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Abstract
Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the 
global carbon cycle. The instantaneous controls of leaf-level photosynthesis are well 
established, but there is still no consensus on the mechanisms by which canopy-level 
GPP depends on spatial and temporal variation in the environment. The standard 
model of photosynthesis provides a robust mechanistic representation for C3 spe-
cies; however, additional assumptions are required to “scale up” from leaf to canopy. 
As a consequence, competing models make inconsistent predictions about how GPP 
will respond to continuing environmental change. This problem is addressed here by 
means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from 
eddy covariance carbon dioxide flux measurements, in situ measurements of photo-
synthetically active radiation (PAR), and remotely sensed estimates of the fraction of 
PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential 
drivers of GPP to be separated from its overriding dependence on light. GPP data 
from over 100 sites, collated over 20 years and located in a range of biomes and cli-
mate zones, were extracted from the FLUXNET2015 database and combined with 
remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor 
pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be 
salient predictors of LUE in a generalized linear mixed-effects model. The same model 
design was fitted to site-based LUE estimates generated by 16 terrestrial ecosystem 
models. The published models showed wide variation in the shape, the strength, and 
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1  |  INTRODUC TION

Gross primary production (GPP) by terrestrial ecosystems is the larg-
est flux in the global carbon cycle, and responsible for the annual 
uptake of approximately 120–150 Pg carbon: about one-sixth of 
the total amount of carbon dioxide (CO2) in the atmosphere (Beer 
et al.,  2010). GPP, expressed over a period, represents the inte-
grated, canopy-level response of photosynthesis to climate, nutrient 
availability, and disturbance (Law et al., 2002). Accurate estimation 
of GPP, including its geographic pattern and its temporal variability 
and trends, is essential if we are to understand the full implications 
of the anthropogenic increase of atmospheric CO2 and the associ-
ated changes in climate.

Today's Earth system models, global models that represent cou-
pled physical and biogeochemical processes, are unprecedented in 
scope and scale (Fisher & Koven, 2020). Thanks to technological ad-
vances that allow continuous monitoring and remote sensing of land 
ecosystems, as well as continuous improvement in computational 
resources, we should now be able to profit from advanced research 
tools and a huge body of data that were unavailable to earlier re-
searchers (Eyring et al., 2021). Perhaps surprisingly, however, funda-
mental questions about how terrestrial ecosystems function remain 
unanswered. The nature of the responses of primary production to 
continuing changes in CO2 and climate is among the most critical 
(Walker et al., 2021), as it influences every aspect of environmental 
change impacts on terrestrial biological systems.

The challenge of modeling ecosystem dynamics globally has 
fueled the development of an increasing number of competing 
terrestrial biosphere models (TBMs; e.g., Fisher et al.,  2014). This 
proliferation has led to a wide spread of predictions (e.g., Arora 
et al., 2020; Friedlingstein et al., 2006), both by TBMs and by Earth 
system models in which they are embedded. The complexity of TBMs 
has generally increased over time, but this has not improved their 
accuracy in predicting GPP (Prentice et al., 2015). Persistent dispar-
ities between models have propelled a movement toward standard-
ized model benchmarking and evaluation (Collier et al., 2018; Kelley 
et al.,  2013), but models still show no sign of convergence. The 
fundamental problem is that whereas the instantaneous controls 
of leaf-level photosynthesis (which can be measured in manipula-
tive experiments) are well established, the longer term, larger scale 
controls of GPP are not. For example, in the standard model of C3 

photosynthesis (Farquhar von Caemmerer Berry [FvCB], Farquhar 
et al., 1980), carbon assimilation is accurately modeled as the lesser 
of two rates, limited either by Rubisco activity (carboxylation) or 
by light (electron transport). Both rates are influenced by the leaf-
internal partial pressure of CO2. Empirical “closure” equations are 
commonly used to determine this quantity, which depends on pho-
tosynthetic rate and stomatal conductance as well as on ambient 
CO2. Additional assumptions are needed, however, about how key 
parameters of the FvCB model (which can be measured directly on 
individual leaves, but not on whole canopies) and parameters of the 
closure equations should be scaled up in space and time (e.g., Rogers 
et al., 2017). These assumptions are seldom tested, or even made 
explicit in published model applications. Yet they induce major dif-
ferences in how modeled GPP responds to light, temperature, CO2, 
nutrient availability, and other aspects of the physical environment 
(Friedlingstein et al., 2014).

Light use efficiency (LUE) is a simplifying concept exploited here 
to analyze environmental controls of GPP, and to compare these 
between models and data. The LUE principle was first established 
in studies of crop growth by Monteith  (1972, 1977). It states that 
primary production over a given period (of a week or longer) is pro-
portional to the light absorbed by the canopy during that period—
which, in turn, is the product of the incident photosynthetic photon 
flux density (PPFD) and the fractional absorbed photosynthetically 
active radiation (fAPAR):

This equation provides a basis for remote sensing of GPP, using 
spectral reflectance measurements that can be used to estimate 
fAPAR (e.g., Gobron et al., 2003). Numerous algorithms are used to 
estimate LUE and many of these depend on land cover classifica-
tions and on environmental variables including temperature, vapor 
pressure deficit (VPD), and (occasionally) CO2. However, almost all 
satellite-based models for GPP are based, in one way or another, on 
Equation (1). Although the strongly nonlinear relationship between 
instantaneous leaf photosynthesis and absorbed light is well under-
stood (and captured within the FvCB model), a different relationship 
emerges for plant canopies at timescales of a week or longer—those 
periods originally considered by Monteith. Investigating the phys-
iological basis underpinning the LUE model, Medlyn  (1998) found 

(1)GPP = PPFD × fAPAR × LUE.

even the sign of the environmental effects on modeled LUE. These findings highlight 
important model deficiencies and suggest a need to progress beyond simple “good-
ness of fit” comparisons of inferred and predicted carbon fluxes toward an approach 
focused on the functional responses of the underlying dependencies.

K E Y W O R D S
diffuse radiation, eddy covariance, FLUXNET, light use efficiency, soil moisture, temperature, 
terrestrial biosphere model, vapor pressure deficit
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    |  3BLOOMFIELD et al.

support for the proposal that variability in LUE is reduced, and its 
relationship with light becomes more linear, as the time-step consid-
ered increases. We return to this point in the Discussion.

