence interval. And the second green line is the intersection of the bottom blue
line and the confidence interval. It can be seen that there are more than one intersection
points as γ increases, but there is a break point after the second green line. Hence the
intersection points after the break can be ignored.

For the purpose of this simulation, the assigned true parameter is at when γ = 1. Hence,
the focus is on the point at which the first green vertical line is drawn. The point suggests
a cut off value for the unknown γ. In other words, the plausible range of error size could
be from γ = 0 to γ = 0.21 as in the case of dataset SIMdata γ = 0, or from γ = 0 to
γ = 0.53 for dataset SIMdata γ = 0.3. On the other hand, in real practice where true
parameter is unknown, the cut off of the error size would be the second green line.

Each of the right graph of Figure 5.3 and 5.4 are the corresponding curvature κ (in log
transformation) against γ for the six datasets. The plane curve reveals the curvature for
multiple models (assumed and modified models) as γ increases from 0 to 1.

Although, Figures 5.3 and 5.4 show that the assumed model at γ = 0 has the lowest
curvature amongst all the models if there are no prior information about γ, a step further
would be to investigate how sensitive the conclusion and stability assessment is along those
range of plausible values.

5.3 Simulation II: Absence of the Outcome under Differential Misclassifica-
tion

In this section, we generate a data driven example to illustrate the use of the influence mea-
sure method under the differential misclassification described in Section 3.4.2 in Chapter
Three.

In the following subsections we present data generation under the differential measurement
error setting. Then we demonstrate empirical performance of an estimator based on naive
and modified analyses under a differential measurement error of Y ∗

i = 0. Most specifically,
we apply the influence method to the generated datasets.

5.3.1 Data Generation II

Here, the simulation settings are under a differential misclassification of Y ∗
i = 0. The

exposure variable X is assumed to be error-free, generated as Xi ∼ Bin(n, 1, πi) with
πi = 0.5. We simulated six different datasets with varying values of γ0 and γ1, each of size
n = 1000 an n = 5000. Each value assigned to γ0 and γ1 corresponds to a distinct (assumed
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and modified) model. The selected (γ0, γ1) include (0.1, 0.3), (0.4, 0.2), (0.3, 0), (0.4, 0.6),
(0.7, 0.8), (0.9.0.6). In other words, each simulated dataset has different combinations of
γ0 and γ1.

Then from logit link function we simulated the true outcome Yi as Yi|Xi ∼ Bin(1, πi),
based on exposure variable X, with α and θ as −0.5 and 1 respectively. By assum-
ing differential misclassification, such that when Xi = 1 the probability of measurement
error is γ1, otherwise γ0, the error-prone Y ∗

i version of the response variable is simu-
lated as Y ∗

i = 1 if Yi = 1, but Y ∗
i = 0 may be misclassified such that, Y ∗

i |Yi = 0 ∼
Bin (1, πi + (γ0 − γ0xi + γ1xi)(1− πi)).

5.3.2 Naive Analysis II

For each dataset generated, we conducted naive analysis using the logit links of the logistic
model. We calculated the average estimated parameter, the spread of the results and the
95% confidence interval coverage over 1000 replicates.

Table 5.9 provides the results of the naive analysis for the six simulated datasets under
simulation II. The combination of γ0 and γ1 under Simdata are the six datasets. It can
be seen that when measurement error is ignored, the estimated parameter appears to be
biased except for model (0.7, 0.8) whose θ̂∗ and coverage are approximately close to 1 and
95%, but overall the estimates and coverage for both sample sizes are poor.

Table 5.9: Extract of naive analysis II from the simulation study II under a Differential
Misclassification of Y ∗

i = 0: Results are summarised over 1000 iterations, with
E(θ̂∗) = 1

R

∑R
r=1 θ̂

∗
r , and E(Std.Err(θ̂∗r)) = 1

R

∑R
r=1 Std.Err(θ̂∗)

SIMdata n = 1000 n = 5000

γ0 γ1 E(θ̂∗r) E(Std.Err(θ̂∗r)) 95% E(θ̂∗r) E(Std.Err(θ̂∗r)) 95%
0.1 0.3 1.2672 0.1359 48.9 1.2658 0.0607 1.2
0.4 0.2 0.3240 0.1345 0.2 0.3206 0.0601 0
0.3 0 0.2376 0.1292 0 0.2404 0.0577 0
0.4 0.6 1.2145 0.1558 73.5 1.2095 0.0695 14
0.7 0.8 1.0343 0.2062 95.6 1.0343 0.0917 94.6
0.9 0.6 -0.9977 0.2255 0 -0.9933 0.1002 0

Again, in the case of the differential misclassification of Y ∗
i = 0, the conclusions from naive

analysis could be misleading as measurement error was ignored. Therefore, we investigate
how inference can be impacted by slight changes to γ0 and γ1.

5.3.3 Modified Model Analysis II

We evaluated the estimate of the modified models under the assumption of differential
misclassifiation of Y ∗

i = 0 for each of the generated datasets. Table 5.10 shows an extract
of the results (estimated coefficient with its standard error and 95% coverage) summarised
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Table 5.10: Extract of modified analysis from simulation II under a Differential
Misclassification Y ∗

i = 0: Results are summarised over 1000 iterations, with
E(θ̂|γ0, γ1) = 1

R

∑R
r=1 θ̂r|γ0, γ1, and E(Std.Err(θ̂r|γ0, γ1)) = 1

R

∑R
r=1 Std.Err(θ̂|γ0, γ1)

SIMdata Miscl rates n = 1000 n = 5000
E(Std.Err) E(Std.Err)

γ0 γ1 γ0 γ1 E(θ̂r|γ0, γ1) (θ̂r|γ0, γ1) 95% E(θ̂r|γ0, γ1) (θ̂r|γ0, γ1) 95%
0.1 0.3

0.1 0.2 1.2083 0.1535 73.8 1.2066 0.0685 14.9
0.1 0.3 1.0012 0.1596 95.3 0.9999 0.0713 94
0.2 0.4 1.0904 0.1887 92.3 1.0879 0.0840 82.7

