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The continuous monitoring of a quantum system strongly influences the emergence of chaotic
dynamics near the transition from the quantum regime to the classical regime. Here we present a
feedback control scheme that uses adaptive measurement techniques to control the degree of chaos
in the driven-damped quantum Duffing oscillator. This control relies purely on the measurement
backaction on the system, making it a uniquely quantum control, and is only possible due to the
sensitivity of chaos to measurement. We quantify the effectiveness of our control by numerically
computing the quantum Lyapunov exponent over a wide range of parameters. We demonstrate
that adaptive measurement techniques can control the onset of chaos in the system, pushing the
quantum-classical boundary further into the quantum regime.

Quantum systems possess uniquely nonclassical prop-
erties, such as coherence and entanglement, which can be
manipulated for applications including quantum compu-
tation [1, 2], quantum communication [3, 4], and quan-
tum sensing [5, 6]. Designing controls that do this is a
diverse and productive area of ongoing research [7–19].
However, these nonclassical properties also considerably
modify the kinds of control strategies and mechanisms
available to quantum systems.

One key example of the differences is the role of mea-
surement. It is a given in classical control that one can
measure the system and act upon it based on the in-
formation extracted about the system. However, for a
quantum system measurement itself changes the state of
the system and this has to be carefully accounted for
in the design of many closed-loop control protocols [20–
26]. Although measurement backaction is usually consid-
ered undesirable—an unwanted effect to be minimized—
from another perspective measurement is an extra “con-
trol knob” unavailable in the classical context, which
can be used to develop new control strategies for quan-
tum dynamical systems [27, 28]. In particular, adaptive
measurements have been used to improve phase estima-
tion [29], in quantum state preparation [30], and to en-
hance the precision of quantum measurements [31].

In this paper, we explore how this uniquely quantum
knob can be used to control the dynamics of a chaotic
system. Classically, controlling these systems is both a
significant and nontrivial problem. In some situations it
is desirable to induce chaotic dynamics, as in the case of
embedding data into chaotic signals for secure transmis-
sion of information [32]. However, in other cases the task
is to lock the system to stable orbits, as when aiming
to regularize the behavior of cardiac rhythms [33] or im-
prove energy harvesting in cantilever devices [34, 35]. In
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many of these stabilization problems, feedback methods
are used to turn an originally unstable orbit embedded in
the chaotic attractor into a regular one [36, 37]. In this
work, we show that transitioning at will from chaos to
regularity is possible by using a real-time adaptive mea-
surement protocol. In particular, our protocol combines
the tunability of quantum measurement backaction on
the quantum state with the underlying geometry of the
classical dynamical system. This opens up regimes of
control not available to open-loop control schemes.

This quantum control strategy cannot be borrowed
straightforwardly from an analogous classical problem,
not only because of the aforementioned peculiarities of
quantum measurement, but also due to subtleties associ-
ated with identifying emergent quantum chaotic orbits.
In a closed quantum system, coherent interference ef-
fects cause a breakdown in the correspondence princi-
ple such that chaotic classical dynamics do not emerge
when the underlying quantum model is taken to the
macroscopic limit [38]. However, in open quantum sys-
tems, decoherence destroys such quantum interference ef-
fects [39], allowing emergent chaotic dynamics in the clas-
sical limit [39–46]. In particular, by considering stochas-
tic unravelings of an open quantum system, which are
physically associated with making particular continuous
measurements on the system [47–49], we can observe
chaos in the conditional system dynamics [42, 49]. The
stochastic unravelings allow chaos to be identified and
quantified with the quantum Lyapunov exponent [50–54]
and also provide the necessary ingredient for a closed-
loop feedback control scheme.

