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Abstract

The spread of antimicrobial resistance (AMR) among pathogenic bacterial species threat-

ens to undercut much of the progress made in treating infectious diseases. AMR genes

can disseminate between and within populations via horizontal gene transfer (HGT). Self-

ish mobile genetic elements (MGEs) can encode resistance and spread between host

cells. Homologous recombination can alter the core genes of pathogens with resistant

donors via HGT too. MGEs may be cured from host genomes through transformation.

Hence, MGEs may be able to avoid deletion by disrupting transformation. This work

aims to understand how the dynamics of these processes affect the epidemiology of AMR

pathogens.

To understand these dynamics, I co-developed a new version of the popular recom-

bination detection tool Gubbins. Through simulation studies, I find this new version to be

both accurate in reconstructing the relationships between isolates, and efficient in terms

of its use of computational resources.

I then apply Gubbins to both AMR lineages and species-wide datasets of the pathogen

Streptococcus pneumoniae. I find that recombination frequently occurs around core genes

involved in both drug resistance and the host immune response. Additionally, an MGE

was able to successfully spread within a population by disrupting the transformation ma-

chinery, preventing its loss from the host.

Finally, I investigate two recent examples of MGEs disrupting transformation in the

gram-negative species Acinetobacter baumannii and Legionella pneumophila. I find that

while these insertions may decrease the efficiency of transformations within cells, the

observed recombination rates largely reflect the selection pressures on isolates. With

MGEs only partially able to inhibit these observable transformation events.

These results show how selection pressures from clinical interventions shape pathogen

genomes through diverse, often interspecies, recombination events. The spread of MGEs

can also be favoured by both these selection pressures, and their ability to disrupt host

cell machinery.
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Chapter 1

Introduction

There is a very neat story often told about the discovery of antibiotics. It goes, broadly,

that one summer, during his childhood, Winston Churchill found himself in difficulty in the

family swimming pool and was on the verge of drowning when a young Scottish pool boy

dived in and saved him. The Churchill family, in a sign of their immense gratitude to the

pool boy, offered to subsequently pay for his medical school education. Some years later,

when Churchill was prime minister during the Second World War, this pool boy saved him

yet again. This time, however, through his discovery of the antibiotic penicillin, used to

treat Churchill’s pneumonia.

This story, painting Alexander Fleming as a guardian angel to Churchill, is a myth [1].

Fleming himself was seven years younger than Churchill, while Churchill was actually

treated with sulphonamides during the war. Nevertheless, this myth is not far off convey-

ing the immense impact the discovery of antibiotics would have. From their discovery in

the 20th century up to today, they have saved countless lives and enabled a great raft of

innovation in the treatment of patients. Their use though, has spawned a looming public

health crisis with the rise of antimicrobial resistance (AMR). In this introduction I will detail

the history of AMR, look at how bacteria can disseminate resistance genes among their

populations, and look into how genomic sequencing has enabled us to track its spread. I

will start with a look at the history of the earliest antimicrobials.
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1.1 The history of antimicrobial resistance

1.1.1 The discovery of antimicrobials

1.1.1.1 The first antimicrobials

An antimicrobial is a medical agent used to kill or stop the growth of microorganisms,

including bacteria, viruses and fungi. Antibiotics are themselves a subclass of antimi-

crobials that specifically target bacterial infections within humans. The first effective an-

timicrobial used in clinical practice in the UK were the sulphonamides, introduced by

Leonard Colebrook in 1937, after work by Gerhard Domagk demonstrated their selec-

tive antibacterial nature [2, 3]. While their mode of action was not fully understood at

the time of their introduction [4], they are now known to act via inhibition of the dihy-

dropteroate synthase (DHPS) enzyme [5]. This enzyme is essential to the folate biosyn-

thesis pathway of many prokaryotes [6]. Sulphonamides competitively inhibit DHPS via

their structural analogy to the substrate ρ-aminobenzoic acid (PABA) [5,7]. Crucially mam-

malian cells lack the DHPS folate biosynthesis pathway, instead taking up preformed

folate from dietary sources, giving sulphonamides a broad spectrum of activity against

bacterial pathogens [8].

Sulphonamides proved to be inexpensive, easily produced in bulk and effective treat-

ments, playing a key role in reducing deaths from wounds in the Second World War [9].

They were used as prophylactics to prevent upper respiratory infections [10], and, as men-

tioned above, in the treatment of Winston Churchill for bacterial pneumonia in 1943 [9].

Resistance to sulphonamides, though, was quick to develop after their widespread

use. Streptococci were among the first bacteria to exhibit resistance. For instance, re-

sistant isolates were detected within six months of a program of widespread chemopro-

phylaxis in naval training centres in New York in 1944 [11]. Resistant isolates of Neis-

seria gonorrhoeae and Neisseria meningitidis were also reported in the 1940s follow-

ing increased clinical treatment and prophylaxis of gonorrhoea and meningitis infections

with sulphonamides [12, 13]. There was early debate surrounding whether these resis-

tant isolates were arising de novo or pre-existing resistant isolates were being selected

for [10]. Strains of N. gonorrhoeae and N. meningitidis isolated before the introduction of
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sulphonamides had proven to be resistant for instance [10,12].

A mechanism of sulphonamide resistance was first described in Streptococcus pneu-

moniae isolates. Here extracts of resistant isolates were seen to increase their produc-

tion of a sulphonamide inhibitor [10], later confirmed to be PABA [14]. This increase

in PABA production enables the substrate to outcompete the sulphonamide inhibitor of

DHPS and allows the folate biosynthesis pathway of the bacterium to continue. In resis-

tant Escherichia coli isolates however another route to resistance was identified. Here,

the DHPS enzyme itself was found to be modified, this reduced the enzyme’s affinity to

sulphonamides to a large extent, allowing PABA to outcompete the inhibitor [15,16]. This

alteration also, however, made DHPS less heat stable and less efficient than the wild type

enzyme, illustrating how initial resistance mutations are often accompanied by a loss in

fitness. Today the mechanism of sulphonamide resistance is mainly that of DHPS alter-

ation, as opposed to PABA overproduction [17,18].

Sulphonamides were quickly replaced by the new ”Magic Bullet” penicillin [2] in the

first line treatment of many bacterial infections from the 1940s onward. Penicillin was

the first antibiotic capable of killing gram-positive bacteria, including the causative agents

of gonorrhoea and syphilis [19]. Additionally, penicillin was found to be free of tissue

toxicity, had no known antagonists and could be five times more potent than certain

sulphonamides for the same causative agent [2]. However, resistance to penicillin was

observed very early on in its development as an effective clinical drug. Abraham & Chain

discovered a penicillinase produced by E. coli in 1940 [20, 21], before it was clinically

introduced in 1941 [19]. While in 1942, hospitalized patients were found to be infected

with penicillin-resistant Staphylococcus aureus [21, 22]. Bacteria were quick to respond

to these clinical interventions.

1.1.1.2 The Golden Age of antibiotic discovery

The discovery and adaptation for clinical use of penicillin is thought to have initiated the

”Golden Age” of antibiotic discovery [23], which spanned from the 1940s to late 1960s

(Figure 1.1). Fleming, in the immediate aftermath of his discovery of penicillin, pioneered

techniques to widely sample soil biomes, searching for biocidal compounds [19]. Similarly,

Selman Waksman, and his lab [24], began to systematically study soil microbes in order
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Figure 1.1: Timeline of the decades new classes of antibiotics reached the clinic. Individual

dates of important drug discovery and resistance are highlighted. Discovered classes are in green

boxes, with the text colour highlighting the source of the novel class. Figure is adapted from

Hutchings, Truman & Wilkinson 2019 [25]

to identify possible antibiotics [25]. Within the incredibly diverse bacterial actinomycetes

order [26], the Waksman group identified the genus Streptomyces as producers of a range

of secondary metabolites with antibiotic activity [25]. Streptomycin, an aminoglycoside,

was isolated from Streptomyces griseus in 1944 and became the first antibiotic cure for

tuberculosis (TB) [23, 27, 28]. Beside the aminoglycosides, Streptomyces species have

also yielded chloramphenicol, from Streptomyces venezuelae, tetracycline, from Strep-

tomyces rimosus, and the first macrolide, erythromycin, from Streptomyces erythraeus,

although this species has now been reclassified as Saccharopolyspora erythraea [29,30].

The tetracycline terramycin was the first antibiotic to be described as broad-spectrum, ef-

fective against a range of gram-positive and gram-negative pathogens [31]. This epithet

was not initially a medical term, but instead was coined by Arthur Sackler, patriarch of the

Sackler family, in his role as advertiser for the drug [31].

In total, of all the antibiotics discovered during the Golden Age, two out of three came

from the actinomycetes [29], with Streptomyces alone accounting for 55% of all known

antibiotics [25,32]. With this rate of discovery the mood at the time in the medical commu-

nity was largely triumphal, with Frank Macfarland Burnet, a Nobel prize winner in 1960 for

his work on immunological tolerance, declaring that we had seen the ”virtual elimination

of the infectious diseases as a significant factor in social life” in 1962 [33]. However, it has
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been suggested that the rapid discovery of new antibiotics during this period, led to less

than prudent usage which has contributed to the rise of antibiotic resistance [25]. Indeed,

resistance to streptomycin was first observed soon after its introduction as a treatment

for TB, with George Orwell for instance infected with a resistant strain of TB while writing

1984, in 1948 [18]. Penicillin-resistant S. aureus had also become a pandemic by the

late 1950s and early 1960s, with the clone Φ80/81 driving this spread [34]. While the in-

troduction of methicillin in 1961 led to this penicillin resistant clone disappearing from the

population [35], almost immediately methicillin resistant clones emerged [34,36,37].

The growing burden of resistance is now more worrisome given the faltering sup-

ply line of new antibiotics from the 1970s onwards (Figure 1.1). Natural produce antibi-

otics are those derived from secondary metabolites. The most recent class of these, the

lipopeptides, was discovered 35 years ago in 1987 [25]. The Golden Age of discovery

is thought to have harvested all the low-hanging fruit of antibiotics, with pharmaceutical

companies now also diverting funding away from discovery departments [38–40]. How-

ever, sampling species in more diverse environments [41, 42], as well as recent efforts

to activate cryptic secondary metabolite production not normally produced in vitro [43],

offers some hope for the discovery of novel classes of antibiotics [25].

1.1.2 Mechanisms of antibiotic action

Building on from the Golden Age of antibiotic discovery, there are 38 different classes

of antibiotic in clinical use today [25]. While these differ in their precise mode of action

and molecular targets, the majority of these can be broadly split into disrupting three main

essential prokaryotic cellular pathways: nucleic acid synthesis, protein synthesis and cell

well synthesis [44] (Table 1.1).

1.1.2.1 Inhibitors of nucleic acid synthesis

In total 10 different classes of antibiotics target pathways involved in nucleic acid synthesis

(Table 1.1). The sulphonamides described above, along with the salicylates, sulphones

and diaminopyrimidines (which include trimethoprim), all target the folate biosynthesis

pathway [45]. This pathway is essential to production of nucleic acids [46]. All these

folate targeting compounds are synthetically derived. Other synthetic antibiotics target
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Pathway targeted Antibiotic class Number of Classes

Nucleic acid synthesis

Ansamycins, Azoles, Diaminopyrimidines,

Fluoroquinolones, Lipiarmycins, Nitrofurans,

Phenazines, Salicylates, Sulphonamides,

Sulphones

10

Protein Synthesis

Aminoglycosides, Amphenicols, Fusidic acid,

Lincosamides, Macrolides, Mupirocin,

Oxazolidinones, Pleuromutilins, Streptogramins,

Tuberactinomycins, Tetracyclines

11

Cell Wall synthesis

Bacitracin, Carbapenems, Cephalosporins,

Cycloserines, Enniatins, Ethambutol,

Glycopeptides, Lipopeptides, Monobactams,

Penicillins, Phosphonates, Polymyxins,

Polypeptides, Pyridinamides, Thioamides

15

ATP synthesis Diarylquinolines 1

Not known Arsphenamines 1

Table 1.1: Grouping antibiotic classes by pathway targeted. Data are adapted from Hutch-

ings, Truman & Wilkinson [25]

DNA directly. The azole metronidazole causes DNA damage when treating infections

from the Giardia genus [47], while the Nitrofurans also cause DNA damage [48]. The

synthetic fluoroquinolones target the prokaryotic DNA gyrase enzyme, which is essential

for maintaining DNA supercoiling within the bacterial cell [49]. Finally the phenazines,

such as clofazimine, target and bind to guanine bases preventing further DNA replication

[50].

Other antibiotics derived from bacterial products target the synthesis of RNA. The

ansamycins, which include rifamycin, target the RNA polymerase enzyme, binding and

preventing further RNA synthesis [51]. This gives rifamycin biocidal activity against a

range of gram-positive and gram-negative pathogens [51]. Similarly, lipiarmycins target

the RNA polymerase enzyme, although these bind to a different region, the switch region,

giving no cross-resistance with ansamycins [52].

1.1.2.2 Inhibitors of protein synthesis

Antibiotic classes targeting protein synthesis within pathogens are derived from bacterial,

fungal, and synthetic products (Table 1.1). Broadly these antibiotics either target the

30S ribosomal subunit or the 50S ribosomal subunit involved in protein translation [44].

The 30S subunit is involved in the binding of tRNAs to matching mRNA codons, and
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the translocation of bound mRNA and tRNAs [53]. It is composed of 16S rRNA and 19

proteins [54], and is targeted by aminoglycosides, such as streptomycin, tetracyclines and

tuberactinomycins [25]. Typically these compounds bind to the 16S rRNA component,

preventing the binding of tRNAs and arresting protein synthesis [55].

The 50S ribosomal subunit acts as a peptidyl transferase to catalyze the binding of

amino acids together [56]. The subunit is made up of 5S rRNA, 23S rRNA and 31 pro-

teins [57]. The amphenicol class (which includes chloramphenicol), the lincosamides,

the streptogramins, the pleuromutillins and the synthetic oxazolidinones all target over-

lapping regions of the 23S rRNA of the 50S subunit, inhibiting its peptidyl transferase

activity [58–61]. The macrolide class of antibiotics target the nascent peptide exit tunnel

(NPET) of the 50S subunit, arresting further translation of mRNA [62].

Outside of directly targeting the ribosome, fusidic acid binds to elongation factor G

(EF-G) [63]. EF-G is a GTPase that catalyzes the complete translocation of mRNA-tRNA

when peptide chains are elongated [63]. Similarly, mupirocin, also known as pseudomonic

acid, binds to the isoleucyl-tRNA synthetase enzyme, which catalyzes the formation of

isoleucyl-tRNA [64]. This prevents further tRNA synthesis, arresting the production of

proteins [65].

1.1.2.3 Inhibitors of cell wall synthesis

The cell wall is the component of bacterial cells most frequently targeted by antibiotics,

with 15 different classes disrupting it (Table 1.1). Some classes of antibiotics act to disrupt

the cell wall directly, such as the lipopeptides, polypeptides, polymyxins and enniatins.

These antibiotics tend to function by binding to the outer membrane and either disrupting

the permeability of the outerlayer or directly forming pores within to expose the periplasm

[66–69]. Given the differences in cell wall construction between gram-positive and gram-

negative bacteria, these antibiotics are specific to either architecture, with lipopeptides,

polypeptides and enniatins effective against gram-positive bacteria, while polymyxins are

effective against gram-negatives [66–69].

Other antibiotic classes target steps in the synthesis of the cell wall, as opposed to

the cell wall directly. The β-lactam grouping of antibiotics represents the most utilised
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antibiotics, accounting for 65% of all prescriptions of injectable antibiotics in the US from

2004-2014 [70]. This grouping includes the penicillins, carbapenems, monobactams and

the cephalosporins, which bind to an array of different penicillin binding proteins (PBPs)

[71]. These PBPs are enzymes involved in the terminal steps of peptidoglycan cross-

linking, playing a key role in both gram-positive and gram-negative cell wall formation

[70]. Other enzyme targets include: alanine racemase and D-alanine-D-alanine ligase

enzymes involved in peptidogylcan biosynthesis, which are inhibited by cycloserines [72];

the MurA enzyme, which catalyzes the first committed step in peptidoglycan synthesis,

and is targeted by phosphonates such as fosfomycin [73]; the NADH-dependent enoyl-

ACP reductase, encoded by inhA, that is a part of the mycolic acid biosynthesis pathway

in Mycobacterium species, and is targeted by thioamides and pyridinamides [74]; and

Arabinosyl transferase, encoded by embB, involved in the biosynthesis of arabinogalactan

in the cell wall of Mycobacterium tuberculosis, which is targeted by Ethambutol [75].

Apart from enzymes, substrates in the cell wall biosynthesis pathway are also tar-

geted. Glycopeptides, such as vancomycin, bind to the D-alanine-D-alanine terminus of

the lipid II monomer, preventing cross-linking of the cell wall [76]. Bacitracin binds to

C55-isoprenyl pyrophosphate (IPP), preventing its use as a carrier during the synthesis of

peptidoglycan repeat subunits [77].

Across these three main synthesis pathways, antibiotics have been discovered that

disrupt an array of molecular targets. In response to increased use of these antimicrobials

in clinical, and other settings, bacteria have evolved a host of countermeasures.

1.1.3 Mechanisms of AMR

There are a variety of routes through which bacteria can be resistant to the effects of an-

tibiotics. In some cases this can be due to inherent structural or functional properties that

prevent biocidal activity by the antibiotic [78]. This is known as intrinsic resistance. For

example, as mentioned above, lipopeptide antibiotics, such as daptomycin, are not effec-

tive on gram-negative species [68]. This is due to gram-negative bacteria having a lower

proportion of negatively charged anionic phospholipids in their membrane, which reduces

the efficiency of the Ca2+ mediated insertion of daptomycin into the membrane [78, 79].

It has also been argued that naturally occurring gene amplification, increasing the pro-
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duction of target molecules to overcome the effect of an antibiotic, can be considered

an intrinsic resistance mechanism [18]. One example of this occurs in Group B Strepto-

coccus (Streptococcus agalactiae), where natural amplifications of the folate biosynthesis

genes have arisen, conferring resistance to sulphonamides and diaminopyrimidines [80].

Apart from intrinsic routes, resistance can evolve through three main mechanistic

groups: modification of the molecular target of the antibiotic; minimizing the intracellular

concentration of antibiotic; and direct inactivation of the antibiotic [78].

1.1.3.1 Modification of antibiotic target

Alterations to target structure can affect the affinity of antibiotic binding, reducing the

drug’s ability to disrupt key cellular processes. These alterations can occur either as

a result of mutational change in the gene sequence encoding a target, or through post-

translational change, such as methylation, of a target [78]. For instance, resistance to

mupirocin inS. aureus can arise through mutations in the ileS gene encoding the isoleucyl-

tRNA synthetase enzyme [64,81]. Stepwise mutations in the ileS gene are also indicated

in the evolution of very high levels of resistance to mupirocin [82]. Any mutation, es-

pecially in the vital molecular pathways targeted by antibiotics, will tend to be delete-

rious [83]. Hence, there is often assumed to be a fitness cost associated with gains of

resistance [84]. Experimental work in Salmonella enterica serovar Typhimurium identified

substantial losses in fitness associated with ileS resistant mutations, with compensatory

mutations required to offset this loss [85,86]. However, similar experiments in S. aureus

indicate no significant fitness cost was associated with even very high levels of mupirocin

resistance [82].

M. tuberculosis resistance is thought to evolve solely through point mutations in the

chromosome, with mutations in embB, most commonly at codon 306 in clinical isolates,

driving ethambutol resistance for instance [87]. The missense mutations at this codon can

drive very high minimum inhibitory concentrations (MICs) for ethambutol, up to 16 µg/ml,

but these are associated with fitness costs [88]. Indeed many of the M. tuberculosis resis-

tance mutations are associated with fitness costs [89,90]. The spread of extremely drug

resistant (XDR) and totally drug resistant (TDR) strains therefore highlights the immense

selection pressure antibiotic consumption places on M. tuberculosis populations, but also
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the ability of evolution to select for compensatory mutations that can alleviate this fitness

cost [91,92].

As well as mutational changes to a target’s structure, resistance can also arise through

modification after transcription or translation [78]. This is commonly seen with the methyla-

tion of rRNA components of the prokaryotic ribosome. The erythromycin ribosome methy-

lase (erm) for instance, dimethylates the A2058 nucleotide of the 23S rRNA within the

50S ribosomal subunit, preventing the binding of lincosamides, macrolides and strep-

togramins [93]. Modification to outer membrane antibiotic targets can also occur, for in-

stance with glycopeptides modification of the lipid II monomer can lead to high-levels of

resistance. In this case the terminal D-alanine residue of the lipid II monomer is replaced

with an isosteric D-lactate which lowers the affinity glycopeptides, such as vancomycin,

for the peptide stem of the monomer by 103 fold [94].

Antibiotics target a limited number of sites, hence modifications at a single target may

also lead to resistance to multiple antibiotics developing. Within Haemophilus influen-

zae for example, alterations to the PBP proteins can lead to resistance against a broad

range of β-lactams [95]. Additionally, mutations altering the structure of the 23S rRNA of

the 50S ribosomal subunit can confer resistance to macrolides and streptogrammins in

Streptococcus pneumoniae (the pneumococcus) [96].

1.1.3.2 Minimization of antibiotic concentration

The minimization of the intracellular concentration of antibiotics can occur through either

decreased membrane permeability to the antibiotic or effective efflux pumping of the an-

tibiotic from the cytoplasm [97]. Gram-positive bacteria tend to be intrinsically more per-

meable than gram-negative to antibiotics, as such antibiotics have to enter gram-negative

cells through porin channels in the membrane [98]. Gram-negative species therefore can

acquire resistance to antibiotics through either downregulating porin production or switch-

ing to more selective porin channels [78]. For instance in Enterobacteriace, high levels of

carbapenem resistance have been observed in isolates that lost or altered porins, in the

absence of a carbapenemase that might otherwise have explained this resistance [99].

While in H. influenzae isolates extracted from cystic fibrosis patients, alterations in the

porin amino acid sequences led to decreased susceptibility to streptomycin [100].
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Efflux pumps are one of the most ubiquitous types of resistance elements, present in

gram-negatives and gram-positives [101, 102]. These pumps can be specific in nature,

such as the Tet and Mef exporters which target tetracyclines and macrolides respectively

[103]. They can also be broader in nature, known as multi-drug resistance (MDR) efflux

pumps. Within gram-positives, the most well studied MDR efflux pump is the NorA pump

first identified in S. aureus in 1986 [101,104]. This pump can export fluoroquinolones and

other antiseptics such as ethidium bromide and quaternary ammonium compounds from

the cell [105]. Resistance is often caused by overexpression of this NorA pump, which

can be in response to exposure to biocidal compounds [106], or to iron limitation, either

of which indicates that S. aureus is within a host environment [78,107].

Within gram-negatives, the resistant nodulation division (RND) MDR pumps are the

most well characterised [78]. Members of this RND pump family have been shown to

export fluoroquinolones, tetracyclines, chloramphenicol and some β-lactams too [108].

Similar to the NorA pump, resistance is often conferred by overexpression of RND pumps

[109]. In Escherichia coli, indole presence, which is a stationary-phase extracellular

signal, causes the overexpression of the AcrAB RND pump conferring MDR to these

cells [110].

1.1.3.3 Direct inactivation of an antibiotic

The final mechanism of resistance is whereby bacteria act directly on antibiotics, either

to modify or destroy them. The first identified enzyme to catalyze the hydrolysis of an

antibiotic was the penicillinase discovered by Abraham & Chain in 1940 as penicillin

was being manufactured [20]. Following the introduction of other β-lactams, such as

the cephalosporins, extended-spectrum β-lactamases (ESBLs) were discovered in the

1960s on plasmids in Enterobacteriaceae [111,112]. This earliest ESBL was designated

TEM-1 , and could hydrolyse the β-lactam ring of penicillins and cephalosporins [113]. An-

other ESBL class which was initially common when discovered, were SHV-type enzymes

first found in Klebsiella pneumoniae and E. coli [111]. Today though, both these classes

are becoming less and less common, with TEM-type ESBLs detected in less than 1% of

E. coli and K. pneumoniae in Europe [114]. Instead the most commonly found ESBLs

are in the CTX-M family, with CTX-M14 and CTX-M15 the most widely isolated of this
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family [78, 114]. These ESBLs confer resistance to 3rd generation cepahlosporins and

have been associated with a number of successful pathogenic clones, such as ST131 E.

coli [115–117].

As well as hydrolysing an antibiotic, enzymes can also act to modify their structure pre-

venting binding to molecular targets. Aminoglycosides are particular targets of these en-

zymes, with three main classes targeting them: acetlytransferases, phosphotransferases

and nucleotidyltransferases [118]. These enzymes are very diverse in nature and found

across a range of host taxa [118,119].

We can see then, that in response to the challenge of antibiotics, bacteria have

evolved a whole host of mechanisms to survive in their presence. The spread of these

mechanisms to important human and animal pathogens has led us to the looming public-

health challenge of AMR.

1.1.4 The evolution of AMR

1.1.4.1 The resistome

Resistance genes are everywhere [120]. From the clinically relevant sites of hospital

wards and operating theatres [121–123], to the less relevant, but still important, reaches

of outer space [124] and isolated cave systems [125]. This reflects the millions, or po-

tentially billions, of years over which bacteria and fungi have been competing with each

other [126, 127]. Indeed, molecular clock studies looking at the emergence of penicillin

have dated the machinery used for its biosynthesis to at least one billion years ago [126].

Resistance genes are ancient [128]. What is not ancient, however, is the spread of resis-

tance genes within pathogenic bacteria, which tend to be much less diverse in terms of

biosynthetic gene clusters and more adept at immune evasion [126]. Historical collections

of pathogenic bacteria, such as the Murray collection of Enterobacteriaceae [129], indi-

cate that before the widespread introduction of antibiotics these pathogenic species were

largely antibiotic susceptible [130]. Much of the spread of resistance in pathogenic species

has been from the mobilisation of the ”resistome” of commensal or environmental bacte-

ria [131]. The CTX-M ESBL genes described above for instance, originated in the environ-

mental genus Kluyvera and were mobilised on the insertion sequence ISEcp1 [132–134].
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The important human pathogen the pneumococcus, which is a leading cause of death

in children under the age of five globally [135,136], is another species which has gained

resistant genes from commensal species. Resistant mosaic forms of the pbp1a, pbp2b

& pbp2x genes, which are targeted by penicillins, all arose initially through recombination

with related streptococcal species, such as S. mitis and S. oralis [137–139]. Penicillin-

non-susceptible pneumococci (PNSP) were first detected in Massachusetts in the 1960s,

with isolates with very high MICs, up to 12 µg/ml, found in South Africa by the 1970s [140].

Since then penicillin-resistant MDR clones of the pneumococci have gone on to spread

globally, with the PMEN1 lineage responsible for 40% of penicillin resistant invasive pneu-

mococcal disease (IPD) in the US between 1996 and 1997 [141,142].

1.1.4.2 Modelling the spread of resistance among bacterial populations

In general, empirical evidence suggests a linear relationship between antibiotic usage

and antibiotic resistance [143]. Indeed, when I plot the latest 2020 European Centres for

Disease Control and prevention (ECDC) data on β-lactam consumption and the proportion

of invasive pneumococci which are PNSP, there is a significant relationship (Adjusted R2

= 0.2309, F(1,24) = 8.506, p = 0.007562) (Figure 1.2). Countries with the highest rates of

antibiotic prescription tend to have the highest rates of resistance [144]. However, these

are often just snapshots of resistance and consumption. Longitudinal surveillance data

instead demonstrates the coexistence of susceptible and resistant lineages [143, 145] .

Indeed for many pathogens, such as the pneumococcus, E. coli and enterococci, the

prevalence of resistant phenotypes has remained stable in Europe over the last 15 years

[146–150] . This dynamic is not reproducible through simple person-person models which

result in competitive exclusion of susceptible strains by resistant strains [145]. 

As such there has been a broad exploration of different mechanisms that could ex-

plain this coexistence. Colijn et al 2010 [146] built on previous work exploring how more

structurally neutral models, which do not implicitly build in coexistence, could elucidate

the factors which underlie this phenomenon [146, 151] . Of the five models they tested,

the framework which best produced coexistence allowed for simultaneous co-infection

with susceptible and resistant strains, although this coexistence only occurred in 20% of

their simulations [146] . Recent work has also explored the (non-exclusive) impact of pop-
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Figure 1.2: Relationship between β-lactam consumption and PNSP invasive isolates across

Europe in 2020. The percent of invasive pneumococci recorded as PNSP across 24 European

countries comes from the ECDC Antimicrobial resistance in Europe report 2022. The consumption

of β-lactams for 2020 also comes from the ECDC, combining countries reporting on both hospital

and community level prescriptions. Countries values are labelled by their eurostat two letter coun-

try code. PNSP used the European committee on antimicrobial susceptibility testing (EUCAST)

guidelines, where intermediate or resistant isolates, those with an MIC > 0.06 µg/ml, were deemed

non-susceptible. The Spearman’s rank correlation coefficient and p value for this correlation are

displayed in the top left hand corner of the plot. The blue line represents the fitting of a linear

model.

ulation structure on the maintenance of both susceptible and resistant strains [152,153] .

Cobey et al 2017 [152] explored how age assortative mixing and age specific treatment

can maintain strain coexistence among a simulated pneumococcus population. While

they did observe resistant and susceptible coexistence, the resistant fractions, and the

costs of resistance at which these fractions were maintained, were generally unrealistic.

Blanquart et al 2018 [153] built a more generalizable ordinary differential equation (ODE)

model incorporating population structure. While this framework could also produce coex-

istence between resistant and susceptible strains, the population class structure was too

rigid and their rates of inter-class transmission that favour coexistence were unrealistically

low.
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As well as population structure and co-infection dynamics, work has also focused on

how genetic differentiation between susceptible and resistant strains can promote coex-

istence [147,154] . Lehtinen et al 2017 [147] explore how genetic linkage between resis-

tance genes and loci which influence carriage length could promote coexistence. They

hypothesize that balancing selection on duration of carriage could maintain the linked re-

sistance determining loci at intermediate frequencies in a population. Indeed this model

is able to produce coexistence of the resistant and susceptible strains, however it is un-

able to explain resistance profile heterogeneity among isolates of the same serotype. In

this framework, resistance could also be determined by horizontal gene transfer (HGT)

rate, which in turn would be driven by carriage duration [154, 155]. To test this, Lehti-

nen et al 2020 [156] investigated a large population of pneumococci, looking at carriage

episodes. From their measures of HGT they found only weak evidence for a link between

higher rates of HGT and resistance in lineages, suggesting carriage duration was the main

driver.

Recent work has also sought to include within-host dynamics of competition between

strains to explain the population level coexistence of resistant and susceptible isolates

[145] . Davies et al 2019 [145], building on previous work investigating malaria drug re-

sistance [157] , move on from a simple knock-out model of strain competition, and instead

model individual hosts as having a carrying capacity while tracking strain frequencies

within a host. This more closely mimics the colonization process of bacteria and it is able

to capture the observed coexistence trends for E. coli and the pneumococcus. However,

this model does make some broad assumptions about the fitness cost of resistance and

host immunity [158] .

Finally, in Davies et al 2021 [150] the authors compare four different models, deter-

mined to be biologically plausible, in their ability to explain how resistant and susceptible

strains of the pneumococcus can coexist. The four models are: (i) treatment diversity,

where a population is split into subpopulations varying in antibiotic treatment rate, similar

to Cobey et al 2017 [152] & Blanquart et al 2018 [153]; (ii) pathogen diversity, where car-

riage duration and subsequent heterogeneity in the fitness effect of resistance is a factor

in explaining resistance emergence, similar to the framework initially proposed in Lehtinen
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et al 2017 [147]; (iii) treatment competition, where hosts can be colonized by resistant and

sensitive strains and treatment determines the strain transmitted from the host, similar to

Colijn et al 2010 [146]; and (iv) growth competition, an enhancement of iii where in the

absence of treatment there is a fitness cost, in terms of growth rate, on resistance, similar

to Davies et al 2019 [145]. They find that all four models, in their implementation, are able

to recapitulate the trend in resistant pneumococci across European countries for 2007

equally well. However, they do not measure how well these models can match trends

over a longer time period, or how competition with other nasopharyngeal species may

affect these dynamics [150]. Taken together these studies suggest that multiple factors

are needed to explain how resistance spreads through a bacterial population, while also

serving to highlight how we do not fully understand the process [145,159].

1.1.4.3 Modelling the spread of MDR

The evolution of MDR pathogens represents a particular threat to public health, as infec-

tions caused by these strains are more often challenging and expensive to treat [18,160].

In 2017 the WHO published a list of six pathogens where the spread of MDR was espe-

cially concerning: Enterococcus faecium, S. aureus, K. pneumoniae, Acinetobacter bau-

mannii, Pseudomonas aeruginosa, and Enterobacter species [161]. These six ESKAPE

pathogens are responsible for the majority of nosocomial infections globally [162, 163].

As well as being a public health challenge, the evolution of MDR also represents a scien-

tific puzzle [160]. This is as resistance genes appear to aggregate in the same strains

of bacteria, rather than being randomly distributed, leading to the idea of MDR over-

representation [160,164].

Numerous theories have been put forward to explain the evolution and dissemina-

tion of MDR pathogens, and these have been summarised previously in Chang et al

2015 [160] and Lehtinen et al 2019 [164]. One theory posits that MDR can be caused

by a single resistance mechanism conferring resistance to multiple drugs, such as MDR

efflux pumps [165] and ESBLs [166]. Genetic linkage between resistance genes is also

thought to drive resistance. This is observed through the spread of mobile genetic el-

ements (MGEs) containing multiple resistance genes, such as the large MDR plasmids

seen in the Enterobacteriaceae [167]. Another theory is that highly mutagenic or recom-
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binogenic lineages acquire more resistance genes. This is observed in the Beijing lineage

of M. tuberculosis which is highly mutagenic and appears to accumulate resistance mu-

tations faster than other lineages [168]. Treatment regimen failure is another theory, this

can occur through combination therapy on populations with singly resistant lineages spon-

taneously developing further resistance genes, as is sometimes seen in M. tuberculosis

treatment [169]. This can also occur when the resistance status of an infection informs

the drug chosen, such that resistance to the chosen drug may also be acquired by the

already resistant infection. Finally, cost epistasis is another mechanism put forward to

explain MDR. This whereby there is a lower than expected fitness cost to the presence

of multiple resistance determinants, this may occur with MDR plasmids where the fitness

cost of the presence of the plasmid is the main cost, not the cost of each of the individual

resistance genes [160,164].

These explanations, however, are often applicable to only a subset of antimicrobials

or pathogens, whereas MDR is seen across different drugs and species [164]. As such,

recent modelling work by Lehtinen et al 2019 [164] has sought to explain the evolution

of MDR, building on the framework they had previously developed for modelling the co-

existence between resistant and susceptible strains [147]. Here they allow for different

strata within their model based on host population structure and pathogen strain structure,

with the fitness costs of resistance varying between these different strata. They develop

concepts of resistance proneness for a strata, taking into account the antibiotic consump-

tion in each strata and the clearance rate of a strain, and the resistance threshold for

an antibiotic, taking into account the fitness cost of resistance and the proportion of con-

sumption a specific antibiotic accounts for in the population. These concepts can produce

nested patterns of resistance, which follow trends in pathogenic species, and also predict

strains with a longer carriage duration are more resistance prone, again broadly matching

observed trends. As with their previous model however, the framework can not explain

resistance profile heterogeneity within a strain and assumes no cost epistasis between

resistances.

A study by Jacopin et al 2020 [170] looks at incorporating cost epistasis into modelling

the evolution of MDR. They model a large unstructured population initially, also allowing
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for within-host strain competition and recombination, unlike Lehtinen et al 2019. They

model only two different drugs, finding that dominance of a single doubly-resistant strain

is the most frequent model outcome, with strain coexistence rare, which is unlike real-

world data. When modelling a a structured host population, they find that negative cost

epistasis greatly favours the evolution of MDR strain, however they still were not able to

recapitulate the coexistence of sensitive and resistant strains.

Another recent study, McLeod & Gandon 2021 [171], focuses on how linkage dise-

quilibrium (LD) dynamics can explain the population structure of MDR pathogens. They

treat MDR and LD as synonymous and also use a metapopulation model to assess the

evolution of MDR. They find that carriage duration is not necessary or sufficient for MDR

to develop, however in testing this they do not include epistatic interactions between re-

sistance loci.

As with resistant and susceptible strain coexistence, there is still more work to be done

to fully understand the process of MDR evolution. A better understanding of this could

lead to better treatment regimens aimed at preventing the spread of MDR pathogens.

1.1.5 The impact of AMR on public health

1.1.5.1 The effect of AMR on patient outcomes

Assessing how AMR affects clinical outcomes in patients is key in understanding the po-

tential impacts of the spread of resistance. Studies looking at how resistance impacts

morbidity and mortality can often be confounded by the lack of an adequate control pop-

ulation, with cases needing to be matched by aetiological agent and severity of infec-

tion [172]. This has led to a relative paucity of information on the effect of resistance

both on morbidity and mortality, and on the relative costs associated with treatment [173].

Often the popular press will instead present an apocalyptic image of resistant ”super-

bugs” [174, 175]. A recent surveillance study, however, identified that only one patient

out of a total of 85 infected with an extremely drug resistant (XDR) or pan drug resistant

(PDR) infection died within the Marseilles hospital system between 2009 and 2015 [176].

This patient also had significant comorbidities. While another study looking into PDR in-

fections in a Crete hospital over an eight year period, also found a lower than expected

37



1.1. The history of antimicrobial resistance

mortality rate from PDR infections [177].

Meta-analyses focusing on specific species and antibiotic resistances have shown an

increase in mortality in resistant infections though [178–181]. Cosgrove et al 2003 [178]

found that, while 24 of the 31 studies they investigated saw no significant difference in the

mortality for methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus

(MSSA), when pooled together there were significantly higher mortality rates for MRSA

bacteraemia compared to MSSA bacteraemia. Similarly: DiazGranados et al 2005 [179]

found higher mortality rates for bacteraemia caused by vancomycin-resistant enterococci

compared to bacteraemia caused by vancomycin-sensitive enterococci bacteremia; Rot-

tier et al 2012 [180] found bacteraemia caused by ESBL producing Enterobacteriaceae

had a higher mortality rate than bacteraemia caused by non-ESBL producing Enterobacte-

riaceae; and Lemos et al 2014 [181] found carbapenem-resistant A. baumannii infections

had a higher mortality that carbapenem-susceptible A. baumannii infections. Although for

Lemos et al 2014, the authors were unable to control for all confounding factors, and they

investigated a broader range of pathologies than the previous three studies.

