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ARTICLE OPEN
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Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and
premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated
with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The
study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18–72 years; 67%
male) and 2598 healthy controls (mean age 33.8 years, range 18–73 years, 55% male). Brain-predicted age was individually
estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical
volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging
(MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and
chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years
(95% CI: 2.91, 4.19; I2= 57.53%) compared to controls, after adjusting for age, sex and site (Cohen’s d= 0.48). Among SZ patients,
brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or
antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal
studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased
brain-PAD and its ability to be influenced by interventions.

Molecular Psychiatry; https://doi.org/10.1038/s41380-022-01897-w

INTRODUCTION
Schizophrenia (SZ) is associated with an increased risk of
premature mortality, with an average decrease in life expectancy
of ~15 years [1–3]. This is partially accounted for by suicidal
behaviour or accidental deaths, as well as poor somatic health,
including cardiovascular and metabolic disease [4–6]. The high
prevalence of physical morbidity, long-term cognitive decline, and
excess mortality seen in SZ may partly be the result of

“accelerated” ageing (i.e., a biological age which “outpaces”
chronological age) [7–9]. An increasing number of studies report
systemic, age-related biological changes in SZ patients, including
elevated levels of oxidative stress, inflammation, and cytotoxicity
[10, 11]. There is also evidence for progressive brain changes in
gray and white matter structures that may begin around or after
illness onset [12–18], which may, in part, reflect deviations from
normal brain ageing trajectories.
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Although chronological age can be predicted accurately with
neuroimaging data using machine learning, discrepancies can
occur between brain-predicted age (also known as “brain age”)
and chronological age [19]. This can be referred to as brain-
predicted age difference (brain-PAD). A brain-PAD larger than zero
indicates a brain that appears “older” than the person’s
chronological age, whereas a brain-PAD lower than zero reflects
a “younger” brain than expected at a given chronological age.
Higher brain-PAD scores have been associated with a wide range
of health-related lifestyle factors and outcomes, including smok-
ing, higher alcohol intake, obesity (or higher BMI), cognitive
impairments, major depression, type 2 diabetes, and early
mortality [20–25].
To our knowledge, only a few studies have investigated brain

age in adults with SZ using various machine learning algorithms or
imaging (gray and/or white matter) measures. A higher brain-PAD
was consistently shown in SZ patients relative to healthy
individuals, with reported scores varying from +2.6 to 7.8 years
across studies [26–31]. Furthermore, a greater brain-PAD was
observed in first-episode SZ patients [26], and longitudinal data
suggests that this gap widens predominantly during the first years
after illness onset [29]. As these prior studies were performed with
relatively small to moderate sample sizes (range: 43–341 patients),
it is important to examine whether brain age findings in SZ can be
generalised through large-scale studies consisting of many
independent samples worldwide. Two recent mega-analyses with
up to 1110 SZ patients across multiple cohorts found a moderate
increase in brain-PAD derived from structural T1-weighted MRI
(Cohen’s d= 0.51) [32] and diffusion tensor imaging (Cohen’s
d= 0.29) [33], respectively. Validation of those findings, as well as
identifying which clinical characteristics or other factors may
underlie advanced brain ageing in SZ, could have diagnostic and
prognostic implications for patients.
Here, we set out to investigate brain age in over 5000

individuals from the Schizophrenia Working Group within the
Enhancing Neuro-Imaging Genetics through Meta-analysis
(ENIGMA) consortium (26 cohorts, 15 countries), covering almost
the entire adult lifespan (18–73 years). We employed a recently
developed multisite brain ageing algorithm based on FreeSurfer-
derived gray matter regions of interest (ROIs) [24] to examine
brain-PAD differences between SZ patients and healthy controls in
a prospective meta-analysis. We hypothesised significantly higher
brain-PAD in SZ patients, compared to controls. In addition, we
assessed whether a higher brain-PAD in SZ patients was
associated with clinical characteristics, such as age of onset,
length of illness, symptom severity, and antipsychotic treatment.