Previously, we showed that the behavior of the system
can be chaotic or not depending on the initial (and fixed)
choice of measurement, due to the interplay between the
interference effects induced by the nonlinear dynamics
and the effectiveness of the measurement in destroying
them [55]. This sensitivity to measurement choice was
shown to be absent both in the macroscopic limit, where
the effects of quantum measurement are naturally ex-
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pected to disappear, and in a highly-quantum regime,
where noise dominates and measurement choice becomes
irrelevant. Although the system behaves chaotically in
the former case, as in the classical analog, in the latter,
chaos is suppressed by quantum effects. As the main
outcome of the control protocol presented here, we are
able to show that a judicious real-time choice of measure-
ment can induce chaotic behavior deeper in the quantum
regime, effectively pushing the quantum-classical bound-
ary further towards the microscopic domain.

I. QUANTUM DUFFING OSCILLATOR

To illustrate our adaptive protocol, we consider a
driven-damped Duffing oscillator [56], a model that has
been extensively used in the investigation of chaotic dy-
namics in open quantum systems [51, 54, 55, 57–59]. The
model consists of a particle that oscillates in a double-
well potential that is periodically tilted by an external
driving force with amplitude g and frequency Ω. The di-
mensionless quantum Hamiltonian describing this model
is given by

Ĥ =
1

2
P̂ 2 +

β2

4
Q̂4− 1

2
Q̂2 +

Γ

2
(Q̂P̂ + P̂ Q̂)− g

β
Q̂ cos (Ωt),

(1)
where time is in units of the trap period 2π/ω0 and

Q̂ = x̂/
√

~/(mω0) and P̂ = p̂/
√
~mω0 are, respec-

tively, the dimensionless position and momentum opera-
tors for a single particle of mass m. The first term in the
Hamiltonian describes the kinetic energy, the quartic and
quadratic terms in Q̂ describe the double-well potential,
and the last term describes the periodic driving of the
particle. The dimensionless parameter β2 = ~/(ml2ω0)
defines the scale of the phase space relative to Planck’s
constant [51, 53, 58] (where l characterizes the size of the
system). A larger β is therefore associated with a regime
where quantum fluctuations have a larger effect on the
oscillator dynamics. Thus, by tuning β we can study
the transition from the quantum regime to the classical
regime (β → 0).

To include damping, we model the quantum dynamics
through the master equation

ρ̇ = −i[Ĥ, ρ] +

(
L̂ρL̂† − 1

2
{L̂†L̂, ρ}

)
, (2)

where dissipation effects arise from choosing the system-
environment coupling, L̂ =

√
Γ(Q̂ + iP̂ ) =

√
2Γâ, to be

proportional to the annihilation operator of the harmonic
oscillator.

In the classical limit (β → 0), we can make the identifi-

cations 〈Q̂〉 → xcl and 〈P̂ 〉 → pcl such that the equations

of motion for 〈Q̂〉 and 〈P̂ 〉 correspond to the dimension-
less classical dynamics given by [51, 53, 55, 58]

ẍcl + 2Γẋcl + β2x3cl − xcl =
g

β
cos (Ωt). (3)

Although the scaling factor β is crucial in determining the
role of quantum effects in the dynamics, classically it is a
trivial scaling factor due to the definition of xcl and pcl.
Indeed, for rescaling X ≡ βxcl, the classical equation of
motion is independent of β. Note also that the quantum
dissipation, given in terms of L̂, is symmetric with respect
to position and momentum. The extra term proportional
to the damping rate Γ in the Hamiltonian (1), breaks
this symmetry in such a way that the dissipative force is
proportional to the velocity, exactly as expected in the
classical limit.

Depending on the parameters, the classical model de-
scribed by Eq. (3) exhibits chaotic dynamics as illus-
trated by the strange attractor in phase space shown by
the black dots in Fig. 1. The steady state of the Wigner
function, obtained by numerically solving Eq. (2), is also
shown in Fig. 1 for the same set of parameters. This illus-
trates that the Wigner function of the ensemble-averaged
quantum state broadly matches the strange attractor,
which is a signature of chaotic dynamics. However, the
degree of chaos cannot be quantified via the uncondi-
tional dynamics of Eq. (2), since any two initial states
evolve to the same asymptotic state, giving a negative
Lyapunov exponent. This does not mean that chaos is
not present; indeed, the same problem would arise in clas-
sical chaos if one decided to calculate classical Lyapunov
exponents by using the separation of average trajecto-
ries over a classical ensemble, rather than the separa-
tion of two classical trajectories. To define the degree
of chaos via a quantum Lyapunov exponent, we need
to use a conditional quantum trajectory approach that
has a direct comparison with the classical trajectory ap-
proach [42, 59–61].