Additionally, cohort studies appear to show resistant infections of E. coli [182], P.

aeruginosa [183,184], and S. aureus [185] are all associated with higher mortality rates.

The increase in mortality associated with resistant strains is most likely a result of the

delay in effective antibiotic treatment caused by resistance [186]. Within Cosgrove et al

2003 for instance, when the analysis was limited to outbreak settings where MRSA was

known to be present, the difference in mortality between MSSA and MRSA was not signif-

icant [178]. Second-line antibiotics used to treat MRSA infections, such as vancomycin,

are also less effective against MSSA infections [187]. However, factors not relating to

treatment could also play a role, such as resistant strains being associated with a greater

virulence. Plasmids are often seen to carry both resistance and virulence genes for exam-

ple [188,189]. Controlling for these factors would require a more holistic genomics based

approach, with sequencing of invasive isolates followed by the identification of genetic

factors other than resistance that may influence infection mortality.
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1.1.5.2 Predictions of the burden of AMR

One of the first major attempts to assess the global threat of AMR was the O’Neill report

on antimicrobial resistance [190]. Overseen by the economist Jim O’Neill, who tasked the

analysis to two business consultancies, the report estimates that in 2015 700,000 people

died globally from AMR and predicts that by 2050 some 10 million people globally will

die from AMR infections, which would outstrip the death toll of cancer [190, 191] . These

predictions are based on current rates of resistance evolution and assume resistance

mutations will reach fixation in a population. This is contentious, as it treats the evolution

of resistance as a simple process of mutant emergence and subsequent fixation [159,

192]. As seen above for pathogenic species however, there often appears to be long-

term coexistence of resistance and susceptible lineages. Additionally the report often

glosses over a lack of adequate data, assuming for instance that antibiotic consumption

in humans matches that in agriculture, while its methods in general are opaque and not

peer-reviewed.

In 2019 Cassini et al attempted to more rigorously estimate the number of deaths at-

tributable to AMR infections in Europe [193]. Using: the European antimicrobial resistance

surveillance network (EARS-Net), a literature review of publications relating to mortality

attributable to resistance, and ECDC data on non-blood stream infections (nBSIs), among

other sources, they estimated 33,110 deaths were attributable to AMR infections in 2015

across the EU. With results broken down by species, they estimated that third-generation

cephalosporin-resistant E. coli (3GREC) caused the most deaths, at a median of 9,066,

closely followed by MRSA at a median of 7,049 attributable deaths. While this is more

rigorous than the O’Neill report in its estimation for 2015 attributable deaths, there are still

limitations in the study, with limited data on a range of pathogens’ attributable mortality

scores and a broad conversion used to estimate the number of nBSIs.

Most recently, the Lancet global burden of disease (GBD) study, led by the Institute

of Health Metrics and Evaluation (IHME), attempted to estimate the deaths attributable

to AMR infections globally in 2019 [194]. To produce this figure they used: estimates

of deaths from infectious and non-infectious syndromes from the GBD 2019 study [195],

hospital discharge data to model case fatality ratios (CFRs) for individual pathogens, sales
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and surveillance data to assess AMR spread, literature searches (taken from Cassini et

al 2019 [193]) and clinical lab data to assess the mortality attributable to resistance. In

total they estimated 1.27 million deaths were attributable to AMR in 2019. Unlike Cassini

et al 2019 they found MRSA caused the most deaths, with 121,000 compared to 3GREC

at 59,900 in 2019.

As with the previous studies though, there are flaws, particularly around the data used

to create these estimates. The hospital discharge data used for instance, which informs

CFR calculations and the distribution of pathogens, only comes from seven countries.

None of these are in Africa, estimated to suffer the highest burden of AMR deaths. Due to

data sparsity too, the authors were only able to produce a global estimate for the relative

risk of death from an AMR infection, not a location specific estimate. Given the disparities

in healthcare systems around the world, this may not be accurate [196,197]. Finally, there

have also been longstanding criticisms of the overall GBD modelling estimates, used to

estimate incidence here, with these seen as opaque in terms of data sources used and

the estimation methodology [198,199].

Taken together these studies serve to highlight the general problem of AMR spread

and the potential public health crisis it engenders. However, the absolute estimates of

lives lost to AMR infections should be viewed sceptically.

1.2 Genomic data analysis

1.2.1 Sequencing bacterial genomes

1.2.1.1 Sequencing methods

The first bacterial genome sequenced and assembled was anH. influenzae isolate in 1995

[200, 201]. This was sequenced using the method first developed by Sanger et al 1977

[202], combined with a shotgun approach of breaking the whole genome up randomly

into smaller lengths to sequence [201, 203]. Briefly, the Sanger method relies on using

differently labelled dideoxy terminators, each label corresponding to a specific base, with

random incorporation of these terminators into a strand to halt synthesis. These strands

are then separated by size through electrophoresis and the sequence of bases can be

determined by the patterns in the bands formed [204]. The shotgun approach can then
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produce very accurate reads of up to 800 bp long that are subsequently assembled. The

Sanger sequencing method is still considered the gold standard of sequencing, although

it has low throughput, meaning it cannot be used in real-time clinically, and is expensive

to perform [201].

These drawbacks prompted the development of high-throughput sequencing tech-

nologies, also known as next-generation sequencing (NGS), with Sanger sequencing

termed the first generation [201, 205]. Initially NGS methods encompassed a range of

different technologies: cyclic reversible termination (CRT), sequencing by ligation, and

pyrosequecing for example [203,205]. The generation of bacterial genomic data though,

has become dominated by Illumina technology, which uses the CRT approach [203]. In

this method, briefly, fragments of DNA and primers are attached onto a flow cell and then

amplified to create many individual template strands [203]. A DNA polymerase then incor-

porates a fluorescently labelled and terminator modified nucleotide to a template strand

fixed in place on a flow cell. The incorporated nucleotide’s terminator group allows for

fluorescence imaging to detect only the newly incorporated base. The fluorescence label

and terminator group are then cleaved off, allowing for the extension of the complemen-

tary strand by further fluorescent terminator bases [205]. While this method did drastically

reduce the cost per run and allow for a very high sequencing yield, the short reads pro-

duced, up to only 250 bp, are not as accurate as Sanger sequenced reads and the length

ensures assembly is harder in regions of high repeats [203].

The most recent advances in sequencing technologies have concerned approaches

that seek to combine the high-throughput nature of NGS and the longer reads of Sanger

sequencing approaches. These are long-read sequencing (LRS) methods [206,207]. Two

approaches in particular, Pacific Biosciences’ (PacBio) single-molecule real-time (SMRT)

sequencing and Oxford Nanopore Technologies’ (ONT) nanopore sequencing, are pre-

dominant in the LRS market [207]. In PacBio sequencing, hairpin adapters are added to

long dsDNA molecules to create a circular ssDNA molecule called a SMRTbell. These

SMRTbells are then fed into a nanoscale observation chamber with a polymerase fixed

to the bottom. Fluorescent nucleotides are subsequently incorporated and an illumination

signal is recorded in real time to assess the base added [206]. In nanopore sequencing,
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DNA sequences are sheared and end repaired with an adaptor complex, which consists

of a tightly bound polymerase or helicase [206, 208]. These adaptors are then bound to

nanopores within a membrane, known as a flow cell, with the adaptor enzyme ensuring

ensuring stepwise movement of ssDNA through the pore. The movement of the base

through the pore creates a change in the ionic current that is dependent on the base,

which can be interpreted and, with further processing, used for base calling of the se-

quence [206].

Both these approaches can produce very long reads, with a recent benchmarking ofE.

coli sequencing producing a maximum read length of 297,344 bp for nanopore sequencing

and 151,906 for PacBio sequencing [209]. However, both methods do tend to have very

high error rates, with single pass methods in PacBio producing error rates as high as

15%, although this does drop to 0.1% with nine passes through the nanoscale observation

chamber [210]. PacBio sequencing is seen to have a higher throughput than nanopore,

however the machine costs are higher and the turnaround time for sequencing is a lot

longer [211]. Indeed, the quick turnaround times, lower machine costs, and highly portable

nanopore sequencing machines have allowed for real-time sequencing in outbreaks and

in situ sequencing even in resource poor settings [212–216].

1.2.2 Predicting AMR from genomes

Traditionally, resistance phenotypes of bacteria have been assessed through antimicro-

bial susceptibility testing (AST) [217]. Broth dilution is currently the gold standard of AST,

where bacteria are grown in the presence of different concentrations of an antibiotic to as-

sess its effect on the growth of these isolates [218]. These results define the MIC values

of an isolate, and reference bodies, such as the European Committee on Antimicrobial

Susceptibility Testing (EUCAST), have developed stanardized protocols to determine the

clinical resistance categories of isolates [219]. In a clinical setting AST methods are slow,

typically requiring the culturing of isolates, which can take days, followed by these growth

based assays which can also take days [220, 221]. More rapid automated AST meth-

ods have been developed, however these still often require the culturing, or incubation,

step, which acts as a bottleneck on the process [220, 222]. This culturing also prevents

the resistance phenotypes of unculturable bacteria from being explored. These bacteria
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represent the majority of known bacterial diversity [223].

Improvements in sequencing methodologies, in terms of costs and runtimes, mean

bacterial sequence data is much more readily available [224]. This has opened up the

possibility of using whole genome sequence (WGS) data to assess the resistance profile

of isolates [225]. Analysing WGS data has the potential to provide rapid results, not only

on resistance but also for key virulence loci, in a clinical setting, while also allowing for

the investigation of a broader range of bacterial species in surveillance studies [221,225].

Current methods to detect resistance genes from WGS data fall broadly into two cate-

gories: direct association, where the presence or absence of genetic variants known to

cause resistance are detected; and the application of predictive models derived from ma-

chine learning approaches [226].

1.2.2.1 Direct association methods

Direct association methods typically involve mapping sequences onto curated reference

databases of AMR genes, or known resistance mechanisms [227,228]. These databases

can be species specific, such as MUBII-TB-DB [229] for M. tuberculosis and u-CARE for

E. coli [230], antibiotic specific, such as TEMLacED for TEM ESBLs [231], or more broad

in nature [225,228]. Two of the most widely used broad databases are the Comprehensive

Antibiotic Resistance Database (CARD) and Resfinder databases [232–234]. The Res-

Finder database is part of the wider ResFinder tool, this database is updated regularly and

currently contains over 3000 AMR genes curated from literature reviews. It does not con-

tain efflux pump genes, but it has been merged recently with the PointFinder database,

which contains data on point mutations and genetic variants linked to resistance [234].

The CARD database is ontology based and has over 6,500 terms, encompassing resis-

tance genes as well as single nucleotide polymorphisms (SNPs) and genetic variants. It is

updated monthly through expert feedback and literature reviews [232]. A recent system-

atic evaluation of the CARD and ResFinder databases found that CARD predictions had

a higher major error rate (predicting resistance where an isolate is susceptible) but lower

very major error rates (predicting susceptible when an isolate is resistant) compared with

ResFinder [235]. Both databases though were not able to match current clinical standards

for AST [235].
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The various software tools which take in sequence data to compare to these databases

can act on read data or assemblies [225,228]. Read data tools, such as SRST2 [236] and

GeneFinder [237], can map sequences onto reference databases using Bowtie2 [238].

Other read based approaches use k-mer based mapping to reference databases, such

as the ResFinder tool [234, 239]. Using mapping tools directly on linear representations

of reference genes or variants can cause reference bias, masking important variation

between subtypes which themselves can cause resistance [225, 240]. As such recent

read-based approaches have also sought to build non-linear data structures to capture

all the genetic variation in a reference database [241,242]. In Mykrobe [241] a De Bruijn

graph is constructed from query reads and compared to a De Bruijn graph created from a

reference database to detect resistance, while Graphing Resistance Out of Metagenomes

(GROOT) [242] query reads are mapped to a variation graph created from the reference

database.

In contrast to read-based approaches, approaches that take in assembled sequences

include the popular AMRFinderPlus [243] from the National Centre for Biotechnology infor-

mation (NCBI) and CARD-RGI, which integrates directly from the CARD database [232].

These assembly based methods tend to use Basic Local Alignment Search tool (BLAST)

for searching for resistance genes among assemblies [228], while some databases also

contain a suite of Hidden Markov Models (HMMs) to find sequences with a similar function

but low sequence identity [225,244]. Using assemblies to search for resistance genes can

introduce potential biases from the de novo assembly steps, with duplicates of genes and

repeat regions potentially confounding assembly methods [245–247]. Assemblies though,

do allow for positional information to be retained, so upstream and downstream regulatory

regions, and any potential epistatic effects can also be investigated [228]. Read-based

methods however are typically faster, as the time consuming assembly step is skipped.

Additionally read-based methods can be used with rarer species and in metagenoic stud-

ies where asssembly methods are limited [225,248].

1.2.2.2 Predictive modelling methods

Direct association methods have been shown to be accurate for species, such as M.

tuberculosis and S. aureus [237, 241, 249–251], and drugs, such as the β-lactams and
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flouroquinolones [226, 252]. However, these methods do rely on the previous character-

isation of resistance mechanisms, meaning species which are not as well studied may

be erroneously predicted as susceptible [253]. Additionally, these methods are often not

fully able to capture any epistatic interactions between loci, which may produce non-linear

effects in determining resistance [254, 255]. Instead, approaches which build predictive

models of resistance from sequence data, often using machine learning strategies, can

model more diverse resistance mechanisms without the need for a priori knowledge of

resistance loci [226].

These modelling methods typically involve training a classifier algorithm on a set of

well-characterised sequence data, which could involve SNPs, genes, k-mers, amino acids

or other features, with known resistance phenotypes [256]. Then using this trained model

to predict unseen data, assessing the accuracy of the model based on this data [228].

There are a range of different classifier approaches available, including: logistic regres-

sion based approaches [257, 258], random forest (RF) approaches [259–261], support

vector (SVM) machines [262, 263], rules-based approaches such as set covering ma-

chines (SCM) [264,265], and deep learning approaches such as neural nets [266–268]. I

will briefly describe two examples of applying these machine learning based approaches

to predicting resistance phenotypes.

As mentioned above, much of the β-lactam resistance in pneumococci is driven by

variations in the three PBP genes, pbp1a, pbp2b and pbp2x [140]. The variation in levels

of resistance within clinical strains was further found to be primarily driven by alterations

in the transpeptidase domains (TPDS) of these three genes [269]. Li et al 2016 used a

large dataset of 2,528 pneumococci, with lab derived AST data, to extract their TPD do-

mains and train three different classifiers on this data [269]. Their rules-based approach,

whereby resistance was predicted as the modal MIC of isolates with the same TPD profile

as the query, and an RF approach outperformed the elastic net, a derivative of logistic re-

gression. Building on from this, in Li et al 2017 they expanded their data to 4,309 isolates

and further tested the rules-based approach and the RF approach [270]. They found the

RF approach to be more accurate than the rules-based approach, as it was able to more

accurately predict resistance levels for novel TPD profiles [270]. Overall the major error
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rate and very major error rate for the RF model were low, at 1.2% and 1.4% respectively

across the six different antibiotics tested against.

In Hicks et al 2019 the authors set out to evaluate the accuracy of RF and SCM

classifiers on three separate species, N. gonorrhoeae (the gonococcus), K. pneumoniae

and A. baumannii, predicting resistance against the fluoroquinolone ciprofloxacin and

the macrolide azithromycin [226]. Within gonococci, both classifiers did well predicting

ciprofloxacin resistance, which is determined largely by mutations in the gyrA and parC

genes [226, 271]. However, for azithromycin resistance, which has arisen multiple times

through many different pathways in Gonococci, both classifiers performed poorly, with an

average balanced accuracy (a combination of both sensitivity and specificity) significantly

lower than that for ciprofloxacin [226]. When the the models were trained on the much

more diverse A. baumannii and K. pneumoniae populations the models also performed

significantly worse than on gonococci datasets for ciprofloxacin. The SCM model was

roughly equivalent in terms of balanced accuracy for ciprofloxacin in A. baumannii, but

the RF model was significantly worse, while in K. pneumoniae both models performed

significantly worse than when predicting gonococci resistance [226]. In this case, the

authors suggest more comprehensive sampling of these diverse populations, along with

methods that can adjust for populations structure and other confounders, will hopefully

improve these prediction methods to a level where they can be used in a clinical setting.

1.2.3 Genomic epidemiology

A bacterial WGS contains a wealth of information. From this sequence we can predict

the AMR profile of the isolate in question, detect important pathogencity related genes,

and assess key immunogenic loci, such as the capsular serotype, among others [243,

272,273]. All of these phenotypic details are important in clinical settings. The continual

advancement in sequencing technologies though, allows for the sequencing of a large

number of genomes in a short time period, data that can be vital to the investigation of a

local outbreak or the dissemination of pathogens globally [274]. Once this data has been

assembled, one of the first and most important steps in providing clinically relevant data

is assessing the relationships between isolates [275].

46



Chapter 1

1.2.3.1 Inferring the relationship between isolates

Sequencing has been used to identify genetic variants linked to transmission in viral

pathogens for decades now [276–278]. Their much smaller genome size made these

approaches feasible in the early genomics era [279]. In bacteria, instead, other methods

that utilised only a fraction of the WGS, or protein sequences, were initially used to delimit

isolates in an outbreak [280]. One of the first methods for assessing the population ge-

netic structure of bacteria was Multilocus Enzyme Electrophoresis (MLEE) [281]. MLEE

assesses the differences between strains through electrophoretic variation of the amino

acid sequences of key enzymes [281]. However, MLEE studies have very low resolution

in terms of assessing genomic changes, with roughly only one in twenty of all possible mu-

tations detected [282]. Pulsed-field gel electrophoresis (PFGE), which involves enzyme

restriction of bacterial DNA followed by separation into bands through electrophoresis,

was also a popular initial tool, and is still used by smaller labs today [283]. Although,

PFGE struggles to discriminate between pandemic clones, such as the USA300 MRSA

strain, and more clonal species, such as M. tuberculosis [274, 280]. Additionally, results

for both PFGE and MLEE are difficult to standardize, due to the often only small differ-

ences observable between strains [274,284].

Multi-locus sequence type (MLST) methods were one of the first sequencing-based

methods for separating bacterial isolates [274]. MLST relies on determining the allele

presence at core housekeeping loci [285]. The allelic profiles of these genes have been

standardised with online databases of MLST profiles, which enables a common strain

nomenclature. MLST approaches also enabled the building of phylogenies directly from

sequences to highlight the relationships between strains [286].

Phylogenies are composed of branches representing the persistence of a lineage

through time, and nodes which represent the birth of new lineages in the population [287].

Broadly, phylogenies can be built using two main classes of methods, distance-based and

character-based [287, 288]. Distance-based methods first apply a model of nucleotide

substitution to a set of sequences to calculate the genetic distance between these se-

quences. These substitution models can be relatively simple in nature, such as the Jukes-

Cantor (JC) which assumes all substitutions occur at an equal rate [289], or more com-
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plex, such as the general time reversible (GTR), which allows for different rates based

on the mutation [290]. Once these distances have been calculated an algorithm, such

as Neighbour-Joining (NJ), will cluster together sequences to form a tree [291]. These

distance-based methods are fast, especially compared to character-based methods on

larger datasets, although they struggle on highly diverse datasets [287].

Character-based methods search for the most-probable tree for a set of taxa given

the sequence at each position [292]. Individual trees are scored based on a model of

evolution, such as the nucleotide substitution models described above [291]. A common

early character-based approach was maximum parsimony (MP) methods. This seeks to

select a phylogeny that explains the sequence alignment in terms of the minimum number

of substitutions possible [288]. MP approaches are thus computationally efficient [287].

However they struggle with divergent sequence and can not correct for multiple substitu-

tions at the same site [293].

Maximum likelihood (ML) methods allow for more complex evolutionary models to

be used to score a tree. These approaches attempt to find the parameters, the tree

topology, branch lengths and substitution model parameters, that maximise the likelihood

of obtaining the sequence data observed under the evolutionary model applied [294].

Most of the models applied in ML methods assume an independent evolution of sites,

so the likelihood can be calculated as the product of the probabilities of all sites [287].

These ML methods are useful in that they can explore a range of evolutionary models,

most of which will have explicit assumptions that can account for different evolutionary

processes [287]. However they are computationally demanding and are reliant on the

correct choice of evolutionary model [288].

Finally Bayesian methods are another approach to character-based phylogenetic re-

construction. In the Bayesian approach the parameters (the tree topology, branch lengths

and evolutionary model parameters) are considered to be random variables that can be

described by statistical distributions, rather than the fixed constants that ML methods as-

sume [287]. Before analysis these parameters can be assigned prior distributions, which

can allow for the incorporation of domain knowledge from users [295]. These priors are

then combined with the data to generate a posterior distribution, representing the proba-
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bility of a phylogeny given the data observed. This posterior distribution can not be calcu-

lated directly, instead these methods rely on Markov chain Monte Carlo (MCMC) sampling

to approximate the posterior [287]. This algorithm allows for more extensive searching of

the probability distribution, potentially finding the global optimum tree. Whereas ML meth-

ods perform a less extensive search, and can return only a local optimum tree. As with

the ML methods, Bayesian methods also allow for the testing of a range of complex evo-

lutionary models, while their probability distribution output is more easily interpreted than

the likelihoods produced from ML methods. However, these methods are very computa-

tionally intensive with MCMC sampling struggling to converge on large alignments.

Early phylogenies built from MLST data were informative about the relationships be-

tween the strains of pathogenic species, while also helping to uncover the extent of recom-

bination among bacterial isolates [286,296,297]. However, the MLST method has a fixed

resolution and can struggle with both highly diverse and more clonal populations [298].

With the arrival of NGS and LRS, isolates can now be separated by individual SNP dif-

ferences from WGS data. The phylogenies built from WGS are incredibly informative

tools for transmission chain analysis [275]. For instance, Harris et al 2013 [299], used

whole genome sequencing within a hospital-based outbreak of MRSA to show how, de-

spite stringent infections control methods, the outbreak persisted through carriage in a

staff member.

Sequencing of isolates from an outbreak will often be focused on very closely re-

lated cells, with sometimes only a few SNP differences between them [274]. In this case,

phylogenies formed directly from sequence data are likely to be representative of the true

relationship between strains. However, in studies focusing on community spread, or even

the global spread of a pathogen, a phylogeny formed from sequence data is unlikely to

be informative of the relationship between isolates. This is due to the often high rates of

recombination across bacterial genomes [300]. Instead, categorising these isolates into

closely related strains allow for further detailed analysis. MLST typing is again a popular

approach to separating these larger sequencing datasets into strains [285]. However, its

limited resolution may reduce its power to detect strain structure in certain populations.

Extensions of this approach include core-genome MLST (cgMLST) and whole-genome
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MLST (wgMLST), which use a wider range of sequence data to inform their clustering

and appear to offer higher resolution in the determination of strains [301, 302]. Other

approaches which utilise the WGS of isolates are also growing in popularity, such as hi-

erBAPs and PopPUNK [298,303]. These approaches promise to be more scalable to the

increasing amount of WGS data from global surveillance programs.

1.2.3.2 Phylodynamics

Bacterial pathogens tend to be rapidly evolving organisms, and this evolution can oc-

cur at the same timescale as epidemiological processes, such as host-to-host transmis-

sion [304]. This insight sits at the heart of phylodynamics, which seeks to use sequence

data and clinical data to explore the transmission and expansion dynamics of pathogenic

lineages [305]. Phylodynamic approaches rely on estimating a molecular clock from se-

quence data, with phylogenies subsequently adapted to be time-calibrated [306]. This

allows for temporal estimates of transmission dynamics, and estimates, typically using a

coalescent model, of the effective population size, Ne, of a population [304]. These meth-

ods have been successfully employed for the last decade in a range of viral pathogens.

From estimating the emergence time of HIV in Africa to the 1920s [307], to tracking the

spread of the Zika and Ebola epidemics [212, 308], and of course, their ongoing use in

teasing apart the dynamics of SARS-CoV2 spread [309].

With the increase of sequencing data through NGS and LRS methods, and tools to

detect and filter out recombination from bacterial phylogenies, these phylodynamic meth-

ods are becoming applicable to bacterial pathogens [279]. The adaptation of previous

phylogeographic methods, used to estimate the location of pathogen emergence as well

as the date, to other discrete traits associated with bacterial pathogens is an exciting av-

enue of research [304, 306, 310]. For instance, these models can be applied to estimate

the date and origin of AMR for different bacterial pathogens [311, 312]. While recent ap-

proaches have also sought to incorporate a covariate, such as antibiotic consumption

rates, to explain the expansion of AMR lineages [313].
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1.2.3.3 Insights into bacterial population structure from sequencing

Early models of bacterial evolution and population structure were typically based on the

asexual clonal reproduction of cells, with point mutations introducing diversity into a pop-

ulation, but little recombination present [282]. Indeed, early genetic studies using MLEE

often predicted low recombination rates in species [314–317]. In contrast to these stud-

ies, early efforts of directly sequencing the nucleotides of important genes, such as the

pbp loci, surface antigens and metabolic loci, depicted the mosaic nature of these loci

[318–320]. This, coupled with MLEE studies with a wider sample of isolates, forced a

reevaluation of the clonal model of evolution and emphasised a greater role for recombi-

nation in the evolution of bacteria [282,321].

The early use of whole genome sequences and the advent of comparative genomics,

further highlighted the important role of recombination in bacterial evolution [201]. Some

species were seen to be almost wholly clonal, such as M. tuberculosis and Yersinia pestis,

through multi-locus sequence type (MLST) methods [322–324]. With further WGS com-

parisons also confirming this clonal structure [325,326]. However, upon the sequencing of

the first three E. coli genomes, there was extensive evidence for HGT and wide between-

strain diversity [201]. Further population level sequencing has led to the concept of the

bacterial pan-genome [327,328].

In the pan-genome representation, genes are split into being either core or accessory

in nature. This split follows the typical U-shaped curve for the frequency distribution of

genes (Figure 1.3) [330]. Core genes are present in all, or almost all strains, with the

cut-off for core genes varying, typically being between 0.95 to 1.00 in terms of propor-

tion of genomes a gene is present within [331, 332]. Accessory genes are those outside

of the core. These can be split further into shell genes, those present at intermediate

frequencies, corresponding to the trough of the U distribution, and cloud genes, those

present in very few isolates representing the first peak of the U-shaped distribution [332].

A pan-genome can also be open in nature, with each additional genome sequenced re-

vealing more previously uncharacterized genes, or closed, where new genomes do not

increase the number of novel genes [333]. The relationship between number of genomes

sequenced and the number of genes in the pan-genome follows a power law, n = κNγ ,
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Figure 1.3: Frequency distribution of genes within GC2 lineage of A. baumannii. The pan-

genome of the 5,092 isolate GC2 strain investigated in chapter 5 was calculated using panaroo

[329]. In total 14,173 unique genes were detected in the population. The vertical line occurs at a

proportion of 0.95 on the x axis, splitting the core genes, which occur in nearly all the genomes,

from the accessory genes.

where the exponent γ > 0 indicates an open pan-genome [333].

Species with a closed pan-genome tend to be host-restricted, or live in an isolated

niche with few interactions with other bacteria [327,334]. These include largely clonal bac-

teria such as M. tuberculosis, Staphylococcus lugudunensis and Chlamydia trachoma-

tis [327, 335, 336]. In contrast, species with an open pan-genome tend to be able to

colonize multiple environments and are known to be recombinogenic or frequently ex-

change genes through HGT [327, 328]. It is thought the ecology of strains drives their

exposure to potential donors of DNA, which in turn affects the rate at which they can gain

genes through HGT, which then in turn drives whether they have an open pan-genome

(high rates of HGT), or a closed pangenome (low rates of HGT) [337]. Estimates of the

total pan-genome size and the core genome of a species are highly sensitive, both to

the method used to estimate this and the population of isolates sampled [329, 338]. In

general, though, the size of pan-genomes uncovered through bacterial sequencing, par-

ticularly with regards to accessory genes, has been surprising and serves to highlight the

pervasive nature of HGT in bacterial populations [336].
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1.3 Bacterial horizontal gene transfer

In general, resistance genes can enter into a population through either de novo muta-

tion or HGT [339] . Mutations are the ultimate source of all resistance genes, with flu-

oroquinolone resistance, as described above, generally precipitated by two amino acid

changes in parC in pneumococci [340,341]. In the main though, HGT offers a more rapid

route to adaptation via potential import of a whole host of resistance mechanisms and

other potentially adaptive sequence [342,343] . Within bacteria HGT generally occurs via

three different processes: transduction, transformation and conjugation [344]. In recent

years, other ”non-canonical” methods for HGT have also been discovered: movement

by membrane vesicles [345, 346], sequence movement through nanotubules in the cell

membrance [347], and via phage-like gene transfer agents (GTAs) [343,348] (Figure 1.4).

Once foreign DNA has been imported into a cell, there are numerous ways for it to either

incorporate into the host chromosome, or reside outside the chromosome (Figure 1.4).

1.3.1 Phage and Transduction

1.3.1.1 Mechanisms of Transduction

MGEs encode their own transportation machinery which can allow them to transfer be-

tween cells and within the host chromosome [349]. These selfish elements will spread

themselves even if its is deleterious to host cells [350]. Phages are one such selfish el-

ement, and are the most abundant life-form on the plant, with an estimated 1031 present

[351,352]. They are viruses which infect and kill bacterial cells [353]. Phages can trans-

fer DNA between bacterial cells via transduction (Figure 1.4). Transduction begins with

the initial infection of a cell by a phage, which bind to specific receptors on the surface

of bacterial cells through their receptor binding proteins (RBPs) [354]. The phage T5 for

instance uses the pb5 RBP to bind irreversibly to the fhuA outer-membrane protein of

E. coli [355, 356]. Upon adsorption onto the cell membrane, phage inject their DNA into

the host cell from where it can enter into one of two separate life cycles: lysogenic (also

known as temperate) or lytic [357].

In the lysogenic cycle, injected phage DNA will insert within the host chromosome to

become a prophage [358]. Prophage sequence typically inserts via site-specific recombi-
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nation, which can be mediated either by recombinases, such as the tyrosine recombinase

used by bacteriophage λ [359], or transposases, such as the MuA DDE transposase used

by bacteriophage Mu [360–362]. Once inserted into the host chromosome the prophage

lies dormant, replicating with the host cell [363]. The phage can be become induced

however, through circumstances that activate the bacterial DNA repair response, such as

DNA damage, antibiotic treatment and oxidative stress [364]. This results in the phage

switching to the lytic cycle, whereby the phage hijacks the host cell machinery to create

more phage capsids, filling these with sequence, before an overburdened host cell goes

through cell death and ruptures to release the newly formed phages [357].

In the lytic cycle, the phage DNA goes through episomal circularization followed by

theta and then rolling circle replication, before it is packaged into a capsid via a phage ter-

minase enzyme cleaving the DNA at a specific site, either cos or pac [365]. Transduction

occurs when external host DNA can erroneously become packaged in a phage capsid

instead [365]. There are three types of transduction: generalized, specific, and lateral.

Generalized transduction was the first case of transduction to be discovered, identified in

1952 in Salmonella [366]. It occurs when the phage terminase recognises a pseudo-pac

site in the host genome, packaging this instead of phage DNA [365]. Specialized trans-

duction occurs through improper excision of the prophage from the host DNA, creating a

hybrid DNA strand of phage and host DNA [367]. Finally lateral transduction has been

discovered most recently in S. aureus [368]. Unlike the previous two mechanisms, this

appears to be a natural part of the phage lifecycle [365]. DNA packaging begins before a

prophage has excised from the host genome, with packing starting at a pac locus within

the prophage and continuing across the host genome for up to seven headfuls, with this

mechanisms capable of transferring much more host DNA than the previous transduction

methods [365].

1.3.1.2 DNA transferred by transduction

Prophage have been found to be abundant among sequenced bacterial genomes, with

almost half containing at least one prophage [369]. In the prophage form, the interests

of phage and hosts often line-up, as the prophage require their hosts to replicate. Hence

many phages can encode potentially adaptive genes for their hosts [370]. For instance,
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phage are well known in transferring virulence genes among different bacterial species

[357,371]. The important Vibrio cholerae virulence factor, cholera toxin (CT), for example

was found to be encoded by the CTXφ phage [372]. In E. coli prophage are also seen to

upregulate the Shiga toxin genes, with cell lysis from phage infection releasing the toxin,

which benefits the closely related neighbour cells [370,373].

Phage machinery can also be hijacked by other MGEs, which utilize the phage trans-

fer mechanism for the relatively stable, given the sequence is protected within a viral

capsid, movement of sequence between cells [365]. Within S. aureus, pathogenicity is-

lands (PIs), which can contain superantigens and other virulence factors [374], normally

reside within the host chromosome, with their excisions repressed by the master repres-

sor Stl [375]. Helper phages encode anti-repressor proteins which allow the PIs to excise.

These PIs then produce new compound terminases from phage terminases and their own,

which recognize PI pac loci, allowing them to hijack phage transfer machinery for their own

ends [365,376].

However, while phage have been associated with pathogenicity islands and virulence

factors, their role in the dissemination of AMR genes spread is still uncertain. Studies in

vitro have observed transduction spreading AMR genes [377], however the frequency of

phages transferring AMR genes appears to be 103 times less than the spread via conju-

gation [378], suggesting transduction may only play a minimal role in AMR spread. Addi-

tionally, although virome based studies have found a range of AMR genes in phage se-

quences [379], these have used the poorly curated Antibiotic Resistance genes Database

(ARDB) [380]. A recent study which used the CARD database instead, found that phage

genomes rarely carried AMR genes [381].

1.3.1.3 Phage-host conflict

Bacteria and phages are in an evolutionary arms race that began shortly after the emer-

gence of bacteria billions of years ago [382]. As such, bacteria have evolved multiple

defence mechanisms, which include: restriction modification (R-M) systems, CRISPR-

Cas systems, and Abi abortive infection systems among others [383]. Phage in turn have

co-evolved anti-defence systems including: injecting proteins into a host cell that mask

the phage DNA to host R-M systems [384,385], encoding their own CRISPR-Cas systems
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to inactivate host defence mechanisms encoded on a pathogencity island [384,386,387],

and encoding repressors that inhibit the proteases which normally degrade antitoxins and

cause abortive cell death [384, 388]. Given the small size of phage genomes, these de-

fence systems are typically located in hotspots of genetic diversity, with a high-turnover

of material from a large pool of loci [389]. This means phage tend to be very specific in

the strains of hosts that they can successfully infect [390].

Once a phage is within a cell during the lysogenic cycle, its interests and the host’s

interests align. As such studies have shown that the insertion site of prophages in Es-

cherichia and Salmonella isolates have evolved to minimize host disruption [370]. With

these prophages inserting within intergenic and conserved regions of the host genomes,

which are less likely to be deleterious to host cell function [391]. However, transpos-

able phages, which can randomly move around within the host chromosome, can cause

genome rearrangement and gene knock-outs [370]. The Mu phage, for instance, repli-

cates by transposition around the host chromosome, which can cause the deletion of

genes and chromosome inversion [392], while in group A streptococcus (Streptococcus

pyogenes) phage cause large scale genome rearrangement [367,393]. Phage insertions

have also been observed to knock-out competence machinery of bacteria [350] and the

CRISPR2 loci involved in defence against phage-like sequences [350,394].

1.3.2 Conjugation and conjugative elements

1.3.2.1 Mechanism of Conjugation

Conjugation is a process that transfers DNA between cells via direct contact, with this

generally being mediated by a conjugative pilus [343](Figure 1.4). Conjugation requires

sophisticated machinery for this DNA transfer, involving: a relaxase (MOB), a type IV

secretion system (T4SS) and a type IV coupling protein (T4CP) [395]. To undergo con-

jugation, cells must first form a mating pair, with the T4SS essential for this, hence its

genes are known as mating pair formation (MPF) genes [396]. T4SSs are the most com-

mon secretion systems found in nature, and come in many forms, the simplest of which

is encoded by MPFT systems consisting of 11 proteins [396, 397]. In this system, the

pilus used to bind a receptor and a donor cell is first synthesised within the donor cell by

the VirB2 and VirB5 proteins of the MPFT T4SS [396–398]. The translocation appara-
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tus, which the DNA sequence of a conjugative element moves through between cells, is

created by five proteins: VirB3 and virB6-9 [397,399].

Once the MPF has been formed with the pilus and transport channel, the MOB relax-

ase nicks the circularized episomal donor DNA at the nic site within the origin of transfer

(oriT) [395, 400]. The relaxase then binds to this cleaved, now single-stranded DNA (ss-

DNA), and the T4CP then attaches to the relaxase [396]. This T4CP MOB complex is

then transported, along with the ssDNA of the donor, through the transport chanel formed

by the T4SS to the recipient cell [396]. Once all of the DNA is within the recipient cell

the relaxase ligates the ends of the ssDNA into a circular molecule [395]. Now the se-

quence exists in a circular ssDNA form in both donor and recipient and is then comple-

mented into double-stranded DNA (dsDNA) by host machinery [401]. Conjugation repre-

sents a stable mechanism of DNA transfer, with the connecting pilus protecting sequence

from the external environment [395]. Indeed very large DNA segments, in some cases

several megabases in size, have been seen to be transferred between diverse bacterial

hosts [402,403].

1.3.2.2 Plasmids

The term plasmid was first coined by Lederberg in the 1950s as a ”generic term for any

extra-chromosomal hereditary determinant” [403–405]. This captures the fundamental

nature of plasmids as DNA molecules existing episomally; plasmids can be further di-

vided into conjugative, such that they encode their own conjugation machinery, and non-

conjugative, whereby they lack the MPF genes for a T4SS and rely on other conjugative

elements to transfer between cells [396]. Plasmids are considered to be parasitic of host

cells, with fitness costs associated with their uptake and accessory gene expression [406].

They can also be lost by host cells during cell division, with a further common split in plas-

mids determined by their approach to counter this [405]. High copy-number plasmids tend

to be smaller and produce tens of copies of themselves per cell in order to ensure their sta-

ble inheritance during division. Low copy-number plasmids are larger and tend to encode

mechanisms such as post-segregational killing in order to remain within a host cell pop-

ulation [405, 407]. Plasmids can also be split into families based on their incompatibility

(Inc), which is defined as the inability of two related plasmids to stably co-infect the same
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host cell, due to competition between similar partition and replication systems [408,409].