The LUE term in Equation (1) represents the outcome of all pho-
tosynthetic processes including Rubisco kinetics and acclimation 
(Scafaro et al., 2017; Togashi et al., 2018), electron transport, and 
stomatal behavior. Focusing on LUE (rearranging Equation 1) permits 
us to analyze potential drivers of GPP independent of its overrid-
ing control by absorbed light. LUE is found to be relatively conser-
vative during the growing season and when water is non-limiting 
(e.g., Barr et al., 2007), but is not necessarily fixed even for mature 
forests (Urbanski et al., 2007). fAPAR is both a key control of GPP 
and ultimately derived from it through the allocation of carbon to 
leaf construction and the relationship between leaf area index (LAI) 
and light absorbance. Most TBMs simulate LAI, and its seasonal 
variation, as well as LUE—albeit with, so far, limited success (Kelley 
et al., 2013; Park & Jeong, 2021). For canopies, the diffuse fraction 
of the incident radiation is also important and eddy covariance stud-
ies have demonstrated that productivity is greater on overcast than 
on clear days (e.g., Hollinger et al., 1994). The volume of shade within 
a canopy is lower under cloudy compared to full beam conditions 
(Roderick et al., 2001) and so penetration of available light into the 
canopy profile is increased such that a greater proportion reaches 
lower leaves relative to leaves at the canopy surface. The effect on 
canopy productivity entrained by the reduction in radiation load 
on sunlit leaves is minor while the photosynthesis of shade leaves 
has an essentially linear response to radiation since they are seldom 
light-saturated (dePury & Farquhar, 1997). The effect on productiv-
ity of deeper penetration by diffuse radiation is most pronounced in 
dense canopies (Knohl & Baldocchi, 2008) and so we can hypothe-
size an interaction between diffuse fraction and some measure of 
vegetation amount (Wang et al., 2018).

The eddy covariance method provides measurements of net 
carbon fluxes between the canopy and atmosphere (net ecosystem 
exchange, NEE) over a range of timescales from half-hourly to multi-
annual (Baldocchi,  2020). Those measurements, when partitioned 
into GPP and ecosystem respiration (Reco), allow empirical evaluation 
of GPP estimates generated by TBMs. FLUXNET, an international 
network now offering standardized variables at over 200 sites, has 
been operating for more than two decades (Pastorello et al., 2020). 
Key climate variables including radiation components, VPD, and 
air temperature are captured by the micrometeorological instru-
ments that record data alongside the carbon flux measurements. 
Vegetation cover and soil moisture, however, are not routinely cap-
tured in FLUXNET. The scientific value of the network continues to 
grow as the length of individual site records increases. Many flux-
tower sites established in the mid-1990s now provide datasets capa-
ble of capturing decadal trends, which can be analyzed statistically 
(Fernández-Martínez et al., 2017) and compared with model simula-
tions (e.g., Urbanski et al., 2007). Exploiting the global distribution 
and temporal span of FLUXNET data, here we (a) use open-source 
FLUXNET data on GPP and environmental variables, together with 
remotely sensed fAPAR data, to provide a parsimonious empirical 

model for LUE; (b) interpret the resulting model in terms of the func-
tional forms defining the relationships between LUE and climate; 
and (c) compare those functional forms against corresponding rela-
tionships derived from a published set of TBM outputs.

2  |  METHODS

2.1  |  Data

We used the FLUXNET2015 Tier 1 dataset of daily eddy covariance 
data restricted to those values for which less than half of the under-
lying half-hourly data were gap-filled. Following Stocker et al. (2018), 
we excluded those sites classified as croplands, or wetlands and sites 
where C4 vegetation was either mentioned in the site description, 
or expected to dominate. Our final dataset (after further filtering 
described below) retained 117 sites covering nine vegetation types 
(Figure  S1; Table  S1). Vegetation categories follow the IGBP land 
cover classification system: evergreen needleleaf forest (ENF), ev-
ergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), 
mixed forest (MF), closed shrublands (CSH), open shrublands (OSH), 
woody savannahs (WSA), savannahs (SAV), and grasslands (GRA). 
Daily GPP data used were based on the nighttime flux decomposi-
tion method and the filtering based on a variable friction velocity 
threshold (GPP_NT_VUT_REF). PPFD (mol photons m−2  day−1) was 
estimated as a constant fraction of downwelling, shortwave radia-
tion (SW_IN_F, W m−2) using a conversion factor of 2.04 μmol J−1 
(Meek et al., 1984). VPD (VPD_F, Pa) and CO2 (CO2_F_MDS, μmol 
mol−1) data were restricted to daytime conditions by averaging data 
from half-hourly time-steps with positive insolation (SW_IN_F). Air 
temperature data are given directly (TA_F_DAY).

Diffuse radiation data (Sd; converted as above from vari-
able PPFD_DIF, μmol m−2  s−1) were only available for 31 sites and 
were often incomplete. As an alternative variable, we calculated a 
Cloudiness Index based on observed and potential solar radiation 
(e.g., Turner, Ritts, Styles, et al., 2006; Wang et al., 2018):

where St is short-wave radiation at the surface (SW_IN_F) and So is po-
tential radiation at the top of the atmosphere (variable SW_IN_POT). 
In a second approach, we plotted the available diffuse transmittance 
(Td  =  Sd/So) fractions against corresponding values for total trans-
mittance (TT = St/So) to fit a predictive equation as given by Bristow 
et al. (1985):

The empirical fit of Equation (3) yielded a B coefficient of 0.889 
(Figure S2) and was used to gap-fill the Td estimates.

Values of fAPAR at the FLUXNET sites were obtained using 
two remotely sensed products: MODIS FPAR (MCD15A3H, at a 
resolution of 500 m and 4 days) and MODIS EVI (MOD13Q1, at a 

(2)CI = 1 −
(

St ∕So
)

,

(3)Td = TT

[

1 − e{0.6∙((1−B∕TT )∕(B−0.4))}
]

.
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4  |    BLOOMFIELD et al.

resolution of 250 m and 8 days). Data were downloaded for the pixel 
in which each tower is located from the google_earth_engine_subsets 
library (Hufkens, 2017). Data were then filtered to remove contam-
ination associated with clouds, values of unity, and likely outliers 
(more than three times the inter-quartile range). Filtered values 
were then interpolated to daily estimates using a cubic smoothing 
spline. Time-series plots were reviewed for reasonableness; none of 
the interpolated values induced radical fluctuations in the underly-
ing trend (sample FPAR plots are shown at Figure S3). Reasonable 
agreement was found between the two indices (Figure S4). We ad-
opted FPAR for the main analysis in the expectation that it offers a 
more direct link to photosynthetic processes.

