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Abstract

Accurate capture finger of movements for biomechanical assessments has typically been

achieved within laboratory environments through the use of physical markers attached to a

participant’s hands. However, such requirements can narrow the broader adoption of move-

ment tracking for kinematic assessment outside these laboratory settings, such as in the

home. Thus, there is the need for markerless hand motion capture techniques that are easy

to use and accurate enough to evaluate the complex movements of the human hand. Sev-

eral recent studies have validated lower-limb kinematics obtained with a marker-free tech-

nique, OpenPose. This investigation examines the accuracy of OpenPose, when applied to

images from single RGB cameras, against a ‘gold standard’ marker-based optical motion

capture system that is commonly used for hand kinematics estimation. Participants com-

pleted four single-handed activities with right and left hands, including hand abduction and

adduction, radial walking, metacarpophalangeal (MCP) joint flexion, and thumb opposition.

The accuracy of finger kinematics was assessed using the root mean square error. Mean

total active flexion was compared using the Bland–Altman approach, and the coefficient of

determination of linear regression. Results showed good agreement for abduction and

adduction and thumb opposition activities. Lower agreement between the two methods was

observed for radial walking (mean difference between the methods of 5.03˚) and MCP flex-

ion (mean difference of 6.82˚) activities, due to occlusion. This investigation demonstrated

that OpenPose, applied to videos captured with monocular cameras, can be used for mar-

kerless motion capture for finger tracking with an error below 11˚ and on the order of that

which is accepted clinically.

Introduction

Optical motion tracking technologies can be classified based upon their working principle,

dividing them into marker-based and markerless [1]. Marker-based motion capture relies on
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either active infrared (IR) or passive retroreflective markers whose motion is tracked by two or

more cameras. Passive optical marker-based settings are considered the ‘gold standard’ to

measure kinematics in the field of hand biomechanics [2]. However, conventional marker-

based motion capture systems are expensive, confined to the laboratory, not easily accessible

to the broad population, and time consuming to set up, thus are difficult to adopt in clinical

settings [3, 4].

Advances in machine learning have allowed computer vision researchers to gather fully

labelled images and train neural networks to automatically detect the positions of users’ ana-

tomical landmarks from video. Recently, several computational tools have emerged as poten-

tial platforms for 2D markerless tracking and pose estimation, such as OpenPose [5] or

DeepLabCut [6]. However, while the hand biomechanics community demands accuracies on

the order of 1˚, and established instrument error of clinical universal goniometers is 6.6˚ [7],

the validity of markerless tracking is usually outside the range of utility of clinical biomechan-

ics research. Indeed Seethapathi et al. suggested that the implementation of deep-learning-

based pose tracking has, to date, not yet prioritized features that matter for movement biome-

chanics, and the question on whether these models could be extended to clinical biomechanics

remains open [8].

Nakano et al. [9] quantified the accuracy of shoulder, elbow, wrist, hip, knee, and ankle

joints from video data captured using multiple RGB cameras against a marker-based optical

motion capture system. They used a direct linear transformation [10] to estimate 3D coordi-

nates of shoulder, elbow, wrist, hip, knee, and ankle joints, from the 2D anatomical landmarks

(keypoints) obtained using OpenPose, showing an inaccuracy of 3 cm. Joint kinematics post-

hoc were calculated from the OpenPose outputs. An improved approach was presented by

D’Antonio et al. [11], who implemented a pipeline that used two RGB cameras and a linear tri-

angulation algorithm to convert 2D coordinates obtained with OpenPose into a 3D coordinate

system. Results showed that their system could track lower limb segment angles relative to the

global frame with errors of up to 9.9˚. However, the choice to use two cameras may prevent

the utilization of videos recorded in the home or other common settings.

Most recently, OpenPose has been assessed for markerless motion capture of gait using a

single camera. Sakurai et al. [12] compared 3D gait kinematics acquired with a markered

optoelectronic motion capture system against 2D keypoints extracted from a single video cam-

era. Their study presented an error of approximately 5˚ between the systems. Similarly, Ste-

num et al. [13] compared 2D sagittal gait kinematics estimated using OpenPose against 3D

motion capture, showing errors in flexion-extension of 4.0˚ for the hip, 5.6˚ for the knee, and

7.4˚ for the ankle. Finally, Drazan et al. [14] assessed the performance of OpenPose against a

marker-based motion capture system in estimating lower limb angles in the 2D sagittal plane

during vertical jump. They obtained errors lower than 3.22˚ in flexion-extension across the

hip, knee, and ankle when the two methods were compared. However, these methods were

evaluated for the lower limb and not for the hands.