METHODS
Study samples
Twenty-six cohorts from the ENIGMA SZ working group with cross-
sectional data from SZ patients (N= 2803) and healthy controls (N= 2598)
were included in this study (18–73 years of age). Details of demographics,
location, clinical characteristics (including methods for data harmoniza-
tion), and inclusion/exclusion criteria for each cohort may be found in
Supplementary Information (Supplementary Tables S1–3, Supplementary
Fig. S1, and Supplementary Material). All sites obtained approval from the
appropriate local institutional review boards and ethics committees, and all
study participants provided written informed consent.

Image acquisition and pre-processing
Structural T1-weighted brain MRI scans of each participant were acquired at
each site. We used standardized protocols for image analysis and feature
extraction (Nfeatures= 153) across multiple cohorts (http://enigma.ini.usc.edu/
protocols/imaging-protocols/). FreeSurfer [34] was used to segment and
extract volumes bilaterally for 14 subcortical gray matter regions (nucleus
accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and
thalamus), 2 lateral ventricles, along with 68 regional cortical thickness and
68 regional cortical surface area measures, and total intracranial volume

(ICV). Cortical parcellations were based on the Desikan/Kiliani atlas [35].
Segmentations were visually inspected and statistically examined for
outliers. Further details of image acquisition parameters, software descrip-
tions, and quality control may be found in Supplementary Table S4 and
Supplementary Material.

Brain age prediction
We used the publicly available ENIGMA brain age model (https://photon-
ai.com/enigma_brainage). As described and discussed in Han et al. [24],
brain age models were developed separately for males and females. The
training samples were based on structural brain measures from 952 males
and 1236 female healthy individuals (18–75 years of age) from the ENIGMA
Major Depressive Disorder (MDD) group. There is no known participant
overlap between the training samples and the participant data used in this
work. Briefly, FreeSurfer measures from the left and right hemispheres
were combined by calculating the mean ((left+ right)/2)) of volumes for
subcortical regions and lateral ventricles, and thickness and surface area
for cortical regions, resulting in 77 features. The 77 average structural brain
measures were used as predictors in a multivariable ridge regression to
model chronological age in the healthy training samples (separately for
males and females), using the Python-based sklearn package [36]. Model
performance was originally validated in training samples (through 10-fold
cross-validation) and out-of-sample controls. Here, the parameters from
the previously trained model(s) were applied to our test samples of healthy
controls and SZ patients (and separately for males and females) to obtain
brain-based age estimates for each cohort. To assess the model’s
generalization performance in the test control samples, we calculated
the (1) mean absolute error (MAE) between predicted brain age and
chronological age, the (2) Pearson correlation coefficients between
predicted brain age and chronological age (r), and (3) the proportion of
chronological age variance explained by the model (R2). For more detailed
information on the training samples, model development/validation, and
generalisation performance in the current samples, see Supplementary
Material and Han et al. [24].

Statistical analyses
Brain-PAD (predicted brain-based age minus chronological age) was
calculated for each participant and used as the outcome variable. While
different prediction models were built for males and females, the
generated brain-PAD values were pooled across sex for subsequent
statistical analyses within each cohort. Each dependent measure of the ith
individual was modelled as follows:

brain� PADi ¼ interceptþ β1 Dxið Þ þ β2ðsexiÞ þ β3 ageið Þ
þ β4 age2i

� �þ β5 siteið Þ þ εi
(1)

where Dx represents diagnostic status for SZ. We corrected for the well-
documented systematic age bias in brain age prediction (see Supplemen-
tary Material for brief explanation of this issue) [37, 38], as well as for
potential confounding effects of age and sex in our test samples, by
adding age, quadratic age (age2), and sex as covariates to our statistical
models. We included both linear and quadratic age covariates in the same
model as this provided a significantly better model fit to previous data
compared with models including a linear age covariate only [24]. In
addition, and where applicable, multiple scanning sites/scanners were
added as (n-1) dummy variables.
Within SZ patients, we also used linear models to examine associations

between brain-PAD and clinical characteristics (CC):

brain� PADi ¼ interceptþ β1ðCCiÞ þ β2 ageið Þ þ β2 age2i
� �þ εi (2)