II. CONTINUOUS MEASUREMENT OF AN
OPEN QUANTUM SYSTEM

The master equation (2), describes the ensemble-
averaged evolution of the open quantum system. How-
ever, implementing a closed-loop control scheme that de-
pends on the monitored real-time dynamics requires a
description of a single experimental realization (or tra-
jectory). This is provided by stochastic unravelings of
the master equation, which correspond to the evolution
of the quantum state conditioned on a continuous mea-
surement record [47, 62–64].

Here we consider the class of diffusive quantum trajec-
tories which, in its most general form, is described by the
Ito stochastic Schrödinger equation (SSE) [47, 64]:

d|ψ〉 =

(
−iĤ − L̂†L̂

2
+ 〈L̂†〉L̂− 〈L̂

†〉〈L̂〉
2

)
|ψ〉dt

+
(
L̂− 〈L̂〉

)
|ψ〉dξ, (4)

where the noise term dξ is a complex Wiener process with
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FIG. 1. Wigner function for the steady state of the uncon-
ditional dynamics given by the master equation (2), for the
dimensionless parameters Γ = 0.10, g = 0.3, and Ω = 1.
The Poincaré section of the classical Duffing oscillator is also
overlaid for these parameters (black dots). The system ex-
hibits chaos for these parameters, as seen by the emergence
of the strange attractor and the positive Lyapunov exponent
λcl = 0.16. Here the Wigner function for the unconditional
state also follows the shape of the strange attractor in phase
space, which is a signature of chaotic dynamics. The scaling
parameter β = 0.3 was chosen to allow for a direct comparison
with the results in Figs. 3 and 5.

zero mean (E[dξ] = 0) and correlations

dξ dξ∗ = dt and dξ dξ = udt, (5)

with u being a complex number satisfying |u| ≤ 1 [47, 64].
In what follows, we choose u = exp (−2iφ) so that
dξ = exp (−iφ) dW , where dW is a real noise of zero
mean and dW 2 = dt. Physically, this choice corresponds
to a continuous measurement of the quadrature operator
X̂φ = [exp (−iφ)â+exp (iφ)â†]/

√
2. Experimentally, this

could be achieved by performing a standard balanced ho-
modyne detection on the output of the system, as shown
in Fig. 2. The output channel L̂ =

√
2Γâ is combined

with a local oscillator (LO) of phase φ at a beam split-
ter, while the readings at the detectors are subtracted to
yield a measurement signal Idt =

√
Γ〈X̂φ〉 + dW [47].

The phase φ of the LO is a controllable parameter that
determines the quadrature to be measured. For instance,
φ = 0 results in a measurement of Q̂ = X̂φ=0, whereas

φ = π/2 gives a measurement of P̂ = X̂φ=π/2.
Within the context of quantum chaos, this quantum

trajectory approach has proven useful in the investigation
of the quantum-classical transition [42, 49, 58, 64, 65].
Furthermore, it offers a way to calculate quantum Lya-
punov exponents, thereby unambiguously quantifying
the degree of chaos within the system [50–55]. Similar
to the classical protocol [66], this is done by following
the separation of two initially close wave-packet centroids

in phase space (〈Q̂〉, 〈P̂ 〉) evolving according to Eq. (4)
under the same noise realization [54, 55].

