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Boson sampling, a computational problem conjectured to be hard to simulate on a classical machine, is a
promising candidate for an experimental demonstration of quantum advantage using bosons. However, in-
evitable experimental noise and imperfections, such as loss in the interferometer and random counts at the
detectors, could challenge the sampling task from entering the regime where quantum advantage is achievable.
In this work we introduce higher order non-linearities as a mean to enhance the computational complexity of
the problem and the protocol’s robustness against noise, i.e., increase the noise threshold that allows to per-
form an efficient classical simulation of the problem. Using a phase-space method based on the negativity
volume of the relevant quasi-probability distributions, we establish a necessary non-classicality condition that
any experimental proof of quantum advantage must satisfy. Our results indicate that the addition of single-mode
Kerr non-linearity at the input state preparation level, while retaining a linear-optical evolution, makes the Bo-
son sampling protocol more robust against noise and consequently relaxes the constraints on noise parameters
required to show quantum advantage.

I. INTRODUCTION

Boson sampling is a well defined computational problem,
first introduced by Aaronson and Arkhipov [1] and conjec-
tured to be computationally hard to simulate on a classi-
cal computer, that consists in sampling from the output dis-
tribution of N photons undergoing evolution via a passive
linear-optical network (LON). A passive interferometer does
not contain active optical elements that alter the total photon
number, i.e. the network comprises of beam splitters, phase
shifters and mirrors only. The hardness of the task stems from
the fact that the transition amplitude between the initial state
and the measurement outcome involves the computation of
the permanent of a complex matrix [2], a problem that is be-
lieved to be #P-hard [3]. The best known classical algorithm
for computing matrix permanents, i.e. Ryser’s formula, scales
exponentially with the dimension of the problem [4]. Under
some plausible complexity-theoretic assumptions, simulating
Boson sampling - even approximately - has been proven to
be a classically intractable computational task and, for this
reason, it is a promising candidates to experimentally show
quantum advantage, i.e. the ability to outperform any classi-
cal computer on a specific task. In fact, the advancement that
photonic quantum technologies have seen in recent years [5]
made proving quantum advantage within reach with current
technological capabilities.

Several variants of the original task which lie in the same
complexity class have then been considered, mostly focusing
on using different classes of input states such as photon-added
coherent states [6], generalized cat states [7] and photon-
added or photon-subtracted squeezed vacuum [8]. Most no-
tably, Gaussian Boson sampling (GBS) [9] constitutes a more
experimentally feasible candidate to prove quantum advan-
tage [10], as it does not require single photon generation, but
rather exploits squeezed light as the initial state. Additionally,
GBS finds application in graphs perfect matchings counting
[11], measuring graph similarity [12] and the simulation of
vibronic molecular spectra [13].

However, inevitable noise in experimental realizations of

Boson sampling might render the task classically efficiently
simulable. The effect of noise in Boson sampling and its con-
nection to efficient classical simulability of the related compu-
tational problem have been extensively explored, considering
partial photon distinguishability, losses, mode-mismatching
and random counts of the detectors [14–22]. In some cases
one is able to provide sufficient conditions for efficient clas-
sical simulations of Boson sampling experiments that are ex-
pressed in form of inequalities that involve the noise param-
eters at play [14, 15]. A possible way to make a realization
of Boson sampling more robust against noise and defects is
to enhance the computational complexity of the task and thus
relax the constraints on noise parameters required for and ex-
perimental demonstration of quantum advantage. In this con-
text, when we say that a Boson sampling protocol becomes
more robust against noise, we mean that the noise thresholds
sufficient for an efficient classical simulation to be feasible do
increase.

It has recently been suggested [23] to introduce non-linear
photon-photon interactions into the Boson sampling frame-
work as a way to increase the task’s complexity. In Ref. [23]
the authors considered Fock states as input, and the non-
linearity was introduced within the, otherwise linear, evolu-
tion. They provided an upper bound on complexity using a
simulation method that allows to effectively induce non-linear
gates using linear optical elements, auxiliary modes and pho-
tons and post-selection on photo-detection measurement out-
comes.

We introduce single-mode non-linear gates in a noisy Gaus-
sian Boson sampling problem as a way to increase its compu-
tational complexity and to relax the constraints on the maxi-
mum threshold of noise parameters necessary to prove quan-
tum advantage. These higher order non-linearities are intro-
duced at the state preparation level because, as we show in
the next sections, the techniques we employ to compute these
thresholds require the initial state to undergo a linear optical
evolution. To this end, we use the formalism introduced by
Rahimi-Keshari in Ref. [15], where general sufficient condi-
tions for the efficient classical simulation of a generic quan-
tum optics experiment - Boson sampling being a special case
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- are presented. This formalism proves to be particularly help-
ful in studying how noise and imperfections, e.g. photon
loss and sub-unit efficiency of the photo-detectors, affect the
classical intractability of Boson sampling tasks. The method
is based on expressing the output probability distribution as
a function of ordered phase-space quasi-probability distribu-
tions (PQDs) of the input state, the output measurements and
the transition function associated with the specific quantum
process. If for specific operator orderings all of these PQDs
are non-negative, then an efficient classical simulation is feasi-
ble. This result further identifies negativity as a necessary con-
dition and as a resource to achieve quantum speed-up [24, 25].