Soil moisture data are not routinely or uniformly available within 
FLUXNET (only 14 of the selected sites report soil water at depths 
>50 cm) and so we rely here on model-based estimates (Stocker 
et al.,  2020) provided by a version of the SPLASH model (Davis 
et al., 2017) extended to allow variation in water-holding capacity 
based on soil texture and depth data up to a maximum of 2 m, ex-
tracted for site locations from SoilGrids data (Hengl et al., 2014).

2.2  |  Data processing and exploration

The site-day dataset was filtered to exclude negative GPP es-
timates, near-zero absorbed light, and apparent LUE values 
deemed infeasible (>0.12 mol C mol−1 photons). The time-series 
data were restricted to the growing season, defined by a simple 
threshold approach adapted from Lasslop et al. (2012). Following 
their approach, for a given site-year, daily GPP data were scaled 
such that the 0.05 quantile was zero and the 0.95 quantile was 
equal to one; GPP values were retained if they exceeded 0.2 (i.e., 
20% of the 0.05–0.95 quantile range).

LUE was calculated as the ratio of 15-day accumulated GPP to 
the product of 15-day accumulated photosynthetically active radia-
tion (PAR) and the 15-day average fAPAR. We adopted 15-day non-
overlapping windows (e.g., Reichstein et al., 2005) and excluded stub 
periods with <15 consecutive days. Alternative timescales were ap-
praised (daily and weekly; Figure S5), and the possible implications of 
choice of time-step are considered later. The final dataset (growing 
season, 15-day composites) contained 8049 rows.

2.3  |  Data-model comparisons

GPP simulations were generated using an LUE model based on op-
timality principles (P-model, Wang et al., 2017), extended to include 
temperature sensitivity of the intrinsic quantum yield and an em-
pirical soil moisture stress function (implemented via the R package 
rpmodel, Stocker, 2019; Stocker et al., 2020). Briefly, the P-model 
coordinates capacities for CO2 fixation, water- and electron trans-
port to simulate GPP consistent with the FvCB framework; the 
model can be applied universally to C3 plants without the need for 
biome- or vegetation-specific parameters. Matching site-day GPP 

predictions were generated by forcing the P-model with the com-
bined FLUXNET_SPLASH dataset outlined above. Model simulations 
thus obtained were used to provide a direct comparison with our 
analysis of the FLUXNET data. We also carried out stylized experi-
ments with the P-model, varying one environmental driver at a time 
while holding the others constant (at median value), to test whether 
our statistical analysis of P-model outputs correctly reproduced the 
environmental responses of the model's formulation.

The North American Carbon Program (NACP) has provided stan-
dardized output, including GPP and LAI, from 24 TBMs for 47 eddy 
covariance flux tower sites in North America (Ricciuto et al., 2013; 
Schaefer et al., 2012). Not all TBMs, however, provided GPP esti-
mates for every site or time point. The NACP forcing data derive 
in part from sites that also form part of FLUXNET (Table S1). That 
overlap (12 sites within FLUXNET & NACP) allowed us to use com-
mon site-based flux data to compare the environmental dependen-
cies of LUE estimates predicted by our own empirical model, by the 
P-model, and by 16 TBMs (Table  S2). For the NACP comparisons, 
fAPAR estimates were calculated from the LAI simulations recogniz-
ing that light interception approximates to an exponential function 
of leaf area (Turner, Ritts, Cohen, et al., 2006):

We have assumed an extinction coefficient (k) of 0.5, a com-
monly used value, since even distal leaves on sun-exposed branches 
only experience a fraction of full PAR incident at the horizontal plane 
(e.g., Kitajima et al., 2005).

2.4  |  Statistical analysis

The response variable in the analysis is LUE, defined as GPP normal-
ized by absorbed light. Model selection, aimed at finding that design 
explaining the most variation in LUE with the minimum necessary 
parameters, was guided by Akaike and Bayesian information crite-
ria (AIC and BIC, respectively; the lower the better in both cases), 
which provide objective measures of model performance by quan-
tifying the trade-off between explanatory power and complexity. 
A generalized model design that accommodates a non-normal re-
sponse distribution was strongly preferred (AIC were much lower 
for equivalent models adopting a gamma rather than a Gaussian 
distribution); that preference derives from the right-skewed and 
zero-truncated distribution of the inferred LUE values. Next, we 
considered a variance structure (random intercept term) that best 
reflected the hierarchical and longitudinal nature of the dataset and 
that recognized the lack of independence created by repeat meas-
urements at a given site (AIC for year nested in site < site only < 
year only). The candidate predictors considered are daytime tem-
perature and VPD, soil moisture, elevation above sea level, ambient 
CO2, and diffuse radiation—the last represented by an interaction 
between Cloudiness Index (Equation 2) and fAPAR. Transformations 
of the explanatory variables were considered, consistent with 

(4)fAPAR ≅ 1 − e(−k×LAI).
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    |  5BLOOMFIELD et al.

well-documented, nonlinear response functions such as the clas-
sic humped photosynthetic temperature response (e.g., Berry & 
Björkman, 1980) and the exponential decrease in stomatal conduct-
ance with increasing VPD (e.g., Oren et al., 1999). Backward stepped 
selection (from more to less complex) of multiple predictor variables 
is presented in Table 1. The complexity of the starting model (M01, 
Table 1) generated convergence warnings suggesting potential nu-
merical estimation constraints or overfitting, those difficulties were 
removed as the selection steps led to progressively simpler models.

Conditional plots, showing partial residuals, were employed to 
visualize the relationship between the fitted LUE response and each 
explanatory term while holding all other variables in the final model 
constant (Breheny & Burchett, 2017). For the conditioning, the other 
model variables are set to their median for numeric variables and to 
the most common level for categorical variables (here site and year).

3  |  RESULTS

3.1  |  Model evaluation

The starting, or maximal, model considered (M01, Table  1) was a 
generalized linear mixed-effects model adopting a gamma distribu-
tion for LUE, with a random term recognizing the hierarchical struc-
ture of the data (repeat measurements at individual sites), and a fixed 
term comprising daytime temperature (as a second-degree polyno-
mial function), VPD, soil moisture (both log-transformed), elevation, 
CO2, and a term providing for the interaction between diffuse radia-
tion and fAPAR (CI: fAPAR). The final preferred model (M06, pro-
viding the lowest AIC per Table 1) was reached after successively 
dropping CO2, elevation, and the fAPAR interaction. Elimination of 
soil moisture (M07), however, produced a weaker model (higher AIC 
etc.) as did substitution of diffuse transmittance (Td) for Cloudiness 
Index (M05). Adoption of a basic model formulation (M08), with no 
transformations and with the temperature effect reduced to a single 

(linear) term, produced a much weaker outcome. The preferred 
model (M06, Table 1) is:

Here, LUEijk is the measured LUE for 15-day window i, of year j, 
at site k; ak is a random intercept that allows for variation between 
sites; aj|k is a random intercept that allows for inter-annual variation 
at site k. The term εijk is the residual (unexplained) error and includes 
intra-annual variation not explained by the fixed factors.