Plasmids are considered to be modular in nature, with discrete clustering of genes

into functional groups, such as the backbone of plasmid-mobility genes and accessory

genes [403]. These accessory genes can be used to evade host defence mechanisms,

with IncN family plasmids known to encode anti-restriction proteins to block their removal

upon entry by host R-M systems for instance [410, 411]. The accessory genes though,

can also act to expand a host’s niche, most famously with the production of AMR genes

[405]. There have been several epidemic plasmids, which are identical to each other but

found in a broad range of host taxa, often encoding ESBLs such as CTX-M1 and CTX-

M14 and carbapenemases [412–414]. These resistance genes also tend to have higher

mutation rates in plasmids, likely as a result of their higher copy number offering a greater

chance of mutations occuring in any one copy [415]. The TEM-1 ESBL for instance,

was found to evolve additional high-level resistance to ceftazidime (a third generation

cephalosporin) when present on a high copy-number plasmid, whereas when TEM-1 was

on the chromosome this resistance did not evolve [405,416].

While plasmids do not tend to integrate into the host chromosome, they can still be

hotspots for recombination, with around 40% of sequenced plasmids mosaic in nature

[417]. This can affect the backbone of plasmids [418], as well as the accessory genes,

playing a major role in the evolution of AMR associated plasmids [405]. Recombination

can produce MDR plasmids, with plasmids in India encoding the NDM β-lactamase seen

to recombine with plasmids encoding the colistin resistance gene mcr1, for instance [419].

1.3.2.3 Integrative conjugative elements

Integrative conjugative elements (ICE) are similar to plasmids in that they they encode

their own T4SS that mediates their transfer via conjugation to other cells, however they

can also integrate within a host’s chromosome [420, 421] (Figure 1.4). ICE are thought

to be closely related to conjugative plasmids, with some ICE encoding the partition and

replication machinery used by plasmids, which may allow for interconversion between

the two MGE types, depending on host conditions [422, 423] . ICE integration is typi-

cally mediated by tyrosine recombinases, although other serine recombinases and DDE-

transposases are encoded by ICE, whilst they can also integrate through homologous
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recombination [395, 422, 424]. ICE are incredibly widespread taxonomically among bac-

teria, although they can also cause a fitness cost to hosts, either through expression

of their gene content or through disruption of host genes upon integration [425]. The

activation of the ICE conjugative genes and their excision from a host is also generally

detrimental to the bacterium, with ICE tending to be kept as quiescent elements in the

host genome [426] . There are a variety of signals that can induce ICE to excise from a

host, including the cellular SOS response, stationary phase signals and ICE phenotype

dependent induction [421,427,428]  .

The sizes of ICE range from 2̃0 kb to greater than 500 kb and they are modular in their

layout, with conjugation and integration genes typically conserved, while their cargo genes

can vary in number and functions [421,429]. In general cargo gene regions within ICE tend

to be hotspots for diversity. A comparative study of the SXT/R391 family of ICEs, originally

found in V. cholerae, found five hotspot regions that incorporated anywhere between 676

bp to 29,210 bp of variable sequence [430] . Interestingly these regions tended to be

mosaic in nature among the 13 ICEs studied, with overlapping distributions of these cargo

genes among the family indicating extensive recombination among the ICEs. In contrast

to the diversity present among cargo genes, all ICEs studied shared a core set of 52 genes

involved in ICE excision, integration and conjugation [430] . Cargo genes in discovered

ICE tend to have marked effects on the phenotype, such as providing resistance to a

certain antibiotic or enabling utilization of an alternative carbon source [312, 421, 431].

Comparative studies with plasmids depict ICE being less recombinogenic, likely a result

of their lower copy number, while also tending to encode more metabolism related cargo

genes than plasmids which favour AMR genes [423]. Nevertheless, ICE have also been

linked to AMR pandemic strains of V. cholerae, P. aeruginosa and the pneumococcus

[432–435].

Recombination within ICE elements can create both large compound elements and

smaller elements lacking some of the essential ICE genes. In Streptococcus thermophilus

for instance, smaller, truncated, non-mobile versions of the 35 Kb ICESt1 have been

observed at the shared fda insertion loci [436,437]. These fragments are also targets for

recombination, with evidence of the gain of efflux pumps and plasmid sequence around
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the fda locus [436]. Large MDR ICEs are also formed by the insertion of ICEs within

each other. The chloramphenicol and tetracycline resistant Tn5253 element for instance

is formed from the insertion of Tn5251, which carries the tet(M) tetracycline efflux pump

gene and is a member of the wider Tn916 family of ICEs, into the Tn5252 element which

contains the Ωcat element encoding chloramphenicol resistance [438, 439]. A Tn5253-

like element, ICESpn23FST81, is widely maintained in the MDR PMEN1 lineage of the

pneumococcus [142,440].

1.3.3 Transformation and homologous recombination

1.3.3.1 Competence regulation and DNA uptake

Unlike conjugation and transduction described above, which are largely driven by MGEs,

DNA uptake through transformation is regulated by the recipient cell and its activation of

the competence machinery [441,442]. Natural competence is a physiological state, con-

sidered to be a developmental program in bacteria, that enables cells to uptake DNA from

the environment [442,443]. Only around 80 different bacterial species have been found to

develop natural competence in laboratory conditions, although it appears the machinery

for competence is widespread among bacteria [343, 443, 444]. Apart from Helicobacter

pylori and Neisseria species, which are constitutively competent, most species exert tight

control over their competence machinery [444].

This control initially involves response to an extracellular signalling mechanism [442].

In the pneumococcus this external signal is the 17-residue competence stimulating pep-

tide (CSP), which is formed by the ComC protein, encoded by the comCDE operon, be-

ing exported and cleaved by the ComAB exporter [444–446]. CSP expression can be

induced by environmental cues, such as antibiotic exposure and alterations in pH, and

cellular cues, such as an increased rate of translational errors [442, 447–449]. This has

led to CSP being described as an alarmone, involved in cell-to-cell signalling [442, 448].

CSP binds to the membrane-embedded histidine kinase ComD, which leads to autophos-

phorylation and subsequent transfer of a phosphoryl group to the response regulator

ComE [448, 450]. ComE then upregulates the transcription of alternative sigma factor

SigX (encoded by two copies of comX ) which is the central regulator for the remaining

com genes required for transformation [442]. ComE also increases the transcription of
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the comABCDE operon involved in CSP formation and signalling, creating an autocat-

alytic feedback loop [442, 444, 451]. In other species, alternative external factors lead

to cells becoming competent. In V. cholerae for instance, chitin, sensed through ChiS

and TfoS, causes an upregulation of the TfoX regulator of competence, while in A. bau-

mannii human serum albumin has been seen to enhance the expression of competence

genes [442,452,453].

In the pneumococcus, the expression of CSP and the ComE upregulation of the

comABCDE operon is known as the early stage of competence, while SigX controls the

late stage, where the DNA uptake machinery is expressed, among other pathways [451].

This DNA uptake machinery includes a type IV pilus, extended from the cell membrane

by the ATPase ComGA and consisting of ComGC subunits, which binds to external ds-

DNA segments [443, 454, 455]. Upon binding of dsDNA, the pilus retracts through the

outer peptidoglycan cell wall, binding the DNA to the cell membrane protein comEA, the

first component of the DNA translocation system [456]. In the pneumococcus the EndA

nuclease then degrades one strand of the dsDNA, with the ssDNA then passing through

the comEC pore with a 3’ to 5’ polarity, with this translocation into the cytosol powered by

the ComFA ATPase [444,455,456].

As well as the DNA uptake machinery, SigX also upregulates genes involved in the

fratricide of neighbouring non-competent pneumococci [442]. Antimicrobial bacteriocin

production is upregulated for instance, with the inducer peptide BlpC, similar to CSP,

being exported by the ComAB exporter and acting as a signal to other competent cells

to also produce bacteriocins, such as CibAB, and their cognate immunity proteins [457,

458]. Other fratricidal elements upregulated include the autolysin LytA, the lysozyme

LytC and the amidase CbpD which has muralytic activity and can cause cell rupture [455,

459]. Competent cells become immune to CbpD by arresting their growth through the

expression of the late competence gene comM [455]. CbpD binds to the septal region

of the dividing bacterial cell wall, thus the arresting of growth prevents the septal region

from forming and avoids cell rupture from CbpD exposure [460, 461]. This competence-

linked upregulation of fratricide proteins, which kill neighbouring pneumococci, is thought

to increase the efficiency of DNA transfer by transformation. This is as there is a larger
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pool of external DNA now available [442].

1.3.3.2 Incorporation of DNA via homologous recombination

Once the external ssDNA enters into a host pneumococcus through the ComEC chan-

nel, it is bound by the recombination mediator protein DprA [462]. DprA stabilises the

ssDNA, protecting it from internal nucleases, and loads the recombinase RecA onto the

ssDNA [462, 463]. DprA also interacts with ComE, blocking its upregulation of the early

comABCDE genes, meaning cells are only competent for a short period of time [464,465].

RecA, once bound onto the ssDNA, polymerizes along the strand and promotes a simi-

larity search within the host chromosome [444] (Figure 1.4). Once a similar region to the

ssDNA has been found in the host chromosome a heteroduplex of donor and host DNA

is formed [444]. This can be fully identical, with the donor DNA matching the host chro-

mosome along its length, or can encompass heterologous sequence flanked by regions

of identity to the host chromosome [444]. The minimum efficient processing segment

(MEPS), the shortest length of flanking identity required for efficient recombination of het-

erologous sequence, is estimated at 27bp for pneumococci and E.coli [466,467].

Any sequence that is subsequently bound into the host chromosome can still be tar-

geted by R-M systems, if it is not appropriately methylated [444]. Restriction enzymes in

R-M systems can target the newly integrated DNA, degrading the sequence and in the

process killing the host cell [468]. To mitigate this, a late competence gene dpnA encodes

a methylase, a part of the wider DpnII R-M system, which methylates the donor ssDNA

before its integration by RecA [469, 470]. This prevents degradation of the sequence by

the DpnII restrictase once integrated into the chromosome. This allows for genomically

divergent heterologous sequence to be imported into a cell by transformation and homol-

ogous recombination [444].

1.3.3.3 The evolution of transformation

Becoming competent incurs a considerable cost to bacterial cells, with the upregulation

of the more than 100 genes involved in competence being energetically costly, while

cells also arrest their growth during this state, reducing their fitness compared to non-

competent cells [471]. Why then would cells engage in this potentially deleterious de-
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velopmental program? There have been numerous theories put forward to explain this.

These generally encompass: external DNA acting as a nutrient source, DNA uptake to re-

pair double stranded DNA breaks, external DNA as an adaptive evolutionary source, and

most recently external DNA integration to remove deleterious MGEs [441,444,471,472].

The DNA as a nutrient source hypothesis has been supported by observations that

H. influenzae and Bacillus subtilis appear to induce competence when purine pools are

deplenished [473,474]. Additionally it has been argued that external DNA may be of too

poor a quality for recombination into the host genome, so its use as a source of carbon

and other nutrients may be more advantageous [441,475,476]. However, other species,

such as the pneumococcus, do not appear to induce competence in times of starvation

[477]. Furthermore, the expression of the competence pilus and DNA uptake machinery

is expensive for cells, plus many species only import ssDNA, surely half the nutritional

value of dsDNA, which appears to be a counter-intuitive strategy for enhanced nutrient

uptake [444].

The link between competence and fratricide in the pneumococcus is seen as evidence

that DNA uptake might be selected for in order to provide genetic material to repair double

stranded DNA breaks [441]. Similarly, H. influenzae and N. gonorrhoeae discriminate up-

take towards self-DNA during competence, while V. cholerae also produces bacteriocins

that can mediate kin-discriminated killing [441,478]. Here, the uptake of DNA from closely

related cells allows for a greater chance of similarity and possible repair of DNA damage.

However, while there is some lab evidence for transformation mitigating the effects of UV

DNA damage in B. subtilis, this was not found in H. influenzae, H. pylori or Legionella

pneumophila [350,479].

Transformation does appear to have driven some major adaptive changes in bacte-

ria. In the pneumococcus for instance, mosaic AMR genes have been formed through

transformation and homologous recombination, while recombination around the capsule

cps locus has led to serotype switching and vaccine escape [140,142]. In these cases, re-

combination has eliminated any clonal interference between adaptive mutations, allowing

for these mutations to exist in one genome [480]. This could be evidence for the evolution

of transformation and recombination as a means to increase adaptive rates. Indeed, sim-
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ulation experiments have shown that recombining populations tend to be fitter [481,482],

while lab studies inE. coli show recombination speeds up adaptation [343,483,484]. How-

ever, as an explanation for the initial evolution of transformation and recombination, this

hypothesis relies on the discredited group-selection argument [350]. Transformation is as

likely to uptake deleterious as well as advantageous DNA, indeed some argue perhaps it

is more likely to uptake deleterious DNA due to this DNA coming from dead cells that are

likely not adapted to the local environment [475,476].

The external DNA uptaken through transformation tends to be short in nature, typically

following a geometric length distribution [485,486]. In the pneumococcus the mean size of

imported DNA is around 2.3 kb, which is much shorter than the typical MGE inserted within

a host chromosome [466,485,487]. This observation, coupled with the detection of many

successful MGE insertions disrupting host competence machinery [472,488], has led to a

new theory that transformation has evolved as a means to delete selfish MGEs from a host

genome [350]. Croucher et al 2016 used a mathematical model, with transient compe-

tence, asymmetrical DNA uptake and deleterious MGE presence, to highlight the fitness

benefit of transformation [350]. The authors also analysed pneumococcal genomes and

saw transformable isolates had significantly fewer prophage contained within, this analy-

sis was replicated on a smaller scale by Ambur et al 2016 [471]. However, much of this

theory relies on observations in only a select number of pathogenic species, further work

is needed to explore the length distribution of recombination events in other transformable

species to ensure this length asymmetry is universal [472].

These four explanations for the evolution of transformation are not necessarily mu-

tually exclusive, indeed it could be argued that the theory of transformation as a means

of deleting deleterious MGEs is a sub-component of the wider theory of transformation

evolving as a means to import diversity and speed up adaptation [442].

1.4 Summary

In this chapter then we have seen then how AMR has evolved almost in tandem with the

growing spread of antibiotics. Bacteria have been targeted in a range of different ways, but

have themselves evolved a multitude of different resistance mechanims. How resistance
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evolves within bacterial populations is still unclear, as is the true scale of deaths from

AMR infections. While methods for predicting resistance from sequence data in silico still

vary in their accuracy across different species and drug combinations.

HGT mechanisms though, have played an outsized role in the dissemination of key

adaptive changes in bacteria, such as AMR, pathogencity alterations and host immune

response evasion. Often, the MGEs that confer these adaptations are deleterious to hosts

and their insertion within the chromosome leads to intra-genomic conflict that may explain

the evolution of these different mechanisms. We have also seen how the improvement in

sequencing technologies in the 50 years has greatly expanded our knowledge of bacterial

biology. These new techniques have highlighted the role of HGT in bacterial evolution,

while also shifting our understanding of the bacterial genome to a more open pan-genome

view. This has important clinical implications for the dissemination of resistance, and other

virulence-associated genes, between pathogenic species. The era of bacterial genomic

epidemiology is also beginning, with sequencing data useful in clinical settings for the

understanding of outbreaks, and also playing a role in surveillance and the monitoring of

successful clones. Finally the nascent field of bacterial phylodynamics can offer further

insight into how clinical decisions impact the dissemination of AMR genes.
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Extending methods to detect

recombination in bacterial genomes
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Summary

Detecting recombination in bacterial genomes is key to understanding the relationships

between isolates. There are numerous approaches to this. One of the most popular,

Gubbins, relies on detecting an elevated number of mutations in sequence, indicative

of a recombination event. This chapter describes improvements made to the Gubbins

algorithm. Thorough benchmarking of the algorithm is performed, including comparing

Gubbins to another popular, but slightly different approach, ClonalFrameML. I find that

Gubbins is the most accurate method in determining the true relationships between iso-

lates. Improvements in the efficiency of the algorithm are identified that will allow for its

continual use with the ever increasing amount of sequencing data.
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2.1 Introduction

Bacterial recombination is an often broadly used term that has come to encompass all

manner of genetic exchange between cells, be they closely or distantly related. In this

work I will consider recombination as a process through which exogenous DNA is inte-

grated into the host chromosome. In this regard, recombination is typically mediated by

the three main mechanisms of horizontal gene transfer (HGT): transformation, transduc-

tion and conjugation which import foreign DNA into a cell [343]. Once foreign DNA is within

a host cell, it can then recombine into the chromosome, or in some cases plasmid DNA,

through a variety of homologous, non-homologous and site-specific recombination meth-

ods [343,490]. Initially, recombination was not thought to be common among pathogenic

bacteria, with successful clones taken to be indicative of point mutations being the main

force driving genomic variation in these species [274, 314]. With the advent of genetic

sequencing though, this belief has been overturned, with ample evidence for recombina-

tion playing a key role in the emergence of successful MDR lineages across the bacterial

domain [142,491,492].

In broad terms, recombination events can be split into exchanges and imports [493].

These events are defined with respect to the phylogeny of a sample. Exchanges occur

between closely related isolates within the same phylogeny. These exchange events can

easily produce homoplasies, which confound the phylogenetic reconstruction of lineages

[274, 494]. Imports are typically rarer and represent the integration of highly divergent

sequence from an external population. These import events can be quite large and can

lead to new lineage formation [495]. While imports tend not to introduce homoplasies,

these events do affect branch lengths, which may hamper efforts to identify evidence of

a molecular clock among sequences [494]. The estimation of a clock rate is often vital in

outbreak analysis [496], while it can also help answer questions around the link between

clinical interventions and bacterial population size [497]. In general, both recombination

types violate core assumptions of nucleotide substitution models, as SNPs present in

an alignment may not be independent of one other if brought into the genome by the

same recombination event [498]. Thus, the challenge in reconstructing the evolutionary

history of recombinogenic lineages is separating the informative vertically inherited point
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mutations from those mutations introduced horizontally by recombination, which, while

indicative of the selection pressures an isolate is experiencing, are much less informative

of the relationships between taxa.

In this chapter then, I will describe my efforts to improve perhaps the most widely

used tool for detecting recombination in bacterial lineages, Gubbins [489]. I will start by

outlining the array of methods available for detecting recombination events in sequences

and then describe the main Gubbins algorithm, before detailing the improvements made

to Gubbins and the results of benchmarking the new package.

2.1.1 Methods of detecting recombination:

2.1.1.1 Detecting exchanges

The first statistical techniques developed to detect recombination were compatibility meth-

ods [499]. These methods test for phylogenetic incongruence on a site by site basis, with a

site incompatible with a tree, and hence indicative of recombination, if the observed num-

ber of characters at a site (c) cannot be explained by c - 1 substitution events [499,500].

These methods were initially applied to the protein sequences of cytochromes [501], and

were also later tested on the DNA sequences of human γ-globin genes [502]. Similar

methods based solely on phylogenetic incongruence between gene trees, or similar sub-

set trees and a total sequence tree, have also been developed to detect recombination.

These methods are suitable for detecting exchanges within a population. They have

been particularly effective when applied to viruses, with their smaller genome sizes more

amenable to tree building efforts [503–505].

An early sequence based method to detect exchanges was the Homoplasy test [506].

This measures the rate of homoplasic site mutations in a set of sequences and compares

this to a null hypothesis of no recombination, where homoplasies are caused instead by

repeat mutation at the same site. It can lead to overall estimates for the recombination

rate in a population. However, this does require a suitable outgroup to be used in the

analysis, while it can also be confounded by hypermutator sites [493, 506]. The concept

of homoplasies as indicative of recombination has been used in earlier studies looking

at the emergence of MRSA with WGS data [507, 508]. As well as homoplasies, recent
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methods have also looked at the incorporating rates of linkage disequilibrium (LD) within

a population to assess recombination rates overall for a population [509,510]. In general

LD is considered to decrease in bacterial populations as recombination rates increase,

although this can be confounded by sampling strategies [510]. As such these methods

often take into account multiple parameters, including homoplasies and the incompatibility

of sites described above, in order to estimate overall population recombination parameters

[509, 510]. A recent method from Lin & Kussell [511], uses a similar statistic, measuring

the degree of correlation between substitutions differing lengths apart, to also assess

recombination parameters for populations.

When trying to detect individual exchange events in a population, and identifying

these within an alignment, methods using a sliding window approach have also been

implemented. In these approaches alignments are scanned and metrics calculated at

each scanning step to assess the likely start and end points of a recombination event.

Building from the phylogenetic incongruence tests described above, these tools initially

tested windows for differing topologies within a region through parsimony and maximum

likelihood methods [512, 513]. For viral genomes, bootstrapping of trees has also been

used, with references for donor sequences scanned against the length of a query se-

quence [514,515]. These methods can be very effective, but only when reliable sources

of donor and recombinant DNA are included in the tests. In addition sliding windows can

be prone to multiple testing effects [516], while the window size can affect the resolution

of breakpoint determination. Bayesian methods have instead switched to modelling the

alignment as a Hidden Markov Model (HMM), with the states the different phylogenetic

topologies at each site [516–519].

2.1.1.2 Detecting imports

Some of the earliest attempts to detect imports used sequence based methods, where

blocks of high sequence divergence among regions of high sequence similarity are taken

as indicative of imports [520, 521]. The χ2 test developed by Maynard-Smith, which de-

tects imports based on elevated regions of SNPs, is one such example [520]. All these

methods typically rely on detecting linked sets of polymorphisms from donors that are

highly diverged from recipient strains. However, these blocks of high divergence maybe
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rarer in highly recombinogenic species, where LD is more likely to break apart linked

polymorphic sites [493].

Extensions of sliding window approaches for detecting exchanges within alignments

have also adopted the concept of a bacterial ”Clonal frame” [522]. This represents the

portions of a genome at which observed variation arises from vertically inherited sequence

and reflects more closely the relationships between taxa [274]. This can be inferred when

the donor sequence is not present in the alignment. If recombination detection methods

could identify recombinant regions of a genome and remove them, what would remain

would be this clonal frame used to infer a phylogeny without the influence of recombina-

tion [274]. The ClonalFrame algorithm [523], was one of the first attempts at this sort of

analysis. Within a Bayesian framework, the algorithm uses a HMM with the descendent

and ancestral nucleotide sequences of a branch being the observed states, while the hid-

den state is whether a nucleotide was imported by a recombination event [523]. This was

initially applied to MLST data and very small collections of WGS data, with the number of

parameters estimated in the model leading to slow run times for larger datasets. As such

the underlying framework has been adapted to a maximum likelihood approach to esti-

mate parameters, this has been released as ClonalFrameML [524]. In ClonalFrameML

the Baum-Welch Expectation-Maximisation (EM) algorithm used to estimate recombina-

tion parameters. This is now capable of running on much larger collections of WGS data

within reasonable run times.

A faster method incorporating Bayesian parameter estimation for identifying recom-

bination import events is BRATNextGen [525]. This initially splits input data into chunks

of 5kb length and identifies SNPs in the chunks, which are then clustered within each

chunk. These clusterings then inform a HMM used to infer whether a SNP is present from

a recombinant state or a non-recombinant state [525]. This is a reasonably fast method to

infer recombination events among a collection of isolates. However, rather than produce

a tree representing the clonal relationships between isolates, this method produces a Pro-

portion of Shared Ancestry (PSA) tree, grouping isolates together based on their overall

sequence similarity, which is less useful for further phylodynamic analysis. Additionally,

both BRATNextGen and ClonalFrame methods rely on identifying recombination events
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via the presence of SNP dense regions of the alignment, akin to the early methods ap-

plied to bacterial genes described above [520,521]. In large diverse collections however,

especially of highly recombinogenic species, SNPs may appear ubiquitously across an

alignment, meaning detecting recombinations via their spatial distribution becomes near

impossible [300]. Therefore, these methods are best employed in the analysis of a single

well-defined lineage of isolates, such as a recent outbreak, in order to allow for easier

identification of SNP dense regions that are representative of a recombination event.

Given the ever increasing amount of sequence data available, comparisons between

lineages, especially closely related ones, will become more and more necessary to per-

form. One method that attempts to tackle this problem is fastGEAR [526]. Given an input

alignment fastGEAR will initially attempt to assign lineages within the collection through

BAPS which is corrected for recombination events [527]. It then detects recent recombi-

nation imports that occur within a lineage, and ancestral events that occur between the an-

cestors of lineages in the population using a HMM approach that compares sequence both

between and within a lineage, leveraging on the diversity of the input collection [526]. This

focus on comparing sequences between lineages allows fastGEAR to work effectively on

diverse datasets, detangling the mosaic structure of the penicillin binding protein genes

for instance [526]. However, the intensive Basyesian approach of fastGEAR means it is

difficult to run on larger collections of WGS data, while the initial BAPS clustering method

relies on less-robust heuristics to split recombinant lineages apart.

Of all these methods for detecting recombination among bacterial genomes, perhaps

the most widely used is Gubbins [489]. Broadly this method is most similar to the Clon-

alFrameML algorithm, using a sliding window approach to identify regions of increased

SNP density and a maximum likelihood framework to assess whether these regions of

elevated SNP density constitute a recombination event.

2.1.1.3 Gubbins algorithm

The Gubbins algorithm can be broadly split into three main steps: (1) inferring a phylogeny

from a clonal frame, (2) ancestral state reconstruction of the sequence from the phylogeny,

(3) identifying and trimming recombination events along each branch of the phylogeny.

This algorithm is iterative, with a phylogeny built from the inferred clonal frame produced
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from step 3.

For the first step in the algorithm, inference of the tree employs some heuristics for

improved computational efficiency. Only polymorphic sites are used for the inference of

the phylogeny. For the detection of polymorphic sites Gubbins uses a forerunner of the

popular snp-sites tool [528]. Once these polymorphisms have been extracted a phylogeny

is formed from the subset alignment. Gubbins v2.4.0 uses either FastTree v2.1.0 [529]

or RAxML v8.2.12 [530] for this step, with a GTR model of substitution and a gamma

distribution to account for rate heterogeneity between sites. In the first iteration, no re-

combinations have yet been inferred, hence the whole alignment is treated as the clonal

frame. This means the creation of the initial phylogeny is often the slowest step of Gub-

bins and is the least accurate [489]. Hence a hybrid strategy of using the faster, but

less robust, FastTree builder in the initial phylogeny creation, followed by RAxML for later

iterations is often used.

Step two of the algorithm is reconstructing the ancestral sequence for each node

within the phylogeny produced from step one. In the initial Gubbins release this was run

using the FastML joint reconstruction method [531], however this proved to be difficult to

maintain and was not open source. Hence, for Gubbins v2.4.0 RAxML marginal ancestral

state reconstruction is employed, again with a GTRGAMMA model for substitution rates

and heterogeneity between sites. A Marginal reconstruction is optimized to find the state

at a single node with highest probability for that node [532]. Joint reconstruction on the

other hand, will find the state at each node which maximises the overall probability of a

phylogeny [532]. Ancestral sequence reconstruction is run on the phylogeny produced

and the polymorhpism alignement, with further processing defining both the substitutions

occurring along a branch and the bases that occur between substitutions. Any bases

which are ambiguous in the leaf nodes of the tree are considered to be undetermined at

internal nodes and are excluded from further processing.

Once sequences have been reconstructed, the scanning of branches to detect ele-

vated areas of SNP density, taken to be indicative of recombination, is performed. As

described above (Section 2.1.1.1), this method for detecting recombination events does

rely on isolates within a collection being closely related to each other, such that SNPs
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would appear to be evenly distributed across a chromosome in the absence of recombi-

nation. In diverse populations this assumption is violated [300], as SNP densities may be

elevated simply due to the accumulation of point mutations over a longer sampling period.

Additionally regions of mutational hotspots, perhaps where loci are under strong positive

selection, would also appear as false positives in this approach. The null hypothesis for

each branch B, H0,B, though assumes that the SNPs which occur along the length of

the branch, sB will be distributed evenly along the chromosome. This is modelled as a

binomial distribution, with the number of bases occurring in a window scan sw, based on

the size of a window in bases, w, and the mean density of base substitutions across the

bases of the downstream node, d0,B (Equation 2.1). This is tested using a sliding window

of varying size w. This size, w, is calculated based on the sB divided by the minimum

number of SNPs in a recombination, l (by default this is set to 3). This gives us the num-

ber of possible recombinations on a branch, sR. The number of bases remaining on a

branch is then divided by sR to give w. The number of SNPs within the window on branch

B, N , is at least l.

H0,B : N ∼ Bin(w, d0,B) (2.1)

For each branch on the tree, sB windows are tested, with each window centred on a

unique SNP along the length of the branch. Therefore, to correct for any multiple testing

effects, the threshold P -value (PThreshold) is a Bonferroni correct value (Equation 2.2).

PThreshold =
0.05

sB
(2.2)

Contiguous regions of one or more windows where H0,B could be rejected, based on the

PThreshold value with a one-tailed binomial test, represent loci in the chromosome where

there is elevated SNP density and are subsequently labelled as putative recombination

events, r. This block r is now proposed to conform to an alternative hypothesis H1,B,r.

This is also modelled as a binomial distribution, based on the length of the region, lr and

the density of SNPs within the region, d1,B.r (Equation 2.3).

H1,B,r : N ∼ Bin(lr, d1,B,r) (2.3)
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The size of these initial putative recombination events may exceed the length of the re-

combination event they contain however. The next stage then is trimming these putative

events to delineate the likeliest regions of an insertion. The first trimming occurs by re-

ducing the boundaries of r to the outermost SNPs it encompasses. Trimming then com-

mences from the left side, then the right side, measuring until further trimming no longer

increases the regions likelihood under Hl,B,r relative to its likelihood under H0,B. A final

inequality must then be satisfied to reject H0,B (Equation 2.4). The left-hand side of this

inequality represents another Bonferroni corrected threshold probability for the number

of equally sized, lf , non-overlapping windows which could be observed in the genome

of length g. The right-hand side of the inequality estimates the probability, under H0,B

that the current trimmed window, of length lf , would contain at least the same number of

SNPs, sf , which the putative recombination event contains.

0.05

g/lf
> 1−

i=sf−1∑
i=0

(
lf
i

)
(d0,B)

i(1− d0,B)
lf−i (2.4)

This final inequality test aims to remove blocks that appear to form with two distinct re-

combination events at their poles. These events would have a paucity of SNPs in their

centre after the trimming process, and would then be removed from consideration as a

single recombination block. These stages of scanning across the branches, trimming pu-

tative recombination blocks and testing for their significance, will produce a set of blocks

for a branch. Of these blocks, the event identified with the smallest value of its probability

under the H0,B divided by its probability under H1,B,r (rsmallest; Equation 2.5), the likeli-

hood ratio, is then converted to missing data for B and all its descendent branches, with

this recombination event overwriting any information from the clonal frame. The identifi-

cation of recombinations is then repeated, with d0,B recalculated after removing individual

recombination events so that SNP-dense regions of sequence don’t reduce the power to

detect other recombination events.

rsmallest =
H0,B

H1,B,r
(2.5)

Now that recombination events have been identified and removed from the clonal
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frame within the alignment, the three steps are then repeated, with FastTree v2.1.0 or

RAxML v8.2.12 used to infer the phylogeny. These three steps are repeated either for a

default of five iterations or until some degree of convergence in the results is detected. In

the algorithm there are three tests for convergence: (i) Identical recombinations produced

between two iterations, (ii) Any two trees of the iterations have a weighted Robinson-

Foulds distance of 0 [533], (iii) Any two trees have a symmetric distance of 0. The default

for convergence testing is the weighted Robinson-Foulds distance of any two trees from

the iterations.

That describes the steps in the Gubbins algorithm, now I will detail the extensions I’ve

made to the method

2.1.2 Extensions to the Gubbins algorithm

Gubbins has proven to be a popular method for phylogenetic analysis of bacterial lin-

eages, with other 1,000 citations since its release in 2014, and over 25,000 downloads

through the Conda package manager [489, 534]. However, Gubbins v2.4.0 relies on

software which is no longer supported by developers. The default phylogeny and an-

cestral state reconstruction software, RAxML v8.1.2, for instance is no longer actively

maintained, with the newer RAxML-NG [535] supplanting the older method. Addition-

ally many users of Gubbins run the method simply to produce a recombination-corrected

alignment, then generate a phylogeny with another method, such as the popular IQ-TREE

algorithm [536–540]. Extending the number of tree models used by the algorithm would

streamline the analysis pipelines for users, with Gubbins able to detect recombination

events, produce a recombination-corrected alignment and a phylogeny representing the

clonal frame of the lineage.

Gubbins also currently only implements a marginal reconstruction of ancestral se-

quence states, step two in the algorithm as described in Section 2.1.1.3. Joint reconstruc-

tion algorithms have tended to be much more computationally intensive than marginal

ones, although there have been attempts to improve these algorithms [532]. Given Gub-

bins estimates recombination events occurring across the whole tree, and not just for a

single branch, joint reconstruction methods may give more accurate predictions of where

recombination events have occurred.

76



Chapter 2

When analysing larger lineages, with over 5,000 isolates for instance, Gubbins is less

efficient in using memory. Local runs of an Acinetobacter baumanii GC2 clade with over

5,000 isolates used over 200 GB of memory to complete (See Chapter 5 for further details

of analysis). Heavily sampled species where lineages are harder to define, like N. gon-

orrhoeae [298], have not been able to complete Gubbins analysis. Given the increasing

availability of sequence data, in order for Gubbins to remain a useful tool for phylogenetic

analysis, improvements need to be made to its memory usage.

We address these limitations in a recent version of Gubbins, v3.2.0. In this version of

Gubbins, the tree builders available have been extended, with users now able to choose

IQ-TREE [540], RAxML-NG [535] and RapidNJ [541] for full phylogeny creation, while

an option to produce a Star phylogeny in the first iteration is also available. In addition

the default ancestral state reconstruction has now been switched to a joint reconstruction

method. This has been adapted from pyjar [542] which itself is an implementation of the

algorithm proposed in Pupko et al 2000 [532]. In adapting the code for Gubbins, the

memory usage and the speed of the algorithm have also been optimized. Finally the

recombination detection algorithm (step 3 in the whole Gubbins algorithm as discussed

in Section 2.1.1.3) has also been optimized for memory usage, without changing the core

process undertaken by the algorithm. All these changes have led to a faster more flexible

Gubbins that can now run efficiently on lineages with over 1,000 isolates.

Now that I have described the rationale for extending Gubbins and the improvements

we have made to the algorithm, I will go into more detail about how I benchmarked the

new version, starting first by describing the methods used to produce simulated datasets

for testing.

2.2 Methods

2.2.1 Simulating artificial sequences

To assess the accuracy of the new Gubbins version, simulated datasets were created

using a forward-in-time individual based framework. This was the same framework pre-

viously deployed for the initial Gubbins release [489], but expanded upon with an option

for GTR model based substitution rates and a Poisson distribution for the number of re-
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combination events occurring at each time step. I chose to use this simulation method,

as opposed to other forward-in-time simulators like Bacmeta [543] and FastSimBac [544],

due to its ability to allow for recombination events from external populations, along with

its tailored output for benchmarking against Gubbins.

The starting genotype for the forward-in-time simulation was chosen as the S. pneu-

moniae RMV4 rpsL* ∆tvrR genotype (accession code: ERS1681526) [545], which is the

reference isolate for the PMEN3 lineage investigated in later chapters. Recombination

donors were selected from 52 different streptococcal genomes (Table 2.1), expanding

on those used in the FastGEAR paper [526]. These sequences were aligned to the an-

cestral genotype using SKA [546], to form an input alignment to act as donor sequence

throughout the simulation.

Species Count

S. mitis 30

S. oralis 9

S. pneumoniae 7

S. pseudopneumoniae 6

Table 2.1: Species counts of the 52 Streptococcus genomes used as recombination donors

in the simulation of artificial sequence.

In the simulation, as described in Croucher et al [489], each extant sequence ac-

quires a single point mutation at each timestep from t = 0 to t = tmax, where tmax is the

time point at which the number of extant sequences reaches a pre-determined limit, nseq,

which was set at 100 unless otherwise specified. The default is for this substitution to

occur as predicted by a Jukes-Cantor substitution model, with equal probability for each

base, irrespective of the starting base. A GTR substitution model has also been imple-

mented in the model, this is parameterised from IQ-TREE [540] fitting the GTR model

to the PMEN3 collection, which is described in the later Chapter 3. Sequences also un-

dergo recombination, with the number of events that occur at each timestep drawn from a

Poisson distribution, with a mean, µrec, that I vary for each individual simulation run. The

imported sequence comes from a donor chosen randomly among the 52 streptococcal

genomes input, while the start of the import is also chosen randomly along the length of

the chromosome. The length of the import is modelled from the geometric distribution
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of recombination lengths observed in the pneumococcus, with a per base probability of

stopping the extension of sequence of 0.0005 bp−1.

Through-out the simulation each sequence also has a probability of being duplicated

into two initially identical sequences, pbranch. A value, b, is taken randomly from a uniform

distribution between 0 and 1 with pbranch representing the threshold at which, if the value

of b is less than or equal to pbranch a new branch is created. Higher values of pbranch mean

sequences have less time to diverge from one another. This would be akin to either the

sequences output from dense sampling of a single lineage, such that the sample would

almost or fully encompass all possible diversity of a lineage, or the sequences output from

a slowly evolving lineage.

In the benchmarking of Gubbins results against simulated results, recombination and

substitution events which occur ancestrally and are subsequently overwritten by more

recent events are removed from the accuracy calculations. When comparing the SNP

classification of Gubbins to the results from the simulated data, the accuracy was as-

sessed through the positive predictive value (PPV) score and the sensitivity score (Figure

2.11). The PPV score measures the number of true positives divided by the total number

of positives produced from the reconstruction. In this case a true positive is defined as a

SNP which occurs on the same branch, in the same loci and is classified as the type of

SNP. SNPs can be classified into two types: either occurring within recombination events

(r SNPs), or outside recombination events (m SNPs). Sensitivity measures the number

of true positives divided by the total number of positives in the simulated data. This is

indicative of the level of false negatives produced by the reconstructions.

2.2.2 Assessing differences in phylogenies

The simulated results produce a phylogeny based on the SNPs occurring in the clonal

frame of the alignment. This is taken to be the ”true” phylogeny to compare those pro-

duced by other models against. To compare these phylogenies I use the the Kendall-

Colijn metric [547] as implemented in the treespace R package v1.1.4.1. In this metric

each Tree, T , is represented by a vector, υ(T ), which is composed of two separate vec-

tors, m(T ) and M(T ), that record the distance between the MRCA of a pair of tips and

the root, and the distance from a tip to its antecedent node. The vector m(T ) only mea-
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sures the distance between the MRCA of two tips and the root in terms of the number

of branches, with each branch given a length of 1. This value then only depends on the

topology of T . The vector M(T ) however, measures the distance in terms of the branch

length, both for the distance between a pair of tips and the root, and the distance from a

tip to its immediate ancestor node. The parameter λ ∈[0,1] is then used to combine these

two separate vectors into υλ(T ) (Equation 2.6).