Previous works studying Boson sampling protocols with
non-classical input states mostly focused on proving − using
an array of case-dependent techniques − that such tasks are
at least as hard to simulate as Boson sampling [6–9]. In this
paper we approach the problem from a different angle. We in-
troduce noise in the system, in the form of loss and non-ideal
detection, and gauge the enhancement in complexity due to
the introduction of non-linear gates by probing an increase of
the noise thresholds sufficient for an efficient classical sim-
ulation to be feasible. Our results show how adding single-
mode Kerr non-linearities at the state preparation level makes
the Boson sampling task more robust to the inevitable experi-
mental noise and imperfections that may jeopardize achieving
quantum advantage. In particular, in order to carry out ana-
lytical calculations, we consider a specific family of discrete
values of the Kerr parameter that, in turn, leads to general-
ized squeezed cat states or superpositions of vacuum states
squeezed in different directions as initial states.

The paper is structured as follows. In Section II we revise
some key facts about the phase-space formalism of quantum
mechanics, including the concepts of characteristic functions
and ordered PQDs, and outline Rahimi-Keshari’s sufficient
condition for an efficient classical simulation of a generic
quantum optics experiment. In Section III we introduce our
model of non-linear noisy Boson sampling problem and out-
line the techniques used to compute noise thresholds for effi-
cient classical simulability. Section IV and V are dedicated to
investigating how two closely related families of initial states,
both containing self-Kerr non-linearities, are able to increase
these noise thresholds. Lastly, in Section VI we draw conclu-
sions and give some final remarks.

II. SUFFICIENT CONDITIONS FOR EFFICIENT
CLASSICAL SIMULATION OF QUANTUM OPTICS

A generic bosonic experiment is described in terms of an
M -mode input state ρin , an M -mode quantum process de-
scribed by a CP map E and a measurement on the output state
ρout = E(ρin) described by a positive operator-valued mea-
sure (POVM). The POVM elements {Πn} satisfy the con-
dition

∑
nΠn = I, where I is the identity operator on

the M -mode Hilbert space. The output probability distri-
bution p(n) of experiment is thus given by the Born rule
p(n) = Tr{ρoutΠn}. In Ref. [15], a sufficient condition
for efficient classical simulability of the experiment was es-

tablished, based on the well-developed theory of s-ordered
phase-space quasi-probability distributions (s-PQD). In par-
ticular, the s-PQD of a generic M -mode quantum state ρ is
defined as

W (s)
ρ (β) =

∫
d2Mξ

π2M
Φ(s)
ρ (ξ)eβξ

†−ξβ† , (1)

where Φ
(s)
ρ (ξ) is the s-ordered characteristic function of ρ

Φ(s)
ρ (ξ) = Tr{ρD(ξ)}e

ξsξ†
2 . (2)

Here s = diag(s1, . . . , sM ) is a diagonal matrix containing
the M ordering parameters sj ∈ R and D(ξ) is the usual M -
mode displacement operator

D(ξ) = eξa
†−aξ† , (3)

a = (a1, . . . , aM ) being the vector of annihilation operators.
The Husimi Q-function, the Wigner function and the Glauber-
Sudarshan P-function are obtained for s = −IM , s = 0 and
s = IM respectively, where IM denotes the M × M iden-
tity matrix. The definition of s-PQD is then straightforwardly
extended to any Hermitian operator, such as the elements of
a POVM. It is worth noting that the s-PQD of a Hermitian
operator is a real function and that the s-PQD of a quantum
state is also normalized to one. It is then possible to express
the output probability distribution of outcomes p(n) in terms
of quasi-probability distributions of the input state and of the
POVM elements as

p(n) =

∫
d2Mβ

∫
d2MαπMW

(−s)
Πn

(β)T
(s,t)
E (α,β)W (t)

ρin(α) .

(4)
Here W (−s)

Πn
is the (−s)-PQD of the POVM element Πn,

W
(t)
ρin is the t-PQD of the input state and T (s,t)

E is the tran-
sition function associated with the quantum process E . The
latter is defined as

T
(s,t)
E (α,β) =

∫
d2Mζ

π2M
e
ζsζ†

2 eβζ
†−ζβ†

∫
d2Mξ

π2M
e−

ξtξ†
2

eξα
†−αξ† Tr

{
E(D†(ξ))D(ζ)

}
.