where “CC” represents either age of onset, illness duration (time from age-
of-onset to time of scanning), SZ symptomatology at study inclusion
(including Scale for the Assessment of Negative Symptoms—SANS Global,
Scale for the Assessment of Positive Symptoms—SAPS Global, and Positive
and Negative Syndrome Scale – PANSS Total), antipsychotic (AP)
medication use at time of scanning (typical/atypical/both/none) or
chlorpromazine (CPZ) dose equivalents (mg per day). Analyses were also
repeated while additionally covarying for handedness (right/left/ambidex-
trous) or parental socioeconomic status (see Supplementary Material).
Cohorts with less than 10 healthy controls and less than 5 participants in a
particular predictor or covariate subgroup (e.g., sex, clinical characteristics)
were excluded from the analyses (see Supplementary Material for more
details).
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Cohort-specific results were then meta-analysed using the rma function
in the metafor package [39]. Random (or mixed) effects models were fitted
using restricted maximum likelihood estimation and inverse-variance
weighting. Statistical tests were two-sided, and results for the effects of
nine clinical characteristics among SZ patients were false discovery rate
(FDR) corrected (using the Benjamini-Hochberg procedure) and considered
statistically significant at α < 0.05. In addition, as cohorts differed in age or
sex distribution, or, had multiple scanning sites (ASRB, FBIRN, Huilong,
MCIC, MPRC, PAFIP) or different MRI scanners, post-hoc meta-regressions
were performed to explore between-study heterogeneity in effect size
with respect to the number of scanning sites (i.e., single vs. multi-site
status), scanner field strength (i.e., 1.5 T vs. 3 T MRI), mean sample age or
percentage of females (across cases and controls).
Finally, to better understand the contribution or importance of

individual structural brain measures for making brain age predictions, we
calculated Pearson’s correlation coefficients between brain-predicted age
and each of the 77 FreeSurfer features in each cohort. A weighted average
by sample size across cohorts was then calculated for each correlation
coefficient and plotted on cortical maps for illustrative purposes only.
Correlation analyses were also conducted separately for SZ patients and
healthy controls.

RESULTS
Sample characteristics
Demographics and clinical characteristics across cohorts can be
found in Table 1. Mean age weighted by sample size (range)
across SZ patient and healthy control cohorts was 34.22
(18.36–43.66) and 33.82 (22.58–41.41) years, respectively. Patient
and control cohorts were on average 67.32% (43.75–100) males
and 54.89% (38.46–100) males, respectively. Weighted mean age
of onset and duration of illness across patient cohorts were 24.75
(17.55–29.99) and 10.83 (0.62–18.87) years. Mean symptom
severity (PANSS total) was 62.41 (33.38–93.12). For cohorts where
current antipsychotic medication type information was available,
the weighted mean percentage of patients on first-generation

(typical), second-generation antipsychotics (atypical), both typical
and atypical, or no antipsychotic medication was 10.05%, 67.65%,
14.73% and 7.57%, respectively.

Brain age prediction performance
In controls, the weighted average MAE across cohorts was 7.60
(SE= ± 0.40) and 8.45 (SE= ± 0.46) years for males and females,
respectively (Supplementary Fig. S2a, b). Within the SZ group, the
MAE was 10.14 (SE= ± 0.52) and 9.61 (SE= ± 0.54) years for males
and females, respectively (Supplementary Fig. S2c, d). Correlations
between chronological age and predicted brain age were
moderate to large in controls (males r= 0.64, and females
r= 0.63; both R2= 0.41), and in SZ patients (males r= 0.58, and
females r= 0.62; both R2= 0.33) (Supplementary Fig. S3a–d).