To address the specific needs of hand tracking, Guo et al. [15] and Cornman et al. [16]

implemented a finger tapping test to assess the tapping frequency rate of individuals with Par-

kinson’s Disease. While their tool can be valuable to help remotely identify tapping rate to

evaluate the integrity of the human neuromuscular system in individuals with Parkinson’s Dis-

ease, the specific joint kinematics were not evaluated in their study. Similarly, hand tracking

for sign language identification has been proposed in Caselli et al. [17]and Shin et al. [18]. Par-

ticularly, Caselli et al. used OpenPose to identify and translate hand signs for different poses.

However, it remains unclear whether the validation of OpenPose can be extended to address

the precise demands of joint kinematics, including the metacarpophalangeal and the proximal

interphalangeal joints.
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The objective assessment of finger kinematics is fundamental to enhance the knowledge of

hand functionality in both healthy and impaired populations. Therefore, this work aimed to

compare 3D kinematics obtained with a gold standard marker-based optical motion capture

system against 2D coronal hand kinematics obtained from a monocular RGB camera using

OpenPose. The 3D motion representations were automatically projected on the 2D image

frames captured using a synchronized video camera to compare 3D kinematics in 2D.

Materials and methods

Experimental setup

Twelve healthy volunteers (eight female, four male) participated in the experiment. Partici-

pants were asked to attend a single session in the laboratory. All participants involved in this

investigation were healthy, with no hand impairment. The protocol was approved by the

Imperial College Research Ethics Committee (18IC4673). Upon arrival, participants were

briefed on the project, guided through a review of the participant information sheet and

informed of the set of sequences they would perform. Written informed consent was obtained

from each participant.

Participants were visually supported by a PowerPoint (Microsoft, Redmond, USA) presen-

tation that guided them through the hand exercises to be performed with both the right and

left hands. These were performed while seated on a standard height chair with both feet flat on

the floor. Participants were asked to perform interventions relevant to improving ROM,

selected from amongst hand exercises previously adopted in biomechanics studies. The activi-

ties performed in this investigation were selected to include different numbers of degrees of

freedom. The first activity performed was finger abduction and adduction of the 2nd to 5th

digits Fig 1. Participants were asked to spread the fingers away from the long 3rd finger

(abduction), and then to bring the fingers back, near the 3rd finger (adduction). This was

Fig 1. Different hand exercises. Illustrating: A) abduction and adduction, B) metacarpophalangeal flexion, and C) thumb opposition.

https://doi.org/10.1371/journal.pone.0276799.g001
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repeated four times for each hand. The second activity was the radial walking exercise, which

consisted of placing the hand on a table and sliding the fingers one at a time towards the 1st

digit, which was repeated twice for each finger. The third activity was metacarpophalangeal

joint flexion Fig 1, where participants were asked to bend the metacarpophalangeal joints of

the 2nd to 5th digits twice. The fourth task was thumb opposition Fig 1, where participants

were asked to place the pad of the thumb opposite to the 2nd to 5th digits twice bending the

proximal interphalangeal (PIP) joint as much as possible. This activity was repeated twice for

each hand.

Marker-based processing

A total of twenty-six passive retro-reflective hemispherical four-millimetre diameter markers

were placed at specific positions on the dorsal surface of the right wrist, hand, fingers and

thumb in accordance with the Hand & Wrist Kinematics (HAWK) [19] protocol. These semi-

spherical markers were placed using double-sided adhesive tape, including the first, second,

third, fourth and fifth proximal, intermediate, and distal phalanges. Markers were placed

directly over the joint centres and on the fingertips on the distal border of the nail.