0.4 0.2
0.2 0.3 0.1469 0.1620 0 0.1433 0.0723 0
0.4 0.2 1.0101 0.1898 95.1 1.0011 0.0843 94.7
0.4 0.3 0.7853 0.1960 79.4 0.7768 0.0871 26.9

0.3 0
0 0.1 0.0621 0.1341 0 0.0653 0.0599 0

0.3 0 0.9975 0.1639 95.5 0.9988 0.0731 94.4
0.2 0.3 0.0157 0.1680 0 0.02 0.0749 0

0.4 0.6
0.5 0.1 2.7108 0.2696 0 2.6871 0.1177 0
0.4 0.6 1.0089 0.2310 95 1.0004 0.1027 95.7
0.3 0.5 0.9786 0.1970 94.9 0.9722 0.0878 93.9

0.7 0.8
0.5 0.4 1.4206 0.2346 57.7 1.4212 0.1043 2
0.7 0.8 0.9995 0.3577 95.3 1.0003 0.1580 95.8
0.1 0.4 0.5983 0.2160 52.5 0.5987 0.0960 1.5

0.9 0.6
0.2 0.1 -0.8833 0.2295 0 -0.8789 0.1020 0
0.9 0.6 1.0306 0.5340 96.5 0.9937 0.2213 95.2
0.4 0.3 -0.8780 0.2384 0 -0.8735 0.1060 0
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over 1000 replicates for each dataset. The combination of γ0 and γ1 under Miscl rates are
some of the distinct models, while the remaining columns are the results of the two sample
sizes. It appears that a model where Miscl rates γ0 < Miscl rates γ1, the estimate and the
spread are less. If otherwise, the estimate and spread are greater. For example, for dataset
(0.7, 0.8), the parameter estimate from the modified model (0.1, 0.4) is less compared to the
modified model (0.5, 0.4). Furthermore, when the correct model is applied, the estimates
and coverage appear to be good. Overall, from Table 5.10, it can be seen that when an
incorrect model is applied, the estimate is biased and the coverage is poor.

5.3.4 Influence Method Analysis II

We now consider influence measure based on the sum of normal curvatures. To demon-
strate how stable or sensitive a distinct model is when there is a slight modification to
(γ0, γ1), we calculated model estimates and normal curvature in the direction of γ0 and γ1
using the equation in Section 3.4.2 of Chapter Three.

Table 5.11 shows an extract of model estimates and curvatures under a differential mis-
classification of Y ∗

i = 0. We can identify significant models with unbiased estimates. It
can be seen that when a correct model is fitted(applied), the estimate seems to be unbiased
and significant. Also, when model Miscl rates (γ0 = 0.3, γ1 = 0.5) is fitted to SIMdata
(γ0 = 0.4, γ1 = 0.6), the estimate seems to be unbiased. Similarly, the assumed model es-
timate of SIMdata (γ0 = 0.4, γ1 = 0.6) is unbiased. In addition, Table 5.11 depicts results
of normal curvatures in log transformation for each of the direction γ0 and γ1 and their
sums. In general, the assumed model has the smallest values compared to other models,
under the differential misclassification pattern of Y ∗

i = 0.

Figure 5.5 and 5.6 depict the model estimates and sum of curvatures for both directions
γ0 and γ1 under a differential misclassifiation of Y ∗

i = 0. The left graph is the model
estimates while the right graph is the sum of curvatures. Each contour line joins model
estimates of the same value. Hence, we can identify models with estimated parameter 1

using contour line 1. These combinations (contour line 1) of γ0, γ1 might be the likely
value of error size to consider in the analysis. In general, the contour lines in the right
graphs become tightly spaced from (γ0 = 0.9, γ1 = 0.9) which indicates that the sum of
curvature changes more quickly. For each simulated data, the assumed model is at the
origin. It follows that the smallest curvature occurs at the origin (γ0 = 0, γ1 = 0), while
the highest curvature is near (γ0 = 1, γ1 = 1).

Although the assumed model has the lowest curvature, when measurement error is sus-
pected, the recommendation would be to validate or find good information about the error
size. If the conclusion does not change much across a range of plausible values γ0 and γ1,
then it is robust. On the other hand, if the conclusion changes as the error size changes
and the curvature of the curve are so much, thereby the model gives a very different result,
it is important to report the findings. In other words, regardless of prior information of
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the error size, a further step would be to investigate how sensitive the conclusion and
stability assessment is along the error values.

Table 5.11: Extract of results of Model Estimates and Sum of Curvatures under a
Differential Misclassification from six simulation study. The six datasets selected are

(0.1, 0.3), (0.4, 0.2), (0.3, 0), (0.4, 0.6), (0.7, 0.8), (0.9, 0.6)

SIMdata Miscl rates Estimates Curvature

γ0 γ1 γ0 γ1 θ̂|γ0, γ1 95%CI Pval log(κhγ0) log(κhγ1)
1∑

j=0

log(κhγj
)

0.1 0.3 0 0 1.29 (1.02,1.56) <0.001 7.099 5.79 12.889
0.1 0.2 1.23 (0.93,1.53) <0.001 7.309 6.237 13.546
0.1 0.3 1.03 (0.72,1.34) <0.001 7.309 6.504 13.813
0.2 0.4 1.11 (0.75,1.48) <0.001 7.545 6.812 14.357

0.4 0.2 0 0 0.39 (0.12,0.65) 0.004 6.371 5.966 12.337
0.2 0.3 0.23 (-0.09,0.54) 0.16 6.817 6.679 13.497
0.4 0.2 1.06 (0.70,1.43) <0.001 7.393 6.679 14.072
0.4 0.3 0.85 (0.47,1.22) <0.001 7.393 6.679 14.072

0.3 0 0 0 0.28 (0.02,0.53) 0.03 6.480 6.302 12.782
0 0.1 0.10 (-0.16,0.37) 0.4 6.480 6.513 12.993

0.3 0 1.03 (0.71,1.36) <0.001 7.194 6.302 13.496
0.2 0.3 0.39 (0.03,0.75) 0.03 6.927 7.015 13.942