Brain age differences between SZ and controls
Weighted mean brain-PAD scores were +4.39 years (SE= ± 0.84)
in the control group and +7.74 years (SE= ± 0.94) in the SZ group.
On average, brain-PAD was higher by +3.55 years (95% CI 2.91,
4.19; p < 0.0001) in individuals with SZ compared to controls
(Cohen’s d= 0.48; 95% CI 0.33, 0.63; p < 0.0001) adjusted for age,
age2, sex and scanning site (Fig. 1). Post-hoc sensitivity analysis
excluding cohorts in which the model generalised less well (based
on MAE > 10.00 or R2 < 0.1 in healthy controls) returned similar
results (see Supplementary Fig. S4). Effect sizes were hetero-
geneous across individual cohorts (Q (24) = 55.15, p < 0.0003;
I2= 57.53%). A significant effect was seen in 22 out of 25 cohorts,
with a positive direction of mean effect size observed in all but
one cohort. Across cohorts, mean brain-PAD did not differ
between single versus multi-site cohorts (QM(1)=0.033,
p= 0.857), nor between 1.5 T versus 3 T scanners (QM(1)= 0.084;
p= 0.772) or with respect to mean age (QM(1)= 0.33, p= 0.566).
There was some evidence for a moderating effect of sex at the
cohort level with an attenuated association between SZ and brain-

Table 1. Participant characteristics for patients and controls across cohorts.

Characteristic Weighted mean (range)a K

SZ HC

Mean % males 67.32% (43.75–100) 54.89% (38.46–100) 26/25

Mean age in (years) 34.22 (18.36–43.66) 33.82 (22.58–41.41) 26/25

Mean age of onset (in years) 24.75 (17.55–29.99) - 21/-

Mean duration of illness (in years) 10.83 (0.62–18.87) - 21/-

Mean symptom severity (PANSS total) 62.41 (33.38–93.12) - 20/-

Mean SANS global 7.94 (3.64–14.06) - 22/-

Mean SAPS global 6.72 (1.41–12.53) - 21/-

Antipsychotic medicationb 21/-

Mean % Atypical 67.65% (0.00–93.00) -

Mean % Typical 10.05% (0.00–90.24) -

Mean % Both atypical & typical 14.73% (0.00–100) -

Mean % None 7.57% (0.00–53.62) -

Mean CPZ-equivalent dose 414.30 (167.88–1367.94) - 19

Handedness 20/19

Mean % Right 91.15% (81.16–100) 91.05% (81.82–100)

Mean % Left 6.00% (0.00–14.49) 6.45% (0.00–18.18)

Mean % Ambidextrous 2.85% (0.00–11.1) 2.49% (0.00–11.67)

SZ patients, HC healthy controls, K data available for K number of cohorts, SANS Scale for the Assessment of Negative Symptoms, SAPS Scale for the Assessment
of Positive Symptoms, PANSS Positive and Negative Syndrome Scale, CPZ chlorpromazine.
aUnless otherwise specified, means are weighted by the number of participants per group (SZ or HC)/cohort. For continuous variables, range indicates the
smallest and largest mean value across cohorts. For categorical variables (percentages), range indicates the smallest and largest proportion of participants in
each category across cohorts.
bMean percentages are weighted based on the number of cases with recorded antipsychotic type at each cohort.
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PAD in cohorts with a higher proportion of females (b=−0.069,
SE= 0.028, QM (1)= 6.271; p= 0.012), accounting for some of the
residual heterogeneity in the estimated brain-PAD difference
between SZ and HC across the 25 cohorts (R2= 35.83%;
I2= 46.68%). We also found a weak linear, yet not significant
effect for age on brain-PAD (bage=−0.23, 95% CI −0.47, 0.01,
p= 0.061; bage2=−0.00, 95%CI −0.05, 0.05, p= 0.998). Additional
adjustment for handedness in a smaller pool of 16 cohorts did not
meaningfully change our main finding for the effect of SZ (+3.62
years; 95% CI 2.82, 4.42; p < 0.0001).

Brain age and clinical characteristics in SZ
Among SZ patients, we found no statistically significant effects on
brain-PAD of clinical characteristics, including age-of-onset, length
of illness, symptom severity (PANSS total, SAPS global), anti-
psychotic use, and CPZ-equivalent dose after adjusting for age
and age2 (Table 2 and Supplementary Fig. S5a–i). A weak, positive
effect for negative symptom severity (SANS global) on Brain-PAD
was observed, although it did not reach significance (b= 0.18,
95% CI −0.01, 0.38, PFDR= 0.62). In addition, no significant effects
were found for typical versus atypical and both atypical and
typical versus atypical medication groups (Supplementary
Table S6). Further adjustment for handedness returned similar
results (Supplementary Table S7).