υλ(T ) = (1− λ)m(T ) + λM(T ) (2.6)

Once this is calculated for T1 and T2, the distance between the two trees is then the

Euclidean distance between the two vectors υλ(T1) and υλ(T2) (Equation 2.7).

dλ(T1, T2) = ||υλ(T1)− υλ(T2)|| (2.7)

In this case using λ = 0 gives the distance between two trees purely in terms of topology,

with a score of 0 for this metric indicating the trees have identical topology. When using

λ = 1 however, a score of 0 would indicate not only that the topology of two trees is the

same, but that the branch lengths are the same too and thus that these trees are wholly

identical.

2.3 Results

2.3.1 Assessing the phylogenies produced from Gubbins

With the updates to Gubbins there are now a possible 60 different combinations of the first

iteration phylogeny builder, main iteration phylogeny builder and ancestral state recon-

struction method. As noted above (Section 2.1.1.3), typically a hybrid approach, whereby

a faster less robust phylogeny builder is employed in the more computationally intensive

first iteration of tree building, followed by more robust methods in later iterations, forms the

best compromise between speed and accuracy in the detection of recombination events.

So, in order to narrow the scope of benchmarking, only hybrid like model combinations

have been fully benchmarked for this version of Gubbins. This leaves 18 different combi-

nations tested (Table 2.2).
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First iteration Main Iterations ASR

FastTree IQ-TREE Joint

FastTree IQ-Tree Marginal

FastTree RAxML Joint

FastTree RAxML Marginal

FastTree RAxML-NG Joint

FastTree RAxML-NG Marginal

RapidNJ IQ-TREE Joint

RapidNJ IQ-TREE Marginal

RapidNJ RAxML Joint

RapidNJ RAxML Marginal

RapidNJ RAxML-NG Joint

RapidNJ RAxML-NG Marginal

Star IQ-TREE Joint

Star IQ-TREE Marginal

Star RAxML Joint

Star RAxML Marginal

Star RAxML-NG Joint

Star RAxML-NG Marginal

Table 2.2: Models benchmarked for Gubbins v3.2.0. ASR refers to Ancestral state reconstruc-

tion method

To benchmark these different models and assess the accuracy with which they re-

construct the evolutionary history of samples, ten separate replications were created of

simulated data at varying pbranch and µrec values. The output whole genome alignments

from these simulations were then analysed using Gubbins, with each of the 18 differ-

ent models identified in Table 2.2. An IQ-TREE [540] phylogeny produced directly from

the output alignment, not correcting for recombination, was used to assess the effects

of detecting recombination too. The alignment was also analysed with ClonalFrameML

v1.12 [524], run with default parameters, with the simulation alignment and the IQ-TREE

produced directly from this alignment used as the starting input for this algorithm. The first

method of assessing accuracy was determining the distance of the phylogenies produced

by each model from the true phylogeny, based on the clonal frame SNPs alone, produced

from the simulation. To measure this distance I used the Kendall-Colijn metric [547] as

implemented in the treespace R package v1.1.4.1 (See Section 2.2.2).

When applying this metric to the trees output from Gubbins, ClonalFrameML and di-

rectly from IQ-Tree, a few patterns start to emerge (Figures 2.1-2.4). Firstly, when we

group the Gubbins models based on their starting tree, we see the phylogenies produced
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are remarkably similar in terms of distance from the true tree. The trees have identical

topology at different pbranch levels, matching the true simulated tree (Figure 2.1B), while

they only start to differ in terms of topology at very high levels of recombination in the

population, although their distances are all of the same order of magnitude (Figure 2.1A).

When incorporating branch lengths too, the trees produced are very similar, across both

µrec and pbranch. Overall the Gubbins models tend to match the topology of the simulated

phylogeny more closely than the IQ-Tree and ClonalFrameML phylogenies (Figure 2.1A,

the Raw and ClonalFrameML tree overlap one another), however at the highest µrec Gub-

bins performs slightly worse. When measuring branch lengths though, when λ = 1, the

ClonalFrameML model outperforms all the Gubbins models across µrec (Figure 2.1C).

When varying the pbranch though, where µrec = 0.1 for all these runs, the Gubbins

models tend to get closer to the true tree with increasing pbranch than ClonalFrameML.

ClonalFrameML assumes that the input ML phylogeny matches the topology of a clonal

genealogy of the input data [524, 548], hence why the topology matches that of the tree

formed directly by IQ-TREE (Figure 2.1A). Instead, ClonalFrameML re-scales the branch

lengths of the input phylogeny based on its estimates of the recombination parameters

and an expected number of mutations per site on a branch [524]. This estimation em-

ploys a Poisson approximation for the number of substitutions along a branch, similar to

how recombination events are modelled in our simulation, which may explain why Clon-

alFrameML rescales branch lengths to more closely fit the true tree. Gubbins employs a

more agnostic approach, removing recombination events and then building a phylogeny

directly from this recombination-cured alignment. This approach means Gubbins can

avoid the potential confounding of homoplasies introduced by recombination in terms of

the topology of the tree, but this approach also appears to lessen the accuracy of Gubbins

when inferring the branch lengths of the phylogeny.

When we group the Gubbins results by the phylogeny builder used in the main it-

erations of the algorithm we observe similar overall patterns to those from the starting

iteration phylogeny builder (Figure 2.2). Again the Gubbins trees match the topology

more closely over the majority of µrec values, and are identical to the topology of the true

tree across the range of pbranch values (Figures 2.2A & 2.2B). When focusing on branch
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Figure 2.1: Kendall-Colijn distancemetric between true simulated tree and output tree, with

Gubbins models grouped by first iteration phylogeny builder. Dots represent the median

value of the Kendall-Colijn (K-C) distance metric between the model in question and the true

simulated tree. Error bars represent the full range of the K-C distance across all the simulations.

Raw represents the IQ-TREE phylogeny produced directly from the simulated alignment. (A) The

K-C distance when λ = 0 across a range of nine different values for µrec. The ClonalFrameML and

Raw lines overlap one another. (B) The K-C distance when λ = 0 across a range of nine different

values for pbranch. All median lines overlap one another (C) The K-C distance when λ = 1 across

a range of nine different values for µrec. All Gubbins models overlap one another. (D) The K-C

distance when λ = 1 across nine different value for pbranch. All Gubbins models also overlap one

another.

lengths, ClonalFrameML performs best across µrec, while Gubbins is closer over the range

of pbranch values (Figures 2.2C & 2.2D). There is little difference between the main Gub-

bins models, although at the highest levels of µrec it does appear that RAxML models are

closer matches to the topology of the true tree, performing identically to ClonalFrameML

with a median K-C metric of 1.41 (Figure 2.2A), and also slightly closer when measuring

based on branch lengths (Figure 2.2C). When grouping by ancestral state reconstruction

method we see similar patterns as for grouping by starting and main phylogeny builder

(Figure 2.3). In this case the joint reconstruction does appear to perform slightly better

than the marginal reconstruction, both in terms of matching topology and branch lengths

more closely to the true tree (Figures 2.3A & 2.3C).

Finally, when the results are aggregated by the total model chosen, we can observe
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Figure 2.2: Kendall-Colijn distancemetric between true simulated tree and output tree, with

Gubbins models grouped by main iteration phylogeny builder. Dots represent the median

value of the Kendall-Colijn (K-C) distance metric between the model in question and the true

simulated tree. Error bars represent the full range of the K-C distance across all the simulations.

Raw represents the IQ-TREE phylogeny produced directly from the simulated alignment. (A) The

K-C distance when λ = 0 across a range of nine different values for µrec. The ClonalFrameML and

Raw lines overlap one another. (B) The K-C distance when λ = 0 across a range of nine different

values for pbranch. All lines overlap one another. (C) The K-C distance when λ = 1 across a range

of nine different values for µrec. The Gubbins IQ-Tree and RAxML lines largely overlap with one

another. (D) The K-C distance when λ = 1 across nine different value for pbranch. All Gubbins

models largely overlap with one another.

the differences in their accuracy in approximating the true tree (Figure 2.4). Some mod-

els perform worse than others. The [Star, RAxML, Marginal] model for instance starts to

diverge from the true tree topology at µrec = 2.5, being more distant to the true tree’s

topology than a simple IQ-TREE run on the alignment (Figure 2.4A). Two models though,

match the topology of the true tree across the range of µrec: [FastTree, RAxML, Joint] and

[RapidNJ, RAxML, Joint] (Figure 2.4A & Table 2.3). When incorporating branch length,

this combination of a RAxML main phylogeny builder and joint ancestral state reconstruc-

tion also performs best of the Gubbins models, this time with a star starting phylogeny

(Figure 2.4C & Table 2.3). However, as with the previous aggregated results, the Clon-

alFrameML algorithm appears best at approximating the branch lengths of the true tree.

Taken together, though, this suggests that for Gubbins, using RAxML as the main phy-
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logeny builder and a joint reconstruction model is optimal for reconstructing a tree closest

to that formed by the data, while the starting tree builder appears to make no difference.

Figure 2.3: Kendall-Colijn distancemetric between true simulated tree and output tree, with

Gubbins models grouped by ancestral state reconstruction method. Dots represent the me-

dian value of the Kendall-Colijn (K-C) distance metric between the model in question and the true

simulated tree. Error bars represent the full range of the K-C distance across all the simulations.

Raw represents the IQ-TREE phylogeny produced directly from the simulated alignment. (A) The

K-C distance when λ = 0 across a range of nine different values for µrec. The ClonalFrameML

and Raw lines overlap with one another (B) The K-C distance when λ = 0 across a range of nine

different values for pbranch. All lines overlap one another. (C) The K-C distance when λ = 1 across

a range of nine different values for µrec. (D) The K-C distance when λ = 1 across nine different

value for pbranch. The two Gubbins reconstruction models largely overlap with one another.

2.3.2 Assessing the choice of substitutionmodel on phylogenies produced

by Gubbins

As well as extending the array of phylogeny builders employed by Gubbins, we have also

added more flexibility in the choice of substitution model used by the phylogeny builders

and ancestral state reconstruction methods. In order to evaluate how this wider model

choice affects the phylogenies created from Gubbins, data were simulated using a GTR

model derived substitution rate across the same range of µrec and pbranch values used in

the previous section, with 10 replicates for each value. Gubbins reconstructions were then

run with either a JC model or a GTR model. Of the three starting models, only FastTree
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Figure 2.4: Kendall-Colijn distance metric between true simulated tree and output tree,

with Gubbins models grouped by total model choice. Dots represent the median value of the

Kendall-Colijn (K-C) distance metric between the model in question and the true simulated tree.

Error bars represent the full range of the K-C distance across all the simulations. Raw represents

the IQ-TREE phylogeny produced directly from the simulated alignment. (A) The K-C distance

when λ = 0 across a range of nine different values for µrec. The ClonalFrameML and Raw lines

overlap with one another. (B) The K-C distance when λ = 0 across a range of nine different values

for pbranch. All models overlap with one another. (C) The K-C distance when λ = 1 across a range

of nine different values for µrec. (D) The K-C distance when λ = 1 across nine different value for

pbranch. All the Gubbins models largely overlap with one another.

has the option of running both a JC and GTR model, hence this was used as the sole

starting phylogeny builder. The three main iteration phylogeny builders, IQ-TREE, RAxML

and RAxML-NG, were then run with a joint reconstruction, given its closer topology scores

(Figures 2.3A), and either a JC or GTR substition model. For comparison, IQ-TREE was

also run directly on the simulation alignment, also with either a GTR or JC substitution

model.

At very high recombination rates, the choice of substitution model does appear to

affect the topology of the phylogeny produced (Figure 2.5). Apart from the RAxML-NG

GTR model at µrec = 2.5, all the Gubbins models that employ a GTR substitution model

remain at a median value of 0 across the range of µrec (Figure 2.5A). The models that

use a JC substitution model however all begin to diverge from the true topology when
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Model λ = 0 λ = 1

ClonalFrameML 1.40 2,502

FastTree,IQ-Tree,Joint 2.30 7,956

FastTree,IQ-Tree,Marginal 5.70 9,181

FastTree,RAxML,Joint 0.00 7,953

FastTree,RAxML,Marginal 0.71 10,536

FastTree,RAxML-NG,Joint 2.60 8,563

FastTree,RAxML-NG,Marginal 7.00 11,310

RapidNJ,IQ-Tree,Joint 2.30 7,956

RapidNJ,IQ-Tree,Marginal 5.70 9,181

RapidNJ,RAxML,Joint 0.00 7,953

RapidNJ,RAxML,Marginal 1.70 10,536

RapidNJ,RAxML-NG,Joint 2.60 8,563

RapidNJ,RAxML-NG,Marginal 7.00 11,306

Raw 1.40 91,155

Star,IQ-Tree,Joint 4.40 7,956

Star,IQ-Tree,Marginal 7.60 9,181

Star,RAxML,Joint 1.60 7,953

Star,RAxML,Marginal 4.90 10,704

Star,RAxML-NG,Joint 4.40 8,331

Star,RAxML-NG,Marginal 5.50 11,280

Table 2.3: Kendal-Colijn metric distances between the true tree and each tree formed from

the model listed in the table at µrec = 5 and pbranch = 0.1. Values are split by the λ value

used to measure the distance, values for λ = 0 have been rounded to 2 decimal places, values

for λ = 1 have been rounded to the nearest integer.

µrec = 1. For the raw phylogeny formed directly from the alignment, the choice of model

does not appear to influence the tree topology. Across the values of pbranch, when λ= 0

there appears to be no difference between the models, with all capable of recapitulating

the topology of the true tree (Figure 2.5B). When the K-C metric is based on the branch

lengths of the phylogenies, at λ= 1, there is little difference between the JC and GTR

models (Figures 2.5C). The JC models are slightly closer to the true tree. The IQ-TREE

JC model for instance has median score of 7568 at µrec = 5, whereas the GTR model has

a median score of 7710, but at the scale of the results these are of negligible difference.

It appears then that a GTR model, when run on data simulated in a GTR manner, is able

to match the topology of a phylogeny closer than a simpler JC model.

As well as evaluating Gubbins results based on the output phylogeny, I also sought

to understand how they differ in terms of their predictions of recombination events. In

the next section I detail how I assessed these models, looking at their key recombination
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Figure 2.5: Comparison of the Phylogenies produced fromaGTR and JC substitutionmodel

and the true phylogeny. (A) The Kendall-Colijn (KC) distance when λ= 0, between the true tree

and the phylogeny output from the model highlighted. Raw models refer to phylogenies produced

by IQ-TREE directly from the simulated alignment. Points represent the median value across 10

simulations, errorbars represent the full range of the values. Values are across a range of µrec,

with pbranch set at 0.1. (B) The KC distance with λ= 0, across a range of pbranch values with µrec

set at 0.1, data are as displayed in A. All models largely overlap with one another. (C) The KC

distance when λ= 1 across a range of µrec values with pbranch = 0.1, data are as displayed in

A. Both Raw methods overlap with one another, while the Gubbins models largely overlap with

themselves too. (D) The KC distance when λ= 1 across a range of pbranch values with µrec = 0.1,

data are as displayed in A. Again both Raw methods largely overlap with one another, while the

Gubbins reconstructions also overlap with one another.

values.

2.3.3 The accuracy of recombination statistic estimation

The accuracy of the reconstructions was also assessed by a comparison of key recombi-

nation statistics. These statistics are: r /m, representing the number of SNPs imported via

recombination (r) against point mutation (m); ρ/m, the number of recombination events (ρ)

against point mutations; the number of recombination events (ρ); and the number of point

mutations outside of recombination events (m). These are key statistics which are often

used when defining the recombinogencity of a lineage [142, 549, 550]. ClonalFrameML,

however, provides no direct estimate of r /m. Instead, multiplying ClonalFrameML’s pa-

rameter estimates of R/θ, which measures the per site rate of initiation of recombination
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relative to mutation, δ, the mean length of DNA imported by homologous recombination,

and ν, the divergence rate per site of DNA imported by homologous recombination, rep-

resents the ClonalFrameML estimate of r /m [524]. Gubbins, though, produces precise

assignments of the nature of substitutions, detailing whether they are introduced by point

mutation or recombination. These statistics are then output into easily interpretable files

which can be directly compared to simulation outputs.

2.3.3.1 Accuracy by phylogeny builder

The comparisons of the true simulated values of these statistics to those output from the

different models, are not particularly favourable to any model (Figures 2.6-2.9). These

simulated results have been narrowed to only encompass recombination events that con-

tain a minimum of 3 SNPs, the default minimum SNP cutoff for Gubbins runs when de-

tecting recombination events. When grouped by the starting phylogeny builder employed

by Gubbins, we see, as observed with the tree distances in Section 2.3.1, that there is

no appreciable difference between the models’ estimates of the metrics (Figure 2.6). The

reconstructed r /m values initially closely follow the true simulated r /m values at lower µrec

values (Figure 2.6A). However, with increasing µrec the r /m for the simulated data in-

creases, but Gubbins reconstructions plateau. ClonalFrameML also underestimates the

r /m values, but this is less pronounced than Gubbins.

This pattern is more pronounced, though, for the ρ/m values, for which there is no

ClonalFrameML estimate. Here, Gubbins reconstructions plateau at low levels of µrec

(Figure 2.6B). Both these patterns, with plateauing r /m and ρ/m values, could be ex-

plained by the trends in the reconstructions of ρ, m and r(Figures 2.6C-E). From the re-

constructions of ρ we can see that the models match the general trend reasonably well,

ClonalFrameML in particular is able to detect the increasing number of recombination

events as µrec increases. The reconstructions of the values of m, however, are very di-

vergent (Figure 2.6D). The simulated value of m stays relatively constant across the range

of µrec, as we’d expect with the pbranch set constant at 0.1 for these datapoints. Gubbins,

however, reconstructs an increasing number of m SNPS as we increase µrec. This ex-

plains the plateauing of the ρ/m reconstructions, despite the reconstructions following the

same trend for ρ. Similarly for r /m, the r value estimated by the models matches closely
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with the simulated value (Figure 2.6C), this though is confounded by the large number of

m reconstructed by Gubbins. Given the high correlation between ρ and r (Figure 2.10),

the missed low SNP recombination events, which Gubbins is not powered to detect, are

unlikely to be solely driving this increase in the number of m SNPs reconstructed.

Figure 2.6: Recombination statistics from simulated and reconstructed data, with Gubbins

models grouped by first iteration phylogeny builder. Dots represent the median value of the

statistic in question. Error bars represent the full range of the statistic across all the simulations.

Simulated represents the value produced from the simulation of sequences. For all statistics the

Gubbins models largely overlap with one another. (A) The r /m values for the models across a

range of µrec values. (B) The ρ/m values across a range of µrec values. Note ClonalFrameML

does not produce ρ/m values. (C) The r values for the range of start models. ClonalFrameML does

not produce estimates of the overall number of r SNPs. (D) The ρ values for the different models

across a range of values for µrec. (E) The m values across a range of µrec. ClonalFrameML does

not produce m values.

When the Gubbins results are grouped by main iteration phylogeny builder, some

slight differences emerge between the models (Figure 2.7). The RAxML-NG model per-

90



Chapter 2

forms best estimating r /m, having a median r /m value of 7.26 when µrec = 5, while IQ-

TREE and RAxML have 7.00 and 6.54 respectively (Figure 2.7A). However, the simulated

data has a median r /m of 42.2 when µrec is 5, while ClonalFrameML has a value of 20.1.

For r and ρ, RAxML models produce the closest match of the Gubbins results across the

range of µrec (Figure 2.7C-D). Although for m, RAxML appears to produce the highest es-

timates, which explains its lower estimations of r /m and ρ/m compared to the other models

(Figure 2.7E).

2.3.3.2 Accuracy by reconstruction

When grouping the results by ancestral reconstruction it appears the joint reconstruction

method performs slightly better overall (Figure 2.8). The median r /m of the joint recon-

struction is 7.32 when µrec is 5, closer than the marginal median of 6.58. However, this is

still much lower than the simulated value of 42.2. The joint reconstruction also performs

better at estimating ρ/m. The median value is 0.432 when µrec is 5, compared to the

marginal reconstructions median value of 0.398. Although this is still lower than the simu-

lated median value of 2.80. As with the differences between the main phylogeny models,

this difference between joint and marginal reconstruction appears to be largely driven by

joint models reconstructing a lower m compared to the marginal reconstructions (Figures

2.8E).

Those models which use joint reconstruction appear to perform best when the results

are aggregated by total model choice too (Figure 2.9). The closest r /m values come

from reconstructions using a [Star, RAxML-NG and Joint] model set, with a median r /m of

7.33 when µrec is 5. Reassuringly, the [RapidNJ, RAxML, Joint] and [FastTree, RAxML,

Joint] models that produced the closest topology matches to the true tree, are also among

the highest estimates of r /m and ρ/m (Figure 2.9). The worst performing models are the

[RAxML, Marginal] models, which, while matching ρ and r closely, overestimate m to form

the lowest estimates of r /m and ρ/m. Overall, though, no model in particular matches

closely to the simulated true statistics.
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Figure 2.7: Recombination statistics from simulated and reconstructed data, with Gubbins

models grouped by main iteration phylogeny builder. Data are as described in Figure 2.6. (A)

The r /m values for the models across a range of µrec values. (B) The ρ/m values across a range

of µrec values. Note ClonalFrameML does not produce ρ/m values. (C) The r values across a

range of µrec. (D) The ρ values for the different models across a range of values for µrec. (E) The

m values across a range of µrec. ClonalFrameML does not produce m values.

2.3.3.3 Assessing the accuracy of SNP classification

To understand why these reconstructions are under-performing, an assessment of the

accuracy of the classification of the underlying SNPs, whether they occur within recombi-

nation events (r SNPs) or outside recombination events (m SNPs), is also needed. The

accuracy of these reconstructions was assessed through the PPV score and the sensitiv-

ity score (Figure 2.11). The PPV score measures the number of true positives divided by

the total number of positives produced from the reconstruction. In this case a true positive
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Figure 2.8: Recombination statistics from simulated and reconstructed data, with Gubbins

models grouped by ancestral state reconstruction method. Data are as described in Figure

2.6. (A) The r /m values for the models across a range of µrec values. (B) The ρ/m values across a

range of µrec values. Note ClonalFrameML does not produce ρ/m values. (C) The r values across

a range of µrec. (D) The ρ values for the different models across a range of values for µrec. (E)

The m values across a range of µrec. ClonalFrameML does not produce m values.

is defined as a SNP which occurs on the same branch, at the same locus and is classified

as the type of SNP (either r or m in nature). Sensitivity on the other hand measures the

number of true positives divided by the total number of positives in the simulated data.

This is indicative of the level of false negatives produced by the reconstructions.

The sensitivity of the different Gubbins models is reasonably consistent and accurate

across the range of µrec values (Figure 2.11A). The [RAxML-NG, Joint] models are the

most accurate for r SNPs, all three having a median sensitivy greater than 74.5% when

µrec is 5. Although the [RapidNJ, RAxML, Joint] and [FastTree, RAxML, Joint] models
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Figure 2.9: Recombination statistics from simulated and reconstructed data, with Gubbins

models grouped by full model used. Data are as described in Figure 2.6. (A) The r /m values

for the models across a range of µrec values. (B) The ρ/m values across a range of µrec values.

Note ClonalFrameML does not produce ρ/m values. (C) The r values across a range of µrec. (C)

The r values across a range of µrec. (D) The ρ values for the different models across a range of

values for µrec. (E) The m values across a range of µrec. ClonalFrameML does not produce m

values.

are again very close with median sensitivities of 74.4% when µrec is 5, compared to the

[RapidNJ, RAxML-NG, Joint] median of 74.7%. For m SNPs there appears to be very

few false negatives, with [FastTree, RAxML, Joint] model producing a median sensitivity

of 98.0%. The three RAxML, Marginal models however are markedly less accurate than

the other models, dropping to a median sensitivity of 50.4% when µrec is 5 for r SNPs

and 61.5% for m SNPs. This likely represents an issue with the RAxML ancestral state
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Figure 2.10: Correlation plots of the value of ρ against r for different models. Each point

represents a single reconstruction, each model has 170 different datapoints. R values displayed

are calculated as the Pearson correlation coefficient

Figure 2.11: Sensitivity and PPV scores for Gubbins reconstructions. (A) The sensitivity

scores for all SNPs, r SNPS (those reconstructed within recombination events) andmSNPs (those

reconstructed to occur outside of recombination events) across a range of µrec values. Lines

and points are coloured by total model, points represent the median value across 10 different

simulations at each µrec value, error bars represent the full range of the values at this value of

µrec. (B) The PPV scores for the range of Gubbins models, data are as described for (A).

reconstruction step, given the RAxML phylogenies produced for the [RapidNJ, RAxML,

Joint] and [FastTree, RAxML, Joint] are among the most accurate of the models. The high
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level of consistency of sensitivity across the range of µrec values, for both r and m SNPs,

indicates the Gubbins algorithm is robust in detecting true events from the input data.

With regards to PPV, when looking at all SNPs the Gubbins models perform consis-

tently well (Figure 2.11B). The majority of models remaining above 85% for the PPV for

all SNPS, across the range of µrec. This is largely driven by the high PPV of r SNPs,

which vastly outnumber the m SNPs at higher µrec values (Figure 2.9C&E). [RAxML-NG,

Marginal] models are the highest scoring, with their median PPV scores remaining above

90% across µrec. The [RAxML, Joint] models meanwhile score at 88% for the highest

µrec value. These high and consistent scores likely reflect the stringent likelihood checks

required for clusters of SNPs to be identified as a recombination block. Once again, how-

ever, the three [RAxML, Marginal] models are well below the rest of the models, scoring

only 46% at the highest levels of µrec. For m SNPs too, all the models perform poorly.

At the lowest levels of µrec the PPV values are accurate, with the majority of models re-

maining above 98% when µrec is 0.1. However, this quickly declines over the range of

µrec values, reaching a nadir of 8.8% for the [RAxML, Marginal] models when µrec is 5.

The large number of false positive m SNPs reconstructed by Gubbins at these higher µrec

values explains the plateauing of both r /m and ρ/m for these models (Figure 2.9). It may

also explain the worse performance of the Gubbins results when measuring tree distance

by branch lengths (Figure 2.4C), with the excess m SNPs adversely affecting the branch

lengths produced for the reconstructed trees.

These excess SNPs do not appear to be driven by smaller low SNP recombination

events missed by Gubbins (Figure 2.12). The difference between the excess number of

m SNPs reconstructed and the number of SNPs introduced by a recombination event with

fewer than 3 SNPs, increases as µrec increases. This indicates another factor is causing

the large number of false positive m SNPs.

2.3.4 Time and memory usage of Gubbins models

As well as the accuracy of reconstructions, models must be able to run rapidly and ef-

ficiently in terms of memory usage, in order to process the increasingly larger WGS

datasets available today. To quantify the time and memory usage of the different recom-

bination detection algorithms, simulations were run to output alignments which contained
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Figure 2.12: The difference between the excess number of m SNPs reconstructed by Gub-

bins models and the number of r SNPs present in recombinations with less than three

SNPs. Dots represent median values across 10 simulations for each model, errorbars represent

the full range of the data. Data are plotted across a range of µrec values with pbranch constant

across all datapoints.

a range of 50 to 500 sequences, in increments of 50 sequences. For each alignment

sequence number, nseq, 10 sets of replicated simulations were run to give 100 different

simulation sets in total. The 18 different model combinations outlined in Table 2.2, along

with ClonalFrameML and the hybrid [FastTree, RAXML, Marginal] method from Gubbins

v2.4.0, were then used to reconstruct these simulated alignments. For ClonalFrameML,

the run-time for the initial IQ-TREE phylogeny is included, as Gubbins also performs this

step within its algorithm. This produced 2,000 separate reconstructions in total. All recon-

structions were performed on a single core, using AMD EPYC 7742 64-Core Processors.

In terms of run time, the six RAxML-NG models were by far the slowest (Figure 2.13A).

The median run time for the slowest model, [FastTree, RAxML-NG, Marginal] was 23.5

hours at an nseq of 500, whereas the equivalent RAxML model had a median run time of 2.2

hours for the same nseq. Outside of the RAxML-NG models, ClonalFrameML and Gubbins

v2.4.0 had the next slowest run times. ClonalFrameML taking 5.4 hours on average to

run with the initial IQ-TREE forming at an nseq of 500, Gubbins v2.4.0 taking 3.1 hours.

The [FastTree, RAxML, Joint] models took 2.1 hours for the same nseq. The relationship

between ClonalFrameML runtime, Gubbins runtine and nseq was seen to be quadratic.

For ClonalFrameML this was best described by the line: runtime(s) = 0.05 ∗n2
seq +1.25 ∗
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Figure 2.13: The analysis times and memory usages over a range of alignment sizes for

different recombination detection methods. (A) The Time taken in seconds against the num-

ber of sequences in an alignment. Dots represent median values across 10 simulated datasets,

errorbars represent the full range of the values. Dots and lines are coloured by model run. (B)

The peak memory usage, in gigabytes, during reconstruction across a range of alignment sizes.

Data are as described in (A).

nseq + 435 (R2 = 0.9973, F(2,7) = 1297, p = 1.01x10-9). For the [FastTree, RAxML, Joint]

model this was best described by the line: runtime(s) = 0.035 ∗ n2
seq − 3.94 ∗ nseq + 269

(R2 = 0.9935, F(2,7) = 745, p = 7*10-9). ClonalFrameML, has no option to be run in a

multi-threaded manner, whereas all Gubbins models can be run in parallel, potentially

mitigating any longer runtimes at higher sequence numbers. Indeed, for the [FastTree,

RAxML, Joint] model, running on multiple cores does lead to a speed-up in the runtime,

while the memory usage remains constant with increasing cores (Table 2.4).

With regards to memory usage, the ClonalFrameML runs used by far the most mem-

ory across all values of nseq (Figure 2.13B). ClonalFrameML reached a peak median mem-

ory usage of 13.93 GB at an nseq of 500, whereas the [FastTree, RAxML, Joint] model

used 2.54 GB of memory at the same nseq value. The updated Gubbins v3.2.0 mod-

els also used less memory than Gubbins v2.4.0, with the equivalent [FastTree, RAxML,

Marginal] model from v3.2.0 using 1.92 GB when nseq was 500, whereas v2.4.0 used

8.58 GB. Among the v3.2.0 models, the Joint models tended to use slightly more mem-
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Cores Time(s) Memory(GB)

1 7385.5 [6428-13026] 2.54 [ 2.46 - 3.01 ]

4 3282.94 [2848.65-3607] 2.49 [ 2.24 - 2.96 ]

8 2722.74 [2146.38-3518.48] 2.5 [ 2.34 - 2.95 ]

12 2214.94 [1910.29-2734.07] 2.46 [ 2.36 - 3.02 ]

Table 2.4: Runtimes and memory usage for multiple cores. The values shown are the median

runtimes and memory usage across 10 replicates of data with nseq = 500 for the [FastTree, RAxML,

Joint] model. Values within brackets represent the full range of these performance statistics across

the 10 replicates.

ory. When grouping the models by reconstruction method, at an nseq of 500 the median

memory usage was 2.54 GB for the Joint models compared to 1.93 GB for the marginal

models.

All models appeared to have a linear relationship between memory usage and nseq.

ClonaFrameML was best described by the linememory(GB) = 0.027∗nseq+0.09 (R2=0.999,

F(1,8) = 151,600, p < 2.2x10-16). ClonalFrameML has a steeper gradient than the [Fast-

Tree, RAxML, Joint] model, which is best described by the line memory(GB) = 0.005 ∗

nseq − 0.042 (R2=0.998, F(1,8) = 4946, p = 1.86x10-12).

2.3.5 Conclusion

In this chapter I have outlined how we’ve expanded the popular Gubbins algorithm in or-

der to improve reconstructions and keep pace with the current level data production in

bacterial genomics. I have benchmarked the new models employed against: another

commonly used algorithm for detecting recombination, the previous version of Gubbins

and the näive reconstruction of evolutionary history without taking into account recombi-

nation events. From these results we can see that Gubbins is able to robustly reproduce

the topology of the true tree, can infer the number of recombination events and converges

on results rapidly with an efficient use of memory.

From this work I can recommend a default combination of a FastTree starting phy-

logeny, RAxML main phylogeny builder with a joint ancestral state reconstruction and a

GTR substitution model. This combination performs among the best output for SNP and

recombination event reconstruction accuracy, as well as the best reconstruction method

for matching the topology of the true phylogeny. The [RapidNJ, RAxML, Joint] model per-
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forms similarly for the topoloy and SNP classification, however it does not have the op-

tion to use a GTR model and is slightly slower than the [FastTree, RAxML, Joint] model.

That RAxMl is the best performing phylogeny builder is slightly surprising. In previous

tests RAxML-NG has outperformed RAxML [535], and IQ-TREE has also been judged

more accurate in direct tests with RAxML [551]. IQ-TREE uses a stochastic approach to

find the optimal phylogeny among a set of candidates [540]. Given the full range of K-C

distances do encompass 0 for the IQ-TREE runs, perhaps this difference was simply a

result of having a small sample size of only 10 simulations at a given value to select from.

Running a larger number of simulations however would take require more disk space,

something which was limited in my analysis.

Crucially though, the Gubbins models do outperform the ClonalFrameML approach

in terms of the reconstructing the topology of the true tree. For further phylodynamic

analyses, the topology of the tree being correct is key. The time-calibrated phylogeny

algorithm BactDating [552] for instance, only models changes in branch lengths when

dating a phylogeny. An incorrect topology inferred from a ClonalFrameML model would

render any subsequent dating results as spurious.

The Gubbins models though, are outperformed by ClonalFrameML in terms of recre-

ating accurate branch lengths for high recombination rate populations. These inaccurate

branch lengths may produce spurious molecular clock estimates that can also alter any

future phylodynamic analyses. However, these branch lengths were only tested with a

low constant pbranch of 0.1. This produces a tree with naturally long branches which rep-

resents either a poorly sampled population, or a highly diverse species. With the ever

increasing sampling and sequencing of bacteria [553, 554], denser sampling of lineages

is becoming the norm and perhaps these low pbranch rates are not as applicable. Given

that the Gubbins results tended to outperform ClonalFrameML in terms of branch length

estimation at higher pbranch, perhaps testing at these higher levels would produce Gubbins

results that are more accurate.

The altered branch lengths seen at higher µrec values are driven by increasing num-

bers of false positive SNPs, predicted to be outside of recombination events, when µrec

is increasing. This excess of false positive events in turn causes r /m and ρ/m values to

100



Chapter 2

plateau at ever increasing values of µrec for Gubbins reconstructions. The values for r /m

plateau for most models at 7.3, despite the simulated data having an r /m of 41.2. In the

literature however, Gubbins has been used to estimate r /m values above 20 for pneu-

mococci [155,555] and other pathogens [549]. This is indicative of there being no upper

limit on the r /m value estimated by Gubbins. Instead, this suggests, perhaps, that the

nature of the output simulated data, which can produce many small recombination events

with fewer SNPs, may be itself a limit on the r /m estimated by Gubbins. Further work is

needed to fully understand why these simulations produce these skewed estimates.

Now that I have described the Gubbins recombination detection algorithm and the

improvements that have been made, in the following chapters we’ll look at how these

methods can be applied. In particular to understand how AMR emerges in bacterial pop-

ulations. I’ll start with resistance emerging at core genomic loci within MDR populations

of the pneumococcus.
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The emergence of resistance

among core genes of the

pneumococcus
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Summary

This chapter investigates how recombination can drive alterations in core genes that lead

to resistance. I describe two multi-drug resistant (MDR) lineages of the pneumococcus,

PMEN3 and PMEN9. Using Gubbins, I detect recombination events around the pbp loci

leading to the expansion of the PMEN3. Looking at the wider GPS collection of isolates,

I also detect numerous instances of interspecies recombination at the pbp loci. These

results highlight how selection can drive recombination between diverse donor and recip-

ients at key loci.
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3.1 Introduction

3.1.1 Core gene resistance and recombination

Resistance genes can arise within bacterial populations either through modifications to

core genes or the movement of genes on MGEs. Common core gene modifications

in the pneumococcus include alterations in the penicillin binding protein genes (pbp1a,

pbp2b and pbp2x), encoding proteins targeted by β-lactam antibiotics, and genes en-

coding enzymes involved in the folate biosynthesis pathway (dhfR and folP), targeted by

co-trimoxazole and its constituent drugs [17, 140]. For the development of resistance to

sulfamethoxazole, a component of co-trimoxazole, relatively few mutations are needed,

with 3 or 6 bp duplications sufficient for reduced sulfamethoxazole susceptibility [557,558].

While this may spread via clonal expansion of newly resistant lineages, recombination is

thought to play a key role in the dissemination of this resistance among the wider pneu-

mococcal population [559].

Early investigations into the nature of β-lactam resistance in pneumococci also re-

vealed recombination was required for the spread of non-susceptibility. Resistant PBP

genes were shown to be ‘mosaic’ in nature, being created from a mixture of sequence

from Streptococcus pneumoniae and the related oronasopharyngeal commensal strep-

tococcal species, Streptococcus mitis and Streptococcus oralis [138,560,561]. The mo-

saicism reflected the role of recombination in importing fragments of genes from these

other species, with these fragments being much smaller than a typical gene. Although,

there was also evidence of these recombinations causing diversification in the flanking re-

gions of the chromosome, particularly the cps locus controlling an isolate’s serotype [562].

Recombination plays a role in the emergence of these resistance phenotypes at an

individual isolate level. In this Chapter I aim to investigate how recombination drove the

emergence and spread of core gene-mediated resistance in pneumococcal populations,

looking in particular at two multi-drug resistant (MDR) lineages, PMEN3 and PMEN9. This

builds on previous work looking at the internationally disseminated PMEN1, PMEN2 and

PMEN14 pneumococcal lineages, among others [142,312,555]. I expand this by looking

at a much larger collection of over 20,000 pneumococcal isolates sampled through the
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Global Pneumococcal sequencing project (GPS) [563]. These sequences have split into

strains, known as Global pneumococcal sequencing clusters (GPSCs). I will now briefly

describe the pneumococcal populations I investigate in this chapter.