0.4 0.6 0 0 1.26 (0.95,1.57) <0.001 6.371 5.094 11.465
0.5 0.1 2.70 (2.20,3.20) <0.001 7.757 5.305 13.062
0.4 0.6 1.06 (0.61,1.51) <0.001 7.393 6.926 14.319
0.3 0.5 1.03 (0.64,1.42) <0.001 7.084 6.480 13.564

0.7 0.8 0 0 1.06 (0.65,1.47) <0.001 5.429 4.352 9.782
0.5 0.4 1.45 (0.99,1.91) <0.001 6.816 5.374 12.189
0.7 0.8 1.03 (0.35,1.72) 0.003 7.838 7.571 15.409
0.1 0.4 0.63 (0.20,1.05) 0.004 5.641 5.374 11.014

0.9 0.6 0 0 -0.99 (-1.44,-0.55) <0.001 4.083 5.094 9.176
0.2 0.1 -0.88 (-1.33,-0.43) <0.001 4.529 5.305 9.833
0.9 0.6 0.96 (0.02,1.9) 0.05 8.688 6.926 15.614
0.4 0.3 -0.87 (-1.34,-0.41) <0.001 5.104 5.807 10.911
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Figure 5.5: Simulation IIa: Model Estimates and Sum of Curvatures for both directions
γ0 and γ1 under Differential Misclassification of Y ∗

i = 0 of the first three datasets. First
row; Model Estimates and Sum of Curvatures from SIMdata (γ0 = 0.1, γ1 = 0.3), Middle

row; Model Estimates and Sum of Curvatures from SIMdata (γ0 = 0.4, γ1 = 0.2), and
Last row; Model Estimates and Sum of Curvatures from SIMdata (γ0 = 0.3, γ1 = 0)
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Figure 5.6: Simulation IIb: Model Estimates and Sum of Curvatures for both directions
γ0 and γ1 under a Differential Misclassification of Y ∗

i = 0 of the last three datasets.First
row; Model Estimates and Sum of Curvatures from SIMdata (γ0 = 0.4, γ1 = 0.6), Middle

row; Model Estimates and Sum of Curvatures from SIMdata (γ0 = 0.7, γ1 = 0.8), and
Last row; Model Estimates and Sum of Curvatures from SIMdata (γ0 = 0.9, γ1 = 0.6)
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5.4 Simulation III: Presence of the Outcome under Nondifferential Misclas-
sification

In this section, we considered a simulation study to demonstrate the influence measure un-
der the nondifferential measurement error mechanism described in Section 4.2.1 in Chapter
Four. By assuming that the observed response Y ∗

i = 1 is nondifferentially misclassified,
we used simulation to assess the finite sample properties of both the naive and modified
models. In addition, from the simulation we calculate model estimates and curvature and
show the influence plot under nondifferential misclassification of Y ∗

i = 1. The rest of this
section is as follows. In Section 5.4.1, we describe how the data is generated. A naive
analysis was conducted in Section 5.4.2. In Section 5.4.3, we demonstrate estimation based
on modified model analysis. The influence measure under the impact of nondifferential
misclassification of Y ∗

i = 1 is illustrated in Section 5.4.4.

5.4.1 Data Generation III

We simulated an exposure indicator variable Xi by distribution Xi ∼ Bin(n, 1, 0.5), for n
number of participants. The exposure variable generated is assumed to be true measure-
ments, and we considered two sample sizes n = 1000, and n = 5000. True measures of the
response variable Yi were generated from the logistic regression model with α = −0.5 and
θ = 1. Based on the assumed probability of measurement error ζ, and the true measure
response Yi, a response variable measured with error Y ∗

i was generated as Y ∗
i = 0 if Yi = 0,

but there may be a measurement error of Y ∗
i = 1, thus Y ∗

i |Yi = 1 ∼ Bin(1, (1−ζ)πi).

The simulation was repeated for six different datasets with varying values of ζ. The
assumed values selected are (ζ = 0, 0.2, 0.4, 0.6, 0.8, 0.9). It follows that each simulation is
based on Y, Y ∗, X and an assumed value of the probability of measurement error ζ. For
instance, simulated data with ζ = 0.2 is assumed to have 80% sensitivity, while simulated
data with ζ = 0.6 has 40% sensitivity and so on. As a result, each generated result
varies. The analysis conducted for each simulated scenario is described in the following
sections.

5.4.2 Naive Analysis III

Here, we show the summaries of results obtained from the assumed model in Table 5.12.
The Simdata ζ column contains selected values of ζ. In other words, each row corresponds
to a distinct dataset with an assumed probability of measurement error of Y ∗

i = 1. We
performed naive analysis and a study of the finite properties of the estimates for each
of the six datasets. The estimated parameter θ̂∗ with its standard error and 95% are
summarised over 1000 iterations.

From Table 5.12 it can be seen that, in general, the estimate of parameter decreases as
ζ increases. The naive model produces biased estimates since measurement error is not
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Table 5.12: naive Analysis II: Extract of results from simulation III under
Nondifferential Misclassification of Y ∗

i = 1: Results are summarised over 1000. iterations

SIMdata n = 1000 n = 5000

ζ E(θ̂∗r) E(Std.Err(θ̂∗r)) 95% E(θ̂∗r) E(Std.Err(θ̂∗r)) 95%
0 1.001 0.1307 94.7 0.9986 0.0584 94.9

0.2 0.8309 0.1325 76.1 0.8292 0.0592 17.2
0.4 0.7156 0.1417 48.9 0.7108 0.0632 0.2
0.6 0.6199 0.1628 0.36 0.6202 0.0725 0
0.8 0.5597 0.2191 45.9 0.5516 0.097 0.6
0.95 0.5457 0.4382 77.5 0.5116 0.188 26.2

considered. As ζ increases, the spread of the estimated parameter tends to increase for
both sample sizes. As expected, the spread of parameter estimates for the larger sample
size n = 5000 is smaller compared to n = 1000. The confidence interval coverage obtained
for each dataset in the simulation is < 95%, except the dataset with ζ = 0 which is
approximately the closest to 95% coverage for both sample sizes. Although the coverage
obtained for the other dataset scenarios for sample size n = 1000 is better than n = 5000,
the overall coverage is poor. Hence, any conclusion based on point estimate θ̂∗ might be
misleading, given that the problem of measurement error was not considered. Therefore,
for each dataset, we assess the impact of measurement error by analysing the modified
model under nondifferential pattern.