Correlations between brain imaging features and brain age
All imaging features, except mean lateral ventricle volume, were
negatively correlated with predicted brain age (Fig. 2); thickness
features correlated more strongly with brain age (mean Pearson r
[SD]:− 0.46 [0.13]), especially in medial frontal and temporo-
parietal regions, than subcortical volumes (−0.32 [0.30]) or surface
area features (−0.22 [0.06]). We also visualized these associations
separately for controls and SZ patients with similar results,
suggesting comparable structure coefficients in both groups (for
more details see Supplementary Material).

DISCUSSION
We assessed brain ageing in 2803 individuals with SZ and 2598
healthy controls using a novel brain age algorithm based on
FreeSurfer ROIs. Results indicate that, at a group level, patients
with SZ show a greater discrepancy between their brain-predicted
age and chronological age compared to healthy individuals
(+3.55 years), with a moderate increase in brain-PAD (Cohen’s=
0.48). The greater brain-PAD in the SZ group was not driven by
any of the specific clinical characteristics assessed here (age of
onset, length of illness, symptom severity, and antipsychotic use
and dose). This study has two major strengths. Firstly, through a
prospective meta-analytic approach within the ENIGMA consor-
tium, we were able to assess brain age differences between SZ
patients and healthy controls using standardised analysis methods
across multiple independent cohorts worldwide, providing a
generalised mean effect size. Second, the overall large sample
size and harmonisation of data across cohorts allowed for a more
reliable assessment of the relationship between clinical variables
and brain-PAD among SZ patients.
The mean brain-PAD difference between patients and controls

was +3.55 years (Cohen’s d= 0.48) in our study. Overall, this
finding is aligned with previously reported brain-PAD scores in SZ
patients vs. healthy controls (range: +2.6–7.8 years) [26–33].
Schnack et al. [29] and a recent mega-analysis by Kaufmann et al.
[32] found similar effect sizes (+3.4 years and Cohen’s d= 0.51,
respectively) in largely non-overlapping/independent samples
from this current study. On the other hand, our brain-PAD
difference is smaller relative to that reported in earlier work by
Koutsouleris et al. [27] and Shahab et al. [30] showing respectively
+5.5 to +7.8 years of brain age in smaller samples of SZ patients.
Several methodological differences may explain the variability in
magnitude of brain age effects in SZ across studies, including the
type of neuroimaging features (e.g., voxel-wise vs. ROI-based
morphometric data; and/or single vs. multiple imaging modalities)
[40], the machine learning algorithm used for brain age estimation
[41], the size of training and test data samples, and differences in
patient characteristics.
Relative to healthy controls, brain-PAD scores in SZ suggest

more advanced brain ageing than in MDD (+1.12 years) [42] and
bipolar disorder (BD; +1.93 years) [42], that may reflect more
pronounced structural brain abnormalities in SZ [24]. This aligns
with previous reports from the ENIGMA consortium, showing
largest effect sizes of cortical and subcortical gray matter
alterations in SZ (highest Cohen’s d effect size= 0.53) [16, 17],
followed by BD (highest Cohen’s d= 0.32) [43, 44] and MDD
(highest Cohen’s d= 0.14) [45, 46]. Hence, sensitivity of brain-PAD
to SZ at the group level appears to be quantitively similar to that
of leading cortical thickness and subcortical volume measures. A
further key advantage of the “brain age” paradigm is that it
captures multivariate age-related structural brain patterns into
one (or more) composite measure(s), thereby simplifying analyses
and aids interpretation with respect to normative patterns of brain
ageing.
Consistent with previous reports [27, 31], we did not observe