(5)

One can show that

E(D†(ξ)) = e
ξξ†
2

∫
d2Mγ

πM
eγξ

†−ξγ†E(|γ〉〈γ|) . (6)

Hence, the action of the LON on a coherent state input, i.e.
E(|γ〉〈γ|), is everything we need in order to compute the tran-
sition function. We are now ready to enunciate a sufficient
condition for efficient classical simulation of the sampling
problem outlined above. If there exist values of s and t such
that the PQD of the input, the PQD of the POVM and the
transition function are all non-negative and well-behaved, i.e.
they do not diverge more severely than a delta function, then
a classical simulation of the sampling problem can be carried
out efficiently. We point out that this formalism allows us to
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consider exact simulations only, i.e. with this simulation strat-
egy the samples are drawn according to p(n) and not from an
approximation of this probability distribution. We also stress
the fact that this condition is only sufficient and, indeed, there
might be other efficient simulation methods where this condi-
tion is not satisfied.

III. THE MODEL

Our model consists of a modification of GBS. The latter is a
sampling problem where M single-mode squeezed states are
injected in aM×M linear-optical interferometer and are then
measured with on/off photo-detectors at its output ports. The
s-PQD of a generic M -mode Gaussian state ρ reads

W (s)
ρ (β) =

2M

πM
1√

det{σ − s̃}
e−2(β−α)ᵀ(σ−s̃)−1(β−α)

(7)
where σ and α are, respectively, the covariance matrix and
the vector of first moments of ρ and s̃ is an ordering matrix
defined as

s̃ =

M⊕
j=1

sjI2 (8)

Note that the conventions we use are such that for a single-
mode coherent state |α〉 the covariance matrix is the identity
matrix σ = I2 and the vector of first moments reads α =
(Re{α}, Im{α}).

The s-PQD of a Gaussian state is well defined and has the
Gaussian form in Eq. (7) as long as

σ − s̃ ≥ 0 , (9)

otherwise the s-PQD becomes more singular delta function
and does not allow for efficient sampling. It thus follows that
the s-PQD of a coherent state |α〉 is well-behaved for s ≤ 1
and that the s-PQD of a squeezed vacuum S(ξ) |0〉 is properly
defined for s ≤ e−2r (r > 0). Here the complex squeezing
parameter is ξ = reiφ. We recall that the single-mode squeez-
ing operator is defined as

S(reiφ) = e
r
2 (eiφa†2−e−iφa2) , (10)

where a and a† are bosonic operators.
It is well known that ideal GBS is not classically efficiently
simulable [9]. This is not necessarily true anymore if we in-
troduce noise to the system and thus consider a realistic ex-
perimental implementation of the sampling problem.
AnM -mode passive LON is associated with anM×M trans-
fer matrix L satisfying LL† ≤ I, which describes how the
input modes are linearly mixed by the interferometer. For a
lossless LON L is simply a unitary matrix. Hence, a lossy
LON takes an M -mode coherent state |γ〉 to another coherent
state, i.e.,

E(|γ〉〈γ|) = |γL〉〈γL| . (11)

This expression stems from a simple model where we consider
M additional environmental modes in the vacuum state that
interact with the system’s actual M modes via a lossless 2M -
mode LON, whose unitary transfer matrix U is given by

U =

(
L N
P Q

)
. (12)

Eq. (11) then follows from tracing out the degrees of freedom
of the environment, i.e.

E(|γ〉〈γ|) = Tr
{
U |γ,0〉〈γ,0| U†

}
=

= Tr{|γL,γN〉〈γL,γN |} = |γL〉〈γL|
(13)

where U is the unitary operator associated with the larger 2M -
mode interferometer. L is a submatrix of U , hence the uni-
tarity of the latter guarantees that L†L ≤ I. If one further
assumes that all paths in the network suffer the same amount
of loss then L is simply a unitary matrix multiplied by a fac-
tor
√
ηL with 0 ≤ ηL ≤ 1. In Appendix B we describe how

thermal noise can be added into our model and how the con-
clusions of this work are affected by it.

We also consider noisy on/off photo-detection character-
ized by sub-unit efficiency ηD and by a random count prob-
ability pD. Following Ref. [15], the POVM elements of this
measurement are given by

Π0 = (1− pD)

∞∑
m=0

(1− ηD)m |m〉〈m| , (14)

Π1 = I−Π0 (15)

where 0 ≤ ηD ≤ 1 and 0 ≤ pD ≤ 1. By noting that Π0 is an
unnormalized thermal state one obtains the following (−s)-
PQD

W
(−s)
Π0

(β) =
1− pD
π

· 1

1− ηD( 1−s
2 )

exp
[
−ηD|β|2

1− ηD( 1−s
2 )

]
,

(16)
which is non-negative − and properly defined − for
s ≥ 1− 2

ηD
. Since Π0 + Π1 = I we also have that

W
(−s)
Π1

(β) =
1

π
−W (−s)

Π0
(β) . (17)

One then easily proves that W (−s)
Π1

is non-negative for

s ≥ 1− 2pD
ηD
≡ s . (18)

Hence, the noisy photo-detection (−s)-PQD is non-negative
for s ≥ s. If we then consider M identical photo-detection
measurements at the end of our LON, the (−s)-PQD of the
measurement is just the product of the (−sj)-PQD of the
single-mode measurements, i.e.