Predictions of LUE generated by the empirical model (M06) 
showed good agreement with the values inferred from eddy covari-
ance data (Figure 1a). The scatterplot is evenly displaced around the 
1:1 line, indicating that the model avoids systematic bias. Diagnostic 
plots raised no serious concerns (not shown). A further test predicting 
LUE based only on the fixed term of the statistical model (i.e., ignoring 
random effects, Figure 1b) showed weaker agreement, most notably 
fitted values were constrained to a narrower range than the inferred 
values. A leave-one-out cross-validation of model performance 
(model iterations were trained using a dataset pruned of a single site, 
then tested using forcing data from that site; Figure S6) gauges how 
applicable the empirical model is to new sites not included in its de-
velopment. In running the validation, we applied a generalized linear 
model with no random term since the full design (Equation 5) is un-
able to generate predictions for a site not included in the training set. 
The cross-validation exercise therefore corresponds to Figure 1b that 
evaluates predictions generated by the empirical model's fixed term; 
a comparison of the two sets of predictions revealed very compara-
ble performance (respective R2 metrics of 0.39 and 0.41) and showed 
a similar tendency toward a narrower than observed range of LUE. 
We infer that site-to-site and year-to-year variations in LUE are not 
fully described by the fixed effects alone, but are successfully cap-
tured by the random effects of site and year in the full model.

(5)

log
(

LUEijk
)

=�+�1 Tempijk+�2 Tempijk
2

+�3 log
(

VPDijk

)

+�4 log
(

Soilmijk

)

+�5 log
(

CIijk
)

+ak+aj∣k+εijk.

TA B L E  1  Model selection steps. The response variable is light use efficiency (LUE) and all models shared a common random design as 
per Equation (5). Candidate terms: daytime temperature (Temp), daytime vapour pressure deficit (VPD), soil moisture (Sm), elevation (Elv), 
ambient CO2, cloudiness index (CI), diffuse transmittance (Td) and fAPAR

Model Fixed term Rationale df AIC BIC logLik

M01 poly(Temp, 2) + log(VPD) + log(Sm) + Elv + CO2 + CI:fAPAR Beyond optimal 11 −63,825 −63,749 31,924

M02 poly(Temp, 2) + log(VPD) + log(Sm) + Elv + CI:fAPAR Drop CO2 10 −63,826 −63,756 31,923

M03 poly(Temp, 2) + log(VPD) + log(Sm) + CI:fAPAR Drop elevation 9 −63,824 −63,761 31,921

M04 poly(Temp, 2) + log(VPD) + log(Sm) Drop diffuse fraction 8 −63,758 −63,702 31,887

M05 poly(Temp, 2) + log(VPD) + log(Sm) + Td:fAPAR Replace CI with Tdiffuse 9 −63,781 −63,718 31,899

M06 poly(Temp, 2) + log(VPD) + log(Sm) + CI Drop fAPAR interaction 9 −64,464 −64,401 32,241

M07 poly(Temp, 2) + log(VPD) + CI Drop soil moisture 8 −64,323 −64,267 32,170

M08 Temp + VPD + Sm + CI Remove transformations 8 −64,371 −64,315 32,193

The shading served to highlight the preferred model that is then pursued in the subsequent analysis.
Abbreviations: AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; df, degrees of freedom; logLik, log likelihood.
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6  |    BLOOMFIELD et al.

3.2  |  Fixed effects

The nonlinearity of environmental relationships with LUE is appar-
ent in Figure 2 (top panel) and reinforced by the marked inferiority 
of M08 in Table 1. There is a pronounced ranking of effects, with 
VPD >> diffuse fraction > temperature > soil moisture (see also 
Table S3). The temperature response appears to level off as daytime 

temperatures approach 30°C; the model coefficients (Table  S3) 
imply a notional temperature optimum at 33.6°C, but the rarity in 
this dataset of 15-day averages above 30°C means caution is re-
quired when interpreting responses at elevated temperatures. There 
is a strong inverse relationship between LUE and VPD, but a strong 
positive relationship with diffuse fraction. Modeled soil moisture ef-
fects are evidently important (compare M06 and M07 in Table 1), 

F I G U R E  1  Goodness of fit between modeled and inferred light use efficiency; the model presented is M06 per Table 1. Each point 
represents one 15-day average for a given site; the colored heat mapping provides an estimation of point density. The dashed line (in 
gray) shows the ideal 1: 1 fit. Panel (a) shows the fit for the full model while panel (b) shows the fit when variation in light use efficiency is 
explained using only the model's fixed term (i.e., the additive effects of temperature, vapor pressure deficit, soil moisture, and Cloudiness 
Index).

 (
 

−
 

)
=

=

(a)
=

=

(b)

F I G U R E  2  The dependencies of light use efficiency (LUE) on temperature, vapour pressure deficit, soil moisture, and Cloudiness Index. 
Top: conditional plots with partial residuals from our empirical model (M06, Table 1); estimated responses relate to inferred LUE values 
(FLUXNET). Bottom: conditional plots for the “FULL” implementation of the P model (Stocker et al., 2020) as applied to the main dataset; 
responses shown in red relate to LUE simulations. Overlaid in the bottom panel are LUE predictions (blue lines) generated by the P-model 
for a dummy dataset that replicates the observed ranges of the environmental variables. The P-model does not include an explicit term for 
diffuse radiation and so no dummy predictions are presented in the final panel. Notice that the response axes vary between the two rows. 
Each point represents a 15-day average for a given site.
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    |  7BLOOMFIELD et al.

but the influence of soil moisture on LUE response is confined to a 
much narrower range than that of VPD.

3.3  |  Random effects and residuals

Variation in LUE estimates not explained by the fixed term of the 
statistical model (i.e., the additive effects of temperature, VPD, soil 
moisture, and diffuse fraction) was apportioned to components of 
the random term as follows: inter-annual 0.11; between sites 0.30; 
residual (including intra-annual) variation 0.59. Inter-annual varia-
tion, not captured by the climate inputs, could arise from plot distur-
bances invisible to remote sensing or changes in species composition. 
Figure 3 illustrates the model's residuals and random site intercepts, 
with sites categorized by vegetation type. There is no obvious pat-
tern in the residuals (Figure  3a). The random site effects broadly 
overlap between most vegetation types. There is an indication, how-
ever, that shrublands tend to have lower than average LUE—albeit 
with fewer participating sites relative to forests (Table S1).