3.1.2 PMEN3 population

To understand the effects of recombination on a population wide level, I investigated

global collections of pneumococci. The first I shall focus on is the Spain9V -3, or PMEN3

lineage, which is within strain GPSC6 (clonal complex 156 by multi-locus sequence typing,

MLST) [563]. PMEN3 was first documented in Spain in 1988 with a serotype 9V capsule,

and by the late 1990s it was recognised as one of the major penicillin resistant lineages

causing meningitis in the country [564]. By 2000, 55% of all penicillin resistant disease

isolates in South America were from the PMEN3 lineage [141]. Isolates with serotype

19F, 19A and 14 capsules have also been observed, all of which are either included in

the seven valent pneumococcal polysaccharide conjugate vaccine (PCV7) or the thirteen

valent PCV13 [565, 566] . Recent work has also observed PMEN3 with a non-vaccine

serotype 11A following the introduction of PCV13 in Spain [567,568]. While first detected

in Spain, PMEN3 was later found in France, the USA and South America [141,569–571].

3.1.3 PMEN9 collection

The second collection investigated in this chapter is the England14-9, or PMEN9 lineage,

of isolates. PMEN9 is within the GPS strain GPSC18 (clonal complex 9 or 15 by MLST).

An isolate from the PMEN9 lineage was first described in the UK in 1996 and it has

since been detected across Europe, the Americas and Asia [572–574]. Although PMEN9

was originally penicillin susceptible, very high-levels of resistance have emerged among

clones in the US [575]. This led to PMEN9 becoming the most common lineage causing

penicillin-resistant invasive pneumococcal disease (IPD) in the USA [576]. PMEN9 is also

known to display very high levels of resistance to macrolides, with Tn1207.1, a defective

transposon carrying the mef(A) macrolide resistance gene, thought to be a key driver of

this [577]. Indeed, prior to the introduction of infant vaccination in Germany, PMEN9 was

the most common lineage causing macrolide-resistant IPD in the country [578,579].
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3.1.4 GPS collection

The GPS collection represents data accumulated from large scale genomic surveys, with

33 countries contributing isolates to this database of 20,015 pneumococci sequences

and isolates collected from 1991 to 2017 [563]. The majority of isolates were sampled

from cases of invasive pneumococcal disease (IPD) in children under the age of five.

In total, 49.7% of these isolates were collected from locations before the PCV7 vaccine

was introduced. The collection is split into 621 separate GPSC lineages, of which 35 are

represented by more than 100 isolates.

3.2 Methods

3.2.1 Isolate collection and sequencing

Isolates belonging to the PMEN3 and PMEN9 lineages were collated from across Eu-

rope, the Americas and the Maela refugee camp in Thailand [580] (Table 3.1). These

datasets had multi-locus sequence typing (MLST) data [581]. Therefore isolates of se-

quence type (ST) 156, and single locus variants thereof, were selected as representatives

of PMEN3 (or Spain9V -3) [582]. For PMEN9, isolates of the ST9 grouping were selected

as representative of the lineage from these collections. This generated collections of 272

isolates for PMEN3 and 325 isolates for PMEN9. Isolates that could be cultured were se-

quenced as paired-end 24-plex libraries on Illumina HiSeq 2000 machines, generating 75

nt reads. Sample identity was checked through comparing serotype, inferred by seroba

v1.0.0 [583], and ST with those determined by sample providers. Samples were checked

for contamination through assessing assembly statistics, as described previously [142].

After these tests, 215 PMEN3 isolates and 263 PMEN9 isolates were passed for use in

the described analyses.

These datasets was then combined with isolates from the Global Pneumococcal Se-

quencing (GPS) project [563]. PMEN3 corresponded to strains GPSC6 (454 isolates) in

this collection, while PMEN9 GPSC18 (312 isolates) [298]. Hence the final dataset size for

PMEN3 was 669 isolates and for PMEN9 575 isolates. WGS data from the 478 isolates

not within the GPS collection are publicly available in the EMBL Nucleotide Sequence

Database (ENA; Project number PRJEB2255).
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Source PMEN3 PMEN9

ANSORP 1 3

CDC 124 42

GPS 454 312

Herminia de Lencastre, ITQB NOVA 17 9

Maela refugee 5 0

Nationales Referenzzentrum für Streptokokken, Germany 68 208

Timothy Mitchell, Glasgow University 0 1

Totals 669 575

Table 3.1: Isolate sources for PMEN3 and PMEN9

3.2.2 Generation of annotations and alignments

De novo assemblies were generated using an automated pipeline for Illumina sequences

[584]. Briefly, reads were assembled using Velvet with parameters selected by VelvetOp-

timiser. These draft assemblies were then improved by using SSPACE and GapFiller to

join contigs [585–587]. The final assemblies were annotated using PROKKA [588].

Whole genome alignments were generated for phylogenetic analysis through map-

ping of short read data against reference sequences. For the PMEN3 and PMEN9 anal-

yses, the reference genomes were S. pneumoniae RMV4 rpsL* ∆tvrR (accession code:

ERS1681526) [545] and INV200 (accession code: FQ312029.1) respectively. Mapping

was performed using SMALT v0.64, the GATK indel alignment toolkit and SAMtools as

described previously [466].

A faster method for generating alignments was applied to GPSCs represented by

more than ten isolates. A reference sequence was was chosen as the isolate with the

largest N50 value (the length of the contig at the midpoint of the assembly, when contigs

are ordered by size). Other isolates were mapped to this reference using SKA [546] with

default settings.

3.2.3 Phylogenetic and phylodynamic analyses

The phylogeny and recombination patterns within PMEN3, PMEN9 and resistance-associated

GPSCs were estimated by running Gubbins v2.3.0 [589]. Starting trees were formed with

FastTree 2 [529]. Subsequent iterations generated phylogenies with RAxML v8.2.8 [530],

with a generalized time reversible (GTR) model of nucleotide substitution with a discre-
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tised gamma distribution of rates across sites. Marginal ancestral state reconstruction

was used.

Time-calibrated phylogenies for PMEN3 and PMEN9 were generated from the Gub-

bins outputs using the BactDating R package v1.0.1 [552]. Isolates without dates of col-

lection were pruned from the phylogeny, and the root-to-tip distances used to test for

a molecular clock signal. Where one was detectable, BactDating was run with a relaxed

clock model and a MCMC length of 50 million iterations. Chain convergence was checked

through visual inspection of trace plots.

Serotype switching among the isolates was assessed by reconstructing the ances-

tral serotype using the PastML python package [590]. This was run on the phylogenies

produced by Gubbins.
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3.2.4 Antibiotic resistance analyses

3.2.4.1 Penicillin resistance

The MIC for penicillin had been determined for most isolates in the PMEN3 and PMEN9

collections (65.5 and 80.9%, respectively). The MICs of the remaining 341 isolates, and

all GPS isolates, were predicted using an RF approach analogous to that developed in Li

et al 2017 [270]. Model choice is elaborated further in section 3.3.4.1. The RF model was

implicated using the ranger package v0.12.1 [591] in R.

To assess the emergence time of resistance and its spread among the PMEN3 lin-

eage, the penicillin resistance categories inferred from the metadata and the RF model

were reconstructed on the time-calibrated phylogeny using the phytools R package v0.7.7

[592]. The make.simmap function was run using an equal rates model and an MCMC

chain sampling every 100 iterations. The input was a matrix of character states for the

tips, with their observed or predicted phenotypes were assigned a probability of one.

After the reconstruction, each node’s state was assigned as that with the highest

posterior probability. Starting at the root, the number of lineages of each state at each

coalescent event in the time-calibrated tree was recorded. Every time a node was reached

an extra lineage was added to the total. If there was no state change between two nodes

the count for the state was increased by one; else if there was a state change not on

a terminal branch the count for the new state was increased by two, if there was a state

change on a terminal branch the new state count was increased by one. The total number

and the proportion of branches in each state were recorded through time.

3.2.4.2 Co-trimoxazole resistance

Resistance to sulfamethoxazole was detected using a hidden Markov model (HMM), con-

structed using HMMer3 [593], trained to extract the region downstream of S61 in folP. If

this region contained at least one inserted amino acid, then the isolate was predicted to

be resistant. Resistance to trimethoprim used another HMM to identify the amino acid at

position 100 in dhfR (also known as dyr or folK). Isolates with an isoleucine at this position

were predicted to be sensitive, and isolates with a leucine at this position were assumed

to be resistant [594]. If isolates were classified as resistant to both sulfamethoxazole and
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trimethoprim, they were also classified as resistant to the combination drug cotrimoxa-

zole [595].

3.2.5 Detecting interspecies recombination events

3.2.5.1 Pipeline for detecting interspecies events at the pbp loci

To assess the origin of resistant pbp genes, a pipeline was developed to compare se-

quences against a reference database. The first step in this pipeline was to reconstruct

the ancestral resistance state for the isolates in the PMEN3, PMEN9 and GPS collection.

This ancestral state reconstruction was performed using PastML [590], as these Gubbins

phylogenies were not time-calibrated. The recombination predictions from Gubbins were

then searched, in order to detect whether there was a putative recombination event on

the branch on which the change in resistance profile spanning any of the pbp genes. If

such a recombination were identified, this was considered indicative of resistance state

alteration via homologous recombination. The descendants of nodes where resistance

was acquired or lost with the fewest base substitutions subsequently accumulating in the

three pbp genes then had their gene sequences extracted.

These gene sequences were compared to a reference collection of 52 streptococcal

genomes collated from antimicrobial susceptible S. pneumoniae and other Streptococcus

species, building on the database collated in Mostowy et al 2017 [526]. BLASTN v2.5.0

was used to compare each gene region to this database.

The statistic γ was used to determine the species of origin for a gene. This utilised the

BLAST bit score, which is a normalized form of the raw score of an alignment [596]. The bit

score measure sequence similarity irrespective of query sequence length and database

size. The γ statistic was calculated as the bitscore of the top ranked S. pneumoniae hit

(b) divided by the bitscore of the top ranked hit (B):

γ =
b

B
(3.1)

Hits where the top match was S. pneumoniae, indicating the gene originated from an

intraspecies transformation event, had a γ score of 1.0. Any score below 1.0 indicated a

potential origin from outside of S. pneumoniae.
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3.2.5.2 Detecting interspecies recombination at murM

For murM, where the effects of alterations on resistance levels are less well understood, a

different approach was taken. The regions corresponding to the murM genes in the anno-

tated references were extracted from the PMEN3 and PMEN9 whole-genome alignments.

To enable the detection of possible interspecies recombinations, murM sequences from

S. mitis 21/39 (accession code: AYRR01000000) and Streptococcus pseudopneumoniae

IS7493 (accession code: CP002925) were added to the dataset. All murM sequences

were then aligned with Muscle v3.8.31 [597]. Sequences were clustered into lineages,

and recombinations inferred, using fastGEAR [526].

3.3 Results

3.3.1 Genomic epidemiology of the PMEN3 and PMEN9 lineages

A recombination corrected phylogeny of the PMEN3 lineage was created using Gubbins

v2.3.0. This represents the evolution of the lineage and was constructed from 669 isolates

which were collected from 31 countries over 23 years (1992 to 2015; Figure 3.1). This

range of collection years was sufficient for the estimation of a molecular clock, performed

using the BactDating R package v1.0.1 [552] (Figure 3.2). Six isolates without dates of

collection were pruned from the phylogeny, and the root-to-tip distances used to test for a

molecular clock signal. This estimated the most recent common ancestor (MRCA) existed

in 1942 (95% credible interval of 1910 to 1959) and the lineage had a molecular clock rate

of 1.69 x 10−6 substitutions per site per year (95% credible interval of 1.52 x 10−6 to 1.86

x 10−6 substitutions per site per year).

The PMEN3 phylogeny was dominated by the 491 isolate ST156 clade, which was

found in 27 countries mainly from Europe (85 isolates), North America (90 isolates) and

South America (192 isolates). There is also a smaller, 33 isolate clade of ST143 isolates,

which was found in eight countries, primarily being present in Poland (11 isolates) and

Belarus (8 isolates).

Most of the PMEN3 isolates were either of the ancestral serotype 9V, or serotype

14, with changes between these two serotypes accounting for 9 of 35 serotype switches
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reconstructed within the clade (Figure 3.3). Both of these serotypes were targeted by the

heptavalent polysaccharide conjugate vaccine (PCV7) vaccine. However, within ST156

a clade of 26 isolates from the USA of serotype 19A, not included in PCV7, were de-

rived from a MRCA estimated to exist in 2000 (95% credible interval of 1999 to 2001).

This coincides with the date of PCV7’s introduction into the USA, consistent with these

switched isolates evading the vaccine and persisting until the 13-valent conjugate vaccine

(PCV13), which includes 19A, was introduced [576]. In total 13 serotypes were found in

the PMEN3 lineage, of which seven (11A, 13, 15A, 15B/C, 23A, 23B 35B) are not found

in the PCV13 vaccine.
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Figure 3.2: Root to tip analysis of PMEN3 lineage. A Represents the 663 isolate phylogeny,

identical topology to Figure 1, with node tips coloured by date of isolation. B Linear regression of

root to tip distance against sampling date for Isolates.

In contrast to PMEN3, the phylogeny representing the evolution of PMEN9, con-

structed from isolates of GPSC18, was split into multiple clades separated by deep branches

(Figure 3.4). Even when excluding the outlying serotype 7C isolates, the only discernible

molecular clock signal suggested this strain was centuries old (Figure 3.5). Despite this

age, the individual clades were generally regionally confined. The largest clade was asso-

ciated with Germany (accounting for 166 of the 250 isolates), with other representatives

from Slovenia and China. Other clades were associated with the USA (accounting for

91 of the 98 isolates), South Africa (accounting for 68 of the 73 isolates), and China (ac-

counting for 18 of 45 isolates).

All the isolates in the three largest clades expressed serotype 14, as did 93% of all

isolates in this phylogeny. Only nine serotype switches were identified across PMEN9,

including switches to 19F and 23F in the Chinese clade (Figure 3.6). In total there were

six serotypes present within the collection, only two of which (16F and 7C) were not found

in the PCV13 vaccine. Overall, there was little evidence of frequent intercontinental trans-

mission or serotype diversification with this set of isolates. Hence genomics suggests dif-
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Figure 3.3: Serotype switching events across the PMEN3 lineage. Coloured bars represent

the recombination events associated with switches in serotype inferred from the phylogeny. The

bars map to the genome annotation below, with the length of the bar indicating the size of the re-

combination event. The cps and surrounding loci are highlighted below, with some recombination

events spanning the pbp1a and pbp2x genes as well. The black bars represent recombinations

across the cps loci that were not associated with a serotype switch.

fering histories for PMEN3 and PMEN9, despite them both being internationally dissemi-

nated antibiotic-resistant S. pneumoniae, commonly expressing the invasive serotype 14,

with identical sampling approaches.
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3.3. Results

Figure 3.5: Root to tip analysis of the PMEN9 lineage. A Represents the trimmed 529 isolate

phylogeny (those isolates with date of isolation data and not present on long branches) with node

tips coloured by date of isolation. B Linear regression of root to tip distance against sampling date

for Isolates

3.3.2 Variable recombination dynamics across the PMEN lineages

The two lineages also differed in the patterns of recombination across their genomes. In

the PMEN3 reference genome, there is a high density of recombinations around a 45 kb

prophage region, indicating frequent infection by phage. Exclusion of these recombina-

tion events allowed estimation of the overall ratios of base substitutions resulting from

homologous recombination relative to point mutations (r /m). Consistent with its more

rapid serological diversification, r /m was higher in PMEN3 (13.1) than PMEN9 (7.7).

This difference in r /m could be due to the two lineages differing in three ways: (i)

in the number of recombinations, (ii) in the length of recombination events or (iii) in the

sources of their recombination events, with more divergent sources increasing the r /m.

The first explanation partially accounted for the difference: there were 0.115 recom-
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Figure 3.6: Serotype switching events across the PMEN9 lineage. Coloured bars represent

the recombination events associated with these switches in serotype. The bars map to the genome

annotation below, with the length of the bar indicating the size of the recombination event. The cps

and surrounding loci are highlighted below, with some recombination events spanning the pbp1a

and pbp2x genes as well. The black bars represent recombinations across the cps loci that were

not associated with a serotype switch.

binations per point mutation in the PMEN3 reconstruction, compared to 0.093 per points

mutation in PMEN9. Comparing the properties of the recombination events revealed no

substantial difference in their length distribution (Figure 3.7). However, PMEN3 generally

imported sequences with a significantly higher SNP density, with a median SNP density

of 11.8 SNP/kb of sequence imported, compared to PMEN9, which had a median SNP

density of 9.2 SNP/kb (MannWhitney U = 4162888, n1 = 2613, n2 = 2823, two-sided, p <

2.2 x 10−16). Therefore, the difference in r /m between the two lineages reflected both the

increased frequency of recombination in the PMEN3 lineage, and the increased diversity

of the imported sequence.
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3.3.3 Hotspots of recombination

The high-level of serotype switching in PMEN3 corresponded to a peak in recombina-

tion events detected around the cps loci which determine an isolate’s serotype (Figure

3.1) [598,599]. Gubbins predicted that all 35 of the reconstructed serotype switches had

an accompanying recombination event covering the cps locus (Figure 3.3). The median

recombination block size across the 20 kb cps locus was 37.5 kb in length for these switch

associated events. These recombination blocks, therefore, also frequently encompassed

the nearby pbp1a and pbp2x genes, encoding PBPs involved in penicillin resistance. In

total 77% (27 of 35) cps switch recombination events also spanned at least one of pbp2x

or pbp1a. Another peak in recombination occured around the murM gene in PMEN3.

This encodes an enzyme involved in the biosynthesis of branched structured muropeptide

components of the pneumococci cell wall [600]. murMN has been implicated in mediating

penicillin resistance, with deletion of the operon murMN containing this gene leading to

isolates becoming penicillin susceptible [140,601].

The cps loci and pbp genes were also hotspots of recombination for the PMEN9 lin-

eage. In PMEN9, 78% (7 of 9) of serotype switches had accompanying recombination

events spanning the cps loci. These tended to be smaller than PMEN3 cps recombina-

tions, with a median length of 22 kb. As such fewer of these events, only 43% (3 of 7),

spanned the pbp2x or pbp1a genes. PMEN9 also has a peak in recombination around

the dhfR gene. The sequence of dhfR determines resistance to trimethoprim, one of the

two components (along with sulfamethoxazole) of co-trimoxazole [17].

Finally for both lineages there are several peaks of recombination within the chro-

mosome correspond to loci likely to be under immune selection. In PMEN9, there was

an elevated density of recombinations affecting the psrP gene, encoding the antigenic

pneumococcal serine-rich repeat surface protein. Serine-rich repeat proteins (SRRPs)

are known to act as adhesins in a range of different bacteria, enabling the binding to host

tissues and thus playing a key role in the invasiveness of cells [602, 603]. In the pneu-

mococcus, for instance, psrP has been shown to increase the virulence of cells within a

mouse model [604]. Another peak, this time present in both lineages, was seen around

the antigenic Pneumococcal Surface Protein C, encoded by pspC. PspC is among the
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most variable microbial immune evasion proteins identified and plays a key role in bind-

ing several human plasma proteins involved in the immune response [605]. Both pspC

and psrP are highly diverse in pneumococcal populations, and elicit strong immune re-

sponses from hosts [606].

3.3.4 Investigating β-lactam resistance emergence in the pneumococcus

3.3.4.1 Determining β-lactam resistance levels

With both lineages containing hotspots of recombination around the pbp1a and pbp2x

genes, I decided to further investigate the evolution of β-lactam resistance in these lin-

eages. The first step in this was to try and accurately determine the levels of resistance in

the populations. A majority of isolates in both PMEN3 and PMEN9 (65.5% and 80.9% re-

spectively) had MICs for penicillin determined previously via broth dilution methods. This

left the MICs of 342 isolates to be predicted.

In the pneumococcus, given β-lactam resistance is determined largely by the se-

quence of three pbp genes, in silico model based predictions directly from the genotype

have been implemented successfully [228]. Arguably the most established method for

this is the RF approach developed in Li et al 2016 and Li et al 2017 [228,269,270]. In this

protocol, the Transpeptidase domains (TPD) of three PBPs (PBP1A, PBP2B & PBP2X)

are extracted and each amino acid position used as a predictor to train an RF model on

the continuous log2 MIC value. Bases not present in the training data are then approxi-

mated using the base with the least distance to a training data base in the BLOSUM62

matrix [607]. The output MIC values are then converted into resistance breakpoints, in Li

et al 2017 these correspond to the CLSI breakpoints for non-meningitis infections [270].

The RF model first used in Li et al 2016 [269] has compared favourably to an elastic net

model for the prediction of MIC values and, then subsequently, resistant breakpoints.

The training data for the Li et al 2017 model came from 2,528 isolates previously

characterised by the CDC [608]. These isolates were largely sampled from the Americas,

whereas the GPS collections and the PMEN3 and PMEN9 lineages I investigated came

from across the world. I therefore set out to test the accuracy of this RF method on the

PMEN collections, implementing the protocol from Li et al 2017 in R using the Ranger
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package (v0.13.1) for RF modelling. I also assessed the accuracy of a linear regression

(LR) model as a comparison to the RF protocol. This LR model was also trained on the

TPD domains and predicted the log2 MIC values, following the RF protocol, and was also

implemented in R.

In both methods, the models were first validated on an expanded 4,342 isolate CDC

dataset [608], with training performed on a random subset of 70% of the data and then

testing on the unseen remaining 30% of the data. The models were then trained on

the full CDC dataset and tested on the 902 PMEN isolates with MIC values previously

measured through broth dilution. Two different breakpoint categories were used for the

category agreement (CA) scores: the wider CLSI non-meningitis breakpoints (Susceptible

≤0.06 µg/ml, 0.06 µg/ml < Intermediate < 2 µg/ml, Resistant ≥2 µg/ml) and the narrower

pre-2008 meningitis breakpoints for resistance (Susceptible ≤0.06 µg/ml, 0.06 µg/ml <

Intermediate < 0.12 µg/ml, Resistant ≥0.12 µg/ml) [609].

The implementation of the RF model was able to broadly match the CA scores pro-

duced in Li et al 2016 for the CLSI non-meningitis breakpoints (Figure 3.8). For the RF

model, the CA on the training set of CDC data is 93.7%, while for the unseen testing

dataset it is 92.7%. The LR model also has similar scores for its training and testing

CA results, at 94% and 91.9% respectively. However both models perform much worse

when using the non-meningitis breakpoints on the unobserved PMEN data, dropping to

74.6% CA and 70.5% CA for the RF and LR models respectively. This drop-off is not

seen though for the meningitis breakpoints (Figure 3.8). For the LR model the CA on the

training dataset is 95.6%, 94.9% on the testing CDC data, and then 92.4% for the PMEN

dataset. While for the RF model the CA is 95.4% for the training dataset, 94.7% for the

testing CDC data, and then 95.6% for the PMEN dataset.

The reduction in CA for the non-meningitis breakpoints is likely reflective of the diver-

sity of PBP TPBs within the global PMEN3 and PMEN9 datasets not being captured within

the CDC dataset of isolates from the Americas. For instance, for the testing dataset, only

27 amino acids at 912 TPB sites are altered via the BLOSUM62 matrix. Whereas for the

PMEN testing data 44 amino acids have to be altered through the BLOSUM62 matrix to

match those present in the trained model. The narrower meningitis breakpoints on the
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3.3. Results

Figure 3.8: Penicillin resistance prediction using different models. Category agreement

scores for a linear regression model and a random forest model trained on TPD domains of PBPs.

Bars represent the number of categories correctly predicted across the three datasets the model

was applied to, with results split by the breakpoints used to assess the model predictions.
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other hand greatly reduce the size of the intermediate resistant category, thus reducing

the potential for misclassification, while still being clinically relevant.

Given its higher accuracy in predicting the resistance categories of the PMEN datat-

set, the RF model with the meningitis breakpoints was used to predict the penicillin re-

sistance phenotype of isolates with unknown MIC values. This model predicted the MIC

for 341 of the 342 isolates with unknown MIC values in the PMEN dataset, with the one

missing isolate having unidentifiable pbp genes. This method was then also used on the

wider 20,015 GPS collection, with 59 isolates (0.3%) having unidentifiable pbp genes.

3.3.4.2 Emergence of β-lactam resistance in PMEN3 and PMEN9

In the PMEN9 collection, 61% of isolates were susceptible to penicillin (recorded or pre-

dicted MIC ≤ 0.06 µg/ml; Figure 3.4). However, 79% of the PMEN3 collection was classed

as resistant (MIC ≥ 0.12 µg/ml), with 20% susceptible to penicillin, and the remaining 1%

classified as intermediately resistant (0.06 µg/ml < MIC < 0.12 µg/ml; Figure 3.1).

Across the two PMEN lineages, there were 35 changes in resistance profile for peni-

cillin. The most common alteration was acquisition of resistance by sensitive isolates, with

16 instances across the two lineages (45% of events). There were also seven instances

of resistant isolates reverting to penicillin sensitivity across the collections. In 20 of the 35

alterations in resistance profile, the evolutionary reconstruction identified at least one of

the three resistance-associated pbp genes was altered by a concomitant recombination

event.

In PMEN3, penicillin resistance was common across the ST156 clade, 99% of which

was penicillin resistant. Recombinations altered pbp1a, pbp2b and pbp2x at the base of

this clade (Figure 3.1). Phylodynamic analysis was performed to assess the likely date

of origin of this penicillin resistant clade. This analysis showed the penicillin-resistant

proportion of GPSC6 increased throughout the early 1980s (Figure 3.9). This is driven by

the expansion of the ST156 clade, which originated around 1984 (95% credible interval

1981 to 1986). This expansion of resistant lineages continued until the early 2000s, when

it then plateaued within the strain from roughly 2010 onward.

The highest MICs within the ST156 clade (up to 8 µg/ml) were associated with the
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vaccine escape 19A clade of isolates from the USA (Figure 3.10). This was a conse-

quence of a 53 kb recombination spanning the cps locus, which caused the alteration in

serotype, also spanning pbp1a and pbp2x (Figure 3.3). Hence the PCV7-escape recom-

bination also reduced susceptibility to antibiotics. The converse situation was observed for

a single ST156 clade member that had reverted to susceptibility. A 53 kb recombination

event, causing a switch from serotype 9V to 15B/C (Figure 3.3), restored the ancestral,

susceptible versions of pbp2x and pbp1a.

In contrast to the ST156 clade, in PMEN9, penicillin resistance emerged indepen-

dently in different locations. The USA and South African clades appear to have both sep-

arately gained resistance in a stepwise manner. At the base of the highly resistant USA

clade there was a 3.2 kb recombination spanning the pbp2x gene (Figure 3.10). Subse-

quent recombinations modifying the pbp1a, then pbp2b, genes further increased penicillin

resistance. Similarly, within the South African clade, pbp2b and pbp2x were both mod-

ified by recombination in the isolates’ most recent common ancestor. Resistance was

elevated in a subset of isolates through further modification of pbp1a through recombina-

tion. Alteration in the pbp2x and pbp2b genes are the first steps towards resistance, with

pbp1a modifications required for higher levels of resistance, although isolates with solely

a mosaic pbp2x gene have been found to be resistant to penicillin [610]. In general, I ob-

served penicillin resistance rapidly emerged and spread worldwide in PMEN3, whereas

PMEN9 exhibits repeated, localised stepwise acquisition of modified pbp genes.
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3.3.4.3 Role of interspecies transformation in β-lactam resistance in PMEN3 and

PMEN9

As penicillin resistance was originally demonstrated to involve the acquisition of sequence

from related commensal streptococci [137, 138, 560], I decided to further investigate the

origin of these pbp genes within recombination events. To do this an analysis pipeline

was developed to extract and assess the likely origin of resistant pbp genes (See Methods

Section 3.2.5.1).

This pipeline was applied to the PMEN3, PMEN9 and GPS lineages. For gains of

resistance from sensitivity across the PMEN3 and PMEN9 lineages, the median γ score

for pbp1a was 1.0, while for pbp2b it was 0.95 and for pbp2x it was 0.72. This pat-

tern also applied to the emergence of ST156 (pbp1a = 1.0, pbp2b = 0.92 & pbp2x =

0.62), suggesting the pbp2x and pbp2b loci were most affected by recombination with

non-pneumococcal streptococci. It appears then, that for low-level resistance to emerge

(MIC ≥0.12 µg/ml), pbp1a can remain unaltered in these isolates. When investigating the

reversion to penicillin susceptibility within ST156, the γ scores for the pbp1a and pbp2x

genes were 1.0. This is consistent with a reversion to the ancestral susceptible pneumo-

coccal alleles (pbp2b was not present within a recombination block for this alteration).

3.3.4.4 The levels and origin of β-lactam resistance in the GPS collection

The origin of resistance-associated pbp alleles was also analysed across the species us-

ing the GPS collection. Penicillin resistance levels across 621 GPSCs was estimated

using the RF method as described for the PMEN3 and PMEN9 lineages. Overall, the

RF method generated penicillin resistance phenotype predictions for 19,962 of 20,015

(99%) isolates. The majority of isolates, 64%, were susceptible to penicillin, while 30%

were classified as resistant and the remaining 6% intermediately resistant. Ancestral

state reconstructions across these strains identified 338 alterations in penicillin resistance

levels. The joint most common changes were susceptible-to-resistant, and susceptible-

to-intermediately resistant, occurring 117 times (35%) each. In total, 184 of the 338 al-

terations (54%) were associated with an inferred recombination event affecting at least

one of pbp1a, pbp2b or pbp2x. The pbp2x gene was most frequently identified as be-
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ing altered by recombination, occurring in 100 of the 184 alterations in non-susceptibility

associated with a recombination.

As was the case with the PMEN lineages, the emergence of resistance from suscep-

tible genotypes in the GPS collection was often associated with parts of the pbp2x and

pbp2b genes being imported from other species (indicated by γ < 1; Figure 3.11). The

median γ score for pbp2b was 0.96, and the gene had a γ score below one in 22 gains

of resistance out of 40 associated with a recombination event at the locus. While the me-

dian γ score for pbp2x was 1.0, there were 15 gains of resistance out of 33 associated

with a recombination at the locus where γ was below one. The median γ score of pbp1a

was also 1.0, with only one instance out of 29 associated with a recombination event at

the locus, where its score was below one. This is again consistent with little modification

of pbp1a in interspecies exchanges. However, where resistant isolates reverted to sus-

ceptibility, across all three genes the median γ score was 1.0, indicating within-species

recombinations could cause the loss of resistance.

Figure 3.11: Origin of pbp genes for penicillin resistant isolates. Scatterplot and violin graph

depict the distribution of γ scores for pbp gene sequences within the GPS collection where these

genes were present within an homologous recombination associated with a gain of resistance to

penicillin. Dots represent the individual observations of γ scores, and their overall distribution is

summarised as a violin plot.
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3.3.5 Evolution of resistance through recombination at other core loci

3.3.5.1 Penicillin resistance and murM

In PMEN3, there were further peaks in recombination frequency around the murM gene

(Figure 3.1), which encodes an enzyme involved in cell wall biosynthesis [600], and has

also been implicated in affecting penicillin resistance [140,601]. Yet compared to the pbp

genes, the relationship betweenmurM modifications and penicillin resistance is much less

precisely characterised. Therefore an alignment of the murM sequences was analysed

with fastGEAR [526] to identify any patterns of sequence import from related species that

may be associated with penicillin resistance (Figure 3.12). This revealed evidence of re-

combination with S. pseudopneumoniae and S. mitis at murM in both lineages. However,

only one modification, affecting the region between 946 bp to 1143 bp within murM, was

associated with high level penicillin resistance. This alteration was observed in both the

PMEN9 USA clade and the PMEN3 19A clade, which exhibited the highest penicillin MICs

in their respective lineages (Figure 3.10).

3.3.5.2 Co-trimoxazole resistance in PMEN3 and PMEN9

In PMEN9, there was a high density of recombination events affecting the dhfR (or dyr)

gene, the sequence of which determines resistance to trimethoprim, one of the two com-

ponents (along with sulfamethoxazole) of co-trimoxazole [17]. Overall, PMEN9 was mixed

in terms of trimethoprim and sulfamethoxazole resistance. In total 60% and 54% of iso-

lates were predicted to be susceptible to trimethoprim and co-trimoxazole respectively

(Figure 3.4). As with penicillin non-susceptibility though, resistance to co-trimoxazole

components emerged in parallel across multiple clades. Within the South African clade

for instance, 99% of isolates were resistant to sulfamethoxazole, and 77% were resistant

to both trimethoprim and sulfamethoxazole. In the USA and Chinese clades, 94% and

100% were resistant to both trimethoprim and sulfamethoxazole, respectively.

Trimethoprim and sulfamethoxazole resistance were much more widespread among

the PMEN3 lineage. In total 80% of isolates within PMEN3 were trimethoprim resistant

and 81% were sulfamethoxazole resistant (Figure 3.1). This spread was mainly driven

by the expansion of the ST156 clade, which inherited alleles conferring these resistance
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Figure 3.12: Analysis of the origin of the murM gene across the PMEN3 and PMEN9 Lin-

eages. A.1 The whole genome phylogeny of the PMEN3 lineage, as shown in Figure 1, with

branches coloured by clade of interest, as described in the main text. A.2 Bars indicating the

penicillin resistance category of isolates, and the lineage inferred for the murM gene of each iso-

late. A.3 Representation of the murM gene. A.4 This panel shows the inferred lineage for each

base of each sequence across the PMEN3 phylogeny. Solid unbroken horizontal bars indicate

sequences belonging to a particular lineage, as indicated by the colour. Changes in colour across

a bar indicate different murM segments were inferred to originate in different lineages, suggesting

a mosaic allele generated by recombination. B.1 Recombination corrected whole genome phy-

logeny of the PMEN9 lineage, as shown in Figure 2, with branches coloured by clade of interest.

B.2 Bars indicating the penicillin resistance category of isolates and the overall lineage inferred for

the murM gene of each isolate. B.3 Representation of the murM gene. B.4 This panel shows the

inferred lineage for each base of each sequence across the PMEN9 phylogeny, as for the upper

part of the figure.
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phenotypes. By contrast, within the ST143 clade, only 12% of isolates were trimethoprim

resistant, and 36% were sulfamethoxazole resistant. The 15 isolates from South Africa

in the collection were all resistant to both trimethoprim and sulfamethoxazole.The high

levels of co-trimoxazole resistance in South Africa across both strains could be driven

by widespread co-trimoxazole consumption, as it is commonly used as a prophylactic

treatment against secondary infections in HIV positive individuals [611]. In general, co-

trimoxazole resistance mirrored the distinctive patterns of penicillin resistance in each

lineage.

3.3.5.3 Co-trimoxazole resistance in the GPS collection

Levels of resistance to trimethoprim and sulfamethoxazole were also high across the GPS

collection. A majority of isolates were resistant to sulfamethoxazole (11,576 of 20,015;

58%), with fewer isolates resistant to trimethoprim (7,765 of 20,015; 39%). The com-

bination of resistances, conferring full co-trimoxazole resistance, was identified in 7,661

isolates (38%). Among the 4,614 isolates from South Africa in the GPS collection, 2,040

(44%) were resistant to trimethoprim and 2,990 (65%) were resistant to sulfamethoxazole,

and there were 1,996 isolates (43%) fully resistant to co-trimoxazole.

3.4 Conclusions

In this chapter I have investigated the role of recombination and transformation in the

modification, exchange and dissemination of antimicrobial-resistance genes among glob-

ally distributed pneumococcal collections; looking specifically at genes encoded within

the core genome of the pneumococcus. Using a mixture of genomic approaches I have

sought to first understand the evolutionary histories of the PMEN3 and PMEN9 lineages.

Using Gubbins to produce a phylogeny and incorporating the sampling metadata of

these lineages, we can observe the differences in their epidemiology. In the PMEN3 lin-

eage, the phylogeny is dominated by the ST156 clade. This penicillin and co-trimoxazole

resistant clade emerged in the 1980s and rapidly spread worldwide. This mirrors the rapid

spread of the PMEN1 and PMEN14 lineages [142, 555]. Whereas for PMEN9, the phy-

logeny is dominated by largely country-specific clades, with penicillin resistance emerging

multiple times in different locations. These clades tend not to disseminate as widely as
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seen in PMEN3. This is despite the PMEN9 lineage having originated earlier than the

PMEN3 clade.

Investigating the data output from Gubbins revealed differences in the lineages’ over-

all rates of recombination too. The PMEN3 lineage tended to be more recombinogenic

than PMEN9, not only having a greater r /m, but also tending to import more diverse se-

quence, with the SNP density of recombination events significantly higher for PMEN3.

This difference helps explain the different levels of serotype switching seen in the data

too, with PMEN3 switching capsule locus far more often, 35 times, compared to PMEN9

and its nine switches of its capsule locus. Indeed, the PMEN1 lineage, which had an esti-

mated r /m of 7.2 similar to PMEN9’s 7.7, also only had 8 serotype switch events detected

in its collection, although this was with a smaller sample size of 240 isolates [142]. In

general both these lineages are within the middle of the range of r /m values observed for

PMEN lineages, with the highest PMEN14 observed at 34.06 r /m [612] and the lowest

PMEN31 observed at 0.07 [613].

Both lineages however shared peaks in recombination around their pbp loci. These

corresponded with a number of alterations to the resistance level of isolates, with 20 of 35

switches in both lineages (11 in PMEN3 and 9 in PMEN9), having a recombination event

affecting at least one of pbp1a, pbp2b or pbp2x. Peaks at these loci are common in pneu-

mococcal MDR lineages, likely reflecting the strong selection pressure placed on bacteria

by the use of β-lactam antibiotics [142, 555, 614]. Indeed, we observe the expansion of

the ST156 lineage within PMEN3 immediately after gaining resistance to penicillin. More

systematic sampling of this clade could’ve allowed greater resolution on the date of this

expansion, as well as information on its likely geographic setting.

This work also consolidates findings from other multidrug resistant lineages, in that I

observe PMEN3, PMEN9 and other GPSC lineages acquiring penicillin resistance via the

importation of pbp gene sequences from other species [137,138,560,561]. This was most

frequently observed at the pbp2b and pbp2x genes. Previous work has suggested alter-

ations at these two loci are usually the first steps required for low-level penicillin resistance

to emerge [140]. On the other hand, substantial alterations in pbp1a are associated with

higher levels of resistance, above the 0.12 µg/ml used as the threshold for defining resis-
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tance with the RF model [615]. Indeed, despite the emergence of penicillin resistance at

the base of the ST156 clade, there are numerous further recombinations around the pbp

loci, with sublineages containing high MIC values (Figure 3.10). Hence the lack of strong

evidence for pbp1a being modified by sequence from other species may be an artefact of

how I identified transitions between discrete resistance levels. This may also apply to the

alterations to murM [616]. Particular imports around murM from other streptococci were

found in PMEN3 and PMEN9 clades exhibiting high penicillin resistance. These clades

also had modified pbp genes, suggesting epistatic interactions are likely to be important

in fully understanding the role of the murM imported segments [617].