5.4.3 Modified Model Analysis III

Here the modified model follows a nondifferential misclassification pattern of Y ∗
i = 1.

Thus, for each simulated data, by assuming values fr ζ, an estimate of parameters of the
modified model θ̂|ζ was calculated using Section 4.2 of Chapter Four.

Table 5.13 shows results of the modified model under the non-differential measurement
error of Y ∗

i = 1. The first column (SIMdata ζ) represents six different datasets scenarios
assumed to be under the problem of measurement error of Y ∗

i = 1. In other words, each
simulated dataset is based on each assumed value of ζ.

The Miscl rate column is for different models that could be applied to any of the datasets.
For each distinct applied model the estimated parameters and coverage were calculated for
both sample sizes n = 1000 and n = 5000. From Table 5.13, it can be seen that for each of
the datasets, as ζ increases the estimated parameter increases, likewise the spread of the
parameter increases. For example, for the dataset with 80% sensitivity, that is ζ = 0.2,
when an incorrect model (ζ ̸= 0.2) is applied, the estimated parameter and coverage is
poor. When the correct model is applied, the model estimate 1.0027 is close to θ = 1

with 95.7% coverage. In general, when an incorrect model is applied during analysis, the
estimated parameter with its coverage is poor, otherwise the results look good.
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Table 5.13: Extract of modified model results from simulation study under a
Nondifferential Misclassification of Y ∗

i = 1. Results are summarised over 1000.

SIMdata Miscl n = 1000 n = 5000
rate

ζ ζ E(θ̂r|ζ) E(Std.Err(θ̂r|ζ)) 95% E(θ̂r|ζ) E(Std.Err(θ̂r|ζ)) 95%
0 0.1 1.134 0.1505 85.8 1.1314 0.0672 50.3

0.2 1.372 0.1924 50.9 1.3664 0.0855 1.1

0.2 0.1 0.8988 0.1437 88.8 0.8967 0.0642 62.8
0.2 1.0027 0.162 95.7 0.9998 0.0723 95.7
0.3 1.1835 0.1976 86.7 1.1784 0.0879 45.6

0.4 0.1 0.7514 0.1487 63.1 0.7463 0.0664 3.8
0.3 0.8783 0.1748 88.4 0.8719 0.078 63.3
0.4 1.0093 0.2042 94.9 1.007 0.0908 95

0.6 0.1 0.6375 0.1673 42.6 0.6376 0.0745 0.2
0.3 0.6935 0.1818 59 0.6939 0.081 4.5
0.5 0.8265 0.2178 86.3 0.8268 0.097 57.1
0.6 0.9993 0.2698 94.9 0.9974 0.1197 93.6

0.8 0.1 0.5664 0.2217 48.4 0.5584 0.0982 0.8
0.5 0.6276 0.2449 65.4 0.6195 0.1086 7.4
0.8 1.0156 0.4127 95.7 0.9982 0.1809 94.9

0.95 0.1 0.5472 0.4392 77.7 0.5131 0.1885 26.6
0.7 0.5781 0.4626 81.6 0.5435 0.1992 36.7
0.9 0.7016 0.5579 89.7 0.6628 0.2419 70
0.95 1.2249 4.6891 97.4 0.1977 0.3748 39.2
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5.4.4 Influence Method Analysis III

In this section, we show model estimates and curvature results in Table 5.14, and an
influence graph of curvature against ζ for the case of a nondifferential misclassification of
Y ∗
i = 1.

Table 5.14: Influence Method Analysis III: Extract of Model Estimates and Curvature
results of simulation III under a Nondifferential Misclassification of Y ∗

i = 1.

SIMdata Miscl rate Estimates Curvature
ζ ζ θ̂|ζ0, ζ1 95%CI Pval log(κ)
0 0 1.04 (0.78,1.3) <0.001 7.813

0.1 1.18 (0.89,1.48) <0.001 8.034
0.2 1.44 (1.05 ,1.83) <0.001 8.184

0.2 0 0.84 (0.59, 1.1) <0.001 7.362
0.1 0.92 (0.63, 1.2) <0.001 7.583
0.2 1.03 (0.71 1.35) <0.001 7.737
0.3 1.22 (0.83, 1.62) <0.001 8.005

0.4 0 0.71 (0.44, 0.99) <0.001 6.838
0.1 0.75 (0.46, 1.04) <0.001 7.059
0.3 0.89 (0.54, 1.23) <0.001 7.548
0.4 1.03 (0.62, 1.44) <0.001 7.856

0.6 0 0.65 (0.32, 0.98) <0.001 6.296
0.1 0.67 (0.33, 1) <0.001 6.517
0.3 0.72 (0.36, 1.08) <0.001 6.850
0.5 0.84 (0.42, 1.27) <0.001 7.692
0.6 0.99 (0.48, 1.5) <0.001 7.97

0.8 0 0.51 ( 0.09,0.92) 0.02 5.518
0.1 0.51 (0.09 ,0.93) 0.02 5.739
0.5 0.57 (0.1, 1.04) 0.02 6.914
0.8 0.95 (0.15, 1.75) 0.02 8.683

0 .95 0 0.36 (0.04, 0.67) 0.03 4.055
0.1 0.36 (0.04, 0.68) 0.03 4.276
0.7 0.39 (0.05, 0.73) 0.03 8.242
0.9 0.52 (0.07, 0.97) 0.03 8.669
0.95 1.04 (0.04, 2.05) 0.04 11.825

Table 5.14 shows an extract of model estimates and curvature results for the six simulated
datasets. The curvature results are in log transformation. Each value of Miscl rate ζ

column is a distinct model (assumed and modified models). The model estimates and the
curvature κ of the assumed model is at Miscl rates ζ = 0, otherwise modified models when
Miscl rates ζ ̸= 0. From Table 5.14, for each dataset, the model estimates increase as the
error size increases. It can be seen that when correct model is applied, the estimate appears
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Figure 5.7: Simulation IIIa: Model Estimates and Curvature under Nondifferential
Misclassification of Y ∗

i = 1. Figure (a), (c) and (e) are the model estimates from
SIMdata ζ = 0, SIMdata ζ = 0.2, and SIMdata ζ = 0.4 respectively. Figure (b), (d) and

(f) are the corresponding curvature
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Figure 5.8: Simulation IIIb: Model Estimates and Curvature under Nondifferential
Misclassification of Y ∗

i = 1. Figure (a), (c) and (e) are the model estimates from
SIMdata ζ = 0.6, SIMdata ζ = 0.8, and SIMdata ζ = 0.95 respectively. Figure (b), (d)

and (f) are the corresponding curvature
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to be closer to 1 and unbiased. Again, the curvature increases, as ζ increases,.