Specifically, the quantum Lyapunov exponent is de-
fined as

λ = lim
t→∞

lim
d0→0

ln (dt/d0)

t
, (6)

where dt = [∆Q(t)2 + ∆P (t)2]1/2 is the dimension-
less phase-space distance between two quantum trajec-
tories with differences in the average position and aver-
age momentum of the two trajectories given by ∆Q(t) =

〈Q̂1〉 − 〈Q̂2〉 and ∆P (t) = 〈P̂1〉 − 〈P̂2〉, respectively. The
two quantum trajectories are initially prepared in coher-
ent states displaced (in phase space) from each other
by a small distance d0 = dt=0 (i.e., |α1〉 = |α〉 and
|α2〉 = |α + d0〉), and then evolved stochastically via
Eq. (4) under the same noise realization, which corre-
sponds to the same measurement record. Using this
approach, it was shown in Ref. [55] that the choice of
measurement angle φ has a direct effect on the quantum
Lyapunov exponent and, therefore, on the emergence of
chaos in quantum systems.

III. ADAPTIVE MEASUREMENT PROTOCOL
FOR CONTROLLING CHAOS

The continuous measurement approach described in
Sec. II naturally sets the scene for our main result: the
design of a protocol to control chaos by using a tunable,
and experimentally accessible, parameter. The parame-
ter in question, the LO phase φ, is intrinsically linked to
the measurement backaction, making our control mecha-
nism fundamentally quantum in nature.

The scheme we consider is shown in Fig. 2. The con-
tinuous monitoring of the system gives a measurement
signal, I(t), that allows for a real-time estimate of the
quantum state. In possession of this information, one
can then design a feedback action to influence the sys-
tem. Motivated by the effect that measurement has on
the system dynamics [55], here we propose to adaptively
change the phase φ in real time, with the intent to control
the Lyapunov exponent of the system.

The design of an effective control strategy relies on
first understanding how the feedback action affects the
system. For that, we recall a fact observed in Ref. [55]:
The stretches and foldings induced by the chaotic dynam-
ics generate interference fringes in the Wigner function
of the system (see top panel of Fig. 3), and these lead to
the suppression of chaos in the quantum regime. Since
these interference fringes are associated with quantum
coherence, destroying them shifts the dynamics towards
the classical chaotic behavior. Therefore, in order to en-
hance (suppress) chaos, our state-dependent controller
chooses the LO phase φ such that the measurement de-
stroys the interference fringes in the state’s Wigner func-
tion at the fastest (slowest) possible rate. More precisely,
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FIG. 2. Adaptive measurement scheme in a quantum optics
setup. The state-dependent controller chooses the LO phase
φ at each time step in order to change the measurement back-
action applied to the system, which changes the evolution as
desired.

this rate of fringe destruction is determined by the direc-
tion of the interference fringes in phase space (θf ) rela-
tive to the axis of measurement (determined solely by φ),
with fast destruction rates occurring when these axes are
aligned. Our control protocol then consists of estimating
the fringe structure in real time and picking a φ(t) that
would maximize the control objective.

Automating the process of determining the direction
of the interference fringes in the Wigner function can
be done by examining the probability distributions for
different quadrature measurements:

PXθ
= |〈Xθ|ψ〉|2, (7)

where |Xθ〉 is an eigenstate of the quadrature operator

X̂θ. To understand how this can be used to estimate
the fringe structure, let us look at the particular case of
the Schrödinger cat state |ψcat〉 ∝ |α〉 + | − α〉 shown in

Fig. 3(a). Projection onto the X̂0 quadrature is given by

the top red plot in Fig. 3(a). Here, a measurement of X̂0

distinguishes between the two coherent states, resulting
in two peaks. In contrast, the projection onto the X̂π/2

quadrature (the red plot to the left of the Wigner func-
tion plot) reveals the overlap of the two coherent states,
resulting in interference fringes and a large number of
peaks. As shown directly below the Wigner function plot,
looking at the number of peaks as a function of projec-
tion angle θ reveals that the peak distribution is narrowly
centered around θ = π/2 [the 〈P̂ 〉 axis], which is perpen-
dicular to the interference fringe axis. This shows that
the angle that maximizes the number of peaks (θmax) is
a good indicator of the direction that is perpendicular to
the fringes in the Wigner function.