3.4  |  Comparison with the P-model

In Figure 2 (bottom panel), LUE predictions generated with the P-
model using the same inputs from the observational dataset have 
been fitted using the empirical M06 (i.e., substituting predicted for 
inferred LUE as the response variable). Figure  2 also shows sepa-
rate P-model experiments, whereby predictions were generated by 
varying one explanatory term at a time (a dummy dataset provided 
a regular sequence for each of temperature, VPD, and soil moisture 
across their observed ranges) while the other drivers were held con-
stant at their observed median values. No such experiment was pos-
sible for the cloudiness term since currently no provision is made 
in the P-model for the effects of diffuse radiation—also explaining 
the lack of response evident in the conditional plot. Comparison of 
the fitted responses (red and blue lines) confirms that this statisti-
cal analysis of P-model outputs has captured the nature of the P-
model's in-built environmental responses.

There are notable differences between the P-model's environ-
mental responses and the effects on LUE seen in the data. In particu-
lar, the asymptotic relationship with temperature over the observed 
range in growth temperature is markedly different from the P-model 
prediction of a temperature optimum at 15.4°C. Also, the observed 
reduction in LUE with increasing VPD is stronger than predicted.

3.5  |  Data-model comparisons

We fitted the preferred empirical model (M06) to the portion of 
our global dataset that overlaps with the North American Carbon 
Program (NACP), thereby allowing use of the common site-based 
flux data to compare the environmental dependencies of LUE as 
simulated by multiple models. The inter-model comparison plots 

(Figure 4; Figure S7) illustrate that the strength, the shape, and even 
the sign of the estimated relationships vary substantially across the 
TBMs. Temperature effects are variously shown as peaked, nearly 
flat, or monotonically increasing. Inverse responses to VPD are 
shown in all cases, but with large differences in magnitude among 
models. Soil moisture effects are shown as increasing, flat, satu-
rating, or declining while diffuse fraction effects range from flat 
to exponential. Direct comparisons with earlier figures (above) are 
not possible because we focus here on a much smaller subset of the 
data provided by the overlap of FLUXNET and NACP (12 sites only, 
as described earlier). In three cases (BEPS, CN-CLASS, LoTEC), the 
common model design (Equation 5) as applied to simulated LUE gen-
erated convergence warnings, so some caution is required in inter-
preting those responses.

4  |  DISCUSSION

Several early empirical analyses of eddy covariance GPP data at a 
global scale have considered annual values and their dependence on 
macroclimatic variables such as mean annual temperature (MAT) and 
mean annual precipitation (MAP), or annual water-balance indices. 
Based on data from 34 sites, Law et al. (2002) found that a combined 
index based on MAT and water balance explained 64% of variation 
in annual GPP. In a study of 513 forest sites, Luyssaert et al. (2007) 
found that power functions of MAT and MAP and their interac-
tion explained 71% of variation in annual GPP. Exploiting the range 
of temporal data generated by the flux towers, later studies have 
considered variations in GPP at shorter time-steps (e.g., Restrepo-
Coupe et al., 2013) and replaced annual means with more nuanced 
measures of environmental drivers (e.g., Fu et al., 2022). Our objec-
tive was to delve into the processes governing GPP, by factoring out 
the (otherwise dominating) influence of absorbed light; and consid-
ering predictor variables with a known, mechanistic connection to 
photosynthesis.

The LUE principle implies that GPP depends on light absorbed 
by green tissues, which is jointly determined by incident light and 
fAPAR. Incident light depends predictably on latitude, season, ele-
vation, and cloud cover whereas fAPAR is strongly limited by water 
availability. This limitation is globally important for GPP (Nemani 
et al., 2003; Stocker et al., 2019; Wang et al., 2014). Ratios of as-
similation to transpiration in C3 plants range from 2 to 11 mmol C 
mol−1 H2O (Lambers et al., 2008), emphasizing the high rate at which 
plants must lose water in order to fix carbon. This unfavorable ex-
change rate means that water availability limits the leaf area that 
can be displayed, and therefore the fAPAR (and GPP) that can be 
achieved, over much of the land surface.

Compared to the major effects of geographic variation in ab-
sorbed light and the limitation of fAPAR by water supply, the ad-
ditional controls of GPP—that is, the controls of LUE as studied 
here—are relatively muted (Wang et al., 2014), but nonetheless sig-
nificant. LUE is expected to be influenced by temperature because 
of the various temperature-dependent quantities that influence 
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8  |    BLOOMFIELD et al.

photosynthetic rates (Bernacchi et al., 2001, 2003), and by VPD be-
cause of the universal response of stomata (Grossiord et al., 2020; 
Lin et al., 2015)—which progressively close to restrict transpiration, 
and therefore also photosynthesis, as VPD rises. Low soil moisture 
can be shown experimentally (Zhou et al., 2013) to increase the sen-
sitivity of plants' stomata to VPD and, below a soil-moisture thresh-
old, also to reduce photosynthetic capacity. The diffuse radiation 
fraction influences the ability of incident light to penetrate the can-
opy and affects its distribution between sun and shade leaves.

The temperature response of leaf-level photosynthesis is classi-
cally described by a parabola with photosynthesis inhibited (for dif-
ferent reasons) at low and high temperatures, reaching an optimum 

somewhere in between (Berry & Björkman,  1980). This, however, 
describes the instantaneous response and does not allow for accli-
mation of photosynthetic traits. There is debate on whether the fa-
cility for temperature acclimation differs between species (Yamori 
et al., 2014). However, most plants can adjust their photosynthetic 
characteristics to suit their growth temperature. Kumarathunge 
et al. (2019) showed that although the short-term response of pho-
tosynthesis to temperature follows an optimum curve, with a steep 
decline at super-optimal temperatures, an acclimation response 
systematically shifts the location of the optimum so that growth 
under higher temperatures results in a higher optimum, and there-
fore greater photosynthesis, than would have occurred otherwise. 

F I G U R E  3  Diagnostic plots for the preferred empirical model (M06, Table 1) organized by vegetation class: (a) model residuals (15-day  
averages); (b) random site intercepts corresponding to the main analysis and calculating fAPAR using the MODIS_FPAR index; (c) a 
comparative plot for a model run where light use efficiency (LUE) was calculated using the MODIS_EVI vegetation index. The box and 
whiskers in each case show the median result as a thick horizontal band. The ends of the box denote the interquartile range; the whiskers 
extend 1.5 times the interquartile range or to the most extreme value, whichever is smaller, and any points outside these values are shown 
as outliers. For all plots, the y-axis scale represents log(LUE). For example in panel (b), the dashed horizontal line represents the population 
intercept of 0.010 mol C mol−1 photons (being exp(−4.61) per Table S3); a random intercept term here of +0.13 (as per the median for ENF 
sites) corresponds (all model explanatory terms at zero) to an LUE of 0.011 mol C mol−1 photons (being exp(−4.61+0.13)).