Figures 5.7 and 5.8 depict the model estimates and curvature from the first three (SIMdata
ζ = 0, SIMdata ζ = 0.2, and SIMdata ζ = 0.4) and the last three (SIMdata ζ = 0.6,
SIMdata ζ = 0.8, and SIMdata ζ = 0.95) datasets respectively. Each of the left graphs
depicts the model estimates, while the right graph is the curvature. Again, from the left
graph, it can be seen that there are more than one intersection points as ζ increases, but
there is a break point after the green line. Here, the plausible range of error size could
be from ζ = 0 to the break point. For instance, the likely range of error size for dataset
SIMdata ζ = 0.2 is from ζ = 0 to ζ = 0.4. Except for SIMdata ζ = 0.95 which suggests
that extreme cases may be impossible.

Each of the right graph of Figure 5.7 and 5.8 shows the influence graph of curvature for the
six simulated datasets under a nondifferential misclassfication of Y ∗

i = 1. The plane curve
reveals the curvature for multiple models (assumed and modified models) as ζ increases
from 0 1, where each point on the curve is the curvature of a distinct model.

Again, it is important to investigate how sensitive the conclusion and stability assessment
is along that range of plausible values of ζ, and report all the findings.

5.5 Simulation IV: Presence of the Outcome under Differential Misclassifi-
cation

In this section, based on simulation, we provide empirical results of the influence measure
under the differential misclassification pattern investigated in Chapter Four. This section
is structured as follows. In section 5.5.1, we describe data driven generation. A naive
analysis was conducted in Section 5.5.2 with its finite sample properties. In Section 5.5.3,
we assess the performance of an estimation based on modified model analysis. In Section
5.5.4 we show the influence surface of the sum of curvatures in the direction of ζ0 and
ζ1.

5.5.1 Data Generation IV

In this section, a complete dataset is simulated based on the assumption of a differential
measurement error mechanism of Y ∗

i = 1. The exposure variable Xi is generated by
distribution Xi ∼ Bin(1, 0.5), and Xi is assumed to be without error. The true response
variable Yi is generated from logistic model discussed in Chapter Four, where α =?0.5

and θ = 1. The misclassified response variable Y ∗
i is generated as Y ∗

i = 0 if Yi = 0, but
Y ∗
i = 1 may be measured with error such that Y ∗

i |Yi = 1 ∼ Bin(1, (ζ0 − ζ0xi + ζ1xi)πi).
We considered two sample sizes, n = 1000 and n = 5000, and by assuming the probability
of measurement error to be ζ0 and ζ1, six different combinations of (ζ0, ζ1) were selected
to initiate differential misclassification mechanisms in the dataset. The six chosen (ζ0, ζ1)

are (0.1, 0.3), (0.4, 0.2), (0.3, 0), (0.4, 0.6), (0.7, 0.8), and (0.9, 0.6). Thus, a dataset with
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(ζ0, ζi) = (0.1, 0.3) would have 70% sensitivity conditional on X1, and 90% sensitivity
conditional on X0. Hence, each generated dataset varied based on the assumed value of
(ζ0, ζi). The analysis conducted on each simulated dataset is presented in the following
sections.

5.5.2 Naive Analysis IV

For each generated dataset with a combination of ζ0 and ζ1, we performed naive analysis
using the logit links of logistic model from Chapter Four. We calculated the average
estimated parameter, the spread of the results and the 95% confidence interval coverage
over 1000 replicates for each dataset.

Table 5.15 shows the results of the naive model for each of the datasets. It can be seen
that when measurement error is ignored, the estimated parameter appears to be biased,
and the coverage for both sample sizes are very poor.

Table 5.15: Naive Analysis IV: Extract of naive analysis from the simulation study IV
under a Differential Misclassification of Y ∗

i = 1: Results are summarised over 1000.

SIMdata n = 1000 n = 5000

ζ0 ζ1 E(θ̂∗r) E(Std.Err(θ̂∗r)) 95% E(θ̂∗r) E(Std.Err(θ̂∗r)) 95%
0.1 0.3 0.406 0.1308 0.4 0.4054 0.0584 0
0.4 0.2 1.2267 0.1398 63.8 1.2195 0.0623 5
0.3 0 1.5258 0.137 3.1 1.5247 0.0613 0
0.4 0.6 0.1246 0.1493 0 0.1228 0.0665 0
0.7 0.8 0.1005 0.1968 0.3 0.1041 0.0875 0
0.9 0.6 2.1554 0.2615 0.1 2.1348 0.1149 0

Again, this suggests that conclusions from the simulation study based on naive analysis
could be misleading as the problem of measurement error is not considered. Therefore, we
assess the impact of the differential misclassification pattern of Y ∗

i = 1.

5.5.3 Modified Model Analysis IV

Here, for each dataset we demonstrate the empirical performance of the modified model
under the assumption of a differential misclassification of Y ∗

i = 1. Table 5.16 shows an
extract of the results for each dataset. The combinations of (ζ0, ζ1) under SIMdata are
the six datasets, while the combinations under Miscl rates are the modified models. When
a correct model is applied, the estimates and coverage appear to be good. Overall, from
Table 5.16, it can be seen that when an incorrect model is applied, the estimate could be
biased and the coverage is poor.
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Table 5.16: Extract from the simulation study under a Differential Misclassification of
Y ∗
i = 1: Results are summarised over 1000 iterations.