W
(−s)
Πn

= ΠM
k=1W

(−sk)
Πnk

. (19)

Consequently, the total (−s)-PQD is non-negative for
sk ≥ s ∀k.
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The last thing that we need to consider is the transition
function T

(s,t)
E associated with a LON described by the

transfer matrix L.
In Ref. [15], Rahimi-Keshari proved that it has the form

of a multi-variate Gaussian function, hence non-negative and
well-behaved, if and only if

IM −L†L− s+L†tL ≥ 0 . (20)

In Appendix B we show how this inequality is modified once
thermal effects are taken into account.
If the input state t-PQD is non-negative for t ≤ t and the
(−s)-PQD of the measurement is non-negative for s ≥ s,
then Eq. (20) is satisfied if and only if

IM −L†L− s+L†tL ≥ 0 . (21)

If we further consider a lossy LON described by the transfer
matrix L =

√
ηLU and identical noisy detection at each out-

put port as outlined above, i.e. s = sI = (1− 2pD
ηD

)I, it is then
possible to recast the previous condition as(

2pD
ηD
− ηL

)
IM + ηLt ≥ 0 . (22)

We can now compute t for different input states and use the
previous inequality to compute noise thresholds sufficient for
classical simulability.

As a first example we might consider input coherent
states, i.e. t = IM . As expected, inequality Eq. (22) tells us
that such sampling problem is efficiently classically simulable
even in the absence on noise, as this problem is equivalent
to sampling from an M -mode coherent state. On the other
hand, if we consider M single-mode squeezed vacuum
states as input, i.e.

⊗M
j=1 S(r) |0〉, then Eq. (9) implies that

the input state t-PQD is well defined and non-negative for
t < t = e−2rIM . Hence, in this scenario, the sampling
problem can be simulated efficiently if the noise parameters
satisfy

pD
ηD
≥ ηL

2
(1− e−2r) . (23)

We stress, once again, that these noise thresholds for efficient
classical simulation provide a sufficient condition only. We
also point out that Eq. (23) is consistent with the condition
for classical simulability of noisy Gaussian Boson sampling
obtained in Ref. [14]. In that work the authors proved that a
sufficient condition for the existence of an efficient classical
simulation of a noisy GBS experiment as described above, up
to error ε, is given by

sech

(
1

2
Θ

[
ln

(
1− 2qD

ηLe−2r + 1− ηL

)])
> e−ε

2/4M (24)

where qD = pD
ηD

and Θ(x) = max (x, 0) is the ramp function.

We now aim to tackle the following question. How do

these noise thresholds for efficient classical simulation
change when higher order non-linearities are introduced in
the model? Answering this question will tell us if, with the
addition of higher order non-linearities, we can afford to
allow more noise in an hypothetical experimental setup, but
still have a sampling problem that is not efficiently classically
simulable. There is obviously a lot of freedom in how to
introduce non-linearities in a Boson sampling protocol. In
fact, they can be added to the input state preparation stage,
within the evolution or as part of the measurement. However,
it is clear that if we want to apply condition Eq. (22) in
this new setting, we still need to retain a linear optical
interferometer. We will thus add the non-linear operations at
the input state preparation level.

As a simple example of this paradigm, we consider single-
mode Kerr non-linearities, i.e. U(χ) = e−iχa

†2a2

, where χ ∈
R is the Kerr parameter. Using Baker-Campbell-Hausdorff
identities one easily displays the action of U(χ) on the an-
nihilation operator a (we provide the proof in Appendix C),
namely

U†(χ)aU(χ) = e−2iχa†aa . (25)

Eq. (25) shows that the Kerr transformation is an energy-
dependent phase rotation of the mode. In the following sec-
tions we consider two closely-related classes of initial states:
S(r)U(χ) |α〉 and U(χ)S(r) |0〉.

IV. INPUT STATE S(r)U(χ) |α〉

Let us consider a sampling problem as the one described
in the previous section, where the M -mode input state is now
given by M copies of S(r)U(χ) |α〉. The strategy to obtain
the noise thresholds for efficient classical simulability remains
the same: compute the t-PQD of the initial state, find the value
t for which the function is non-negative for every t ≤ t and
finally use Eq. (22) to compute the desired threshold. We re-
mind the reader that since the input state is a tensor product
of identical states, we have that t = tIM . Unfortunately, one
soon realizes it is not possible to obtain an analytical, easy-
to-use, closed formula of the t-PQD of S(r)U(χ) |α〉 for a
generic value of χ. A way around this is to consider discrete
values of the Kerr parameter, specifically χ = π

m with m in-
teger. Notice how this corresponds to discrete-time Kerr-type
interactions. In this scenario, U(χ) |α〉 produces a superposi-
tion of coherent states (cat-like states) that lie on a circumfer-
ence in the phase space [26]. In fact, the operator

U(χ = π/m) ≡ U (m) = e−i
π
m n̂(n̂−1) (26)

has nice periodic properties that allow for a useful Fourier rep-
resentation of the operator which, in turn, leads us to

|ψm〉 ≡ U (m) |α〉 =

m−1∑
q=0

f (o)
q

∣∣∣αe− 2πiq
m

〉
, m = odd

(27)
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|ψm〉 ≡ U (m) |α〉 =

m−1∑
q=0

f (e)
q

∣∣∣αe− 2πiq
m + iπ

m

〉
, m = even .