significant associations between brain-PAD and age of onset,
length of illness, and antipsychotic treatment or dose among SZ
patients. This suggests that a greater brain-PAD in SZ may not be
primarily driven by disease progression or treatment-related
effects on brain structure that have been reported elsewhere
[12, 14, 18, 47, 48]. This is in keeping with previous studies
showing a greater brain-PAD already present in first-episode SZ
and first-episode psychosis patients [26, 49]. Using a longitudinal
design, Schnack et al. investigated brain age acceleration (i.e.,
annual rate of change in brain-PAD) over the duration of illness in
SZ (N= 341; mean follow up period: 3.48 years). Brain-PAD started
increasing by about 2.5 years (per year) just after illness onset,
though this acceleration rate slowed down to a normal rate over
the first 5 years of illness [29]. Lastly, in contrast to previous
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Fig. 1 Case-control differences in brain-PAD. Forest plot of differ-
ences in mean brain-PAD scores (predicted brain age - chronological
age) between patients with schizophrenia (SZ) and controls across (26
−1) 25 cohorts (a total of 2792 cases and 2598 controls; excluding 1
cohort that contributed data for patients only), controlling for sex, age
and age2 and scanning site. Regression coefficients (in years) are
denoted by black boxes. Black lines indicate 95% confidence intervals.
The size of the box indicates the weight the cohort received (based on
inverse variance weighting). The pooled estimate for all cohorts is
represented by a black diamond, with the outer edges of the diamond
indicating the confidence interval limits.

C. Constantinides et al.

4

Molecular Psychiatry



findings in SZ [27] and first-episode psychosis [49] we did not find
strong evidence for a positive association between negative
symptom severity and brain-PAD. An explanation for this could be
that negative symptoms are more specifically linked to brain age
differences at the regional level (i.e., temporal or parietal brain-
PAD) than at the global level (i.e., “whole-brain” brain-PAD), as
reported previously [32].
The biological mechanisms underlying advanced brain ageing

in SZ remain elusive. These may involve interrelated biochemical
abnormalities that accompany both schizophrenia and brain
ageing, including increased inflammation and oxidative stress
[10, 50]. Elevated levels of inflammatory markers (e.g., pro-
inflammatory cytokines in blood and central nervous system)
have been observed by multiple studies in individuals with
schizophrenia [11, 51]. Moreover, there has been evidence for

peripheral inflammation markers being associated with structural
brain abnormalities observed in schizophrenia and related
outcomes (e.g., first episode psychosis), including but not limited
to abnormal cortical thickness of the bilateral Broca’s area and
temporal gyrus [52, 53], as well as with greater brain-PAD scores
[54]. Abnormal levels of multiple oxidative stress markers have
also been observed in SZ, both peripherally and in brain tissue
[11, 55]. Oxidative stress and inflammation may reciprocally
induce one another via a positive feedback loop in SZ, resulting in
cellular damage [56].
Several methodological issues require further consideration.

First, while a brain-PAD score (that is not equal to zero) is
conceptually a prediction error that could reflect physiological
deviations from normal ageing trajectories, it could be partly
attributed to lack of model accuracy due to noise or unwanted
variation [32, 57, 58]. Potential sources of unwanted variation
include the use of multiple scanners and/or image acquisition
protocols across (or within) participating cohorts that may affect
the overall generalization performance of the brain age model
applied here. To overcome this, in the primary analysis we
included cohorts that had data on both cases and healthy controls
collected in a similar, if not identical, manner (i.e., same site/
scanner and/or image acquisition protocol) and have adjusted for
multiple scanners where applicable. Nevertheless, while our
model fit is lower than some previous studies, this would only
increase noise, not a bias towards finding an effect of SZ on brain-
PAD. Second, although our meta-analytic approach allowed us to
combine information across multiple cohorts, the summary-level
data reported here does not adequately capture the considerable
inter-individual variability in brain-PAD among SZ patients, as has
been documented elsewhere [32]. As some individuals with SZ are
not characterised by a greater brain-PAD, it would be important to
further investigate both clinical as well as biological, lifestyle and
technical confounding factors that are linked to SZ and/or brain-
PAD (e.g., inflammation, smoking, body mass index, imaging
parameters) potentially accounting for inter-individual variability.
Given that greater brain-PAD has been associated with poorer
health outcomes, such as an increased mortality risk [23],
understanding the extent to which various factors may contribute
to brain ageing in SZ could help prioritize targets for interventions
aiming to halt (or reverse) advanced brain ageing. Additionally,
future studies should direct their efforts towards better character-
ization of region-specific brain patterns that could explain
individual variation as well as differences in (global) brain-PAD
within and between groups [59, 60]. Third, although the sample
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Fig. 2 Correlation coefficients of predicted brain age and Free-
Surfer features across control and schizophrenia (SZ) groups.
Bivariate correlations are shown to provide an indication of the
relative contribution of features in brain age prediction. The figure
shows Pearson correlations between predicted brain age and
cortical thickness features (top row), cortical surface areas (middle
row) and subcortical volumes (bottom row), from both the lateral
(left) and medial (right) view. Features were averaged across the left
and right hemispheres. The negative correlation with ICV was
excluded from this figure for display purposes.