SIMdata Miscl rates n = 1000 n = 5000
E(Std.Err) E(Std.Err)

ζ0 ζ1 ζ0 ζ1 E(θ̂r|ζ0, ζ1) (θ̂r|ζ0, ζ1) 95% E(θ̂r|ζ0, ζ1) (θ̂r|ζ0, ζ1) 95%
0.1 0.3

0.1 0.2 0.6801 0.1504 44.3 0.6792 0.067 0
0.1 0.3 1.0025 0.1686 95.6 1.0007 0.0752 95.9
0.2 0.4 1.2864 0.2176 76.3 1.281 0.0965 15.4

0.4 0.2
0.2 0.3 1.8431 0.1951 0.1 1.8316 0.0867 0
0.4 0.2 1.0084 0.1789 95.8 0.9995 0.0798 95
0.4 0.3 1.4140 0.206 48.2 1.4024 0.0916 0.6

0.3 0
0 0.1 1.834 0.1523 0.1 1.8328 0.0679 0

0.3 0 1.0013 0.1517 95 1.0007 0.0677 96
0.2 0.3 2.8341 0.367 0.3 2.7988 0.1513 0

0.4 0.6
0.5 0.1 -0.773 0.1861 0 -0.775 0.083 0
0.4 0.6 1.0055 0.2472 95.2 0.9999 0.1097 95.4
0.3 0.5 0.7308 0.1979 72.4 0.7282 0.0882 14.4

0.7 0.8
0.5 0.4 -0.1201 0.2216 0.1 -0.1158 0.0986 0
0.7 0.8 1.0031 0.3825 96.4 0.9987 0.1677 95.3
0.1 0.4 0.5912 0.2083 50.1 0.5949 0.0927 0.9

0.9 0.6
0.2 0.1 2.0652 0.2652 0.3 2.0447 0.1166 0
0.9 0.6 1.0164 0.4266 95.4 0.9983 0.1874 95.2
0.4 0.3 2.1279 0.2744 0.2 2.1074 0.1207 0
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5.5.4 Influence Method Analysis IV

Table 5.17 shows an extract of model estimates and curvatures (in log transformation)
for each of the direction ζ0 and ζ1 and their sums under a differential misclassification of
Y ∗
i = 1. Again, it can be seen that when a correct model is fitted, the estimate seems to

be unbiased and significant.

The left graph of Figure 5.9 and 5.10 is the model estimates while the right graph is the
sum of curvatures. For each dataset, we can identify models with estimated parameter 1

using contour line 1. These combinations of ζ0, ζ1 might be the plausible range of the error
size present in each dataset. The right shows the sum of curvatures for each simulated
data. Again, the assumed model has the lowest curvature. It is important to investigate
how sensitive the conclusion and stability assessment is along the error values.

Figure 5.6 depicts the sum of normal curvatures in log transformation under differential
misclassification of Y ∗

i = 1 for the six datasets. It follows that the smallest curvature
occurs at the origin (ζ0 = 0, ζ1 = 0), while the highest curvature is near (ζ0 = 1, ζ1 = 1).
With no exception, all studied scenario individually shows that assume model is the most
stable model compared to any other model. Hence, when there is no validation study
and there is no prior knowledge of measurement error contained in a study, we can chose
assume model.
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Table 5.17: Extract of Model Estimates and Sum of Curvatures under a Differential
Misclassification from simulation study IV. The six datasets selected are

(0.1, 0.3), (0.4, 0.2), (0.3, 0), (0.4, 0.6), (0.7, 0.8), (0.9, 0.6)

SIMdata Miscl rates Estimates Curvature

ζ0 ζ1 ζ0 ζ1 θ̂|ζ0, ζ1 95%CI Pval log(κh0) log(κhζ1)
1∑

j=0

log(κhζj
)

0.1 0.3 0 0 0.44 (0.18,0.69) <0.001 6.106 6.662 12.768
0.1 0.2 0.72 (0.43,1.02) <0.001 6.316 7.109 13.425
0.1 0.3 1.06 (0.72,1.39) <0.001 6.316 7.376 13.692
0.2 0.4 1.37 (0.93,1.81) <0.001 6.552 7.718 14.269

0.4 0.2 0 0 1.3 (1.02,1.58) <0.001 5.563 6.892 12.455
0.2 0.3 1.9 (1.52,2.28) <0.001 6.009 7.601 13.615
0.4 0.2 1.09 (0.74,1.44) <0.001 6.584 7.338 13.923
0.4 0.3 1.49 (1.09,1.88) <0.001 6.584 7.601 14.189

0.3 0 0 0 1.52 (1.25,1.79) <0.001 5.771 7.447 13.218
0 0.1 1.81 (1.52,2.11) <0.001 5.771 7.658 13.429

0.3 0 1.01 (0.71,1.3) <0.001 6.485 7.447 13.932
0.2 0.3 2.63 (2.06,3.21) <0.001 6.218 8.160 14.378

0.4 0.6 0 0 0.19 (-0.11,0.48) 0.21 5.563 5.856 11.419
0.5 0.1 -0.68 (-1.04,-0.32) <0.001 6.949 6.067 13.016
0.4 0.6 1.07 (0.6,1.55) <0.001 6.584 7.689 14.273
0.3 0.5 0.8 (0.41,1.19) <0.001 6.276 7.243 13.519

0.7 0.8 0 0 0.13 (-0.24,0.51) 0.49 5.044 5.073 10.117
0.5 0.4 -0.08 (-0.51,0.35) 0.71 6.431 6.095 12.525
0.7 0.8 1.08 (0.32,1.84) 0.005 7.452 8.292 15.744
0.1 0.4 0.63 (0.23,1.03) 0.002 5.255 6.095 11.350

