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ABSTRACT: An efficient two-step procedure for the syntheses of pyrimidine nucleosides is presented. A series of glycosyl 5-
(aminomethylene)-1,3-dioxane-4,6-dione derivatives were prepared from β-anomeric isonitriles by reaction with Meldrum’s acid or
by allowing aminomethylene Meldrum’s acid to react with an 1-aldofuranosyl halide or acetate. The resultant 5-(aminomethylene)-
1,3-dioxane-4,6-dione derivatives underwent reaction with benzyl- or 2,4-dimethoxybenzyl isocyanate via transacylation to provide
uridine-5-carboxylic acid derivatives and related nucleosides. These nucleoside carboxylic acids were converted into other C-5
derivatives by bromo-decarboxylation with N-bromosuccinimide.

Many antiviral and anticancer drugs have been
developed based on modification of the essential

nucleosides in the furanosyl ring or base residue. Examples
include gemcitabine (1), used for the treatment of ovarian,
small lung, pancreatic, bladder, and breast cancers, and
sofosbuvir (2) an effective medicine used in combination
therapies to treat hepatitis C (Figure 1).1,2

There are three distinct strategies for the synthesis of
nucleosides and their analogues: (1) condensation of an
activated aldofuranose derivative with a base; (2) nucleoside
modification by selective reaction of one or more groups in
the ribofuranose unit or the base or both; and (3)
derivatization of a β-aldofuranosyl amine with base
construction via a heterocyclization reaction (Scheme 1).
The most widely applied method (1), the Vorbrüggen

reaction, involves a Lewis acid-catalyzed condensation
reaction of protected and activated aldofuranose derivative,
such as 3, with persilylated nucleoside bases, like pyrimidine
4.3 In general, these reactions with O-acylated ribofuranosyl
derivates are highly β-selective due to neighboring group
participation by the C-2 ester group via an acyloxonium ion.
Second, method 2 has been used for the synthesis of non-
natural nucleosides by means of selective protection and
transformations of unprotected functional groups. For
example, gemcitabine (1) has been synthesized by late-stage
reaction of C-2′-ketone 6 using diethylaminosulfur trifluoride
(DAST).4 An example of method 3 is shown with the
reaction of β-D-ribosofuranosyl amine (8) with ethyl (E)-(3-
ethoxy-2-cyanoacryloyl)carbamate (9) to produce the nucleo-
side (10) via a heterocyclization reaction.5,6 Each method has
distinct advantages and disadvantages and usage of each
method depends on the desired strategy of early- or late-stage
modifications.
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Figure 1. Structures of gemcitabine (1) and sofosbuvir (2).
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Herein we describe a new, complementary method for the
synthesis of uracil and analogues, from furanosyl 5-(amino-
methylene)-1,3-dioxane-4,6-dione derivatives by reactions
with benzyl- or 2,4-dimethoxybenzyl isocyanates.
A series of aldofuranosyl isonitriles 11b to 11f were

synthesized from the corresponding anomeric bromides or
formamides respectively by reaction with silver cyanide or
dehydration with triphosgene.,7,8 The corresponding precur-
sors were synthesized according to adaptations of known
literature procedures.7−10 Full methods are described in the
experimental details. Reactions of the isonitriles 11a−11f
with Meldrum’s acid (13) provided the corresponding
enamides (15a−15f) (Scheme 2). This reaction was known
for alkyl isonitrile11−13 but had not been applied to anomeric
sugar isonitriles. Based on known isonitrile reactivities, it is
reasonable to speculate that the silver(I) cation binds to the
isonitrile carbon thereby activating it toward reaction with the
Meldrum’s acid enol resulting in α-addition.14 Overall yields
were generally good (43−79%) with the exception of
cyclohexyl isonitrile (15a) (30%). This α-addition reaction
was applied to a variety of sugars (Scheme 2). Attempted
application to deoxyribofuranose failed since the isonitrile
11g could not be synthesized. Instead, Hoffer’s chlorosugar
12g (X = Cl) was coupled with aminomethylene Meldrum’s
acid (14) in the presence of sodium hydride to obtain the
corresponding enamide 15g. This procedure was applicable
to aldofuranoses 12e (X = Br) and 12g (X = OAc); however,
displacements with fluoro glycofuranoses 12c and 12d were
unsuccessful. When present, undesired α-epimers of the 5-
(aminomethylene)-1,3-dioxane-4,6-dione derivatives 15 were
easily removed by chromatography. The structure of adduct
15d was confirmed by single crystal X-ray structure
determination (see Supporting Information).
The anomeric enamides 15 were allowed to react with