In the actual quantum Duffing oscillator, the nonlinear
dynamics lead to interference fringe patterns with more
complexity than those of a Schrödinger cat state. Ex-
amples of the Wigner functions for typical evolved states
that arise during this evolution are plotted in Figs. 3(b)-

3(d). Although more complicated, these Wigner func-
tions still present a reasonably-well-defined direction in
the fringe structure, which can be determined by finding
the angle that leads to the maximum number of peaks in
PXθ

, as explained above.
In summary, our protocol consists of the following

steps:

(i) Starting from a given |ψ(t)〉, calculate PXθ
for var-

ious θ;

(ii) Count the number of peaks for each PXθ
and find

θmax;

(iii) To maximize (minimize) the Lyapunov exponent,
choose φ(t) = θf = θmax − π/2 (φ(t) = θmax);

(iv) Use the value of φ(t) from (iii) in Eq. (4) to calculate
the new state |ψ(t+ dt)〉;

(v) Repeat steps (i) to (iv).

Full details of the numerical implementation of these
steps are given in the appendix.

IV. RESULTS

We implemented the adaptive measurement scheme
described in Sec. III for a range of scaling parameters
β (spanning the transition from the quantum regime to
the classical regime) and two distinguishable strategies:
maximization and minimization of the Lyapunov expo-
nent (λ). The results are shown in Fig. 4 for both cases,
specifically, where the LO phase is set to always measure
along an axis parallel (φ = θf , blue line, square points)
or perpendicular (φ = θf + π/2, green line, crosses) to
the interference fringes. To assess the effectiveness of our
adaptive protocol, we compare with the best nonadaptive
strategy by displaying the curves that maximize (black
line, triangles) and minimize (red line, circles) λ for a
fixed LO phase.

The adaptive maximization strategy leads to Lyapunov
exponents that are always larger than the best fixed-angle
scenario (φ = 0). By destroying coherent interference ef-
fects and localising the state faster, the adaptive case
allows the quantum system to track the classical chaotic
dynamics more closely, increasing λ. Further evidence of
this is provided by looking at the dynamical evolution of
the Wigner function (see Fig. 5, top), showing states that
are more localized and possess less interference, and are
therefore more classical in nature. The opposite adaptive
strategy, the one designed to suppress chaos, also works
effectively, giving negative Lyapunov exponents for all
values of β. In this case, the adaptive choice of moni-
toring angle leads to the preservation of quantum inter-
ference effects and therefore to highly nonclassical states
with a large spread in phase space, as seen in the Wigner
functions of Fig. 5 (bottom).
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FIG. 3. Wigner functions and corresponding phase quadrature projections Xθ=0 and Xθ=π/2 for (a) a Schrödinger cat state
|ψcat〉 ∝ |α〉+ | − α〉 and (b)-(d) three snap shots typically seen in the evolution of the quantum Duffing oscillator. Here θ = 0
(top) and θ = π/2 (side) are the only projections plotted. The number of peaks in the probability distributions is plotted
as a function of quadrature θ for 32 different angles. The maximum in the number of peaks corresponds to the direction
perpendicular to the interference fringes (θmax − θf = π/2). Note that the number of peaks in the bottom plots does not equal
the number of peaks seen in the probability distributions. This is a numerical noise associated with counting every turning
point and does not affect the outcome of the search.

FIG. 4. The quantum Lyapunov exponent (λ) as a function
of β for adaptive measurements (φ = θf , blue squares, and
φ = θf + π/2, green crosses) and fixed LO measurements
(φ = 0, black triangles, and φ = π/2, red circles). Here Γ =
0.10, g = 0.3 and Ω = 1, and the classical system is chaotic
with λcl = 0.16. Each point is averaged over 10 different
noise realizations and the shaded area within the dashed lines
signifies twice the standard error.