0.9 0.6 0 0 2.19 (1.68,2.7) <0.001 3.921 5.856 9.778
0.2 0.1 2.1 (1.58,2.62) <0.001 4.368 6.067 10.435
0.9 0.6 1.08 (0.27,1.89) 0.009 8.526 7.689 16.215
0.4 0.3 2.16 (1.62,2.7) ,0.001 4.943 6.570 11.513
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Figure 5.9: Simulation IVa: Model Estimates and Sum of Curvatures of both directions
of ζ0 and ζ1 from the last three datasets under a Differential Misclassification of Y ∗

i = 1.
First row; Model Estimates and Sum of Curvatures from SIMdata (ζ0 = 0.1, ζ1 = 0.3),

Middle row; Model Estimates and Sum of Curvatures from SIMdata (ζ0 = 0.4, ζ1 = 0.2),
and Last row; Model Estimates and Sum of Curvatures from SIMdata (ζ0 = 0.3, ζ1 = 0).
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Figure 5.10: Simulation IVb: Model Estimates and Sum of Curvatures of both directions
of ζ0 and ζ1 from the last three datasets under a Differential Misclassification of Y ∗

i = 1.
First row; Model Estimates and Sum of Curvatures from SIMdata (ζ0 = 0.4, ζ1 = 0.6),

Middle row; Model Estimates and Sum of Curvatures from SIMdata (ζ0 = 0.7, ζ1 = 0.8),
and Last row; Model Estimates and Sum of Curvatures from SIMdata

(ζ0 = 0.9, ζ1 = 0.6).
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Chapter 6

Discussion and Conclusions

Statistical inference from an assumed model might be misleading if the impact of potential
measurement error was not considered in statistical techniques. As a result, there exists
a breadth of literature on different approaches used to account for measurement error.
For instance, in the case of binary data, past research proposed methods to account for
misclassification in outcome and/or covariates that might be present in an observed study.
The existing methods in binary data framework, focus on the use of validation study to
account for measurement error in the main study. A shortcoming of this approach is lack
of validation data to inform the correction of measurement error in the main study. In
addition, many of these methods used modified models (that is, extended logistic regression
models), where the probability of measurement error is introduced as a modification weight
in the assumed model. However, very little has be done to assess how stable an assumed
model is under the influence of a minor modification of a binary model with outcome
misclassification. It is therefore essential to investigate the performance of a naive logistic
regression model fitted to main/observed study against a modified model.

The investigation is aimed at understanding how model estimates behave when a slight
change is introduced in an assumed model, and model stability/sensitivity within a plau-
sible range of error size. In practice, the true value of the error size is unknown. One
possible solution is to find good information about a range of plausible values of the error
size either from the literature or a validation data. However, it is sometimes difficult to
get prior information about the likely range of error size. If there is no information about
the error size, an alternative is to consider range of plausible values between 0 and 1.
Although for the purpose of model development, the error size used in our study range
from 0 to 1, note that in specific context the two extremes may not be plausible. Re-
gardless of a validation data or a prior information about the error size, it is important
to perform sensitivity analysis within plausible values, and report all the findings. If the
assumed model estimates are unbiased and more stable than modified model under the
impact of measurement error, the derived measure could be a useful tool in filling the
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gap between existing methods with only the main study, and those relying on combined
main/validation substudies.

Therefore, the core idea of our research focuses on influence measure derived from curva-
ture to study model stability under the impact of measurement error. It should be noted
that using curvature as an influence measure leads to different interpretations. The key
is to derive influence measure when modification is incorporated in the general likelihood
function of an assumed binary model, where response variable is subject to misclassifica-
tion. Each point on the influence graph or surface represents a distinct model (assumed
or modified model). The curvature measures how curvy the surface is at a distinct model.
Hence, when using curvature as an influence measure, it can be used to interpret how
stable or sensitive a model is with respect to slight changes in the model assumption of
measurement error.

A well known approach of influence measure is the use of eigenvalues as the basis and the
corresponding eigenvectors as directions (Zhu and Zhang, 2004). This approach of influ-
ence method has been followed before by Steen et al., (2001), where they assessed indi-
vidual specific modifications for missing ordinal responses in longitudinal models/settings.
Another proposed method is the use of mean or gaussian curvature (Cook, 1984). Thus,
any of the aforementioned influence methods could be used to detect the most sensitive
observations when a slight change is introduced to a model, or outlying values (emerge)
that seriously influence coefficient estimates. However, these methods do not directly
address the aim and objectives of this research, where investigating the stability of as-
sumed or modified models turns out to be of paramount importance of our study. In
other words, the influence method is very extensive and can potentially be represented
in numerous forms. Our method is based on assessing the stability of an assumed model
under modifications in the case of measurement error for binary outcome. There are key
differences between assessing influential individual measurements around missing at ran-
dom model for continuous outcome (Steen et al., 2001) and the method presented here
under error-prone binary response.

In this study, more specifically, we set out to derive influence measure within the prob-
lem of error-prone measurements of attributes of binary outcome. In both cases, we
showed the theoretical framework of assessing model stability. When correcting for mea-
surement error, the two most common misclassification patterns are nondifferential and
differential misclassification. Hence, in our approach, we allowed for the modification of
an assumed model based on nondifferential and differential misclassification pattern. In
the case of nondifferential misclassification, which is modelled by introducing scalar mod-
ification weight into an assumed model, we proved that the assumed model is the most
stable compared to any other modified models, when there is no information about the
error size. This is demonstrated in the mathematical proofs in Section 3.4.1 of Chapter
Three, and Section 4.2.1 of Chapter Four. Similarly, in the case of a differential misclassi-
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fication pattern, where vector of modification weights are introduced, the assumed model
emerges as the most stable when there is no information about the error size, as shown
in mathematical proof in Section 3.4.2 of Chapter Three, and 4.2.2 of Chapter Four. For
each case of Y ∗

i = 1 and Y ∗
i = 0, the empirical performances and numerical results under

nondifferential and differential patterns are shown using the motivating example data and
simulation studies in Chapter Five.