Table 2. Clinical characteristics and brain-PAD in individuals with SZ.

Clinical parameter N K beta SE 95% CI PFDR value

Age of onset (years) 2053 21 −0.06 0.09 −0.22, 0.11 0.84

Length of illness (years) 2056 21 0.05 0.09 −0.12, 0.22 0.84

PANSS total 1437 20 0.05 0.06 −0.06, 0.17 0.77

SANS global 1911 22 0.18 0.10 −0.01, 0.38 0.62

SAPS global 1892 21 0.14 0.12 −0.09, 0.38 0.70

AP use—atypical vs. unmed 642 (486/156) 7 1.71 1.27 −0.77, 4.19 0.70

AP use—typical vs. unmed 117 (42/72) 3 −0.13 1.00 −2.10, 1.84 0.90

AP use—both vs. unmed 266 (184/82) 4 −0.33 1.08 −2.43, 1.77 0.90

CPZ-equivalent dose 1698 19 0.00 0.01 −0.02, 0.02 0.90

K number of cohorts, N total number of participants included in each meta-analysis (where applicable, total group size for AP type use/unmedicated is given in
brackets), SE standard error, CI confidence intervals. P values are false discovery rate (FDR) adjusted. SANS Scale for the Assessment of Negative Symptoms,
SAPS Scale for the Assessment of Positive Symptoms, PANSS Positive and Negative Syndrome Scale, AP Antipsychotics, CPZ chlorpromazine.
Associations between clinical characteristics and brain-PAD (predicted brain age—chronological age) in SZ. For continuous variables (age of onset, length of
illness, PANSS total, SANS/SAPS global and CPZ), the regression coefficient beta indicates a mean change in brain-PAD per unit increase in each clinical variable
across cohorts. For categorical variables (AP use—typical/atypical/both atypical and typical), beta indicates the mean brain-PAD difference between each
treatment group and unmedicated (unmed) individuals. Effects were adjusted for age and age2.
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size of our main analysis (SZ versus controls) was very large for a
neuroimaging study, the size of patient groups categorised by
status of antipsychotic use was relatively small (particularly that of
unmedicated individuals with SZ) and cohort differences include
the use of different assessments or processes to ascertain
medication use and dose. This may have precluded detection of
some associations. Lastly, given the cross-sectional design of the
current study, we were not able to assess brain age acceleration
more directly and how that may be related to clinical
characteristics. Longitudinal large-scale studies are better suited
for examining brain ageing per se [61] and for evaluating the
clinical relevance of brain-PAD in SZ.
In conclusion, we found evidence of advanced brain ageing in

SZ patients compared to healthy controls, which does not seem to
be driven by the effects of medication or other clinical
characteristics. Deviations from normative brain ageing trajec-
tories in SZ may at least in part reflect increased risk of premature
mortality and age-related chronic diseases commonly seen in SZ.
Future longitudinal studies with more in-depth clinical character-
ization—including information on mental and somatic health
outcomes—will be needed to elucidate whether a brain age
predictor such as brain-PAD can provide a clinically useful
biomarker to inform early prevention or intervention
strategies in SZ.

CODE AVAILABILITY
The R code used to perform the individual-level analyses described above is openly
available on GitHub: https://github.com/ConstantinosConst/ENIGMA-SZ-BrainAge.
Further information can be requested from the corresponding author.
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