Interestingly, the adaptive λ-maximization scheme
gives positive Lyapunov exponents for much larger val-
ues of β (up to 0.5), showing that the adaptive protocol
pushes the emergence of chaos deep into the quantum
regime—and much further than what is possible with a

fixed LO phase. This is remarkable behavior given that
quantum noise is expected to dominate the dynamics at
these large values of β, and so one would think that the
choice of measurement is irrelevant. This is clearly the
case for the fixed measurement (see Fig. 4), where the
quantum Lyapunov exponent for all monitoring schemes
other than λ-maximization converge to roughly the same
negative value, indicating regular dynamics. In stark
contrast, our λ-maximization protocol is able to sustain
chaotic dynamics even at this scale.

Although our adaptive λ-maximization scheme can sig-
nificantly enhance chaos, the adaptive λ-minimization
scheme does not provide significantly enhanced regular-
ity over the fixed measurement. This is a consequence
of using metric (7) to choose the measurement quadra-
ture angle φ at each time point. The aim is to find the
direction of interference fringes in the Wigner function,
and choose a measurement angle parallel (perpendicular)
to this direction in order to enhance (suppress) chaos.
However, the metric (7) becomes less effective when the
state is highly nonclassical and delocalized. This is shown
clearly in the Wigner function plots of Fig. 5(b), in par-
ticular at time Ωt = 70. In this case, the large degree
of delocalization means that there is no well-defined sin-
gle direction of interference fringes. Consequently, in this
regime the adaptive control does not provide a substan-
tially improved performance over a fixed-angle measure-
ment. When trying to suppress chaos by picking a mea-
surement that has the least deleterious effect on quantum
interferences, it is exactly this highly delocalized regime
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FIG. 5. Snap shots of the Wigner function for the first 100 cycles of the driving for both adaptive measurements [(a) φ = θ, and
(b) φ = θ+π/2]. The snap shots only show a single quantum trajectory (noise realization); however, all trajectories have similar
evolution to that depicted here. The corresponding Lyapunov exponents are (a) λ = 0.057± 0.001 and (b) λ = −0.025± 0.001.

that is encouraged. Therefore, it is unsurprising that
our adaptive measurement protocol provides little bene-
fit over a fixed measurement angle, if the goal is to sup-
press chaos. In contrast, our metric is more effective
when the Wigner function is localized and the fringe di-
rection better defined [see Fig. 5(a) for Ωt = 70]. This is
the scenario arising from our strategy to enhance chaos:
choosing measurements that destroy coherence and keep
the state localized.

V. DISCUSSION

We briefly discuss the experimental prospects of re-
alizing both the driven-damped quantum Duffing oscil-
lator and our adaptive measurement protocol. Super-
conducting circuits are excellent candidate systems, due
to their flexible architecture, wide range of experimental
parameters, and the existence of demonstrated contin-
uous probing [67]. Specifically, superconducting circuits
in a parallel circuit configuration (i.e., a rf-SQUID) could
be used to experimentally realize a quantum Duffing os-
cillator [57, 68]. For the scheme proposed in Ref. [57],
β2 = e2/[3~ωCp(1 − Lp/LJ)], where ω = 1/

√
CpLp, Cp

is the capacitance of the Josephson junction in the cir-
cuit, L−1p = L−1J −L−1p is the parallel inductance formed
from the Josephson inductance LJ and the geometric in-
ductance Lpe, and e is the charge of an electron. Using
typical experimental parameters from Ref. [69], we es-
timate that β ∼ 0.4 is currently achievable which, as
shown in Fig. 4, is a regime ideally suited for observ-
ing measurement-dependent effects on the emergence of
chaos.

Realizing our scheme with ultracold atomic gases is
another potential option. Ultracold atomic experiments

have previously been used to experimentally investigate
the emergence of chaos in the quantum kicked rotor [70–
72]. A Bose-Einstein condensate (BEC) provides the
high optical densities needed for real-time nondestruc-
tive imaging [73, 74]. A noninteracting BEC gives the
single-particle behavior required to realize the driven-
damped quantum Duffing oscillator. A noninteracting
gas can be achieved by using an extremely dilute sam-
ple or by extinguishing the interactions via a Feshbach
resonance [74, 75]. The required double-well potential
could be created by superimposing a Gaussian barrier on
a harmonic potential:

V̂exp =
1

2
mω2

0 x̂
2 +Ae−x̂

2/2σ2

≈ ~ω0

[
1

2

(
1− A

mω2
0σ

2

)
Q̂2 +

1

4

(
~A

2m2ω3
0σ

4

)
Q̂4

]
.