This highlights a problem for in silico predictions in ensuring training data for models is

representative of the diversity within a population. While I was able to broadly recreate the

results of the Li et al 2016 study [269] for the dataset of resistance levels provided by the

CDC, with the RF model they employed also outperforming a simple LR model I tested,

the CA scores dropped markedly for the PMEN dataset. This neccessitated the switch to

the narrowed meningitis breakpoints used for prediction. Recent work has used logistic

ElasticNet models trained on unitigs as input features, to predict resistance for Penicillin,

as well as a range of other antibiotics [618]. This could be a more generalisable approach

to predicting resistance, although so far this has only been validated on small pneumococ-

cal datasets. In the future, using a method, that can accurately predict individual MICs for

novel genotypes would enable a more detailed investigation of the recombination events

that can lead to low, intermediate and high levels of resistance emerging in populations.

In the next chapter I will perform a similar analysis on the effects of recombination on

the spread of MGEs within pneumococcal populations. This will also look into the likely

origin of these AMR encoding elements, and investigate their method of spread in the

populations. Together these analyses will give an overall picture of how both the core

and accessory genome affect AMR spread and how it is molded by recombination.
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The spread of resistance through

mobile genetic elements in

pneumococcal populations
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Summary

This chapter investigates how recombination can drive the dissemination of MGEs in

pneumococcal populations. I characterise the spread of two families of mobile genetic

elements, Tn1207.1 and Tn916, in the populations described in the previous chapter:

PMEN3, PMEN9 and the GPS collection. In PMEN9 I show how conflict between the

host and Tn1207.1 leads to the rise and subsequent decline of closely related set of

isolates in Germany. Additionally I find that these mobile elements are also frequently

inserted by homologous recombination. Many of these elements originate in closely re-

lated streptococci also common in human carriage. These results further highlight how

selection pressure from antibiotic consumption can drive the emergence of lineages with

large recombination events.
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4.1 Introduction

4.1.1 MGEs, recombination and resistance

In the previous chapter I investigated how modifications of pneumococcal core genes,

such as the pbp genes, can lead to resistance spreading through populations. The other

mechanism through which pneumococcal populations, and bacteria more widely, can gain

resistance is via the movement of specialized resistance genes on mobile genetic ele-

ments (MGEs). Plasmids are a common vector of AMR genes across species, with many

successful pathogenic Enterobacteriaceae lineages, such as the ST131 Escherichia coli

lineage, carrying plasmids encoding extended-spectrum β-lactamases (ESBL) for instance

[619, 620]. In the pneumococcus however, the plasmid repertoire is limited to only two

types of cryptic elements [621–623]. As such, the MGEs that contribute most of the

spread of AMR genes in the pneumococcus are integrative and conjugative elements

(ICEs) [435,487].

These elements integrate within the host chromosome and encode their own con-

jugation machinery to move between cells [421]. This conjugation machinery enables

the elements to move across a broad range of bacterial taxa [561, 624]. Indeed, ICEs

such as the common tetracycline resistant element Tn916, are present in AMR lineages

of pneumococci and the majority of antibiotic-resistant bacterial pathogens considered

a priority by the WHO [429, 625, 626]. However, in vitro studies looking at how Tn916

moves between cells appear to show the element is unable to conjugate between pneu-

mococci [627, 628]. Another method these MGEs could be moving between cells is via

transformation, although this only tends to import closely related sequences and favours

much shorter sequence imports [350,485].

In order to understand how MGEs may move between pneumococci isolates, and

also the likely sources of these imports, in this chapter I investigate the spread of two

common MGEs, Tn916 and the macrolide resistant Tn1207.1 element. I first determine

their distribution in the two PMEN lineages described in the previous chapter and the

wider GPS collection. I then investigate the loci where these elements insert into the host

chromosome and the effect this has on the host, and finally seek to determine where
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these MGEs entered into the pneumococcal population from. Now I will describe the two

elements I investigate in more detail.

4.1.2 The Tn916 element

Tn916 was the first identified ICE, found in Enterococcus faecalis, and is thought to be

the shortest at just 18kb in length [421] . Typically Tn916 carries the tet(M) gene confer-

ring tetracycline resistance, with close relatives such as Tn1545 and Tn2010 containing

the same core gene groups, but adding in the erm(B) and mef(E) macrolide resistance

genes [429,626] . Tn916 can also form composite elements that can confer resistance to

aminoglycosides, streptogramins and lincosamides through the integration of sequences

such as the Omega cassette and Tn917 elements [142]. The Tn916 genome is split

into two sections, the regulatory region, where cargo genes such as tet(M) reside, and

the conjugative region (Figure 4.1). When integrated into the host chromosome, typically

there are only low levels of transcription of the genes in the regulatory region of the el-

ement, with no transcription of the conjugative region (Figure 4.1). Upon excision and

circularization though, genes in the conjugative region are expressed [421].

The Tn916 site-specific integrase (Int) is a member of the transposase subfamily of

tyrosine recombinases, and is quite broad in its insertion site preference, favouring sites

that are AT rich or bent [425, 429] . As such the element has been detected in over 35

bacterial genera, encompassing the majority of priority pathogens listed by the WHO [429,

625, 626] . This diverse host range means Tn916 has ample opportunity to acquire new

genetic material, with the wider Tn916 family of transposons displaying a varied array of

cargo genes, from mercury resistance to restriction modification systems [626] . Among

pneumococci, Tn916 and Tn916 related ICE are prevalent among MDR lineages such as

CC180, PMEN1 and PMEN2 [142,312,629] .

4.1.3 The Tn1207.1 element

Tn1207.1 is a short 7.2 kb defective transposon, it is closely related to the 5.5kb Mega

element that is often found in larger ICEs such as Tn2010 [630] (Figure 4.2). The Mega

element confers macrolide resistance via the presence of the mef(E) macrolide efflux

pump, while the Tn1207.1 element contains the closely related mef(A) gene [577]. Both
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Figure 4.1: Linear and circular representation of the Tn916 element. Genes are shown as

arrows with the direction of the arrow indicative of the direction of transcription they initiate. Some

known promoters are shown as bent arrows. Genes in the regulatory region of the element are

highlighted in red, while those in the conjugation region of the element are shown in blue, and the

resistance gene tet(M) is shown in yellow. The circularization of the element upon excision from

a host chromosome allows for all genes to be transcribed. Adapted from Johnson & Grossman

2015 [421]

mef(A) and mef(E) are classified in the same efflux protein macrolide resistance group

and share 90% nucleotide sequence similarity [577,631]. The mef(A) gene was first dis-

covered in Streptococcus pyogenes as part of the larger 52 kb Tn1207.3 conjugative ele-

ment [632,633]. The Tn1207.1 element in turn was found first in the pneumococcus and

corresponds to the left-end of the larger Tn1207.3 element [634, 635]. Within Tn1207.1

the 5’ end of open reading frame (ORF) 8 also appears to be a truncated form of the umuC

gene encoded by Tn5252 for UV-resistance [634,636].

Within pneumococci, Tn1207.1 has consistently been found inserted at the same loci

in the host genome, splitting the competence gene comEC [635, 637]. The Tn1207.3
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element is also found splitting the orthologue of this gene within S. pyogenes populations

[633]. The majority of the pneumococcal isolates found containing Tn1207.1 are members

of the PMEN9 lineage, suggesting a rare insertion [635, 638]. The Mega element on the

other hand, appears to be much more dispersed among diverse bacterial taxa owing to

its location on the common ICEs Tn2010 and Tn2009, which are themselves part of the

wider Tn916 family [630,639,640]. A Mega element present within the Tn2009 ICE is seen

at the base of PMEN14 lineage and present in the majority of these MDR isolates [555].

Within the PMEN1 lineage too, Tn916 elements are modified to Tn2009/10 in situ through

the acquisition of the Mega element [142]. Outside of these ICE elements though, mega

has been seen directly integrated into the pneumococcus’ chromosome in at least six

different locations [641,642].

Figure 4.2: Linear representation of the Tn1207.1 element. Genes are shown as arrows with

the direction of transcription initiation indicated by the direction of the arrow. Open reading frames

(ORFs) are highlighted and the resistance gene mef(A) is annotated and highlighted in yellow.
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4.2 Methods

4.2.1 MGE identification

To measure the presence of the MGEs Tn1207.1 and Tn916 in the PMEN3, PMEN9

and GPS collection, reference MGE sequences were used to search for intact and partial

representatives. For the Tn916 element, the 18 kb reference given by the transposon

registry [643], extracted from Bacillus subtilis (accession code: KM516885), was used.

For Tn1207.1, a 7 kb reference extracted from the S. pneumoniae INV200 genome (ac-

cession code: FQ312029.1) was used. BLASTN v2.5.0 was used to detect Tn916 and

Tn1207.1 among the assembled genomes in the collections. Hits were filtered using an

empirically determined cutoff alignment length of 7 kb and 2 kb for Tn916 and Tn1207.1

respectively. Given the fragmented draft nature of the assemblies in the collections, hits

could often span multiple non-adjacent contigs. As such BLASTN results were merged if

they represented continuation of an element’s sequence split across multiple contigs.

4.2.2 Antibiotic consumption data

Europe-wide macrolide consumption datasets were compiled from the ECDC. Data for

Germany, France, Italy, Netherlands, Spain and the UK were collected. For the Italian

ECDC data, collection started from 1999, while for the other countries the collection ran

from 1997 for macrolide consumption. The rates of macrolide consumption in Germany

pre-1997 were sourced from a study looking at macrolide resistance among pneumococci

isolates in Germany by Reinert et al 2002 [644]. This study recorded data from 1992 to

2000, while the ECDC recorded data from 1997 to the present day. The ECDC data for

Germany is from the primary care sector for outpatients, with a population coverage of

90%, while the Reinert et al paper takes data from both prescriptions in hospitals and from

community general practitioners. These two macrolide usage datasets were combined

using the three years of overlap between the datasets as a scaling factor. This was the

average transformation that mapped the Reinert et al 2002 data to the ECDC data. It

was applied to convert the data from 1992 to 1996 into the same units as the ECDC data

(defined daily doses / 1000 population). Only the ECDC datasets were used for Europe

wide comparisons.
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For β-lactam consumption, data was also taken from the ECDC for 1997 to the present

day. For the German isolates again, two sources were used with the ECDC data from

1997 to present day combined with β-lactam consumption data from 1992 to 1997 taken

from McManus et al 1997 [645]. This study has data on the hospital and retail sales of

oral antibiotics in West Germany for the years 1989 and 1994 in the same DDD units as

the ECDC data. A linear trend between 1989, 1994 and 1997, the first year of data from

the ECDC, was used to impute the missing values between 1992 and 1997.

4.2.3 Phylodynamic analysis

The expansion of the German lineage within PMEN9 was further examined using phylo-

dynamic approaches. Initially, the phylogeny of PMEN9 produced by Gubbins (Section

3.2.3) was subset to the 162 German isolates both containing Tn1207.1 and with a date

of isolation. The roottotip function in the BactDating R package v1.0.1 [552] was used to

test for a molecular clock.

A time-calibrated phylogeny was then created, also using BactDating. This was run

with a relaxed clock model and an MCMC length of 100 million iterations. Chain conver-

gence was checked through visual inspection of the trace plots output for the model.

The Skygrowth R package v0.3.1 [313] was then used to formally test the link between

antibiotic consumption and population growth rates. The timed phylogeny generated by

BactDating was input into Skygrowth, where it was analyzed in combination with the β-

lactam, macrolide, and macrolide-to-β-lactam consumption data. Consumption data were

each separately rescaled prior to analysis with default settings and priors. Four sets of

analysis were run: one for each of the three consumption datasets, and one without con-

sumption data. In each case, the MCMC was run for 100 million iterations, which visual

inspection suggested was sufficient for the chains to have converged.

4.2.4 MGE insertion site identification

A pipeline was developed to categorize the insertion points of the two MGEs studied.

Figure 4.3 outlines the algorithm. The initial step was the creation of a library of unique

hits, with each isolate containing an MGE BLAST searched against the corresponding

GPSC’s reference, or a global reference if the strain reference also contained the MGE.
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This determined the start and end points of an insertion. A hit was defined by three

characteristics: (1) the total length of the delineated insertion; (2) the number of genes

within the insertion, and (3) the genes within the flanking regions of a hit. Each observed

combination of values was considered a unique hit. For instance, if two hits were of

similar length and gene content, but differed in where they inserted within the host, they

were treated as two unique hits. The unique insertions with the longest flanking matches

to the reference, indicating the insert was reconstructed on a large contig, were used as

representatives of that insertion within the library.

Hits might not be present in the library either through having shorter flanking se-

quences, or having MGE insertions spread across contigs. The next step was to allocate

such BLAST hits not present in the library to one of the unique library insertion types (the

combination of gene number, insertion length and location). Isolates with no matches to

the reference either side of the hit, usually when the hit was present in a small contig or

within a larger unresolved element, were discarded from the analysis.

Once hits had been allocated an insertion type, the node at which the insertion oc-

curred was reconstructed on the Gubbins phylogeny for each GPSC. This ancestral state

reconstruction was performed using PastML v1.9.15 [590]. The recombination predic-

tions were then searched to detect whether there was a putative recombination event, on

the branch on which acquisition was estimated to occur, spanning the insertion site within

the reference for a GPSC. If such a recombination were identified, this was considered

indicative of element insertion via homologous recombination. The flanking regions of the

isolate with the fewest reconstructed SNPs around the insertion site of the element since

its insertion, as inferred from the Gubbins base reconstruction, were then extracted to test

for the origin of this element.

As with the origin of the pbp gene analyses presented in the previous chapter, these

flanking regions were then compared to a reference collection of 52 streptococcal genomes

collated from antimicrobial susceptible S. pneumoniae and other Streptococcus species,

building on the database collated in Mostowy et al 2017 [526]. Again, BLASTN v2.5.0 was

used to compare each flanking region to this database. The orthologous regions to these

flanks were also extracted from isolates not containing the insertion, to act as a control.
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The statistic γ (Equation 3.1; Defined in Section 3.2.5.1) was also used to determine

the species of origin for an insertion. The code for this pipeline is available at https:

//github.com/jdaeth274/ISA.

4.3 Results

4.3.1 MGE distribution among PMEN3 and PMEN9

Searching for both Tn916 and Tn1207.1 revealed their widespread distribution among the

MDR lineages PMEN3 and PMEN9. Tn916-type elements were present in 70 representa-

tives of PMEN3 (Figure 4.4). An ancestral state reconstruction using PastML v1.9.15 [590]

identified 17 independent insertions. Only two spread to a notable extent: one was a clade

of 22 isolates within the ST156 clade of which 18 isolates contained Tn916, and the other

was within the 33 isolate ST143 clade, of which 25 isolates contained Tn916. In both

clades it appears there were multiple instances of Tn916-type elements being lost, with

the isolates without Tn916 sporadically appearing in both clades (Figure 4.4).

In PMEN9, Tn916-type elements were present in 150 isolates (Figure 4.5). They were

most commonly present in the South African clade, where Tn916-type elements were

found in 71 of the 73 isolates in this clade, with likely deletion in two isolates. Similarly,

40 of the 45 isolates within the Chinese clade had also acquired Tn916-type elements,

with five isolates without an element appearing to have lost these independently, as with

ST143 in PMEN3.

The Tn1207.1-type elements were more common in both strains. In PMEN3, 108

isolates contained a Tn1207.1-type element, resulting from 27 independent insertions

(Figure 4.4). The two insertions associated with the largest clonal expansions were one

within the 19A subclade (26 isolates), and a second in another subclade of ST156 (25

isolates). The other 25 insertions were less successful, appearing sporadically around

the phylogeny.

In PMEN9, Tn1207.1-type elements were present in 341 isolates (Figure 4.5). The

elements were present in 92 isolates of a subclade of the USA clade, and ubiquitous

in the 238 isolates of the German clade, the most widespread insertion observed in the

collection.
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4.3. Results

Both Tn916-type and Tn1207.1-type elements were frequently acquired by PMEN3

and PMEN9. However, while in PMEN9 some of these acquisitions appear at the base

of highly successful clades, in general few of these insertions resulted in internationally

disseminated MDR genotypes.

4.3.2 Expansion of macrolide resistance in German pneumococci

The expansion of the German clade carrying Tn1207.1 represented an unusual case of

an MGE insertion being associated with a successful genotype. This suggested strong

selection for a macrolide resistant genotype in Germany in recent years. In order to assess

the degree of selection pressure on this clade, antibiotic consumption data was collected

from across Europe for both β-lactams, which this clade is sensitive to (Figure 4.5), and

macrolides, to which this clade is resistant to. From these datasets, we can see that

German antibiotic consumption is generally low relative to the rest of Europe [646] (Figure

4.6). However, Germany has a high ratio of macrolide-to-β-lactam usage relative to other

European countries (Figure 4.7).

Given these atypical antibiotic consumption trends, I decided to further investigate

whether consumption patterns may have aided the dissemination of this lineage in Ger-

many. I performed a phylodynamic analysis of the 162 German isolates in this clade with

available date of isolation data (excluding two isolates without date of isolation data). The

first step in this was checking for evidence of a molecular clock. The 162 isolates had

been collected between 1992 to 2008. There was significant evidence of a molecular

clock, based on the correlation between the root-to-tip distance and the date of isolation

for this clade (n = 162, Pearson’s correlation coefficient R2 = 0.15, p value < 1 x 10−4)

(Figure 4.8). This root-to-tip analysis estimated the clade’s most recent common ancestor

(MRCA) existed in 1970.

With sufficient evidence for a molecular clock within the data, the next step in the anal-

ysis was the generation of a time calibrated phylogeny. The time-calibrated phylogeny

output from BactDating [552] suggested a relatively slow clock rate of 5.5 x 10−7 substi-

tutions per site per year (95% credibility interval of 4.5 x 10−7 to 6.6 x 10−7 substitutions

per site per year).
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Figure 4.6: Consumption of macrolide and β-lactam antibiotics across Europe. The DDD /

1000 consumption rates for macrolides and β-lactam antibiotics for six major European countries

across a 13 year period from 1997 to 2010

The Skygrowth R package v0.3.1 [313] was then used to reconstruct the effective

population size, Ne, and the growth rate of Ne through time of this clade. The antibiotic

usage data over this period was used as a covariate, to test for evidence of selection by

changing consumption (Figure 4.9). All these isolates were serotype 14, which is included

in the PCV7 vaccine that was introduced into the universal vaccination programme for

children under two years of age in Germany in 2006 [647]. As such, only isolates collected

pre-2006 were included in this analysis, to minimise any effect of the vaccine on Ne. This

left 103 isolates from Germany, sampled between 1992 and 2005 for further analysis.

From the reconstruction without using the macrolide and penicillin consumption data,

it is evident this lineage expanded rapidly during the late 1990s and early 2000s, with

its peak in growth rate around 1997 preceding a peak in Ne around 2003. Both Ne and
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4.3. Results

Figure 4.7: Ratio of macrolide to β-lactam consumption in Europe. The ratios of macrolide

use, in DDD, per β-lactam use for six major European countries across a 13 year period from 1997

to 2010.

growth rate subsequently declined. The peak of the macrolide-to-β-lactam consumption

ratio was in the mid-to-late 1990s, whereas the peak Ne was not reached until after 2000.

This peak Ne growth rate, rather than maximum Ne itself, coincided with the timing of the

highest consumption ratio. A similar observation was made for methicillin consumption

and the spread of MRSA, with increased consumption leading to the expansion of the

USA300 clade [313].

Correspondingly, when incorporating the macrolide-to-β-lactam consumption ratio

into the reconstruction, the credible intervals for the growth rate estimation narrowed.

Additionally, the macrolide-to-penicillin consumption ratio had a significant positive mean

posterior effect of +0.24 [95% credible interval 0.06 to 0.48] on the growth rate of the

clade. Both results supported the hypothesis that growth rate was correlated with the

contemporary patterns of antibiotic consumption in Germany, consistent with selection

pressures from national level prescribing practices driving the expansion of this clade in

the late 1990s.
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Figure 4.8: Root to tip analysis of 162 German isolates within PMEN9. A Represents the 162

isolate phylogeny with node tips coloured by date of isolation. B Linear regression of root to tip

distance against sampling date for Isolates.
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4.3. Results

Figure 4.9: Expansion of a macrolide resistant clade in Germany pre-vaccine. (A) The ratio

of macrolide-to-penicillin consumption in Germany. (B) The change in Ne through time inferred by

Skygrowth, with the red line representative of when no covariates are incorporated and the blue

line when the macrolide-to-β-lactam ratio is incorporated into the reconstruction. Shaded regions

represent the 95% credible intervals. (C) The reconstruction of the growth rate of Ne through

time. The red line represents the result of model fitting without covariates, and the blue line when

macrolide-to-β-lactam ratio data were incorporated. Shaded regions represent the 95% credible

interval for the reconstruction.
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To investigate whether this relationship holds for the individual antibiotic consumption

rates, as opposed to the ratio of rates, further analyses incorporating just the macrolide

consumption and the β-lactam consumption were also run (Figures 4.10 & 4.11). For

the β-lactam consumption data, there was no significant effect on the growth rate of the

clade (mean = +0.19, 95% credible interval -0.09 to 0.57). However for the macrolide

consumption data, there was a significant effect (mean = +0.22, 95% credible interval

0.02 to 0.55), albeit to a lesser extent than the macrolide-to-β-lactam ratio.

The absence of penicillin resistance, or vaccine evasion through serotype switching

[648], may be a consequence of the Tn1207.1 element itself. This MGE inserted into, and

split, the gene comEC (Figure 4.12), which encodes a membrane channel protein integral

to extracellular DNA uptake during competence [649]. Therefore these cells were unable

to import DNA for transformation, necessary for serotype switching and the acquisition of

penicillin resistance alleles of the pbp genes [561]. The impact of this insertion is evident

from the absence of ongoing transformation within the German clade (Figure 4.5).

Further analysis of the origin of this Tn1207.1 insertion, via analysing the flanking

regions as for the pbp genes in the previous chapter, revealed a probable interspecies

origin. The flanking regions immediately adjacent to the insertion have a low percent

identity matched to other pneumococci, ranging between 92% and 94% (Figure 4.12).

The immediate upstream 500 bp region most closely matched to a S. mitis reference

genome (accession code AFQV00000000).

Given the likely interspecies origin of this Tn1207.1 element, I further investigated

the origins of this element and Tn916-type elements across the GPS collection. I looked

firstly at the diversity of these elements, in terms of insertion loci and length, in the wider

GPS collection and the likely number of independent insertions occurring here.

4.3.3 Multiple acquisitions of the Tn1207.1 and Tn916 elements across the

GPS collection

4.3.3.1 Defining unique hits

In order to determine the number of element insertions, I first had to identify all the unique

insertions of the elements within the collections. Initial BLAST search results often give
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4.3. Results

Figure 4.10: Skygrowth analysis incorporating macrolide consumption data (A) The rate of

macrolide consumption in Germany in DDD. (B) The change in Ne through time inferred by Sky-

growth, with the red line representative of when no covariates are incorporated, and the blue line

is representative of when the macrolide consumption rate is incorporated into the reconstruction.

Shaded regions represent the 95% credible intervals. (C) The reconstruction of the growth rate

of Ne through time. The red line represents the result of model fitting without covariates, and the

blue line when macrolide consumption data were incorporated. Shaded regions represent the

95% credible interval for the reconstruction.
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Figure 4.11: Skygrowth analysis incorporating β-lactam consumption data (A) The rate of

macrolide consumption in Germany in DDD. (B) The change in Ne through time inferred by Sky-

growth, with the red line representative of when no covariates are incorporated, and the blue line

when the β-lactam consumption rate is incorporated into the reconstruction. Shaded regions rep-

resent the 95% credible intervals. (C) The reconstruction of the growth rate of Ne through time.

The red line represents the result of model fitting without covariates, and the blue line when β-

lactam consumption data were incorporated. Shaded regions represent the 95% credible interval

for the reconstruction.
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Figure 4.12: Insert of Tn1207.1 within the PMEN9 reference genome. Comparison of the

Tn1207.1 element insertion, highlighted in pink within the INV200 genome, with the orthologous

unmodified locus in sample 2456_01. The red bands between the genomes represent sequence

matches identified by BLASTN, with these bars shaded by percentage identity between the se-

quences. The intact comEC gene is coloured cyan within 2456_01, where the fragments of this

gene generated by the Tn1207.1 insertion are coloured brown in INV200. Arrows along the INV200

genome mark the start and end of the recombination event inferred to have imported Tn1207.1 by

the phylogenetic analyses
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fragmented hits, due to the nature of these elements and their ability to gain and lose

cargo genes to form distinct elements from their Tn1207.1 and Tn916 backbones. There-

fore, simply taking the presence/absence of a reconstructed element from these BLAST

results may give a misleading picture of the number of times an element has inserted.

For instance, isolates within a clade may all have a Tn916 element present, but this may

be located at different loci in each isolate and in different forms. Only using the BLAST

results would lead to a parsimonious reconstruction of a single insertion, perhaps under-

estimating the true promiscuity of the element in question.

To identify the unique insertion types and infer the node where this insertion type

is likely to have entered into the population, I developed a pipeline to categorise these

MGEs (Section 4.2.4; Figure 4.3). Broadly, this categorises the initial BLAST hits based

on their length, gene number and flanking region identity, to create a library of unique

insertion types. The insertion of these hits are then reconstructed within a strain’s phy-

logeny and cross-referenced with Gubbins predictions of recombination events to detect

whether insertion is likely to have occurred through transformation and homologous re-

combination. If this an insertion is found to be within a putative recombination event, its

flanking sequences are compared to a reference streptococcal database to identify the

likely species of origin.

4.3.3.2 MGE distribution across the GPS collection

Applying the above pipeline to the GPS collection of 20,015 isolates revealed a wide

diversity of insertion sites, and frequent insertion by each of Tn916-type and Tn1207.1-

type elements. At least one of the elements was found in 5,860 isolates (29% of the GPS

collection) across 146 resistance-associated GPSCs. Of these, 1,304 isolates contained

both Tn1207.1-type and Tn916-type elements (7%).

The Tn1207.1-type element was found across 64 GPSCs in 1,940 isolates (10% of

the GPS collection). The mean prevalence of Tn1207.1-type elements in GPSCs in which

it was present was 16%. Of the 1,940 isolates containing the element, 1,800 (93%) had

their insertion point reconstructed. The majority of the 140 isolates where the insertion

point was not reconstructed had the Tn1207.1-type element present within a small contig

with no flanking hits to the reference (74 of 140). There were 50 unique reconstructed

155



4.3. Results

insertion types of the Tn1207.1-type element, distributed across 27 different insertion loci

(Figure 4.13). Some insertion loci were targeted by multiple insertion types. The loci

surrounding the rlmCD gene, encoding a 23S rRNA methyltransferase, was the most

common target, with 9 different Tn1207.1 insertion types targeting this region. The most

common insertion type was as a Mega-type cassette within a Tn916-type element, which

occurred in 1,033 (57%) of the isolates. Hence the diversity of Tn1207.1 insertion types

was relatively low, with a Simpson’s diversity index of 0.64.

Tn1207.1-type elements sometimes disrupted the host cell’s machinery upon their in-

tegration. For instance, the second most common insertion type for Tn1207.1 was the 5.5

kb Mega version of the element inserting into, and splitting, tag. The tag gene encodes

a methyladenine glycosylase, involved in DNA base excision repair [635]. This insertion

was present in 260 isolates (14% of identified hits) across 30 different GPSCs. This was

also common in the PMEN collections, with Tn1207.1 within the USA clade of PMEN9

being in the form of Mega splitting tag (Figure 4.14). The insertion of the 7.2 kb Tn1207.1

element into comEC, as in the German PMEN9 clade, was the third most common, ac-

counting for 5% of insertions (92 isolates) in the GPS collection and appearing in four

different GPSCs.

Contrary to the results for PMEN3 and PMEN9, Tn916-type elements were more

widespread than Tn1207.1-types among the collection, being present in 5,230 isolates

across 134 of the 146 GPSCs. The mean prevalence for Tn916 was 41% among GPSCs

in which it was present. Of these hits, the insertion sites of 1,895 (36%) were not classi-

fiable. This was primarily due to elements being present in contigs with no, or very short,

matches back to the reference (1,496 isolates). For the classifiable 3,335 (64% of inser-

tions) isolates, there were 407 unique reconstructed insertion types, distributed across

102 different insertion sites (Figure 4.15). The insertion sites harbouring the joint great-

est number of Tn916-type integrations were adjacent to the rbgA gene, which encodes

a ribosomal biogenesis GTPase and is a common insertion site for Tn5253 [440], and

the spxA gene, which encodes a transcriptional regulator for the comCDE competence

operon [650], with 42 different insertion types proximate to both. The Simpson’s diversity

index for Tn916 insertion types was 0.97, indicating Tn916 is much more variable in how
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Figure 4.13: Insertion points of classified Tn1207.1 hits within S. pneumoniae. Annotated

genome of the reference Streptococcus pneumoniae RMV4 isolate (ENA accession number:

ERS1681526) showing genes that Tn1207.1 has inserted either within, or adjacent to, among the

collection. Only genes present within this element free reference are annotated. Grey bars rep-

resent coding sequences (CDS): lighter grey regions are CDS annotated in the forward strand,

darker grey in the reverse. The inner heat map represents the number of isolates that have

Tn1207.1-type elements inserted within or adjacent to the annotated genes. The colour scale

is logarithmically transformed.
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Figure 4.14: Insert of Tn1207.1 asMega within tag. Comparison of the Tn1207.1 Mega element

insertion, highlighted in pink within the 1018_00 genome, with the orthologous unmodified locus

in INV200. Data are shown as described in Figure 4.12
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it integrates into the S. pneumoniae genome than Tn1207.1.

Figure 4.15: Insertion points of classified Tn916 hits within S. pneumoniae. Annotated

genome of the reference Streptococcus pneumoniae RMV4 isolate (ENA accession number:

ERS1681526) with genes where Tn916-type elements have inserted either within, or adjacent

to, among the collection. Grey bars represent coding sequences (CDS): lighter grey regions are

CDS annotated in the forward strand, darker grey in the reverse. The inner heat map represents

the number of isolates that have hits inserted within or adjacent to each of the annotated genes.

The colour scale is logarithmically transformed.

The most common unique reconstructed insertion types for Tn916-type elements

were insertions of the Tn2010 and Tn2009 elements, which also contain the Mega form of

Tn1207.1. The majority of both these hits occurred within the globally-distributed GPSC1

lineage [651] (containing the PMEN14 lineage): 364 of the 372 of Tn2009 examples, and

354 of the 360 of Tn2010 examples.

Tn916 was often present in the complete 64.5 kb Tn5253 element, or with remnants
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of the Tn5253 backbone. The next most common insertion type after Tn2009 and Tn2010

was Tn916 present in 177 isolates as part of a 66kb insertion between the immunoglobulin

A protease zmpA [652] and rbgA. This contained the majority of the Tn5253 backbone, al-

though the Ωcat cassette was missing, and the Tn916 was present in the form of Tn2009.

The next most common composite ICE insertion was then an 84 kb element containing

Tn2009 and a Ωcat element, present in 59 isolates in GPSC16. The diversity in both

Tn5253-type insertion sites and cassette content makes accurately reconstructing Tn916

insertion types difficult. In general, Tn916 is present in elements over 50 kb in length in

943 isolates (28% of classifiable hits).

4.3.3.3 Frequent insertion of MGEs via recombination

Given this diversity of insertion types, as outlined in section 4.2.4 ancestral state recon-

struction was then used to identify the insertions of Tn916-type and Tn1207.1-type el-

ements across the GPS collection. For Tn1207.1-type elements, the 50 unique recon-

structed insertion types were found to have inserted 222 times across 59 GPSCs. The

most frequent insertion type was the short 4.5 kb element splitting the tag gene. This

occurred 72 times, representing 32% of all acquisitions of the cassette across S. pneu-

moniae.

Tn916-type elements appeared to insert much more frequently across the collection:

1023 times across 128 different GPSCs. While 134 GPSCs contained Tn916-type ele-

ments, in six of these the insertion types of elements were not able to be reconstructed,

hence no insertion events were reconstructed. In total, 163 of the 407 Tn916 insertion

types appeared to insert multiple times across the collection. The most frequent insertion

(29 times across 8 different GPSCs) was a 42 kb Tn5253-like element, containing only

tetM as a resistance gene inserted upstream of zmpA.

The proportion of these insertions occurring within putative recombinations differed

between the two elements. For Tn1207.1-type elements, 55% of insertions were within

recombination blocks (123 of 222), compared with only 8% of the insertions for Tn916-

type elements (81 of 1023). This difference could have multiple explanations. Tn916

encodes for its own conjugative machinery, and is often present within larger conjugative

elements, and therefore may frequently move independently of transformation.
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Alternatively, Tn916 may be imported through transformation, but then transpose be-

tween loci once in a cell, thus moving away from its site of insertion. The median Simp-

son’s diversity index for within-GPSC Tn916-type element insertion site diversity was 0.54,

whereas for Tn1207.1-type elements it was 0.25. This suggests Tn916-type elements,

once inserted, might excise and transpose within the chromosome at a higher rate than

Tn1207.1-type elements.

To assess the properties of these recombination events importing MGEs, they were

labelled and compared against the non-MGE importing recombination events from all 146

GPSCs where either of the elements were found. From this, most recombination events

mediated by transformation appear to be much shorter than the lengths of these elements

(Figure 4.16). Such exchanges will generally favour deletion of elements rather than their

insertion [485]. Comparisons of the length distribution and SNP density for recombina-

tion events that import one of the MGEs (with the length of the MGE seqeuence itself

excluded), against other recombination events, suggested these MGE importation recom-

binations were atypical (Figure 4.16). MGE recombinations were significantly longer, with

a median length (excluding the length of the element itself) of 10.9 kb, compared to a me-

dian length of 7.4 kb for non-MGE recombinations (Mann-Whitney U test; U = 7775792, n1

= 183, n2 = 66419, two-sided p = 6.18 x 10−11). Additionally, the median SNP density was

significantly higher for MGE recombinations, at 4.41 SNPs per kb, compared to non-MGE

recombinations with a median of 3.49 SNPs per kb (Mann-Whitney U test; U = 7643988,

n1 = 183, n2 = 66419, two-sided p = 1.62 x 10−9). Given the pneumococcus tends to be

conserved at core genome loci, the higher SNP density of these transformation events

inserting MGEs suggested they may arise from donors of other species [298].

4.3.4 The interspecies origin of MGE importation events

To test whether these recombination events were likely to be incorporating DNA from other

species, the flanking regions of these insertions were compared against the reference

Streptococcal database, as outlined in section 4.2.4 and Figure 4.3. This analysis of the

flanking regions of those MGE insertions occurring within homologous recombinations,

revealed that many sequences matched more closely to non-pneumococcal streptococci

than pneumococcal references. For Tn1207.1-type elements, the median γ score was
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0.88 for insertions across the flanking lengths and insertion types. For control isolates,

where the element was not inserted and the orthologous flanking regions were extracted,

the median γ score was 1.0. The overall distribution of γ scores was significantly lower

between the control and MGE isolates (Mann-Whitney U = 2860659, n1 = n2 = 3690, two-

sided, p < 2.2 x 10−16). This lower score for MGE flanks, relative to orthologous regions

in isolates without the MGE, likely represents MGEs being acquired from other species.

For Tn916-type elements’ insertions within recombination blocks, the median γ scores

for both control and MGE isolates was 1.0. However, a Mann-Whitney U test revealed

significant difference between the control and MGE isolates γ scores, with Tn916-type

insertions scoring lower (U = 1642284, n1 = 2260, n2 = 2250, two-sided, p < 2.2 x 10−16).

Hence there is evidence that some of the Tn916-type insertions occurred through inter-

species recombinations.

The trends in the most closely-matching species to the flanking regions, over increas-

ing distance from the MGE, follow the expectation for interspecies transfers (Figure 4.17).

The control flanking regions matched most closely to pneumococci at all tested lengths.

For MGE insertion flanks, non-pneumococcal species matches were much more frequent

closer to the insertion. As the flank length increased from 500 bp to 7500 bp, and linkage

to the integrated resistance genes decreased, the recombinant isolates were more likely

to match pneumococcal DNA.

For Tn1207.1-type elements, it appeared S. mitis was the most likely donor (Figure

4.17). In the regions upstream of the Tn1207.1 insertion, S. mitis was the top match for

92% of 500 bp long flanks. Even at longer flank lengths, S. mitis was still the leading

match for upstream regions, although for downstream regions the pneumococcus tended

to become the predominant match to flanks by 4000 bp outside of the insertion.

The most common Tn1207.1-type insertion, that splitting the tag gene, can be used to

illustrate the local import of sequence from another species (Figure 4.18). For the down-

stream flanks (Figure 4.18 B) this score trend appeared roughly linear with increasing

flank length, with the evidence for imported S. mitis sequence disappearing 4000 bp from

the insertion site. However, for the upstream flanking regions (Figure 4.18 A), the me-

dian γ score remained low with increasing flank length, with a median of 0.83 at 7500 bp

163



4.3. Results

Figure 4.17: The likely origin of MGE insertions. Flanking regions upstream and downstream

from MGE insertions sites were compared to a reference streptococcal database. Solid Lines

represent the proportion of matches, across all insertions reconstructed to have occurred in ho-

mologous recombinations, that correspond to each of the four species present in the reference

streptococcal database. The dashed unmodified locus lines represent data from the orthologous

regions of isolates without the MGE insertion. These proportions are calculated over a range of

flanking region lengths around the insertion site.

upstream of the insertion. This upstream region, replaced by S. mitis sequence in many

isolates, extended into the uvrA gene, another component, like tag, of the nucleotide ex-

cision repair machinery within the pneumococcus. The consistency of top matches for

this tag Tn1207.1 insertion type was high across the 66 independent acquisitions within

recombination events (Table 4.1). For the 500 bp upstream region, 85% of the inser-

tions (56 of the 66 within recombination blocks) had the S. mitis 21/39 (accession code

AYRR00000000) reference as their top hit. In total 97% of these upstream regions of tag

insertions (64 of 66) had their top hit as an S. mitis sequence. Such consistency suggests

these imports originated from a single insertion in the S. mitis population. These imports

are then likely to have moved between pneumococci multiple times.
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Figure 4.18: Flanking region origin for Tn1207.1 tag insertions. A The median γ score of

upstream flanking regions of the Tn1207.1 insertions into the tag gene, coloured in coral. The

median γ score for the orthologous regions in isolates without the MGE, not expected to be mod-

ified by interspecies homologous recombination, are coloured in cyan. Shaded regions represent

the inter-quartile range (IQR) of the γ score. B The γ score for regions extracted downstream of

the insertion. Shaded regions represent the IQR of the γ score. C The distribution of γ scores

across both flanks, upstream and downstream, of the Tn1207.1 tag insertions. Data are shown

separately for isolates with this particular insert, and those without Tn1207.1 integrated in this or-

thologous region.