(28)
The coefficients that appear in the sums are given by

f (o)
q =

1

m

m−1∑
k=0

e
2πiq
m ke−

iπ
m k(k−1) (29)

f (e)
q =

1

m

m−1∑
k=0

e
2πiq
m ke−

iπ
m k

2

(30)

For example, with m = 2 one obtains the well known Yurke-
Stoler cat state up to a phase shift, namely

|ψ2〉 =
1√
2
|iα〉+

i√
2
|−iα〉 . (31)

We point out that in Ref. [7] evidence is presented that Boson
sampling using arbitrary superpositions of coherent states as
input is likely to implement a classically hard problem. It is
also worth noting that for m = 1, i.e. χ = π, we have that
U(χ = π) = e−iπn̂(n̂−1) = I. Hence, unlike squeezing, Kerr
non-linearity does not always produce a non-classical effect
on a classical initial state.

Hence, our input state is a superposition of squeezed
coherent states

S(r)U (m) |α〉 =

m−1∑
q=0

f (o)
q S(r)

∣∣∣αe− 2πiq
m

〉
, m = odd

(32)

S(r)U (m) |α〉 =

m−1∑
q=0

f (e)
q S(r)

∣∣∣αe− 2πiq
m + iπ

m

〉
, m = even ,

(33)

Consequently, the t-PQD of the input state S(r)U(χ) |α〉
is readily obtained once we have the t-PQD of
S(r) |α〉〈γ|S†(r). One can prove that the t-ordered
characteristic function of this operator reads

φ(t)(ξ) = Tr
{
S(r) |α〉〈γ|S†(r)D(ξ)

}
e
t
2 |ξ|

2

=

= e
1
2 (−|ξµ−ξ∗ν+α−γ|2+(γ∗(ξµ−ξ∗ν+α)+α∗(ξµ−ξ∗ν)−c.c.))e

t
2 |ξ|

2

(34)

where µ = cosh(r) and ν = sinh(r). In order to obtain
Eq. (34) one has to use S†(r)D(ξ)S(r) = D(ξµ − ξ∗ν) and
the well known composition rule of consequent displacement
operators, i.e.

D(α)D(β) = D(α+ β)e
1
2 (αβ∗−α∗β) . (35)

FIG. 1. The plot shows the negativity volume N (t) of the t-PQD
associated with the input state S(r = 0.2)U(χ = π/3) |α = 1〉. As
can be seen from the inset, the function reaches zero for t = −1.
Similar plots and behaviour, i.e. negativity volume approaching zero
monotonically at t = −1, are obtained for every r > 0, α ∈ C and
for every integer m > 1.

We can then Fourier-transform the characteristic function
and obtain an analytical expression for the t-PQD of
S(r) |α〉〈γ|S†(r) and, in turn, the t-PQD of our input state.
The last step to obtain the desired noise thresholds consists in
finding the value t for which the t-PQD of the initial state is
non-negative for all t ≤ t. This is achieved by numerically
computing the volume of negativityN of the t-PQD as a func-
tion of the ordering parameter t, i.e.

N (t) =

∫
d2β |W (t)(β)| − 1 . (36)

We have strong numerical evidence that the t-PQD of
S(r)U (m) |α〉 becomes non-negative for t ≤ t = −1 ∀α ∈
C, ∀r > 0 and m ≥ 2. Figure 1 displays, with a specific ex-
ample, the typical features of the negativity volume associated
with the input state S(r)U(χ = π/m) |α〉 t-PQD. Finally, us-
ing t = −1 in Eq. (22) yields the sufficient condition for
efficient classical simulability

pD
ηD
≥ ηL . (37)

Recall that, without Kerr non-linearity, the threshold was
pD
ηD
≥ ηL

2 (1 − e−2r). Hence, more noise is needed to sim-
ulate the non-linear system, which suggests that the Kerr non-
linearity does indeed increases the complexity of the sampling
problem. In Appendix B we discuss how this result is affected
once we consider finite-temperature effects. Note that the t-
PQD with t = −1, i.e. the Husimi Q function, is non-negative
by definition for every state ρ. In fact, one can show that

W (−1)
ρ (β) ≡ Qρ(β) =

1

π
〈β| ρ |β〉 . (38)

This means that a sampling experiment as the one described
above− i.e. lossy LON and noisy detection− is actually clas-
sically efficiently simulable for every input state if pD

ηD
≥ ηL.
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Hence, we have proved that, using Rahimi-Keshari general
method of simulation, a noisy sampling problem as described
above with S(r)U (m) |α〉 as input state requires the "maxi-
mum" amount of noise in order to be classically efficiently
simulable.