(a)

(b) (c)
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10  |    BLOOMFIELD et al.

Geographic patterns of net primary production (GPP minus auto-
trophic respiration) also show a muted response to temperature 
(Michaletz et al., 2014). GPP temperature optima at canopy scale, 
inferred from eddy covariance data, peak at higher temperatures in 
warmer climates (Huang et al., 2017). These findings from large-scale 
analyses are consistent with the expectation that acclimation might 
result in a less pronounced response of GPP to seasonal and spa-
tial patterns of typical growth temperature than would be predicted 
based on the short-term, experimentally manipulated response of 
photosynthesis. Consistent with this, our analysis suggests tempera-
ture optima increasing progressively with the time-step considered: 
14.8°C daily, 20.6°C weekly, and 33.6°C 15-day (Figure S5). The ap-
parent asymptotic relationship of LUE with temperature (Figure 2) 
is at odds with a recent study by Duffy et al. (2021) who reported a 
global thermal maximum for C3 photosynthesis of 18°C. Compared 
with our simple empirical modeling approach, the study by Duffy 
et al., although based on the FLUXNET2015 dataset, adopts a very 
different methodology with temperature responses defined by 
equations describing enzyme thermodynamics that rely on multiple 
coefficients likely to show temporal, spatial, and genetic variation.

As for the P-model simulations, the approximately parabolic re-
sponse of LUE to temperature (Figure 2) reflects the dependencies 
of two reactions that hinge on the dual affinity of the Rubisco en-
zyme and its relative specificity for the two substrates: CO2 (giving 
assimilation) and O2 (whereby carbon is lost by the plant through 
photorespiration). The kinetics of carboxylase–oxygenase are such 
that the quantum yield efficiency of photosynthesis declines with 
temperature while the CO2 compensation point increases. The latter 
(termed Γ* and a key parameter in the FvCB model) is the partial 
pressure of CO2 in the chloroplast at which photorespiratory CO2 
loss equals the rate of carboxylation. This temperature dependence 
of Γ* is very well established (e.g., Bernacchi et al., 2001) and so it 
remains to be seen whether the inclusion of acclimation functions 
such as proposed by Kumarathunge et al. (2019) will alter the shape 
of the predicted LUE response curve or only shift the optimum along 
the temperature axis.

VPD influences CO2 uptake and water loss through progressive sto-
matal closure. Stomata respond within minutes to changes in VPD. This 
response is well described at the leaf level by models in which stomatal 
conductance declines with increasing VPD (Medlyn et al., 2011; Oren 
et al., 1999; Prentice et al., 2014). In addition, plants growing in warmer 
environments tend to maintain more open stomata and higher ratios 
of leaf-internal to ambient CO2—as has been demonstrated using leaf-
level experiments on plants in different regions (Lin et al., 2015), global 
leaf stable carbon isotope data (Wang et al., 2017), and experimental 
manipulation of plant growth temperature (Marchin et al., 2016). The 
effect of VPD is also observed at canopy scale, as an important lim-
itation on GPP (Lasslop et al., 2010; Zhang et al., 2019). We therefore 
expected, and found, a strong inverse relationship of LUE to VPD.

Soil moisture and VPD effects can be challenging to sepa-
rate because low soil moisture is often accompanied by high VPD 
(e.g., Novick et al., 2016). Nonetheless, our data allowed sufficient 
independent variation in these two quantities to enable robust 

estimation of the responses of LUE to both variables. At the can-
opy scale, effects of low soil moisture on LUE, in addition to the 
effects of high VPD, can be observed in eddy covariance data from 
drier biomes (Stocker et al., 2018). Our results are consistent with 
the analysis of Stocker et al. (2018) showing a modest soil moisture 
effect that is steeper at low soil moisture values. A recent study by 
Fu et al. (2022), exploiting the European drought of 2018, found that 
when soils are wet, moderate drying could have a positive effect 
on GPP; and that the relative importance, for GPP, of VPD and soil 
moisture depends on the prevailing soil water conditions, with soil 
moisture dominating in the driest soils. Such findings appear to con-
flict with the indication by Liu et al. (2020) that soil moisture (rather 
than VPD) is the dominant control of GPP. This discrepancy remains 
to be resolved, but arguably the interaction between VPD and soil 
moisture is of more significance that their relative importance as in-
dividual terms.

The empirical positive relationship between LUE and diffuse 
fraction conformed with expectations. The inter-model comparisons 
(Figure  4), however, generated a range of predicted effects from 
flat to exponential. In general, models simulating radiative transfer 
through the canopy, or that differentiate sun and shade leaves, have 
a mechanism to account for the diffuse effect; this is in contrast to 
“big-leaf models” such as the P-model.

Countering our expectation that the diffuse radiation effect 
would increase for denser canopies, we found no statistical evidence 
of an interaction with fAPAR. A general feature of ratio-based indi-
ces, such as FPAR, is their asymptotic behavior, potentially leading 
to insensitivity to vegetation variations. In the case of dense cano-
pies, the spectral reflectance algorithms saturate and are therefore 
weakly sensitive to changes in canopy properties. Finally, the dif-
fuse fraction effect appears to show different patterns depending 
on time-step—becoming shallower as we move from daily to weekly 
to 15-day averages (Figure S5). That may chiefly be a product of the 
averaging step—with virtually no 15-day CI averages >0.75.

We found no role in our preferred model for variations in ambi-
ent CO2 suggesting that the changes captured here were too small 
to affect canopy productivity.

We note below several potential sources of uncertainty in our 
analysis, which fall into two broad categories. On the one hand, the 
data we use might not provide us with what we imagine. On the other 
hand, we could be missing significant causal effects or interactions.