The signal for the interspecies origins of Tn916-type element insertions was less pro-

nounced (Figure 4.17). While the pneumococcus tends to be the most frequent match

for the regions flanking Tn916-type element insertions, the proportion of matches to the

pneumococcus is still lower than seen in the control isolates, suggesting a detectable con-

tribution of interspecies transformation. Within the PMEN lineages 13 of the 61 insertions

(21%) of Tn916-type elements were detected to have inserted within putative recombi-

nation events. All 13 of these had either their immediate upstream or downstream (or

both) regions matching most closely to non-pneumococcal species. To verify these in-

sertions were from interspecies recombination events, a selection were also investigated

manually. This applied to independent insertions near recJ (Figure 4.19); gmuF, which

encodes mannose-6-phosphate isomerase (also known as manA; Figure 4.20), and gidB

(Figure 4.21). Of these, the upstream regions of the recJ and gmuF insertions were iden-

tified by the algorithm to match most closely to S. mitis, while the upstream region of the

gidB insertion matched most closely to S. pseudopneumoniae. The relatively low percent
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identity scores in the flanking regions inspected manually also indicates these elements

were likely imported from another species.

Insertions detected outside of putative recombination events were also inspected.

Tn916 inserted near rplL, with flanking remnants of Tn5252, on three independent occa-

sions within PMEN3 (Figures 4.22:4.24). Given the sequence divergence in the flanking

regions from the reference, these insertions were also likely to be interspecies in origin.

These were likely missed due to inaccurate reconstruction of the insertion node of these

elements. The algorithmic results missing these isolates, suggests that these results may

underestimate the overall contribution of interspecies homologous recombination in the

spread of Tn916-type elements.

Species ENA accession Frequency

S.mitis AYRR00000000 56

S.mitis AYRS00000000 2

S.mitis JPFW00000000 2

S.mitis AEDU00000000 1

S.mitis AEDV00000000 1

S.mitis AJJL00000000 1

S.mitis AQTU00000000 1

S.pseudopneumoniae AYRN00000000 1

S.pneumoniae D39 1

Table 4.1: Closest species match to 500 bp region upstream of tag disrupting Tn1207.1

insertion. The species, ENA accessions code and frequency of the matches to the 500 bp region

upstream of the 66 Tn1207.1 tag insertions reconstructed to have occurred within inferred homol-

ogous recombination events.

4.4 Conclusions

In this chapter I have investigated the spread, insertion loci and likely origins of two com-

mon families of MGEs, related to Tn1207.1 and Tn916 elements. Within the PMEN3

and PMEN9 lineages, these elements are widespread, although their distribution follows

different patterns. In PMEN3 elements appear to insert often, but do not tend to lead

to successful clade expansion, whereas in PMEN9 elements insert less frequently but

they insert at the bases of highly successful clades. This echos the results of the pre-

vious chapter, depicting how different evolutionary histories can lead to the international

dissemination of MDR clones.

When I further investigate the success of the German lineage in PMEN9, we can
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see how the effects of local selection pressures can enable this seemingly deleterious

MGE insertion to spread widely. The splitting of the comEC gene here represents an in-

sertion site that is beneficial to the MGE, as the abrogation of competence in this clade

would prevent its deletion through subsequent recombination with donors lacking the in-

sertion [350]. This insertion can expand though due to the unique local antibiotic con-

sumption patterns that favour this macrolide resistant cassette. However, the loss of

transformability in this lineage likely prevented vaccine escape through transformation

mediated serotype switching. These dynamics have also been observed in Iceland with

the PMEN2 lineage, where the ΦIC1 prophage disrupted the competence gene comYC

and resulted in a decline in the lineage [312]. These phylodynamic results though, are

based on the combination of two antibiotic consumption datasets with slightly different

coverage populations. Current reporting of antibiotic consumption is of much higher stan-

dards, as such future phylodynamic analyses will be able to test the relationship between

clade expansion and antibiotic consumption more rigorously.

In the wider GPS collection these elements were found to be common too. Tn916-

type elements are more frequently observed in the collection, present in 134 different

GPSCs in over 400 different forms at over 100 different loci within the pneumococcal

chromosome. This diversity in insertion site is likely driven by the int gene of Tn916 with

its low insertion site specificity [425,429].

For Tn1207.1, as in the literature [634, 635], we only observe the 7.2 kb element

inserting into the comEC gene across the collection. Instead the majority of this elements

spread is via the 5.5 kb Mega form that is often found within larger elements such as

Tn2010 or Tn2009. The most frequent insertion type for this element outside of these

larger constructs was splitting the tag gene. This encodes a methyl-adenine glycosylase

involved in DNA base repair. The splitting of this gene may disrupt DNA base repair,

therefore leading to a hyper-mutator phenotype. This would most likely be detrimental to

the host cell. Outside of the pneumococcus there are examples of other mobile elements

inserting into mutation repair machinery, causing mutator phenotypes. For instance, in

group B streptococcus and Vibrio splendidus MGEs insert between the mutS and mutL

genes involved in mismatch base repair [653–655]. These MGEs however, appear to
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excise during different stages of cell growth, only to re-enter and disrupt the genes in

question, producing mutator phenotypes, during later phases of growth. In both these

species, these MGEs appear functionally under the control of the host cell [654, 655]. It

is unclear if the Tn1207.1 Mega element can similarly excise and reinsert under host cell

control.

The number of interspecies transformation events linked to the spread of both ele-

ments is striking within the GPS collection. Typically longer recombination events, such

as those importing these elements, tend to be much rarer due to transformation’s biases

against the import of longer sequences [485]. Previous work by Chancey et al 2015 [656]

has looked at the movement of Tn916-type elements, including larger Tn5253 constructs,

among pneumococcal isolates in Atlanta. They concluded that these elements initially

inserted into pneumococcal populations via conjugation, but then transformation would

facilitate their intraspecies spread. My work also highlights intra-species transformation

events, but reveals that these elements can also move via interspecies transformation

events. There is growing evidence of the importance of interspecies transformation in

creating MDR bacterial lineages, with recent work in Acinetobacter baumannii also sug-

gesting large elements moving between species within the Acinetobacter genus [657].

In this work though, I make no attempt to definitively determine the species of origin for

these recombination events. While our reference database is sufficient to split likely non-

pneumococcal from pneumococcal DNA, it is not fine-grained enough to fully delineate

the networks through which AMR genes spread. Much greater sampling of commensal

streptococcal species is needed in order to assess the most likely donor species for these

interspecies transformations.

One further caveat with our results is the large number of isolates that were unable

to be classified to a hit type, especially concerning the diverse Tn916-type hits. Typically

pipelines for detecting MGEs in genomic data rely on finding specific motifs or repeats

that demarcate DNA foreign to the rest of the genome [658–661]. These methods are

accurate at defining the bounds of an MGE that can insert via site specific recombination.

However, in order to assess the origin of an insert moving via transformation and homol-

ogous recombination, it is necessary to find the flanking regions that match to a within
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species reference. Poor assembly quality and a lack of mapping to a reference drives

the large number of unassigned hits with Tn916-type elements. Accurate long-read se-

quencing methods, from which better assemblies would be produced, could enable more

elements to be fully realised within the genome output.

In the next chapter I will investigate the recombination dynamics of two other species,

Acinetobacter baumanii and Legionella pneumophila, using the updates in the Gubbins

software presented in Chapter 2. These species also contain AMR encoding MGEs that

can disrupt the transformation machinery, providing further evidence of the intra-genomic

conflict between MGEs and host bacteria.

Figure 4.19: Insert of Tn916 downstream of recJ. Comparison of the Tn916 element insertion,

highlighted in pink within the PT2807 genome, with the orthologous unmodified locus in the RMV4

sample. Data shown are as described in Figure 4.12.
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Figure 4.20: Insert of Tn916 downstream of gmuF . Comparison of the Tn916 element insertion,

highlighted in pink within the LMG423 genome, with the orthologous unmodified locus in the RMV4

sample. Data shown are as described in Figure 4.12.
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Figure 4.21: Insert of Tn916 upstream of gidB. Comparison of the Tn916 element insertion,

highlighted in pink within the SPN11900 genome, with the ortholgous unmodified locus in the

RMV4 sample. Data shown are as described in Figure 4.12.
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Figure 4.22: Insert of Tn916 upstream of rplL.Comparison of the Tn916 element insertion,

highlighted in pink within the SPN11878 genome, with the orthologous unmodified locus in the

RMV4 sample. Data shown are as described in Figure 4.12.
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Figure 4.23: Insert of Tn916 upstream of rplL. Comparison of the Tn916 element insertion,

highlighted in pink within the GPS_IL_9193 genome, with the orthologous unmodified locus in the

RMV4 sample with no insertion. Data are as described in Figure 4.12.
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Figure 4.24: Insert of Tn916 upstream of rplL. Comparison of the Tn916 element insertion,

highlighted in pink within the GPS_SI_790_P genome, and the orthologous unmodified locus in

the RMV4 sample with no insertion. Data are as described in Figure 4.12.
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Investigating host MGE conflict in

gram-negative bacterial species

Summary

Transformation may have evolved as a strategy to cure bacterial genomes of large self-

ish mobile genetic elements (MGEs). Within the gram-negative pathogens A. baumannii

and L. pneumophila, recent in vitro work has shown mobile genetic elements targeting

the competence machinery involved in transformation. In this chapter I collate publicly

available genomes from both species to assess these MGEs effects on recombination

dynamics at a population level. I find evidence for the disruption of competence machin-

ery is widespread in A. baumannii. However there appears to be no consistent significant

effect on recombination dynamics. In L. pneumophila on the other hand, disruption is

rarer, but has the consistent effect of reducing recombination frequency. Despite this,

recombinations around immunogenic loci are still common. These results highlight how

selection can drive recombination events, even with a reduced frequency of transforma-

tion.

5.1 Introduction

In the previous chapter we have seen how an MGE, Tn1207.1, can insert within and dis-

rupt the competence machinery of a host. A recent theory [350] has been proposed to
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explain why events of this nature, where the host transformation machinery is disrupted

by a MGE, can increase the fitness of MGEs. Croucher et al 2016 posit that, given the

length asymmetry of transformation imports, transformation is able to cure selfish MGEs

more efficiently than it can insert them [350]. Any disruption to the transformation ma-

chinery, therefore, can prevent an MGE’s deletion and allow these selfish elements to

spread further in a population [350]. Aside from Tn1207.1 inserting within comEC in

pneumococci, there are numerous other examples of MGEs disrupting transformation ma-

chinery in order to prevent their deletion [472, 662]. Prophage have been seen to insert

within the competence pilus structural gene comYC [142] and its orthologs among strep-

tococci [350,394,663]. Additionally, within Staphylococcus pseudintermedius, prophage

have been seen to disrupt the comG operon, also involved in the formation of compe-

tence pilins [664]. Prophage also insert into the comK gene, a transcription activator for

all known genes related to competence [665], among Listeria species [350,666].

Recent experimental work has identified MGEs that inhibit transformation in gram-

negative pathogens too. Within A. baumannii work has examined how AbaR-type ge-

nomic islands (AbaRs) insert within and disrupt the comM gene, which encodes an AT-

Pase involved in transformation [667]. MGEs which do not insert within the chromosome

also appear to disrupt transformation machinery. In Legionella pneumophila isolates a

plasmid, pLPL, encodes RocRp a small RNA (sRNA) which blocks isolates from express-

ing their DNA uptake machinery [668]. Both these systems, AbaR and RocRp disruption

of transformation, have been extensively studied in the lab [657, 667, 668]. In this chap-

ter I investigate the impact of these disruptions on the global population structure of A.

baumannii and L. pneumophila isolates. Using large publicly available WGS datasets I

investigate the distribution of these disruption events and their effect on recombination

rates within lineages. Now I will go into more detail about both the species and systems

investigated and then describe my methods.

5.1.1 Acinetobacter baumannii and AbaRs

A. baumannii is an opportunistic nosocomial pathogen that can cause ventillator-associated

pneumonia, burn infections, wound infections and bloodstream infections, among other

pathologies [669–671]. It is an incredibly hardy pathogen, able to survive extremes of pH
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and desiccation, while its ability to form a biofilm is linked to resistance to disinfectants

[670,672]. This means A. baumannii is readily able to cause outbreaks in hospitals, where

very stringent infection control methods required to mitigate its further spread [673–677].

Outbreaks caused by A. baumannii have been recorded around the world, with the ma-

jority of these caused by only two successful major clones: global clone 1 (GC1) & global

clone 2 (GC2) [670, 678]. Worryingly, both these clones are associated with high levels

of resistance, with an increasing number of carbapenem resistant outbreaks a particular

concern [549, 670, 679]. This has led to A. baumannii being classified as one of the six

ESKAPE pathogens, identified by the WHO as species which cause the majority of AMR

nosocomial infections [161,680].

One class of elements which drives the levels of resistance seen in A. baumannii

clones are the AbaRs. AbaR1 was the first large cluster of AMR genes sequenced from

an MDR A. baumannii GC1 strain, a 86 kb resistance island that contained 18 different,

in some cases redundant, AMR genes [673, 681, 682]. Since this first detection there

has been a wide diversity of AbaR elements detected, with GC1 & GC2 tending to have

distinct AbaR elements [683]. The AbaR3-type islands are commonly found in GC1 and

have a core backbone based on the Tn6019 transposon, and tend to be present within the

host chromosome [683–685]. In contrast GC2 tends to contain the AbaR4-type islands.

These are based on a backbone of the Tn6022 transposon, commonly carry the blaOXA-23

carbapenem resistance gene and have been found in plasmids [683,686]. AbaRs encode

their own transposition machinery, allowing for movement within host DNA, be it plasmidic

or chromosomal in nature [687].

When inserted within the host chromosome however, a common target site for all

AbaRs is within the comM gene. Insertion here results in a 5 bp target site duplication at

both ends of the AbaR element, which is indicative of insertion through transposition [673,

688]. The comM gene encodes for hexameric helicase that can promote the integration

of DNA through its role in branch migration [689]. It is not necessary for transformation

in V. cholerae and H. influenzae, although its deletion does result in at least a 100 fold

reduction in transformation efficiency [668, 689, 690]. Recent work in A. baumannii by

Godeux et al looked at the in vitro effect of a 19.7 kbp AbaR11 and a 86 kbp of AbaR1
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insertion into comM [667]. They tested the frequency of transformation events in these

isolates using a 3.8 kbp long PCR product, finding that isolates with either AbaR insertion

also had at least a 10 fold reduction in transformation frequency compared to those with a

repaired comM gene [657,667]. Work on 45 WGSs of GC1A. baumannii, while not directly

investigating this, appears to show AbaR insertion does not appear to affect acquisition

of different capsule gene clusters [549]. This analysis can now be undertaken species-

wide with the thousands of genomes available in the International Nucleotide Sequence

Database Collaboration (INSDC).

5.1.2 Legionella pneumophila and pLPL

The genus Legionella was first described following an outbreak of severe pneumonia

among attendees at an American Legion convention in Philadelphia in 1976 [691]. This

severe pneumonia pathology became known as Legionnaire’s disease (LeD), and is caused

by the inhalation of contaminated aerosols containing these aquatic bacteria [691, 692].

Of the over 60 different Legionella species described so far, the majority are only known

to infect aquatic protozoans and arthropods, with only accidental spillover into human

hosts [693, 694]. Among these species, L. pneumophila is responsible for up to 95% of

the LeD diagnosed worldwide [695, 696]. Within L. pneumophila only a few successful

clones also account for the majority of LD, with five sequence types (STs) accounting for

almost half of the LeD cases in northwest Europe [692, 697]. While antibiotic resistance

has been observed in L. pneumophila isolates, particularly to macrolides, in general most

clinical relevant clones appear to be susceptible to common frontline antibiotics [698].

Early studies looking into the recombination dynamics within L. pneumophila have

shown the species to undergo homologous recombination frequently, with events trans-

ferring segments up to 200 kb in length [699,700]. More recent work by David et al 2017,

focusing on clinically relevant clones, has calculated a very high r /m values for lineages

[699]. For instance the ST23 lineage had an r /m value of 93.8, detected using Gubbins,

with particular hotspots around the outer membrane TolC-like proteins and the Dot/Icm

effectors that are vital for intracellular growth within a host eukaryotic cell [699,701].

For L. pneumophila cells, and bacteria more generally, to acquire DNA via trans-

formation they must reach a competent state [441]. L. pneumophila appears to lack a
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transcriptional activator that can activate its competence machinery. This is unlike well-

studied transformable bacteria like the pneumococcus and H. influenzae, which use σX

factors or TfpX/Sxy respectively [702, 703]. Instead, recent work by Attaiech et al has

shown that competence is repressed during the exponential phase of L. pneumophila by

the sRNA RocR and the RNA chaperone RocC [702]. A competent state is then only

reached during the midlog and stationary phase with the reduced expression of RocR,

which is unlike other transformable species where competence is upregulated by a tran-

scriptional activator.

In L. pneumophila it appears that certain conjugative elements have also hijacked

this competence regulatory system. Work from Durieux et al revealed that a plasmid,

pLPL, encodes a homolog to the RocR sRNA, RocRp [668]. When expression of RocR

decreases during the transition and stationary phases, the RocRp sRNA instead binds

to RocC and represses the expression of the competence machinery [668]. Unlike the

disruption of comM in A. baumannii by AbaR elements, RocRp expression appears to ef-

fectively silence transformation, causing reductions of 103 or 104 fold in the transformation

frequency [668]. In this Chapter I will analyse whether these changes in transformation

affect the epidemiology and evolution of L. pneumophila.

5.2 Methods

5.2.1 Isolate collections

For both A. baumannii and L. pneumophila, all available genomes assemblies from the

NCBI GenBank database were downloaded. For A. baumannii all isolates identified as

A. baumannii and available on 31/03/2021 were downloaded. This encompassed a total

of 8,431 WGS assemblies. Four sequences less than 1 Mbp long were removed from

further analysis, leaving a total of 8,427 isolates.

All isolates identified as L. pneumophila in the NCBI GenBank database and avail-

able on 17/01/2022 were downloaded. In total 3,373 genomes were downloaded, one

of which contained less than 1Mbp of sequence and was removed, leaving a total col-

lection of 3,372 for further analysis. For both collections the assemblies ranged from full

chromosome assemblies to contig and scaffold based assemblies (Table 5.1).
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Assembly level Acinetobacter baumannii Legionella pneumophila

Chromosome 26 0

Complete Genome 266 104

Contig 6341 3117

Scaffold 1798 152

Total 8431 3373

Table 5.1: Assembly levels of the collections for A. baumannii and L. pneunmophila from Gen-

Bank.

5.2.2 Population structure and quality control of assemblies

PopPUNK v2.4.5 was run on the two collections, to define their population structure and

to perform quality control (QC) on the assemblies [298]. PopPUNK calculates the core

and accessory distance between isolates, assigning them to strains based on these dis-

tances. The default QC of PopPUNK is to test for an excess of ambiguous base calls

among isolates and to detect outliers in overall genome length. For A. baumannii this

QC was extended by using a type isolate to compare against. The ATCC 19606 strain

sequence (ENA accession SRR10295884), assembled as a complete chromosome from

PacBio machines was chosen as the type isolate [704]. Isolates outside of two standard

deviations of the length of the collection were removed, as well as those with a core dis-

tance greater than 0.03 and an accessory distance greater than 0.8 from the type isolate.

For A. baumannii this results in a loss of 154 isolates. For L. pneumophila a total of six

isolates were removed due to initial QC methods based on ambiguous base calls and

overal genome length being five standard deviations from the population mean. Visual

inspection of the distance plots produced from PopPUNK was also used to further remove

outlier sequences from both collections. For A. baumannii, three isolates that appeared

frequently in a cluster of distances that had 0 core distance but greater than 0.3 accessory

distance were removed. This left a total collection of 8,270 isolates. For L. pneumophila,

isolates over-represented in a cluster of distances with greater than 0.5 accessory dis-

tance were removed. This led to 250 isolates being removed, leaving a collection of

3,116 isolates for further analysis.

Once these collections had been narrowed through the above QC steps, a model was

fitted and refined using PopPUNK to assign strains. Both models were fit using the dbscan
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option, which employs the HDBSCAN clustering model [705]. The default parameters for

the maximum number of clusters produced and the minimum proportion of samples in a

cluster were used. A 2D linear boundary separating within and between strain distances

was identified using the refine mode of PopPUNK.

In order to compare the strains produced by PopPUNK on theA. baumannii collection,

these isolates were also typed with the Pasteur MLST profile from PubMLST [706]. For

L. pneumophila isolates, there is no robust typing method for assemblies [245]. With this

collection, therefore, I adapted the algorithm used by Gordon et al [245] to run solely on

assemblies. The code for this is available at http://github.com/jdaeth274/lp_mlst.

5.2.3 Detecting disrupted competence machinery

Within the A. baumannii collection, the presence of a disrupted comM was detected using

a BLAST search approach. The complete 1,488 bp comM gene sequence from isolate

XH856 (GenBank accession number CP014541.1) was used as a reference. Isolates

were taken to have a complete comM gene if at least one BLAST hit had a length >

1450bp matching to the reference comM sequence.

AbaR sequences were also identified in the A. baumannii collection in a similar man-

ner. The conserved regions of AbaRs identified in Bi et al [683], were used to identify

the outer regions of a putative AbaR element. The left end region was 2,891 bp long,

while the right end region was 1871 bp long. If an element had a BLAST hit to both the

conserved left end and conserved right end, regardless of contig position or orientation

of the conserved ends, this was considered evidence for the presence of an AbaR. For

the left end region, a BLAST hit was considered a hit with an align length of 2880 bp or

greater, for the right end region a hit was considered to be an align length of 1860 bp or

longer. This appeared to be a slightly more liberal approach to identifying AbaRs than

employed in Bi et al, who also included a minimum distance between left and right end

hits [683].

For the detection of RocRp within the L. pneumophila collections, a BLAST-based

search method was also used. The 70 nt form of RocRp was extracted from the 59,832

bp pLPL plasmid of the Lens strain of L. pneumophila (plasmid accession: CR628339).
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The RocRp sequence was extracted from bases 38,417 to 38,348 of the pLPL plasmid

as outlined in Durieux et al [668]. This was then used as a query to BLAST search the

L. pneumophila collection for the presence of RocRp. An evalue threshold of 0.001 was

set, 301 of the 302 BLAST hits were of the exact length and 100% sequence identity. The

302nd hit was included, this was 63 bp long and had 98.4% identity, due to RocRp also

existing in 65, 68 and 70 bp forms.

5.2.4 Detecting recombination dynamics

For the A. baumannii collection the six most common strains identified in the above Pop-

PUNK analysis were chosen for further recombination investigation of their recombination

dynamics. These six strains represented 6,409 total isolates. For each lineage, a refer-

ence isolate was chosen as an isolate with a whole chromosome assembly level, with, if

possible, no AbaR present. SKA v1.0.0 [546] was then used to created a mapped align-

ment to the reference isolate for each lineage. Gubbins v3.2.0 [489] was then run on these

alignments to detect recombination dynamics. FastTree was used as the initial phylogeny

builder, and RAxML the main iteration tree builder. Both of these were run with a GTR

model, and a joint ancestral state reconstruction was used.

For the L. pneumophila collections, the same protocol was followed. The three largest

strains, representing 1854 isolates, were selected for further recombination dynamic anal-

ysis. Again the references for each strain were chosen as isolates with a complete chro-

mosome. The strain 1 reference, isolate Flint 2 (D-7477) (ENA accession: CP021281),

also contained a plasmid sequence which was removed prior to the mapping process.

This mapped alignment was also created with SKA v1.0.0 [546]. Gubbins v3.2.0 was

then run on these mapped alignments, with a FastTree initial phylogeny builder, RAxML

main iteration builder, both run with a GTR substitution model, and a joint ancestral state

reconstruction model.

5.3 Results

5.3.1 Population structure of Acinetobacter baumannii

In order to assess the impact of two separate MGEs: AbaRs and pLPL, on the recombi-

nation dynamics of isolates, two collections of bacteria were curated. For AbaR elements,
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with their frequent insertion loci of comM, a collection of 8,431 Acinetobacter baumannii

assemblies were downloaded from the NCBI GenBank database. Of these 8,270 se-

quences passed QC for further investigation. These were then analysed using PopPUNK

v2.4.5 [298] to determine the population structure of the collection. Looking at the distance

plots produced by the collection, there appears to be rapid gene content diversification

within A. baumannii strains (Figure 5.1A). For instance, at low levels of core genome

distance, there is a wide variation in the accessory distance, from 0 to 0.2. This could

be driven by high rates of recombination or rapid MGE movement between strains. The

between-strain distances appear to be primarily concentrated in one dense cluster which

centers around an accessory distance of 0.3 and a core distance of 0.0175. This cluster-

ing is also consistent with simulations performed in Lees et al [298] of populations with

high recombination rates.

PopPUNK stratifies the A. baumannii species into 403 separate strains, these range

in size from a single isolate (of which there are 255 strains) to the largest strain, strain

1, with 5,092 isolates (Figure 5.2). The two largest strains, strain 1 with 5,092 isolates

and strain 2 with 505 isolates, correspond to MLST types 2 and 1 respectively. MLSTs

1 and 2 are commonly referred to as the GC1 and GC2 clones respectively, and cause

the majority of detected A. baumannii outbreaks around the world [670,678]. That these

two clones represent the majority of isolates (67.7%) within the GenBank database likley

reflects a bias towards sequencing outbreak isolates.

More broadly, the strains produced by PopPUNK appear to closely match the MLST

results. The similarity between the two typing methods was measured through the ad-

justed Rand index, which gives a score of zero for completely different clustering and one

for identical clustering [298, 707, 708]. This is also adjusted for the chance overlap of

strains. The adjusted Rand index score for the PopPUNK and MLST strains was 0.91,

indicating very similar clustering. However, there were 198 isolates untypeable through

the Pasteur MLST scheme available on PubMLST [706]. The majority of these (145 of

198, 73.2%) were due to loci combinations not previously seen within A. baumannii. Here

the use of PopPUNK is advantageous in that the addition of previously unseen genotypes

can be automated.
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The large GC2 strain, within the NJ tree formed from the core distances calculated

by PopPUNK, is paraphyletic. The clade containing paraphyletic GC2 also contains five

separate diverged GC2-like strains, four of which constitute single isolates, appearing

sporadically among the GC2 isolates (Figure 5.2). The core distances between the GC2

isolates and the GC2-like strain 39, the only one of five strains to contain more than isolate

with eight, were much larger than any distances within a strain that shares the MRCA of

the GC2 strain (Figure 5.3). The accessory distances follow a similar pattern, although

the range of within strain diversity of GC2 clustered isolates appears to match the range

of between strain distances. Hence strain 39 appears to be distinct and has emerged

from a GC2-like progenitor.

Figure 5.3: Distribution of the within strain and between strain distances for isolates within

the A. baumannii GC2 clade. Boxplots represent the distribution of the pairwise distances be-

tween isolates of the same strain and between isolates of different strains.

5.3.2 Population struction of the Legionella pnuemophila collection

To investigate the effect of the pLPL plasmid, with its transformation blocking sRNA

RocRp, on recombination dynamics, a collection of 3,373 L. pneumophila assemblies
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were curated from the NCBI GenBank database. Of these 3,373 assemblies, a total of

3,116 passed QC and were analysed. As with the A. baumannii collection, PopPUNK

v2.4.5 [298] was used to determines the population structure in the collection. The ini-

tial distance plots again revealed large accessory diversity within closely related isolates

(Figure 5.1B). The between strain distances however, were not as uniformly distributed

as those for A. baumannii (Figure 5.1B). There are two modal peaks in the pairwise com-

parisons for isolates with > 0.01 core distances. This could be indicative of a deeper

strain structure within the population, where there is an ancestral split followed by two

long branches leading to divergent populations. This is consistent with the NJ phylogeny

formed from the core distances between isolates (Figure 5.4). The population can be split

in two, with 2,669 isolates in the larger subtype 1 clade, and 447 in the smaller subtype 2

clade. The distances between strains within a subtype and between these two subtypes

also closely follows the distance plot produced (Figure 5.5). Here the median core dis-

tance for between strain comparisons in subtype 2 is similar to the smaller modal peak in

distances at 0.017. The between subtype and within subtype 1 comparisons align more

closer with the larger modal peak in distances at 0.024 core distance. This is evidence

for a hierarchial clustering of the L. pneumophila population.

PopPUNK further stratifies the population into 179 separate strains, with 93 single

isolate strains and the largest strain being 834 isolates in size (Figure 5.6). The two

largest strains are of similar size, with strain 1 containing 834 isolates and strain 2 820.

The five major disease associated L. pneumophila STs all reside in single strains: ST1

(135 isolates) within strain 1, ST23 (4 isolates) within strain 15, ST37 (131 isolates) within

strain 2, ST47 (105 isolates) within strain 4 and ST62 (13 isolates) within strain 5 [692].

However, in general the in silico sequence based typing (SBT) scheme is not effective. A

large proportion of the collection (1406 isolates, 45%) are processed as un-typable. This

is primarily driven by variation in the mompS loci. For instance, in total 242 isolates have

at least one of the seven ST loci missing, with mompS missing in 240 of these isolates,

whereas flaA and pilE, the only other missing loci, are only missing in one isolate each.

Additionally, 153 of the un-typable isolates have more than one complete copy of mompS.

Furthermore, for untypable isolates with at least one copy of every locus (1165 of 1406),
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Figure 5.4: Core distance phylogeny of the L. pneumophila collection, with ancestral

branch highlighted. Subtype 1 contains 2,669 isolates and Subtype 2 447 isolates.

removing the mompS sequences from the typing scheme reduces the number of isolates

with an unknown type to 288. For the other six loci in the typing scheme (flaA, pilE, asd,

mip, proA & neuA), removing each of these and leaving the remaining six loci for typing

always produced at least 1102 unknown type isolates. The problem of mompS variability

in the typing of L. pneumophila has been noted previously by Gordon et al [245].

This variability leads to a low similarity score between the PopPUNK strains and the

SBT method. For the 1,710 isolates with both a PopPUNK strain and an ST, the adjusted

Rand index score was 0.259. While the major disease STs tended to remain within single

PopPUNK strains, often these strains contained multiple different STs. For instance, while

strain 2 contains all 131 identified ST37 isolates, this is not the largest ST within the

strain, with both ST30 (179 isolates) and ST36 (142 isolates) more frequently present.

In general though, as for the A. baumannii collection, PopPUNK’s use of all available
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Figure 5.5: Distribution of the between strain pairwise distances based on L. pneumophila

subtype. Boxplots represent the between strain distances of isolates within each larger subtype

and then also the distances between strains in a different subtype to one another.

information within WGSs for clustering a collection, allows for the exploration of the wider

collection. That PopPUNK can also separate the major disease clones into separate

strains, highlights the biological feasibility of the method.

As with the A. baumannii collection, the largest strains appear to be paraphyletic in

the L. pneumophila collection (Figure 5.6). This is especially the case for the strain 2

lineage, where there are 5 strains within the larger clade that is primarily associated with

strain 2, including the 75 isolate strain 8 lineage. Comparisons of the distances within this

903 isolate clade reveal much smaller within strain distances than those between strains,

indicative of this being a suitable clustering of isolates (Figure 5.7). The strain 8 distances

are very narrow, even for the accessory distances between genomes, this is reflected in

the shallow nature of the strain 8 clade within strain 2. This could be indicative of recent

expansion of the lineage, or a more biased sampling strategy within an outbreak.

Now that I have described the population structure of both collections of isolates, I

will move on to characterise the distribution of MGEs which can block the transformation
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machinery in these two species.

Figure 5.7: Within and between-strain distances for L. pneumophila strain 2 and strain 2-

like strains. Boxplots represent the distribution of the pairwise distances between isolates within

the same strain, strains 2 and the strain 2-like strains 8, 49 and 74, and between isolates of the

different strains.

5.3.3 The distribution of MGEs across the collections

Within the A. baumannii collection the presence of AbaR elements was identified using

the conserved left and right ends of the elements previously identified in Bi et al [683]. If

both elements were present within an assembly an AbaR element was considered to be

present within the isolate. In total this led to 4,826 of the 8,270 (58%) isolates within the

collection containing an AbaR element (Figures 5.2). Both the GC1 and GC2 strains had

particularly high numbers of AbaR elements. In GC2, 3,701 of the 5,092 (73%) isolates

contained an AbaR, while in GC1, 376 of the 505 (74%) isolates contained some form of

the element. Of the strains with > 100 isolates, strain 4 had the lowest number of isolates

with AbaRs, with only 15 of the 214 isolate strain (7%) containing the element.

AbaR elements commonly insert within the competence gene comM. To fully account
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for this method of transformation blocking by MGEs, isolates were also searched for the

presence of at least one complete comM gene. This was found to be widely disrupted

across the collection, with 6,169 isolates in total (75%) not having at least one complete

comM locus (Figure 5.2). The levels of disruption in GC1 and GC2 were again particularly

high, with 487 of 505 isolates (96%) in GC1 and 4,489 of 5092 isolates (88%) in GC2

having no complete comM locus. The vast majority of isolates with an AbaR element also

had a disrupted comM, with 4,699 of the 4,826 (97%) AbaR containing isolates having

a disrupted comM. AbaRs have been known to insert within diverse loci apart from the

comM gene [683]. However, 1,470 isolates appear to have a disrupted comM gene with

no AbaR detected. Of these 1,470, 955 have either the left or right conserved end of the

AbaR element, but not both to fully qualify as an AbaR insertion. Here the quality of the

assemblies could be affecting the ability to infer the insertion of these elements.

The L. pneumophila collection was searched for the presence of the sRNA RocRp,

which blocks the expression of the competence machinery and is commonly found on

the pLPL plasmid. RocRp was much less prevalent that the AbaR elements in the A.

baumannii collection: only 302 of the 3116 (10%) isolates in the L. pneumophila collection

contained the sRNA (Figure 5.6). Of the major lineages, strain 2 contained the most

isolates with RocRp present, with 130 of 820 isolates (16%) found to have RocRp, strain

3 had the same proportion of 16% with RocRp (33 of 200 isolates). Strain 1 only had five

isolates that contained RocRp (1%).

Given the high proportion of isolates with disrupted competence machinery in the A.

baumannii GC2 clade, I will now move on to discuss the recombination dynamics in this

important pathogenic clone.

5.3.4 Recombination dynamics in theGC2 strain ofAcinetobacter bauman-

nii

To assess the recombination dynamics in the largest A. baumannii lineage, GC2, Gub-

bins v3.2.0 was run with a FastTree starting phylogeny builder, a RAxML main phylogeny

builder and a joint ancestral state reconstruction method. This identified very large re-

combination events occurring across the lineage, in particular with respect to the capsule

K locus and phage regions (Figure 5.8). When removing these phage regions from the
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recombination events, in order to more accurately assess the rate of sequence import

through homologous recombination, the ratio of SNPs introduced by recombination com-

pared with mutation (r /m) for this lineage is 1.48. This is relatively low, especially com-

pared with a previous estimate of the r /m for the GC1 lineage of 22 [549]. The ratio of

recombination events to substitution mutations (ρ/m) was also lower compared to the past

GC1 lineage, at 0.016 for GC2 compared to a previous estimate of 0.1 for GC1.

Gubbins detected a number of very large recombination events across the lineage,

particularly around the capsule K locus. For instance, there are events of up to 200 kb

in length encompassing the K locus and at the base of a 4,095 isolate clade. This also

covers the parC gene involved in fluoroquinolone resistance. When the circular nature

of the genome is taken into account, this event appears to span 400 kb, an extremely

large recombination event. This is similar in size to hybridisation events previously seen

in K. pneumoniae [709]. Kaptive v0.7.3 [710] was used to assess the K locus types of

the collection, which controls the synthesis and the export of the CPS for A. baumannii

isolates. In total there were 49 different K locus strains detected in GC2 (Figure 5.8).

Using PastML [590] to reconstruct the ancestral K locus types, there were an estimated

325 switches in the K locus across the phylogeny. From the recombination reconstruc-

tion it appears the large recombination blocks spanning the K locus, coincide with a shift

from a largely KL22/KL13 locus in the less derived isolates, to a KL2 & KL3 capsule type

among the more derived group of isolates. Indeed, when incorporating the reconstructed

recombination events from Gubbins, the 200 kb event spanning 4,095 isolates coincides

with a switch from the KL9 locus to KL2 locus. Selection pressures from the host immune

response likely drive this loci to become a recombination hotspot as depicted here.

Prophages also appear as peaks in recombination across the genome, reflecting their

frequent interchange between hots. The Phaster tool [272] and manual inspection of the

reference genome was used to detect the occurrences of phage. In total three separate

regions were identified as possible prophages. Two of these were identified as the lytic

bacteriophage Bφ-B1251 a member of the Siphoviridae family [711, 712] (Figures 5.8).

The Bφ-B1251 insertion between 1.52 Mb to 1.58 Mb within the GC2 reference is marked

as a complete intact phage by Phaster and appears to recombine often, the other insertion
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at 2.59 Mb to 2.75 Mb is marked as a questionable insertion. The other phage inserted

is YMC11/11/R3177, also a member of the Siphoviridae viruses [711, 713]. This inser-

tion is only classified as an incomplete phage by Phaster. This region also contains two

ESBL genes, both within the blaOXA-23 family of genes. This region could therefore also

represent a larger ICE element. Although, the ICEfinder tool, which uses the ICEberg2

database [714], found no putative ICE within the reference genome.