V. INPUT STATE U(χ)S(r) |0〉

We can now focus on another closely related class of initial
states, namely U(χ)S(r) |0〉. For generic values of the Kerr
parameter χ, we once again encounter difficulties in the an-
alytical calculation of the characteristic function in a closed
formula. However, similarly to the previous model, if we con-
sider χ = π

m and apply U (m) to a squeezed vacuum state
S(r) |0〉 we obtain a quantum superposition of squeezed vac-
uum states [26]

U (m)S(r) |0〉 =

m−1∑
q=0

f (o)
q S(re−

4πiq
m ) |0〉 , m = odd (39)

U (m)S(r) |0〉 =

m−1∑
q=0

f (e)
q S(re

−4πiq+2πi
m ) |0〉 , m = even

(40)
The coefficients f (o)

q and f (e)
q are still given by Eq. (29) and

Eq. (30), respectively. Recalling how the annihilation opera-
tor transforms under the single-mode squeezing unitary oper-
ation Eq. (10)

S†(reiφ)aS(reiφ) = µa+ eiφνa† , (41)

where µ = cosh(r) and ν = sinh(r), the t-PQD of Eq. (39)
and Eq. (40) is readily obtained once we have the t-PQD of
S(reiφ) |0〉〈0|S†(reiψ). As outlined in Appendix A, we find
the characteristic function of this dyadic

φ(t)(ξ) = Tr
{
S(reiφ) |0〉〈0|S†(reiψ)D(ξ)

}
e
t
2 |ξ|

2
(42)

to have the following form

φ(t)(ξ) = µ̃−
1
2 e−

1
2 |ξµ−ξ

∗νeiφ|2+ ν̃
2µ̃ e
−iφ̃(ξµ−ξ∗νeiφ)2− iΦ4 + t

2 |ξ|
2

.
(43)

Here µ = cosh(r), ν = sinh(r), µ̃ = cosh(r̃) and ν̃ =

sinh(r̃). The remaining parameters r̃, φ̃ and Φ are defined by
Equations (A3) and (A4), respectively. A Fourier-transform
of the characteristic function yields the analytical expres-
sion of the t-PQD of S(reiφ) |0〉〈0|S†(reiψ). With this we
straightforwardly obtain the t-PQD of the initial state, numer-
ically compute its volume of negativity and find the thresh-
old value t for which the t-PQD is non-negative ∀t < t.
We once again find strong numerical evidence that the t-
PQD of U(χ = π/m)S(r) |0〉 becomes non-negative for
s ≤ t = −1 ∀r > 0 and either odd m > 1 or even
m > 4. Figure 2 displays, with a specific example, the typi-
cal features of the negativity volume associated with the input
state U(χ = π/m)S(r) |0〉 t-PQD. The reason for this un-

FIG. 2. The plot shows the negativity volume N (t) of the t-PQD
associated with the input state U(χ = π/3)S(r = 1) |0〉. As can be
seen from the inset, the function reaches zero for t = −1. Similar
plots and behaviour, i.e. negativity volume approaching zero mono-
tonically for t = −1, are obtained ∀r > 0 and either odd m > 1 or
even m > 4.

usual behaviour is that U (m)S(r) |0〉 with m = 2 or m = 4
are Gaussian states and, as such, their t-PQD is non-negative
by definition for every value of the ordering parameter t for
which the function is well defined and their negativity vol-
ume is strictly zero. In particular, one finds that in these two
cases t = e−2r, i.e. the result one obtains for a squeezed
vacuum with squeezing parameter r, hence the Kerr non-
linearity does not provide any advantage in these scenarios.
However, these two “anomalies” vanish if we add displace-
ment to our initial state and thus consider U(χ)S(r) |α〉, as
we will show for m = 2 shortly. (Note how this choice would
also constitute a fairer comparison to the other state we con-
sidered, namely S(r)U(χ) |α〉.) First of all, we show that
U (2)S(r) |0〉 = S(−r) |0〉. This can easily be seen by ex-
panding the squeezed vacuum on the Fock basis

S(r) |0〉 =
1√

cosh r

∞∑
n=0

[tanh r]n
√

(2n)!