4.1  |  Data imprecisions

Inherent uncertainties in eddy covariance data have been compre-
hensively reviewed elsewhere (e.g., Baldocchi,  2003). The meth-
odology has matured, however, and the FLUXNET data protocols 
(e.g., quality control and gap-filling) inspire confidence (Pastorello 
et al.,  2020). The best method for partitioning NEE continues to 
prompt debate, and concerns of possible systematic bias. For ex-
ample, under the standard method (Reichstein et al.,  2005), noc-
turnal Reco is extrapolated to daytime conditions using temperature 
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    |  11BLOOMFIELD et al.

sensitivity estimates (so-called nighttime partitioning). In a 3-year 
study at Harvard Forest, Wehr et al. (2016) exploited the different 
carbon isotope signatures of photosynthesis and respiration to pro-
duce isotopic flux estimates. Their analysis indicated that Reco was 
lower in the day than night—an effect ascribed to light inhibition of 
respiration (e.g., Sharp et al., 1984). The authors argued that, for the 
temperate forest they studied, nighttime partitioning methods over-
estimate Reco, and hence GPP, in the first half of the growing season. 
A global study by Keenan et al. (2019) reported evidence for light in-
hibition of respiration in a range of ecosystems, suggesting probable 
and pervasive overestimation of eddy covariance-inferred estimates 
of GPP where night-time partitioning is employed.

Remote imaging products, such as spectral vegetation indices 
(SVIs), have proved diagnostic of vegetation geography and phenol-
ogy, allowing quantitative assessments of global vegetation state and 
change with the benefits of global coverage and frequent repetition. 
Difficulties remain, however. Time lags may occur between remotely 
sensed changes in greenness and photosynthetic activity. For tem-
perate deciduous species, this decoupling might arise early or late in 
the growing season. An observed lag in GPP behind LAI during leaf 
emergence can be attributed to sustained investment in photosyn-
thetic capacity beyond foliation (e.g., Barr et al., 2007). Conversely 
for evergreen needleleaf forests, photosynthetic recovery in spring 
may precede any detectable change in greenness, perhaps by as 
much as one month (Walther et al., 2016). Our threshold approach 
to data exclusion (Methods) should help to filter out false starts, and 
offsets between inferred and modeled LUE did not show any pro-
nounced seasonal patterns (Figure  S8). Apart from the challenges 
posed by dense canopies (above), surface reflectance algorithms 
might work better for some types of vegetation than others; par-
ticular challenges have been reported for boreal evergreen forests, 
where changes in greenness can be confounded or contaminated 
by snow cover (Walther et al., 2016). At sites with sparse vegeta-
tion, such as semi-arid shrublands, SVIs may be affected by seasonal 
changes in solar elevation angle independent of the quantity of 
green vegetation (Sims et al., 2006). Substituting EVI for FPAR in our 
calculation of LUE had no effect on the structure of the preferred 
statistical model (Table S4). That substitution did, however, gener-
ate subtle differences in the pattern of site-based random intercepts 
(Figure 3c) and that may be attributable to the lesser tendency per-
ceived at forested sites for EVI values to saturate (see Figure S4). 
Lower apparent LUE for shrublands was a consistent finding.

Ideally, such an analysis would consider the temperature of the 
canopy, rather than the air. Disparities between canopy and air 
temperature are likely to be most pronounced under conditions 
of high temperature and water limitation when transpiration rates 
are reduced and leaf temperatures consequently elevated. Land 
surface temperature (LST) could provide a useful remotely sensed 
proxy for canopy conditions, provided LAI is sufficiently large. Sims 
et al. (2008) evaluated a GPP model driven only by EVI and LST at 11 
flux sites in North America and found strong correlations between 
eddy covariance and modeled 16-day estimates of GPP for selected 
forest sites, but not for a drought-prone, shrubland site. Global 

application of LST as an indicator of canopy temperature will require 
methods to correct for the influence of bare ground in sparse vege-
tation types, and to estimate diurnal cycles of LST.

Soil moisture data present many difficulties (e.g., Vereecken 
et al.,  2016). Here, for want of consistent, standardized ground 
measurements of soil moisture, we rely on simulations (e.g., Granier 
et al., 2007). We found only a modest correlation (r = 0.417) between 
simulated and observed soil moisture (not shown). However, only 14 
sites in our dataset include measurements at a depth of 50 cm or 
greater. Remotely sensed measures of soil moisture, likewise, do not 
give information about the moisture content of deeper soil layers 
that can be essential for plant function (e.g., Matheny et al., 2017). 
Our simulation approach has the merit of being applied consistently 
across sites and considering the whole soil profile. Nonetheless, the 
algorithm is stylized. For example, it does not explicitly account for 
how vegetation properties, such as wilting point or rooting depth, 
influence evapotranspiration (Davis et al.,  2017; Smith-Martin 
et al., 2020). This must be noted as a caveat.

4.2  |  Missing processes

Our assumption of a linear dependence of canopy productivity on 
light is a simplification, adopted because it allowed us to factor out 
the otherwise dominant role of absorbed light in determining pho-
tosynthesis. A further iteration of our empirical model that included 
PPFD as an additional explanatory term did improve performance 
(lower AIC, BIC). The modeled effect was weakly negative such that 
LUE declined at higher irradiance (Figure  S9), independent of the 
diffuse fraction. Assessments of the linear LUE assumption in the 
literature are somewhat contradictory. Mäkelä et al.  (2008) devel-
oped an empirical model to predict variation in GPP at five European 
eddy covariance sites and found, as here, that temperature and VPD 
were important explanatory factors, but with no consistent role for 
SWC. For four of the five sites, an empirical nonlinear light param-
eter proved statistically significant and appeared positively related 
to latitude. For a tropical forest site, Ibrom et al. (2008) found that 
LUE systematically declined as a function of absorbed light although 
the variation in LUE was higher at daily than monthly timescales. 
Koyama and Kikuzawa (2010) found that for upper leaves of three 
temperate species, daily photosynthesis did not show light satura-
tion, even under full light conditions. In our extended analysis, the 
PPFD term was much the weakest of the explanatory variables in the 
revised model (from the model summary, F-value for soil moisture 
165.8 vs. 50.7 for PPFD).

Many current TBMs, including half of the NACP ensemble (see 
table 2 in Schaefer et al., 2012), include explicit consideration of ni-
trogen (N) cycling and allow for an influence of N availability on leaf-
level photosynthesis. Photosynthesis correlates with leaf N due to 
the substantial investment of N in proteins and pigments that are di-
rectly involved (Evans, 1989). Earlier papers have provided evidence 
for “plant-centered” control of leaf N and photosynthetic capacity 
(Dong et al.,  2017; Smith et al.,  2019). That is, it has been shown 
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to first-order, leaf-level photosynthetic capacity (and, therefore, the 
photosynthetic component of leaf N) of unfertilized vegetation is op-
timized to the physical growth conditions (light, CO2, temperature) 
of the plant. This implies that the prime effect of restricted N supply 
is to reduce carbon allocation to leaves, as is commonly observed 
in N fertilization experiments. However, this approach is certainly a 
simplification and overlooks, for example, the influence of low soil 
phosphorus availability (Bloomfield et al., 2014; Peng et al., 2021) 
and soil pH (Paillassa et al., 2020) on photosynthetic capacity. Thus, 
differences in soil nutrient availability may have contributed to site-
specific variations in LUE that are captured by the random, rather 
than the fixed, term of our statistical model.