Another hotspot for recombination in the GC2 collections was a large 15 kb gene,

annotated as a hypothetical protein by Prokka v1.14.6 [588] (Figure 5.8). Further search-

ing revealed this to be the biofilm-associated protein bap gene. In total there were 1,601

recombination events spanning some portion of this locus. The majority of these events

(1496 of 1601) spanned only the first 10 kb of this gene. Running the gene sequence

through InterProScan [715] found an Immunoglobulin-like (Ig-like) fold from AA 6 to 3473,

corresponding to an end base of 10,419. These motifs are commonly found in bacte-

rial adhesins involved in host tissue colonization [716]. The bap gene is necessary for

both biofilm formation and the binding to host epithelial cells [717]. Hence the high levels

of recombination, particularly around the Ig-like fold region, could be driven by selection

pressure from the host immune response. The bap gene is also a recombination hotspot

in the GC1 lineages. In this case the gene is 25.9 kb long, also with a putative Ig-like

domain detected by InterProScan as the primary region affected by recombination.

Now that I have described the general recombination dynamics in the large GC2 lin-

eage, I will look at how the disruption of comM affects recombination dynamics, both in

GC2 and in the six largest strains detected in the A. baumannii collection.

5.3.5 The effect of comM disruption on recombination dynamics in Acine-

tobacter baumannii

The distribution of disrupted comM varied across the six largest strains within the A. bau-

mannii collection (Table 5.2). While, as noted above, GC1 & GC2 had high numbers of

isolates without a complete comM, strains 4 & 5 had the opposite with by far the majority

of isolates containing a complete comM. To assess the effect of these disruptions on over-

all recombination dynamics, Gubbins v3.2.0, with a FastTree initial phylogeny builder, a

RAxML main iteration builder and a joint ancestral state reconstruction, was run on these
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six strains. PastML was then run on the resulting phylogenies to reconstruct the ancestral

comM state for each branch, in order to classify recombination events as occuring with a

complete or disrupted comM. Recombination events spanning putative prophage regions,

detected using Phaster and manual inspection, were also removed from further analysis.

Strain WT comM Disrupted comM Total isolates

GC1 18 (4%) 487 (96%) 505

GC2 603 (12%) 4489 (88%) 5092

Strain 3 137 (56%) 106 (44%) 243

Strain 4 190 (89%) 24 (11%) 214

Strain 5 167 (89%) 21 (11%) 188

Strain 6 117 (66%) 59 (34%) 176

Table 5.2: Numbers of A. baumannii isolates split by comM status across the six largest

strains

When looking at the length distribution of recombination events, it appears the disrup-

tion of comM has no effect on the length of sequence imported (Figure 5.9). Unexpectedly,

in the GC1 strain the median length of import is higher for those with a disrupted comM,

33,552 bp compared to 15,737 for isolates with a WT comM. Although, these differences

are not statistically significant. In terms of the SNP density of recombination events, how-

ever, there were some significant differences, although these were not consistent across

the strains (Figure 5.10). For the GC2 strain, the WT comM isolates import sequence

with a significantly higher SNP density (Mann-Whitney U test; U = 529088, n1 = 412,

n2 = 2908, two-sided p = 1.22x10-4), with a median SNP density of 3.6x10-3 SNPs/bp,

whereas those with a WT comM have a median density of 3.0x10-3 SNPs/bp. Similarly

in strain 3, WT comM isolates import sequences with a significantly higher SNP density

(Mann-Whitney U test; U = 29659, n1 = 438, n2 = 156, two-sided p = 0.01439), with a me-

dian density of 5.9x10-3 SNPs/bp compared to isolates with a disrupted comM importing

sequence with a SNP density of 5.1x10-3 SNPs/bp. However, in the other strains there

are no significant differences in terms of the SNP density of imports. These inconsistent

results suggested that comM disruption had a minimal effect on the length of divergent

sequence imported through transformation and recombination. In some strains though ,

there is evidence of a marginal effect on the ability to acquire highly divergent sequence

through transformation.
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Figure 5.9: Distributions of the lengths of recombination events, split by comM status

across the six largest A. baumanii strains. Within the title for each plot, N represents the num-

ber of recombination events the boxplot describes. Recombinations spanning putative prophage

regions have been removed. Significance tests have been performed using the Mann-Whitney

test.

When looking at the key recombination statistics r /m and ρ/m I also observed a mixed

picture in terms of the effect of comM disruption (Figure 5.11). Statistics were calculated

through bootstrap sampling (n = 100,000) of the branches on the phylogenies whose

comM state had been reconstructed through PastML. The difference between the r /m

values calculated for each comM state was then plotted, with the 95% interval of the

differences compared to zero, to test for significance. For the majority of clades, GC1 &

strains 4 to 6, comM disruption had no significant effect on the r /m values. For strain 5

it does appear that the r /m for isolates with a WT comM was significantly higher, with a

median difference of 1.55 (95% interval 0.10 to 2.59). For the GC2 lineage however, it

appears that isolates with a disrupted comM actually have a higher r /m, with WT isolates

having a median difference to disrupted comM isolates of -2.14 (95% interval -2.54 to

-1.77). This is odd, considering previous lab work has shown those isolates with an AbaR

element inserted into comM have up to 103 less transformation frequency that WT comM

isolates [667].
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Figure 5.10: Distributions of the SNP density of recombination events, split by comM sta-

tus across the six largest A. baumanii strains. Within the title for each plot, N represents

the number of recombination events each boxplot describes. Recombinations spanning putative

prophage regions have been removed. Significance tests have been performed using the Mann-

Whitney test.

A similar trend appears for the ρ/m metric too (Figure 5.12). Again half the strains

appear to have their ρ/m values unaffected by comM disruption, GC1 & strains 4 & 6. For

ρ/m however, strain 3, along with strain 5, does appear to have a slighter higher ρ/m when

having a complete comM (median = +0.026, 95% interval 0.0033 to 0.0495). GC2 again

however has a lower ρ/m for isolates with a complete comM compared to those with a

disrupted comM. The median difference was -2.144 (95% interval -2.54 to -1.77), which

indicated that disrupted comM actually recombine more frequently, again this is against

expectations from previous lab results.

Now that I have gone through the recombination dynamics of the A. baumannii collec-

tion, I will move on to the L. pneumophila collection. Starting with the recombination results

from the largest strain, strain 1 which corresponds to the prominent disease-associated

clone ST1.
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Figure 5.11: Distributions of the differences between A. baumannii WTcomM isolates and

disrupted comM isolates r /m values. Histograms represent the differences between WT comM

isolates and disrupted comM isolates r /m. The histogram is calculated from 100,000 bootstrap

samples of the branches of each strain’s phylogeny with r /m calculated from the subset branches

for both comM states. The red vertical lines represent the region where 95% of the difference

values lie. The black dashed line represent zero difference between the r /m values.

5.3.6 Recombination dynamics in L. pneumophila strain 1.

The recombination dynamics for the largest L. pneumophila strain, strain 1, which con-

tains the ST1 clone, were analysed using Gubbins v3.2.0. This was run with the same

FastTree, RAxML joint ancestral reconstruction model choice as previously used for theA.

baumannii lineages. Overall there were fewer large recombination events in this lineage

compared to GC2, with most of these larger events occuring around prophage regions

(Figure 5.13). However, the r /m value for this lineage was much higher than that for the

A. baumannii lineages. Gubbins estimated the r /m at 8.91 when excluding prophage re-

gions. Similarly the ρ/m was higher at 0.05 recombination events per point mutation, with

a total of 543 events outside of prophage regions.

Genes involved in the production of the lipopolysaccharide capsule (LPS), were fre-

quent targets of recombination (Figure 5.13). In total 76 recombination events span a
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Figure 5.12: Distributions of the differences between A. baumannii WTcomM isolates and

disrupted comM isolates ρ/m values. Histograms represent the differences between WT comM

isolates and disrupted comM isolates ρ/m. Histograms are calculated from 100,000 bootstrap

samples of the branches of each strain’s phylogeny with ρ/m calculated from the subset branches

for both comM states. The red vertical lines represent the region where 95% of the difference

values lie. The black dashed line represent zero difference between the ρ/m values.

part of this LPS 35 kb locus. Furthermore, within the LPS locus the lag-1 gene was a

particular hotspot for recombination, with 42 events spanning this locus. This gene has

previously been identified as having a strong association with invasive clinical isolates,

aiding cells in avoiding complement-mediated killing [718]. There is also a peak in re-

combination around the mutS gene, which is involved in DNA mismatch repair. Other

genes close to this locus include recA, which binds to ssDNA facillitating strand invasion

during homologous recombination, and recX, which acts as a regulator of recA. Why re-

combination would peak around these loci is unclear. Previously an MGE has targetted

mutS in marine Vibrio splendidus to create a hypermutator phenotype [655]. However,

no MGEs appear to insert around this locus within the L. pneumophila collection.

MGE regions are also hotspots for recombination in this lineage (Figure 5.13). There

is a probable ICE element within the reference sequence, from 2.25 Mb to 2.32 Mb. This

region contains the virB4 gene encoding a component of the type IV secretion system
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used in conjugation, as well as the tra operon involved in DNA transfer [719,720]. It also

contains a suite of heavy metal resistance efflux pumps, such as cusA and czcA, which

are part of the resistance-nodulation-division (RND) drug resistance efflux pumps [721].

A phage region from 2.74 Mb to 2.84 Mb was also identified by Phaster. This has only

been identified as an incomplete phage, with its closest match to the ST147-VIM1φ7.1

Klebsiella pneumoniae phage [722]. Both these MGE regions have been removed from

the overall r /m analysis due to their ability to move between genomes via mechanims

other than homologous recombination.

Now that I have described the overall recombination dynamics for the strain 1, I will

look into the effect of RocRp on the recombination dynamics in the three largest strains

of L. pneumophila.

5.3.7 RocRp disrupts recombination dynamics in L. pneumophila

RocRp is not as widely distributed as AbaR elements and comM disruptions are in the A.

baumannii collection (Table 5.3). Strains 2 & 3 have similar proportions of RocRp present,

whereas strain 1 has almost no isolates with RocRp present. As with the comM disrup-

tions in A. baumannii, Gubbins v3.2.0 with a FastTree, RAxML and joint ancestral state

reconstruction model was run to assess the impact of RocRp on recombination dynamics

in these three lineages. PastML was also run to assess the likely ancestral state of RocRp

presence and recombination events spanning known MGE regions were excluded from

further analysis.

Strain WT RocRp present Total isolates

Strain 1 829 (99%) 5 (1%) 834

Strain 2 690 (84%) 130 (16%) 820

Strain 3 167 (84%) 33 (16%) 200

Table 5.3: Distribution of the transformation inhibiting sRNA RocRp across the three

largest L. pneumophila strains.

In terms of the length of recombination events, RocRp presence does not appear to

affect the length of sequence imported (Figure 5.14). For strain 1, there is only one re-

combination event along a RocRp branch that is included in the analysis, so comparisons

are of statistical power. For strains 2 & 3, the median length is similar for isolates with
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RocRp (46,245 bp for strain 2 and 18,160 for strain 3) to those WT isolates (40,392 for

strain 2 and 18,160 for strain 3). In terms of the SNP density of recombinations too, Ro-

cRp appeared to have a limited effect (Figure 5.15). While in this case WT isolates in

strains 2 & 3 had a higher median SNP density (6.1x10−3 for strain 2 and 3.4x10−3 for

strain 3) compared to isolates with RocRp (4.7x10−3 for strain 2 and 2.9x10−3 for strain

3). The difference, however, was not significant.

Figure 5.14: Distribution of the lengths of recombination events, split by RocRp possession

across the three largest L. pneumophila strains. Within each plot, the title N values represent

the number of recombination events each boxplots represents the distribution for. Significance

tests were performed using the Mann-Whitney U test.

For the key recombination metrics, r /m and ρ/m, RocRp does however appear to

have an effect. These statistics were again calculated from a subset of branches, split

by RocRp presence, chosen through Bootstrap sampling (n = 100,000). . For strains 1

& 2 the r /m value appears to be significantly higher for WT isolates over isolates found

to contain RocRp (Figure 5.16). For strain 1 there was a median increase in r /m of 8.75

for isolates without RocRp compared to those with RocRp (95% interval 5.86 to 11.45).

While for strain 2 this increase was even higher, at a median increase of 12.55 in r /m

(95% interval 1.73 to 22.11). For strain 3, while the difference in r /m between the RocRp

and WT isolates was not significant, the median value was still positive with an increase
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Figure 5.15: Distributions of the SNP density of recombination events, split by RocRp pres-

ence across the three largest L. pneumophila strains. Within each plot, the title N values

represent the number of recombination events each boxplots represents the distribution for. Sig-

nificance tests were performed using the Mann-Whitney U test.

of 16.98 (95% interval -13.44 to 43.91). Across the three strains, RocRp presence lead

to a median reduction in r /m of 58.4%.

RocRp was also seen to lower the ρ/m metrics for these lineages (Figure 5.17). Again

for strains 1 and 2 this difference was significant. For strain 1 WT isolates had a ρ/m value

on average a higher ρ/m value by 0.051 more recombination events per point mutation

SNP than RocRp isolates (95% interval 0.035 to 0.065). For strain 2 this time the increase

was slightly lower, with an average increase in ρ/m of 0.039 (95% interval 0.002 to 0.071).

For strain 3 the difference in ρ/m was not significant between WT and RocRp isolates, al-

though the median difference was again greater than zero (median = 0.074, 95% interval

-0.126 to 0.219). From these metrics then, we can see that RocRp, unlike comM disrup-

tion in A. baumannii, does appear to negatively impact the frequency of recombination

in large collections of L. pneumophila. Across the three strains, RocRp presence was

associated with a 47.4% decrease in ρ/m
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Figure 5.16: Distributions of the differences between L. pneumophila WT and RocRp

present isolates’ r /m values. Histograms represent the differences between WT and RocRp

isolates’ r /m. The difference is calculated from 100,000 bootstrap samples of the branches of

each strain’s phylogeny with r /m calculated from the subset branches for both RocRp states. The

red vertical lines represent the region where 95% of the difference values lie. The black dashed

line represent 0 difference.

Figure 5.17: Distributions of the differences between WT and RocRp present isolates’ ρ/m
values. Histograms represent the differences between WT and RocRp isolates’ ρ/m. The differ-

ence is calculated from 100,000 bootstrap samples of the branches of each strain’s phylogeny with

ρ/m calculated from the subset branches for both RocRp states. The red vertical lines represent

the region where 95% of the difference values lie. The black dashed line represent 0 difference.

5.4 Conclusions

In this chapter I have focused on two important gram-negative pathogenic species, using

genomic epidemiological techniques to investigate their recombination dynamics. Across
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both species, PopPUNK was far more consistent than MLST schemes in clustering iso-

lates into strains. This difference was most pronounced in the L. pneumophila collections,

where assembly based SBT methods struggled to classify isolates. L. pneumophila iso-

lates often carry two copies of the mompS used as one of the seven loci in the typing

scheme. To account for this variability, previous typing schemes have leveraged data

from raw reads as well as assemblies, showing an increase in the accuracy of typing

compared to an assembly only approach [245]. With the advent of LRS technologoies,

which promise both an increase in data availability and assembly quality, typing based on

WGS assembly data promises to be more robust and consistent.

We have seen how population level recombination dynamics can be affected by the

presence of MGEs within isolates. For A. baumannii, despite evidence of AbaR insertion

and comM disruption leading to a reduction in transformation efficiency in vitro [667], at

a population level we observe that there is no consistent significant effect. In GC2, it

even appears that comM disruption is associated with more recombinogenic populations.

The remarkable spread of the AbaR elements in this lineage, present in 73% of isolates,

may be driven by the resistance cargo genes these elements often carry [657,679,687].

While recombination may be less effective in these isolates, their success provides a large

enough population for recombination at key immunogenic loci to occur and subsequently

be selected for.

In L. pneumophila however, these transformation restricting elements are much less

widespread. Unlike AbaR elements, the pLPL plasmid is not associated with any resis-

tance genes. Furthermore, estimates of the effect of RocRp on transformation frequency

are much higher than AbaR insertion, at a reduction of 103 compared to AbaR inser-

tion at comM which has been estimated as low as a 10x reduction in transformation fre-

quency [657, 668]. These factors combine to make the effect of RocRp on a population

much more apparent, with all lineages having a reduction in r /m and ρ/m comparing to WT

isolates. Why exactly a plasmid would block transformation is less clear. Plasmids are

thought to be closely related to ICE elements, which can insert within a host chromosome

and as such could avoid deletion by disrupting the transformation machinery [350, 723].

Perhaps in this case an ICE encoding RocRp has converted into a plasmid. Further work
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is needed to explore the diversity of elements which RocRp is found in.

Both species shared loci with similar peaks in recombination events. The capsule

locus for instance, as has been observed in other species [142,724–726], is a hotspot for

recombination. Phage and other MGE regions appear frequently too, likely as a result of

their ability to excise and move between hosts. For A. baumannii the r /m for lineages was

lower than predicted in the past. Previous estimates of r /m for GC1 using Gubbins have

recorded values of 22 [549], while in this collection I calculate it at 4.42. In the original

GC1 study by Holt et al [549], an earlier version of Gubbins was used, while the smaller

number of isolates were selected to be representative of the diversity of GC1.This may

have introduced a larger number of SNPs than present in my collection of all sequenced

isolates, hence increasing the r /m.

This concludes the results sections of this thesis. I will now move on to discuss these

results further, detailing the limitations of this work and how future research may be fo-

cused.
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Discussion

6.1 Summary of results

The interaction between host bacteria and selfish MGEs has driven a range of important

evolutionary processes. From the emergence of bacterial defence systems like R-M and

CRISPR-Cas, to the spread of clinically important resistance and virulence genes. All

are driven by this fundamental conflict between MGEs and hosts. How this conflict drives

recombination dynamics in pathogenic species, and how in turn these dynamics can affect

the spread of AMR among these species, has been the focus of this thesis.

The first step in assessing these dynamics is detecting recombination events between

isolates. This is not a trivial problem [506]. The work I have presented here includes an

update to the popular recombination detection method Gubbins. This has included a

thorough benchmarking on simulated data, assessing a range of potential models used

in the detection of recombination, and the first in-depth comparison of the tool to the Clon-

alFrameML method. From these simulated datatsets we have seen that Gubbins is the

most accurate method in reconstructing the topology of the phylogeny among sequences,

across a range of recombination and branching rates. Furthermore, I have highlighted

the optimal set of model parameters for accurate phylogenetic reconstruction: a joint an-

cestral state reconstruction with a FastTree and RAxML phylogeny builder working with a

GTR substitution model. Finally, the run-time and memory efficiency of Gubbins has been

greatly improved, both over previous iterations and the ClonalFrameML method. This en-
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sures that Gubbins can continue to be a useful tool with the ever increasing amount of

sequence data available moving forward.

The evolutionary processes driving the spread of AMR and MDR lineages remain

only partially realized. While the question of how ICEs move between pneumococci is

also open to debate. To answer these questions, in Chapters 3 and 4 Gubbins was

applied to understand the recombination dynamics underlying the spread of two globally

distributed MDR lineages of pneumococci, PMEN3 and PMEN9. I found that resistance

evolved repeatedly within these lineages, however, only in select cases did this lead to

the expansion of the clade. The ST156 clade in PMEN3, for instance, expanded from

the early 1980s with the gain of penicillin resistance via recombination at the pbp loci.

In Germany too, a macrolide resistant but penicillin sensitive clade expanded in line with

the increase in macrolide to penicillin consumption in the late 1990s. Both these clades

gained resistance through recombination with non-pneumococcal DNA.

The German clade expansion was also an example of the conflict between MGEs and

their host cell. Tn1207.1, the transposon conferring macrolide resistance, disrupted the

competence gene comEC preventing further recombination. While this led to the initial

spread of the lineage within Germany, the lack of recombination prevented both serotype

switching and the adaptation of this isolate to the PCV7 vaccine, introduced in 2006 to

Germany. The scale of MGE insertion site diversity was elucidated through searching

for Tn1207.1-type and Tn916-type elements in the wider GPS collection. Tn916-type

elements in particular were widespread across the 20,000 isolate collection, with over

100 different sites targeted in the pneumococccal genome. Both these elements were

also found to move between cells via recombination, with frequent interspecies spread

too. This offers a new perspective on how these important AMR genes can disseminate

within a population.

Finally the effect of host MGE conflict was also investigated at a population level, in the

important pathogens A. baumannii and L. pneumophila. MGEs that had disrupted compe-

tence machinery, the AbaR resistance element and the L. pneumophila plasmid encoded

RocRp sRNA, were identified across large public collections of assembled genomes.

These results show that the recent PopPUNK tool for genomic epidemiology can effec-
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tively cluster the populations into biologically plausible strains, outperforming traditional

MLST methods. Despite laboratory studies finding a reduction in transformation efficiency

from comM disruption by AbaRs, this is not observed in the pattern of exchange between

strains inferred with Gubbins. However, recombination at key immunogenic loci, such as

the capsule locus, still occurred in the A. baumannii population. In L. pneumophila on the

other hand, there does appear to be a significant reduction in the rate of exchange be-

tween lineages caused by RocRp . The explanation for why a extra-chromosomal plasmid

would cause this, though is still unclear.

6.2 Implications of research

6.2.1 Selection and recombination

Gubbins, due to its approach of detecting recombinations via an elevated SNP density, will

only find recombination events that introduce diversity into a strain. However, the majority

of recombination events likely occur between isogenic cells that grow in close proximity to

one another [350]. These events would leave no signature in the host genome, and the

frequency of their occurrence could likely only be derived through extensive laboratory

work. However, if the diversifying recombinations that Gubbins detects were selectively

neutral we might expect that they would be randomly distributed across the genome, with

no particular locus having abundant recombination events. Instead, what we observe are

hotspots of recombination across the three species that I investigate. This is in line with

previous studies looking at recombination dynamics, where there were hotspots around

loci associated with pathogenicity and resistance [142,549,699,727,728]. Selection then

must be driving the spread of these divergent recombination events.

6.2.2 Adaptive evolution to public health interventions

Selection may be preserving these diversifying recombination as they are adaptive to

clinical interventions. For instance, building on previous work in the pneumococcus, and

other species, [318,560] I observe interspecies recombination events around the pbp loci

leading to gains of resistance across both the pneumococcal MDR lineages and in the

wider GPS collection. Typically, these previously identified transformation events gen-

erating mosaic pbp and murM gene structures were short, and confined to few, specific
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loci [729,730]. My results though, extend the importance of interspecies transformation to

show its role in importing long stretches of DNA. These events can cause structural vari-

ation through the integration of antibiotic resistance cassettes at many sites around the

pneumococcal chromosome. Such transformations are atypical in two regards. Firstly,

in the number of SNPs they introduce into the recipient, as the efficiency of exchanges

decreases exponentially with sequence divergence [731]. Secondly, insertion of large

loci is rare because the efficiency of transformation also decreases exponentially with the

length of the imported donor locus [485]. Correspondingly, the recombinations importing

resistance loci, such as the Tn916-type and Tn1207.1-type elements, from other species

are clearly atypical in their properties among all detected homologous recombinations.

Other detected recombination events around important loci are also atypical. The

serotype switching recombinations importing the cps loci required to escape vaccine in-

duced immunity in the pneumococcus, for instance, were much larger than most detected

around the genome. In A. baumannii and L. pneumophila too, very large recombination

events around the capsular K and LPS loci respectively, are observed and likely driven

by host immune selection [732, 733]. Within the pneumococcus, these large cps locus

recombinations often encompassed the pbp loci as well. For instance, the emergence of

the 19A clade in PMEN3, which had greatly increased penicillin MIC values, coincided

with a large 54 kb recombination spanning the cps loci and pbp2x and pbp1a at the base

of this clade. Hence, the adaptation of these pathogens to clinical and public health in-

terventions, selects for recombinations that are either rare, or disruptive enough to not

typically persist in populations.

These important adaptive changes mediated by recombination likely reflect the con-

cept underlying Milkman’s hypothesis. This states exchanges between divergent geno-

types will only become common in the recipient where there exists an atypically strong

selection pressure [734, 735]. In our data, the longer recombination events around cap-

sule loci are also an example of this. Were these events more common, genotypes would

routinely converge through recombination [736]. In particular, the interspecies recom-

binations observed in pneumococcal populations suggests the mechanistic or selective

barriers to recombinations between streptococcal species in the human oronasopharynx
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are not absolute. This is in keeping with the concept of “fuzzy species”, where recombi-

nation has created imperfect separation between strains [736–738].

Milkman’s hypothesis could also explain the limited population-level effect of a dis-

rupted comM gene on recombination dynamics in the A. baumannii lineages. Here,

despite previous evidence that comM disruption lowers the efficiency of transformation

[657,667,689], there is no consistent drop in recombination rates through comM disrup-

tion. Indeed, within GC2, large recombination events around the K locus are observed,

these also encompass the parC gene involved in fluoroquinolone resistance [739]. Hence,

the selection pressure from host immune response and antibiotic consumption may be

strong enough to overcome the effect of comM disruption. Within GC2, comM disruption

appears to actually lead to an increase in both the r /m and ρ/m, a surprising feature. This

itself may be driven by the frequent recombination around the K locus in those isolates

with a disrupted comM, with 49 different K types detected within these 4,489 number of

isolates, compared to 6 different K types in the 603 isolates without the comM disruption.

6.2.3 Comparisons of recombination properties across species

Overall though, among the three pathogens studied, A. baumannii tended to import the

least diverse sequence through recombination. Across the six largest clades the r /m for

A. baumannii was 2.08 compared to the value of 17.46 across the three largest L. pneu-

mophila clades, while for PMEN3 and PMEN9 this was 13.1 and 7.7 respectively. This

could be due to the fact that A. baumannii is able to exist as a biofilm on both biotic

and harsh abiotic surfaces [740, 741]. This may reduce its exposure to other bacterial

species, offering fewer opportunities for diverse sequence uptake. Indeed, the median

SNP density of recombination events in the GC2 lineage was low, at 0.003 SNPs/bp. It

was interesting to observe the bap gene, which is neccessary for biofilm formation [742],

being a particular hotspot for recombination in A. baumannii. Previous studies have high-

lighted the variability of bap within pathogenic isolates [743]. As well as biofilm formation,

its role in binding to human epithelial cells suggests some of this recombination may be

driven by host immune pressure [717]. The bap gene though, is also highly repetitive in

nature, which may confound genome assemblers and be driving some of the variation I

observe at this locus [744].
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The high r/m values observed across the largest L. pneumophila clades do broadly

follow previous estimates in disease-associated STs [699, 745]. David et al 2017 [699]

found ST1, which is contained within strain 1 of my results, had an r/m of 56.2 compared

to my estimate for strain 1 of 9.15 overall, while ST37, contained within strain 2, had an

r/m of 20.8 compared to the estimate for strain 2 of 26.74 overall. These high values are

in contrast to the ρ/m values of 0.053 and 0.092 for strains 1 and 2 respectively. These

ρ/m values are lower than the estimates for the PMEN3 lineage at 0.115, and comparable

to the PMEN9 lineage, 0.093, which has Tn1207.1 blocking transformation in over 200

isolates. The SNP density of recombinations within the L. pneumophila strains also tends

to be lower than observed in the pneumococcus, at a median of 0.0054 SNPs/bp and

0.0059 SNPs/bp for L. pneumophila strains 1 and 2 respectively, compared to the medians

of 0.0118 SNPs/bp and 0.0092 SNPs/bp for PMEN3 and PMEN9 respectively.

The length of recombination events detected by Gubbins however, is much larger in

the L. pneumophila strains. The median length for strain 1 is 26,149 bp and for strain

2 is 41,197 bp, this is much higher than seen in PMEN3, at a median of 4,314 bp, and

PMEN9, at a median length of 4582 bp. This increased length, which ensures that while

SNP density is low the number of imported SNPs overall is high, could be coupled with the

low mutation rate of L. pneumophila to increase the r /m. Indeed, previous studies have

estimated a mutation rate of 1.39 x 10−7 substitutions per site per year for L. pneumophila

[745], an order of magnitude lower than the 1.69 x 10−6 substitutions per site per year

estimated for PMEN3. In L. pneumophila then, selection is preserving large recombination

events within strains.

6.2.4 Conflict between hosts and MGEs

The presence of RocRp, and its significant effect of reducing transformation frequency

in L. pneumophila strains, offers further evidence for the hypothesis that transformation

evolved as a means to cure genomes of selfish MGEs [350]. Similarly the insertion

of Tn1207.1 into comEC, effectively preventing transformation in the German clade of

PMEN9, also highlights how MGEs can target the cell competence machinery to prevent

their deletion through transformation. The disruption of comM by AbaR elements, while

having no consistent effect on transformation at a population level, is still seen to reduce
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transformation events in vitro [657, 667]. As described above, the recombination events

detected by Gubbins tends to be more SNP dense. In this case, regions under selection,

such as immunogenic loci, will have recombination events more easily detected. Hence,

recombinations from closely related or isogenic cells, which is likely the origin of most

donor DNA, are less likely to be detected. These events could drive the deletion of AbaR

elements from the host genome. However, within the clades that a disrupted comM is

detected, this disruption is rarely lost among isolates. In GC2 for instance, where a dis-

rupted comM is detected in over 4,000 isolates, there are only three detected reversions

to a WT comM, as opposed to 16 instances where comM has become disrupted. Simi-

larly in GC1, where 96% of the strain has a disrupted comM, there is only one detected

reversion to a WT comM. This could indicate that the rate of curing of the AbaR elements

likely causing this disruption is low, possibly due to the lowering of transformation effi-

ciency. Cells could also be selected to retain the resistance cargo that AbaR elements

carry, preventing cured isolates from expansion.

Indeed, the MGEs that can disrupt host cell machinery can often also be beneficial to

hosts via their cargo genes, especially resistance genes. There is a high selection pres-

sure on pathogenic and human commensal bacteria to evolve resistance [746]. Hence,

more reliable mechanisms of spread such as conjugation, which can disseminate large se-

quences safely through a pilus [395], may be expect to drive much of the spread of these

resistance elements. However, in this work I’ve identified how transformation can also

lead to dissemination of these elements. The Tn916 and Tn5253-type ICEs, which can

often contain the smaller Tn1207.1-type elements, do encode their own conjugation ma-

chinery. While these large ICEs may impose a burden on the host cell, their site-specific

integration machinery is under selection to minimise the disruption of their insertion to the

host cell [747]. By contrast, transformation’s extensive import of sequence from another

species flanking the insertion is likely to be deleterious to the recipient. This is especially

likely when a host gene is disrupted, as in the example of frequent insertions in the tag

DNA repair gene, and the integration of Tn1207.1 into comEC in the German PMEN9

clade. However, this work shows how transformation and homologous recombination

may be a mechanism of further spread of ICE insertions that are not deleterious to the
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host cell. Given that antibiotic exposure is one of the many activators of the competence

system in bacteria [447,561], this exposure, as well as selecting for resistance, may lead

to further dissemination of resistance genes.

6.2.5 Impact of vaccines on resistance

Finally, it is interesting to observe an instance of vaccination driving the removal of an

AMR lineage from the population in this work. The decline and extinction of the PMEN9

German clade post PCV7 introduction in 2007 in Germany, represents the removal of

macrolide-resistance from the invasive pneumococcal population. Vaccines targeted to-

ward bacterial pathogens reduce the prevalence of resistant pathogens by inducing host

immunity. This both limits the number of resistant pathogens in a population and leads to

lower consumption patterns, which may also decrease the evolution of resistance [748].

The PCV vaccines have been an excellent case study in the reduction of AMR, with the

introduction of PCV7 in the US followed by an 84% reduction in MDR IPD cases for in-

stance [749, 750]. However, I also observe non-PCV7 serotypes gaining high levels of

resistance in the US post introduction of the vaccine, with the 19A clade in PMEN3 an

example of this. This is mirrored by findings overall from the US, where 19A linked re-

sistance eroded the initial decrease in resistance from PCV7 introduction [750]. With the

subsequent introduction of the PCV-13 vaccine though, which includes the 19A serotype,

the burden of resistant infections was again lowered [751]. Vaccines can be a powerful

tool in combating the spread of AMR. Genomic epidemiology studies, such as the work

presented here in Chapters 3, 4 and 5, will be vital in understanding the effect of vaccines

on bacterial populations.

6.3 Limitations and Future work

6.3.1 Detecting MGEs

One of the key drawbacks to the work presented here has been the inability to consis-

tently detect MGEs within sequence data. This has limited the conclusions drawn from

Chapter 4, concerning the spread of Tn916-type and Tn1207.1-type elements, and Chap-

ter 5, with regards to the presence of AbaR elements within isolates. For Chapter 4, it

is possible I am underestimating the true diversity of insertion loci of both pneumococcal
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MGEs investigated. For instance, 1,895 detected BLAST matches of Tn916 being non-

classifiable, mainly due to poor assembly of the insert and flanking regions. Additionally,

given the modular nature of ICEs it could be that I am missing the scale of the diversity of

these elements present within pneumococcal populations, as the division between host

and MGE genes can be ambiguous. ICE elements have been known to leave ”scars” in

the genome upon excision, which could be causing further confusion in the delimiting of

ICEs [487].

AbaR elements appear to be similarly diverse in their modular configuration [683,687].

This may be driving some of the disparity in the numbers of isolates with disrupted comM

genes in theA. baumannii strains and the number of isolates with an AbaR element. Other

elements than AbaRs could also be causing the observed disruption in comM among iso-

lates, although no other element is known to insert within the gene. In general, detecting

the presence of MGEs and their insertion sites is a difficult problem. MGEs are diverse

in nature and can be flanked by repeat seqeuences that are difficult to assemble. For all

the MGEs mentioned here, improved assembly of genomes would allow for a more accu-

rate assessment of their insertion loci. The improvements in accuracy of LRS methods,

offers a route through which future studies could create more representative assemblies

that allow for the insertion sites of elements to be understood. These LRS methods also

promise to be more accurate in identifying plasmids, something NGS short-read methods

have struggled to do [752]. Additionally, the CONJscan software, released in late 2019,

could be a more appropriate method to detect the conjugation systems of ICE [753]. This

would be a more agnostic approach than taken here, looking for all types of ICEs as op-

posed to specific elements. However, this analysis would still require an extension of the

boundaries of ICE to any potential homologous arms. This would then allow for detection

of whether an MGE was imported via transformation.

6.3.2 Assembly consistency

The detection of recombination dynamics among the populations of A. baumannii and

L. pneumophila in Chapter 5, also requires good assemblies to ensure adequate SNP

detection for Gubbins. However, for these populations I have taken assemblies directly

from the GenBank site. These are not actively maintained, as sequences from the Ref-
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Seq database are. Additionally there is no consistent tool used for the assembly of these

genomes, with this dependent on the date of sequencing and the sequencing method

used. The assembler used can have a large effect on the nature of the genome assem-

bly [754]. Hence, future studies should look to use a dataset with a consistent assem-

bly pipeline. Recently, Blackwell et al 2021 [554] compiled a dataset of over 600,000

genomes, with 5,162 A. baumanii and 2,296 L. pneumophila assemblies. They used the

same assembly pipeline for all the reads downloaded, Shovil v1.0.4, which gives greater

confidence in any downstream analyses on the assemblies.

6.3.3 Gubbins improvements

It should also be noted that Gubbins, on the simulated datasets, struggled to properly

categorise SNPs external to recombination. This occured with lower pbranch values, high-

lighted by the increased accuracy of the phylogeny branch length reconstruction at higher

pbranch values. At lower pbranch values, there will be more SNPs on each branch and

more recombination events along the branch. With the increase in µrec the number of

recombination events will increase too. Also, given that this is determined by a Poisson

distribution, the variation in the number of recombination events will increase between

branches. This may drive the poor classification of SNPs at low pbranch and high µrec val-

ues. Improvements to the core Gubbins algorithm for detecting higher SNP density may

alleviate this issue. The reason ClonalFrameML performs better than Gubbins in terms

of branch length estimation may be due to its expectation that recombination lengths fol-

low an exponential distribution. The simulated datasets were created with an exponential

distribution of recombination lengths. This is a reasonable prior, given the distribution of

recombination events observed in Chapters 3, 4 and 5. However longer recombination

events may be enriched in real-world populations. This could be due to the movement

of MGEs, which have a minimum length, or selection favouring events targeting larger

loci such as the cps locus. These are not explicitly modelled in our neutral simulations.

Hence, perhaps also incorporating a Pareto distribution with a minimum length cut-off to

simulate these enriched longer recombination events, may better model sequence move-

ment between cells via transformation.

Gubbins also requires the mapping of a collection of isolates to a single reference
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sequence in order to initially detect SNPs. Depending on how diverse the strain under

investigation is, this limits the detection of recombination events primarily to those genes

present in the core genome. This is key for determining the clonal frame of isolates,

which represents their relationships to each other over generations of evolution. However,

recombination events in accessory loci are missed. These loci may play an important role

in determining the success of sublineages within a strain [755]. Recent approaches have

attempted to call SNPs in the accessory genome using comparisons to a set of reference

graphs formed of representative sequences from a collection [240]. Adapting the Gubbins

algorithm to also focus on SNPs detected within accessory loci could allow for a greater

understanding of the role of recombination in the dissemination of lineages.

6.3.4 Genomic epidemiology

The protocol of steps outlined in Chapters 3, 4 & 5 for the detection of recombination dy-

namics within strains, offers a reliable suite of methods for genomic epidemiology in the

pathogen surveillance era. Assemblies from large populations can be split into closely re-

lated strains by PopPUNK, these strains can be mapped to a reference genome through

SKA, and finally a recombination free phylogeny of isolates can be inferred by Gubbins

(Figure 6.1). Further work combining these steps into one pipeline tool, similar to the

PopPIPE tool (https://github.com/bacpop/PopPIPE), would enable a wide-range of

users access to more fine-scale genomic epidemiological analysis. This could also be

further extended with initial assembly steps, which might be dependent on the sequenc-

ing methodology deployed. Further analysis steps, such as the prediction of AMR genes,

MGE detection and phylodynamic analyses of strains, may also be incorporated.

6.4 Conclusion

The dissemination of AMR genes among pathogenic bacterial species represents a press-

ing concern for public health. Understanding how and why resistance spreads, seemingly

aggregating in individual clones among the vast diversity of some bacterial species, will

be important in preventing this rise in resistance. Genomic epidemiology studies, such as

the work presented here, represent a powerful tool in tracking and understanding these

dynamics. Allied with improved sequencing methods, enhanced surveillance networks
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Figure 6.1: Outline of themain steps inmoving from assemblies to strain level phylogenies,

for a collection of sequences.

and verstaile bioinformatic tools, these studies will become ever more informative in an-

swering these key questions. Apart from the clinical implications however, the spread of

resistance is a fascinating evolutionary case study occurring within the scale of human

lifetimes. One which happens to have profound implications for the practice of medicine.
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