2nn!
|2n〉 (44)

and using U (2) |2n〉 = (−1)n |2n〉.
This in turn means that U (2)S(r)U (2)† = S(−r). With this
identity we can write

U (2)S(r) |α〉 = U (2)S(r)U (2)†U (2) |α〉 = S(−r)U (2) |α〉
(45)

and we immediately realize that this state is just the squeezed
cat state we have already discussed in the previous section.
Hence, if we add the displacement to the initial state we once
again obtain t = −1 even for m = 2. We expect the same to
happen ∀m > 1, given the cat-like structure of U (m)S(r) |α〉.
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VI. CONCLUSIONS

In this work we have investigated the possibility of intro-
ducing higher-order non-linearities into the Gaussian Boson
sampling framework so as to enhance the computational com-
plexity of the task and consequently increase the inefficiencies
that allow for a classical simulation to be feasible. Using a
phase-space formalism based on the negativity of the relevant
PQDs, we have established a necessary non-classicality test
that any experimental demonstration of quantum advantage
must satisfy. This sufficient condition for an efficient classical
simulation for noisy Boson sampling is formulated in terms
of inequalities that involve the noise parameters characteris-
ing the system. In this paper we have used noise to gauge how
inefficient it is to simulate a given boson sampling task clas-
sically. Our results indeed suggest that the addition of single-
mode Kerr non-linearity at the input state preparation level,
while retaining a linear-optical evolution, makes the protocol
more robust to noise and relaxes the constraints on the noise
parameters required to show quantum advantage. A possible
limitation of the formalism we employed is that it only allows
us to make predictions about the existence of efficient classi-
cal exact simulations. Future efforts might focus on approx-
imate simulation methods of noisy Boson sampling tasks in
the presence of non-linear operations as well as studying the
role of thermal effects in a general multi-mode setting. An-
other interesting direction for future research include investi-
gating the role of other classes of higher-order non-linearities,
different from single-mode Kerr operations, in increasing the
computational complexity of Boson sampling problems.
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Appendix A

Next we outline the techniques employed in the calculation
of the characteristic function of S(reiφ) |0〉〈0|S†(reiψ).

φ(t)(ξ) = Tr
{
S(reiφ) |0〉〈0|S†(reiψ)D(ξ)

}
e
t
2 |ξ|

2

= 〈0|S†(reiψ)D(ξ)S(reiφ) |0〉 e t2 |ξ|
2

= 〈0|S†(reiψ)S(reiφ)S†(reiφ)D(ξ)S(reiφ) |0〉 e t2 |ξ|
2

(A1)

We can then use S†(reiφ)D(ξ)S(reiφ) = D(ξµ− ξ∗νeiφ).

Before moving on, it is useful to show how to compose
two single-mode squeezing operations. Let us consider a
generic single-mode squeezing operation S(ξi) with squeez-
ing parameter ξi = rie

iφi and let us define ζi
.
= tanh(ri)e

iφi .
One can then prove [27] the following identity

S(ξ1)S(ξ2) = S(ξ3)eiΦ(ξ1,ξ2)(
a†a+1/2

2 ) , (A2)

where

ζ3 =
ζ1 + ζ2

1 + ζ∗1 ζ2
(A3)

and

Φ(ξ1, ξ2) = −i log

(
1 + ζ1ζ

∗
2

1 + ζ∗1 ζ2

)
. (A4)

Recall that su(1, 1) generators {K+,K−,K0} satisfy the
commutation rules [28]

[K−,K+] = 2K0 , [K0,K±] = ±K± . (A5)

The single-mode bosonic representation of this algebra is
given by

K+ =
a†2

2
, K− =

a2

2
, K0 =

1

2

(
a†a+

1

2

)
(A6)

An easy way to verify the squeezing composition rule (A2) is
to use the following matrix representation of su(1, 1)

K+ =

(
0 1
0 0

)
, K− =

(
0 0
−1 0

)
, K0 =

(
1/2 0
0 −1/2

)
.

(A7)
Using the properties of the su(1, 1) algebra one can also prove
the following well known decomposition of the single-mode
squeezing operator

S(reiφ) = e
νeiφ

2µ a†2µ−a
†a−1/2e−

νe−iφ
2µ a2

(A8)

Hence, using Eq. (A2) we can write

S(−reiφ)S(reiψ) = S(r̃eiφ̃)eiΦ(
a†a+1/2

2 ) , (A9)

where r̃, φ̃ and Φ are defined by Equations (A3) and (A4), re-
spectively. Using Eq. (A8) one then finally obtains the char-
acteristic function of S(reiφ) |0〉〈0|S†(reiψ) displayed in Eq.
(43) of the main text.