(8)

The choice of barrier height A = 2mω2
0σ

2 realizes the
needed potential [see Eq. (1)] with β2 = ~/(mω0σ

2).
There are a number of techniques for creating this poten-
tial, including via an optical lattice [76] or spatial light
modulation [77]. For the 780 nm transition of 85Rb, a
barrier waist of σ ∼ 10µm is easily achievable. For typi-
cal trapping frequencies ω0 ∈ 2π × [5, 100] Hz, this gives
β ∼ 0.1− 0.5.

These simple estimates suggest that state-of-the-art
experiments in both superconducting circuits and ultra-
cold atomic gases are promising platforms for experimen-
tally investigating the relationship between measurement
and chaos, and are capable of observing chaotic dynam-
ics deep within the quantum regime. Experimentally, one
possible approach to infer the degree of chaos would be
time series analysis [78, 79]. This requires acquisition
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of large data sets, which is possible in experiments, but
computationally expensive for large-scale quantum sim-
ulations. Theoretically, it is much simpler to calculate
Lyapunov exponents directly.

Although our initial investigations have revealed that
this adaptive measurement scheme shows promise, our
model did not include the effect of detection inefficiency.
Detection inefficiency could affect both the emergence
of chaotic dynamics and the effectiveness of our adap-
tive measurement protocol. For the quantum Duffing os-
cillator, numerical simulations have shown positive Lya-
punov exponents with measurement efficiencies as low as
20% [57]. These Lyapunov exponents were also shown to
be robust to small errors in the system parameters. Mea-
surement efficiencies as high as 80% have been reported
in recent superconducting circuit experiments [80]. Sim-
ilar detection efficiencies are possible in BEC systems at
the cost of introducing heating, the effects of which would
require further investigation.

In addition to perfect detection efficiency, our model
assumes that the underlying estimate of the system state
used to effect feedback (through the choice of quadra-
ture measurement angle) precisely corresponds to the
underlying system state. Although conditional master
equations are known to be robust to imperfections in
such estimates, which arise due to imperfect estimates of
the model parameters, technical noise sources, and time
delays, relaxing this assumption through a system-filter
separation would provide crucial detail needed for the ex-
perimental realization of our adaptive measurement pro-
tocol [81]. This work has focused on the control of chaos
with continuous measurement in a single-particle system.
Many-body quantum chaos is a growing research field,
due to its potential connections to random unitaries [82],
information scrambling and holographic duality [83–85],
nonequilibrium thermodynamics [86], and even quantum
sensing [87]. Whether measurement can be used to mean-
ingfully control chaos in many-body quantum systems is
an intriguing question that warrants further investiga-
tion.

VI. CONCLUSION

In this work we have shown that the degree of chaos in
a quantum Duffing oscillator can be controlled by apply-

ing real-time state-dependent feedback via an adaptive
measurement technique. The underlying mechanism for
this control is the rate at which the measurement back-
action destroys interference fringes in the state’s Wigner
function. By adaptively choosing measurements that are
more (less) destructive, the dynamics more (less) closely
resemble the corresponding classical trajectory, thereby
enhancing (suppressing) chaos. Using this adaptive mea-
surement technique, we have shown that the presence of
chaos can be pushed further into the quantum regime.
This regime is more easily accessible for certain experi-
mental setups, potentially enabling new, detailed studies
into the emergence of chaos in quantum systems.
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Appendix A: Numerical simulation