Although our theoretical framework showed that the standard logistic model is more stable
than modified models under misclassification, model estimates appear to be biased when
an incorrect model is applied(fitted). This can be seen in our simulation results in Section
5.2 to 5.5 of Chapter Five. In our study, there is no prior information about the error
size. Hence, for model development on how to assess model stability under the impact
of measurement error, the error size applied ranges from 0 to 1. However, in a specific
context, extreme values may not be plausible. We showed how model estimates and
stability behaves as the error size increases from 0 to 1. In real scenarios where the true
value of error size is unknown, when measurement error is suspected, a set of plausible
values could be found in literature (or from a validation data) which can be incorporated
in a model. On the other hand, if there is no prior information about the error size,
one possible solution is to consider plausible range of values. It is important to examine
how model estimates and curvature behave within the plausible range of values. If the
conclusion does not change much across a range of plausible values of error size, then it is
robust. On the other hand, when a slight change in the error size changes the conclusion,
and the curve of the curvature is so much such that the model gives you a very different
result, then it is important to report all the findings. Therefore, we recommend that
regardless of the information about the error size, model estimates and curvature within
plausible range of values should be examined.

We illustrated how to incorporate a vector of modification weights in the likelihood func-
tion of an assumed model, and also shown how to derive influence measure. One of the
advantages of our method is that it is easy to derive and computation is straightforward.
The influence measures derived in our research are for special cases of attribute of binary
outcome, but these are not the only possible misclassifications. Further, it is possible to
consider a study where both attributes of a binary outcome are subject to measurement
error at the same time. In such a scenario, the mechanism of measurement error is different
(see Figure 1.1 from Section 1.2 in Chapter One). It has to be emphasized that the modi-
fication introduced in an assumed model is allowed to be a vector of modification weights.
Therefore, our method can be extended to a study where both attributes of a binary out-
come are misclassified. In this scenario, at least two modification weights are likely to be
introduced into the assumed model depending on the assumptions made. The modifica-
tion weights in this case share similarities with the misclassification rates considered in our
study, in which ζ = P (Y ∗

i = 0|Yi = 1) and/or γ = P (Y ∗
i = 1|Yi = 0) are misclassification

rates. However, by assuming the occurrence of ζ and γ at the same time, in the case of
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nondifferential mechanism, the distribution of the observed outcome variable is conditional
on ζ and γ, resulting in modified model Y ∗

i |Xi ∼ Bin(1, (1− ζ)πi + γ(1− πi)). Obviously
we can see that there is a difference between Y ∗

i |Xi ∼ Bin(1, (1 − ζ)πi + γ(1 − πi)) and
the two modified models (3.4.1) and (4.2.1) described in Chapter Three and Four respec-
tively. Similarly, it follows that under the case of differential measurement error pattern,
there is a difference between modified models. Since the assumed model is the most stable
compared to modified models in our study, it is expected that by assuming ζ and γ simul-
taneously, the most stable model may likely be the assumed model. However, the latter
comment is intuitive. Further investigation outlining change (if any) in the behaviour of
the influence measures needs to be done.

Future work could be carried out to assess assumed or modified models under the im-
pact of error-prone exposure. For instance, an example in epidemiology studies where
demographic and/or multiple risk factors such as age, gender, ethnicity, biomarkers, pre-
existing diseases (to mention a few) are observed in error. Often in such studies, they
tend to identify associations between primary or secondary outcome and exposure vari-
ables, where they adjust for some other variables, but a subset of these variables might be
error-prone. When a subset of the covariates are measured with error, caution should be
applied when specifying the modified model. This is because misspecifying the association
between error -free and mismeasured covariates would introduce bias during parameter
estimation. Also, selecting an inappropriate modification vector to a statistical model may
lead to misleading inferences about the effect of the modification, since the perturbation
vector is central to the development of the inference measure (Zhu et al., 2007). Hence,
the number of modification weights to be incorporated in an assumed model needs careful
consideration depending on the assumptions. Further research is required.

In addition, observe studies with more than one exposure variable merit further research.
Possible measurement errors that may arise from such study could be that only the re-
sponse or a subset of exposure may be subject to measurement error, or even both response
and covariates are mismeasured. When considering error measurements of response and
exposure variables, the association between error-free and mismeasured covariates must
be correctly specified including the probabilities of measurement error of both variables.
In this scenario, modified models under the impact of nondifferential, independent and
dependent differential misclassification assumptions were provided in Section 3 of Chapter
Two. Hence, following our approach, influence measure can be derived in this scenario. In
practice, we adjust for variables during analysis. Adjusting for variables may change the
results of our study. Thus, this is another area of research that needs further investiga-
tion.

Normal curvature along individual direction of modification weights may be complex in
higher dimensions. For instance, an example is a special case of differential measurement
error pattern under error prone Y ∗

i = 1 and Y ∗
i = 0. Here, the assumption is that the
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probability of measurement error is dependent on the error free measurement of binary
exposure variable xi. In this case, the modification weights are (ζ0, ζ1, γ0, γ1). Hence,
the distribution of the observed outcome variable conditional on ζ0, ζ1, γ0 and γ1 is
Y ∗
i |Xi ∼ Bin(1, (1− ζ0+ ζ0xi− ζ1xi)πi+(γ0−γ0xi+γ1xi)(1−πi)). Deriving an influence

measure based on normal curvature under this setting is a bit complex. Therefore, a good
knowledge of differential geometry, theory of differential forms and Riemannian metrics
is required to construct normal curvature in higher dimensional space. Furthermore, a
computational, user- friendly statistical software or computer code in implementing this
procedure would be a useful development.

The modification around binary outcome and our influence method is by no means limited
to the logistic model. Another area of interest is improving or correcting outcome and/or
covariates misclassification in a range of common models to include cox and ordinal. Al-
though these models are outside the logistic regression model framework, the concept of
our method can be applied to other model settings.

In summary, observed studies are prone to measurement error. Hence, in our research,
we demonstrated how to investigate model stability and the behaviour of model estimates
when one of the two attributes of a binary response variable is prone to nondifferential
and differential misclassification. Although from our theoretical results, when there is no
information about the error size, the assumed model appears to be the most stable model
compared to the modified models, the assumed model estimates could be biased when
measurement error is present. Therefore, it is important to find good information about
the error size either from a validation study or the literature. In practice, it is sometimes
difficult to get prior information about the likely range of error size. Hence, regardless
of prior information about the error size, it is important to investigate model stability
and how model estimates behave within a plausible range of error size, and report all the
findings.
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