Appendix B

In order to take thermal effects into account we consider
a modification of the loss model described in the main text,
where each of theM additional environmental modes are now
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in a thermal state. It then follows that the action of the lossy
LON is now described by the map

E ′(|γ〉〈γ|) = Tr
{
U |γ〉〈γ| ⊗ ν⊗Mth U

†} , (B1)

where U is, once again, the unitary operator associated with
the larger 2M -mode interferometer. νth represents a thermal
state, i.e.,

νth =
1

1 + n

(
n

1 + n

)a†a
, (B2)

where n is the mean number of photons and a, a† are the an-
nihilation operator and creation operator of the mode, respec-
tively. We remind the reader that the action of the quantum
channel E on a M -mode coherent state is all we need to com-
pute the transition function T (s,t)

E and that the latter is inde-
pendent of the input states and the final measurements.
In order to make the calculations easier, let us consider the
single-mode M = 1 case, i.e. a toy model where the lossy
LON is just a beam splitter, characterized by transmittivity
(cos θ)2 = ηL, that couples a coherent state |γ〉 with a ther-
mal state νth(k), and we then trace over the environmental
degrees of freedom. Here k > 1 is the value of the quadra-
ture variances of the thermal state and can also be expressed
as k = 2n+ 1, where n is the mean number of photons.
First, it is useful to see what happens in the zero temperature
case, i.e. we specialize Eq. (11) for a single mode and obtain

E(|γ〉〈γ|) = |γ cos θ〉〈γ cos θ| ≡ |γ̃〉〈γ̃| , (B3)

where we defined γ̃ = γ cos θ. Hence, in this scenario, the
transfer matrix is simply a real number L = cos θ =

√
ηL.

Moving onto the finite temperature case, using the Gaussian
formalism one easily shows that

E ′(|γ〉〈γ|) = Trenv{U(θ)(|γ〉〈γ| ⊗ νth)U†(θ)}
= D(γ̃)νth(λ)D†(γ̃)

(B4)

where U(θ) is now the beam splitter unitary operator and
λ = (cos θ)2 + k(sin θ)2 is a real parameter strictly greater
than 1 and the trace is taken over the environmental degrees
of freedom. We can then compute

Tr{E ′(|γ〉〈γ|)D(ζ)} = Tr
{
D(γ̃)νth(λ)D†(γ̃)D(ζ)

}
= eζγ̃

∗−ζ∗γ̃ Tr{νth(λ)D(ζ)} .
(B5)

The trace in the last expression is evaluated by exploiting the
P-function representation of the thermal state, i.e.

Tr{E ′(|γ〉〈γ|)D(ζ)} = Tr

{∫
d2βP (β) |β〉〈β|D(ζ)

}
= e−

λ
2 (ζ2

1+ζ2
2 ) ,

(B6)

where

P (β) =
2

π(λ− 1)
e−

2
λ−1 (β2

1+β2
2) (B7)

is the P-function of νth(λ). Now plugging Eq. (B6) into Eq.
(6) and using the identity∫

d2βeζβ
∗−ζ∗β = π2δ(2)(ζ) (B8)

we obtain

Tr
{
D†(ξ)D(ζ)

}
= πδ(2)(ξ − ζ cos θ)e

|ζ|2
2 (cos2 θ−λ) . (B9)

Substituting this last expression into Eq.(5) yields the transi-
tion function T (s,t)

E′ .

T
(s,t)
E′ (α, β) =

∫
d2ζ

π2
e−
|ζ|2

2 (t cos2 θ−s+λ−cos θ)·

eζ(α
∗ cos θ−β∗)−ζ∗(α cos θ−β) .

(B10)

Hence, the function is well-behaved and has Gaussian form as
long as

t(cos θ)2 − s+ λ− (cos θ)2 ≥ 0 . (B11)

On the other hand, inequality Eq. (20) for a single mode reads

t(cos θ)2 − s+ 1− (cos θ)2 ≥ 0 . (B12)

Hence, we have obtained a very similar inequality, where
thermal effects are entirely accounted for in the parameter
λ > 1. Note that the zero-temperature expression is retrieved
for λ = 1. We can finally use the technique outlined in the
main text to compute the noise thresholds that allow for an ef-
ficient simulation of the sampling task on a classical machine.
In particular, one finds

pD
ηD
≥ ηL +

1− λ
2

. (B13)

If we then express λ in terms of n and ηL we obtain

pD
ηD
≥ ηL − n(1− ηL) . (B14)

The term n(1−ηL) represents the correction to the results we
presented in main text (Eq. (37)), for the M = 1 case, when
temperature effects are taken into account. As expected, the
additional thermal noise has the effect of reducing the noise
in the detection which is sufficient to efficiently simulate the
task on a classical machine. We also notice that if

n ≥ ηL
1− ηL

(B15)

then the right hand side of the inequality Eq. (B14) becomes
negative and the sampling problem becomes classically simu-
lable even with ideal detectors. This is indeed expected, as we
know that Boson sampling with thermal state inputs - or any
other classical input state - is efficiently simulable. As a re-
sult, we envision a transition in the computational complexity
of the problem as the temperature of the environment grows.
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Appendix C

Here we provide the proof to obtain the identity Eq. (25).
We exploit the Baker-Campbell-Hausdorff formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + . . . , (C1)

with the following substitutions

A = iχa†2a2 B = a . (C2)

One then obtains

U†(χ)aU(χ) = a− 2iχ(a†a)a+
(−2iχ)2

2!
(a†a)2a+ . . .

=

∞∑
n=0

(−2iχa†a)n

n!
a = e−2iχa†aa .

(C3)
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