benzyl isocyanate in the presence of sodium hydride in THF
at 60 °C to give the corresponding nucleoside carboxylic
acids 16 (Scheme 3). 1H NMR monitoring of the reactions
was consistent with complete consumption of starting

material and conversion to uracils 16 on overnight reaction
with excess isocyanate; however, difficulties in purification
(urea formation and H-bonding with carboxylic acid entity)
complicated preparative scale synthesis and were only
appropriate on a small scale for full structural analysis.
This limitation was overcome by direct bromo-decarbox-

ylation of the crude products 16 using N-bromosuccinimide
(NBS) to provide the bromo-nucleosides 17a−17f (40−63%
over two steps). Isolation was possible for carboxylic acid 16a
only, for which additional halodecarboxylations were
performed with NIS and NCS (see experimental details).
Attempted deprotection of the base N-benzyl groups was not
achieved, and such difficulties with related C−N bond
cleavage reactions have precedent.15 Alternatively, hetero-
cyclizations using 2,4-dimethoxybenzyl (DMB) isocyanate
under equivalent basic conditions were examined (Scheme
3). These reactions gave the corresponding nucleosides 18a−
18e on a small scale for full structural analysis. Direct, 2,4-
dimethoxybenzyl group deprotection of the crude products
using trifluoroacetic acid at 70 °C followed by saponification
with potassium carbonate in methanol (removal of acetate,
benzoate, p-toluoyl groups) gave the nucleoside carboxylic
acids 19a−19e (32−58% over two steps). The structures of
adducts 19a and 19e were confirmed by single crystal X-ray
structure determinations (see Supporting Information). When
present, undesired α-epimers were removed by chromatog-
raphy. Related 5-carboxynucleosides have been shown to be
involved in the regulation of gene expression.16−18 The
carboxylic acid group of the nucleosides 19 was derivatized
by decarboxylative halogenation using N-bromosuccinimide

Scheme 1. Three Distinct Strategies for the Synthesis of
Modified Nucleosides

Scheme 2. Enamide 15 Syntheses
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(NBS) in DMF at 40 °C, presumably via stepwise
halogenation followed by decarboxylation, giving bromo-
nucleosides 20a−20e in 33%−52% yield. Related bromo-
uridine derivatives undergo palladium-catalyzed coupling
reactions.19,20

At this stage it is germane to further comment on the
mechanism of the isocyanate reactions. Computational
studies using density functional theory (B3LYP+GD3-BJ/
Def2-SVP and Def2-TZVPP/SCRF = thf) gave the free
energies at key points on the reaction profile. A model was
constructed which also included Na+ coordinated with two
additional explicit THF solvent molecules. Although the
presence of a Meldrum’s acid entity on the enamides 15a−
15g is consistent with the possibility of a formal [4 + 2]
cycloaddition via ketene formation, the calculations revealed a
high energy barrier of 45 kcal for such a pathway. A
transacylation mechanism was shown to be more probable
(Scheme 4). Such a mechanistic pathway involves three
distinct transition states and two intermediates. Scheme 4

displays a representation of the three transition states, all of
which have lower, thermally accessible, free energy barriers
(<27 kcal/mol). The first transition state (TS1) refers to the
addition of the nitrogen anion on the carbon center of the
isocyanate (18.5 kcal/mol). The second transition state
(TS2) involves the urea nitrogen anion adding to the
carbonyl group of Meldrum’s acid (26.8 kcal/mol). The last
transition state (TS3) corresponds to the release of acetone
and formation of the carboxylate (23.1 kcal/mol), with the
final product being exoenergic by −17.6 kcal/mol with
respect to reactants. Further calculations using different
substituted riboses demonstrated that TS2 and TS3 can be
similar in free energy and either can be the overall rate-
limiting step for the cyclization.
In conclusion, a novel pyrimidine nucleoside synthesis was

developed involving the stepwise cyclization of 5-(amino-
methylene)-1,3-dioxane-4,6-dione derivatives with benzyl
isocyanate or 2,4-dimethoxylbenzyl isocyanate via trans-
acylation to provide the 5-carboxyuracil nucleosides.

Scheme 3. Heterocyclization with Benzyl Isocyanate and Subsequent Bromodecarboxylation Using NBS and Cyclization
with 2,4-Dimethoxybenzyl Isocyanate and Derivatization of Nucleoside Core
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