The 3D joint coordinates of the markers were captured using an eight-camera Qualisys

motion capture system (Oqus 500 + cameras, <0.4 mm error, Qualisys AB, Gothenburg, Swe-

den) and the Qualisys track manager (QTM) software. RGB video data were recorded using an

Oqus RGB camera (Qualisys AB, Gothenburg, Sweden). The 3D joint locations were directly

projected onto the 2D image frames captured from a purely frontal view to compare the 3D

kinematics obtained with the gold standard marker-based system against the 2D kinematics

obtained using OpenPose. Both the optical motion capture data and the video data were cap-

tured at a 30 Hz frame rate. The QTM system was set to capture continuous recordings for 300

seconds for each hand, one hand at a time. A sample frame from the videos acquired for each

of the participants is illustrated in Fig 2.

Several steps were carried out before extracting the joint angle computation, including

labelling, mapping 2D to 3D, filtering, and segmenting the marker-based data.

Automatic Identification of Markers (AIM) is a function in QTM that automatically identi-

fies and labels the trajectories tracked during a recording. Once a model is created, the connec-

tions between the markers are defined by the original model, with any new trials added to the

model providing additional examples of distances and angles between markers. Adding new

trials to an AIM model will help the software apply it more easily to future participants. Given

Fig 2. Video recordings captured from frontal view. Twelve healthy participants at the Upper Limb Motion Analysis Laboratory at Imperial College

London.

https://doi.org/10.1371/journal.pone.0276799.g002
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this feature offered by QTM, a model was created in accordance with the HAWK marker

placement.

Following the labelling and the mapping, the smoothing tool in the trajectory editor of the

QTM software was used to reduce spikes and noise in the data output from the motion capture

system. A 2nd order Butterworth filter with 5 Hz cut off frequency was selected due to the

large number of frames and presence of high-frequency noise. This served as a low-pass filter

to attenuate information above the 5 Hz cut-off. Finally, the filtered data were manually seg-

mented to isolate the different exercises for both the right and the left hands.

Markerless data processing

OpenPose (version 1.7.0) was run with an NVIDIA Tesla K80 GPU under default settings to

extract the keypoints. OpenPose, is a library written in C++ using OpenCV and Caffe that

detects 21 keypoints on each of the hands. To capture the hand ROM, the video data were first

manually segmented and then OpenPose was executed on each frame of the video Fig 3. Data

output from OpenPose were visually observed. Instances where the fingers were incorrectly

labelled due to the system swapping one finger with another, were manually labelled, assigning

the correct value to the respective finger. Other inconsistencies, for instance, those where the

fingers were incorrectly labelled and the tracking was missing due to intrinsic problems with

OpenPose, were not manually corrected to minimise the required postprocessing and keep the

benchmarked scene as close as possible to uncontrolled capturing settings.

Once the finger keypoints were extracted using OpenPose, four different filtering tech-

niques, previously implemented in similar studies using OpenPose on the lower-limb were

tested to prevent the misidentification of keypoints from compromising the ROM detection.

The end goal in the evaluation of these filters was i) to select a solution for outliers’ detection,

ii) to smooth the raw signal and decrease the noise generated by the architecture.

The filters evaluated were the simple moving average (SMA), Butterworth, and Hampel. To

assess the effectiveness of the different approaches, each filter was applied to the thumb opposi-

tion sequence of 497 frames (a 16.5-second video with a sampling rate of 30 frames/second).

The Hampel filter was the accepted approach for outlier removal. It had two parameters to be

Fig 3. Keypoint visualization. Output from OpenPose that illustrates the inferred keypoints overlapped onto the image frames for four representative

participants.

https://doi.org/10.1371/journal.pone.0276799.g003
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tuned, and different configurations were tested (window sized 4, 6, 10, 20 and 60), choosing

the multiplying coefficient of the standard deviation (SD) to be kept at one and the window

size to be set to four. This setting was found to be able to identify the highest number of visu-

ally recognisable outliers when using OpenPose. No threshold was set for what was defined as

an “outlier”, opting for a visual inspection of the highest number of outliers identified, as

observed in similar lower limb investigations [13].

Following the selection of the multiplying coefficient of the standard deviation and the win-

dow size of the Hampel filter for outlier removal, a generally accepted approach was to smooth

the raw signal. Two different filtering techniques were tested, the SMA and the Butterworth. A

Butterworth filter with a cut-off frequency of 3 Hz was applied to remove the noise and smooth

the signals in output. The cut-off frequency was determined using the residual analysis pro-

posed by Winter et al. [20]. Results of the Butterworth filter for different cut-off frequencies (1

Hz, 2 Hz, and 3 Hz) are illustrated in Fig 4.