We numerically simulated the SSE (4) on a finite sub-
space of N energy eigenstates of the harmonic oscilla-
tor by using the software package XMDS2 [88]. That is,

we write the conditional state as |ψ〉 =
∑N−1
n=0 Cn(t)|n〉

and numerically solve for the dynamics of the coefficients
Cn(t), governed by the set of Stratonovich stochastic dif-
ferential equations

dCn = −i
[
β2

4

√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)Cn+4 +

√
(n+ 1)(n+ 2)(β

2

4 (4n+ 6)− 1
2 (1 + iΓ))Cn+2

− g√
2β

cos (Ωt)
√
n+ 1Cn+1 + β2

4 (6n2 + 6n+ 3)Cn − g√
2β

cos (Ωt)
√
nCn−1

+
√
n(n− 1)(β

2

4 (4n− 2)− 1
2 (1− iΓ))Cn−2 + β2

4

√
n(n− 1)(n− 2)(n− 3)Cn−4

]
dt

− nΓCndt− e2iφΓ
√

(n+ 1)(n+ 1)Cn+2dt+ 2Γ
(
〈â†〉+ 〈â〉 e2iφ

)√
n+ 1Cn+1dt

+
√

2Γ
√
n+ 1Cn+1 e

iφ ◦ dW, (A1)
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where 〈â〉 =
∑N−2
n=0

√
n+ 1C∗nCn+1 and Cn = 0 for all

n ≥ N . For our simulations, we use N = 64 basis states,
a large enough number such that |CN−4|2 + |CN−3|2 +
|CN−2|2 + |CN−1|2 < 10−4 at all times, while still small
enough to be numerically tractable.

For the adaptive protocol, we calculate the probability
distribution for a number of quadratures, this is given by

PXφ
= |〈Xφ|ψ〉|2

=

∣∣∣∣∣∑
n

Cnψn(x)e−inφ

∣∣∣∣∣
2

, (A2)

where ψn(x) are the Hermite-Gauss functions:

ψn(x) = (2nn!
√
π)−1/2e−x

2/2 Hn(x), (A3)

and Hn(x) are Hermite polynomials.
We use a grid-based search algorithm to determine the

optimum measurement phase for each time step. To
do this, we use a finite-difference method to calculate
the derivative of the probability distribution (7) for an
equidistant grid of LO angles φ ∈ [0, π], allowing the
number of peaks in the distribution to be calculated.
The angle θmax corresponding to the maximum number
of peaks gives an axis perpendicular to the interference
fringes (θf + π/2). To enhance chaos we adjust the LO
phase to φ = θf (parallel to fringes), whereas to suppress

chaos we choose φ = θf + π/2 (perpendicular to fringes)
for the next integration step of Eq. (A1). In order for
this grid-based search method to be effective, the grid of
LO angles used needs to be of sufficiently high resolution.
We found that, when suppressing chaos (φ = θf + π/2),
a grid of 32 angles was required, whereas for enhancing
chaos (φ = θf ), a coarser grid of 8 angles was sufficient.

We quantify the degree of chaos in our system by com-
puting the quantum Lyapunov exponent as in Ref. [55],
which is based on an adaptation of the usual classical
procedure [66]. For our numerical calculations, one of
the trajectories is periodically reset towards the other
one to remain within the linear regime and log (dt/d0),
calculated before every reset, is averaged over time. The
perturbed trajectory after the reset is a displaced ver-
sion of the trajectory of interest. The displacement is
given by the initial distance d0 in phase space, in the di-
rection of expansion. The perturbed trajectory becomes
|ψ2〉 = D(α)|ψ1〉, where D(α) is the displacement opera-

tor and α = d0[(〈Q̂2〉+ i〈P̂2〉)− (〈Q̂1〉+ i〈P̂1〉)]/(dtβ) is
the displacement in the direction of expansion.

The simulations are run over 10, 000 cycles of the driv-
ing term (t = 104/Ω) for both the adaptive- and the
fixed -LO cases, and the final Lyapunov exponent is aver-
aged over multiple realizations (10 runs) of the stochastic
noise.
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