Most TBMs require parameter values to be estimated for each 
of a series of plant functional types (PFTs). Distinctions among PFTs 
can include genuine physiological or anatomical differences (e.g., C3 
vs. C4 photosynthesis; angiosperms vs. gymnosperms), but often also 
include distinctions between plants from different climates. Many 
gas-exchange studies have indeed found different behavior be-
tween PFTs or geographical subsets (Lin et al., 2015; e.g., Reichstein 
et al., 2007; Stocker et al., 2018; Turner et al., 2003). However, dif-
ferences in fitted parameter values for plants growing in different 
climatic zones could simply reflect differences in growth environ-
ments. For example, estimated values of the average biome marginal 
water cost of carbon gain—ranging from 250 (mol mol−1) for cool 
conifer forests to 1500 for tropical seasonal forests, as reported by 
Lloyd and Farquhar (1994)—are consistent with the large differences 
in VPD between these environments. Differences in the stomatal 
sensitivity parameter g1, found by Lin et al. (2015) to correlate with 
the temperature in species' native ranges, can be explained by the 
effects of increasing temperature on photorespiration (increasing 
the cost of photosynthesis) and the viscosity of water (reducing 
the cost of water transport; Prentice et al., 2014). Our data analysis 
results are equivocal on the existence, or otherwise, of systematic 
differences in LUE among C3 PFTs. Site random effects grouped by 
vegetation type show no evidence for a systematic difference be-
tween, for example, ENF (gymnosperm-dominated) and other for-
est types. Shrublands show a tendency to lower LUE. We cannot 
exclude the possibility that this tendency is a consequence of lower 
reliability of surface reflectance products applied to sites presenting 
sparse vegetation with a significant proportion of bare ground (e.g., 
Sims et al., 2006; Turner, Ritts, Cohen, et al., 2006).

4.3  |  Lessons from the multi-model comparison

The design and relatedness of the models participating in the NACP 
have been discussed elsewhere (Huntzinger et al.,  2013). Several 
TBMs participating in the project were here excluded as designed 
for agricultural settings, or unable to generate simulations for the 
sites intersecting with our dataset. In an evaluation of the GPP 
simulations using averaged, daily data from 39 flux sites, Schaefer 
et al.  (2012) found that none of the 26 models matched measured 
GPP within the range of uncertainty of the observed fluxes. While 

the GPP models vary greatly in their complexity and representa-
tion of biological processes, the authors found that performance 
was independent of model structure or key characteristics. The 
models failed to show good, consistent agreement at any single 
site although performance was generally better for forests than 
grasslands or savannas—perhaps linked to overestimation of GPP 
under water-limited conditions. In a supplementary exercise, we 
applied the Nash–Sutcliffe measure of model efficiency (Legates 
& McCabe,  1999): defined as the ratio of mean square error (the 
squared differences between observed and simulated values) to 
the variance in the observed data, subtracted from unity. The ratio 
ranges from minus infinity to 1.0 with higher values indicating better 
agreement. We found that none of the TBMs included here achieved 
a ratio greater than 0.4 (Table S5); that is, even for the best model, 
the MSE was 0.6 of the variance in the observed GPP values.

Our analysis goes further in revealing the dependencies between 
GPP and climate shown by the participating models. We expect to 
see a hump-shaped response to temperature. Schaefer et al. (2012) 
reported an optimum of 20 (±5) °C (see their figure 8). But after 
controlling for covarying effects of VPD, soil moisture, and diffuse 
fraction, we find that simulations for some models (e.g., SSiB2, Can-
IBIS: Figure 4) show GPP increasing exponentially with temperature. 
That might be the result of a predominant role for water availability 
in those models or indicate the need for a better inhibition response 
in the upper temperatureranges. Photosynthetic thermal acclima-
tion is common and observable over a period of weeks during the 
growing season (e.g., Berry & Björkman, 1980; Togashi et al., 2018), 
but such adjustments are ignored by many extant TBMs (LPJ and its 
successors constitute a known exception). It may also be important 
to consider respiratory acclimation in this context, since mitochon-
drial respiration can affect measurements of net photosynthetic rate 
even when photosynthesis is unaltered (Way & Yamori, 2014). Our 
analysis shows a consensus on the general nature of the response 
of GPP to changes in VPD, but the strength of the modeled inverse 
response varies greatly, and is almost negligible in some models. 
Consistent with our empirical analysis, soil moisture dependencies 
appear muted for most models. However, several depart from the 
anticipated positive trend over the transition between soil moisture 
limited and well-watered conditions.

Although the NACP dataset was released 10 years ago, the dis-
parity among TBMs revealed here, and the qualitative differences 
between observed and modeled dependencies on climate for many 
models and climate variables raise concern about model evaluation 
practices. The lack of realism in many models' inferred responses of 
GPP to individual climate variables would not have been detected 
by a typical benchmarking analysis based on goodness-of-fit met-
rics with flux measurements—in the original model-data comparison, 
Schaefer et al.  (2012) reported that the GPP simulations showed 
correlation coefficients between 0.6 and 0.9. Moreover, these re-
sponses presumably originate from incorrect process formulations 
that, at the time of model release, had not been adequately tested 
against relevant observations. The P-model, which is substantially 
simpler and more transparent than most TBMs, shows qualitative 
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agreement with our analysis of the GPP observations—certainly as 
they relate to VPD and soil moisture. Yet here too, we have demon-
strated problems (temperature responses) or omissions (diffuse 
fraction) that were not noticed in the conventional data-model com-
parison presented by Stocker et al. (2020), and that demand further 
investigation.

We conclude that developers should pay greater attention to the 
evaluation of specific process representations in models, to avoid 
incorrect environmental responses. We suggest that the typical 
“benchmarking” approach to model evaluation, although providing 
a necessary minimal test of model competence, is insufficient to en-
sure that models are not achieving the right results for the wrong 
reasons (e.g., by compensating erroneous process representations 
by varying parameter values unrealistically across PFTs). Assessing 
functional relationships, for example as incorporated in The 
International Land Model Benchmarking system (Collier et al., 2018), 
is a much-needed addition to model development and evaluation. 
Finally, we note that the accumulation of publicly available flux data, 
along with remotely sensed vegetation measurements, has consid-
erable potential to provide novel insights into the function of terres-
trial ecosystems.
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