Hand kinematics

Once the centres of the joints were located using both the marker-based and the markerless

motion capture technologies, the hand kinematics were measured. Distal interphalangeal

joints were considered to have one degree of freedom (DoF), proximal interphalangeal joints

and the thumb interphalangeal joints were considered to have one DoF, and metacarpophalan-

geal joints had two DoF. Thirty-six time-varying angular positions were measured for each

participant, with 432 time series extracted for each methodology (marker-based and

markerless).

The middle finger was used as a reference for the abduction and adduction task. The eight

time-varying angles included the intersection between the thumb and the middle finger (Fig

Fig 4. Butterworth filter in output from OpenPose. Butterworth filter with 1 Hz, 2 Hz and 3 Hz cut off frequencies (c/o freq.) applied to the

OpenPose signal of the thumb interphalangeal joint angle for one representative participant.

https://doi.org/10.1371/journal.pone.0276799.g004
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5), the index and the middle finger, the ring and the middle finger, and little finger and the

middle finger, for the left and the right hands. Therefore, eight angles were measured for each

participant during the abduction and adduction exercise.

During the radial walking task, the reference digit was the one which slid radially prior to

the digit performing the sliding. The eight angles measured included the intersects between

the thumb and the index, the index and the middle (Fig 5), the middle and the ring, and the

ring and the little finger, both the right and the left hands.

For the metacarpophalangeal flexion activity, the measured angles were the metacarpopha-

langeal angles of thumb, index, middle, ring, and little fingers for a total of eight angle time

series for the right and the left hands (Fig 6). Finally, during the thumb opposition, ten angles

were measured. Those angles included the metacarpophalangeal joint angles of the thumb, the

interphalangeal joints of the thumbs, and the proximal interphalangeal joints angles of the

index, the middle, the ring, and the little finger (Fig 6).

To describe the angles of the metacarpophalangeal joint, proximal interphalangeal joint,

and distal interphalangeal joint, joints, the included angles between the segments were deter-

mined. Using the segments illustrated in Fig 7, the angles were calculated as:

a ¼ arccos
~A �~B
j~Aj � j~Bj

Fig 5. Abduction and adduction angles. Measured position for the finger intersect joint of the index finger (A), and of the thumb (B).

https://doi.org/10.1371/journal.pone.0276799.g005
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b ¼ arccos
~B � ~C
j~Bj � j~Cj

g ¼ arccos
~C � ~D
j~Cj � j~Dj

A measurement to assess hand kinematics is the Total Active Flexion (TAF). Marx et al.

defined the TAF as the measurement of active flexion of one digit [21]. Thus, TAF isolates the

Fig 6. Measured angles. Measured position for the metacarpophalangeal (MCP) joint of the index finger (A), and of the thumb (B). Measured angles of

the proximal interphalangeal (PIP) joint of the index finger (C), and of the thumb (D).

https://doi.org/10.1371/journal.pone.0276799.g006
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maximum flexion angle minus the minimum flexion angle, for a given activity, for metacarpo-

phalangeal, the proximal interphalangeal joints, and the distal interphalangeal joints. There-

fore, assessing the active flexion measures of joints under inspection for each specific exercise

was selected as the preferred choice for this investigation.

As a metric of comparison of the two-time series, once the angles were obtained from the

two tracking techniques, the differences were computed using the root mean square error

(RMSE) and mean absolute difference. The TAF was extracted for each digit and for each of

Fig 7. Geometric representation of the finger. Illustration of a geometric representation of the finger, where WRST indicates the wrist, MCP indicates

the metacarpophalangeal joint, PIP indicates the proximal interphalangeal joint, and DIP indicates the distal interphalangeal. α represents the included

angle of the metacarpophalangeal joint, β represents the included angle of the proximal interphalangeal joints, and γ represents the included angle of

the distal interphalangeal joints.

https://doi.org/10.1371/journal.pone.0276799.g007

PLOS ONE Two-dimensional video-based inference of finger kinematics

PLOS ONE | https://doi.org/10.1371/journal.pone.0276799 November 3, 2022 9 / 16

https://doi.org/10.1371/journal.pone.0276799.g007
https://doi.org/10.1371/journal.pone.0276799


the exercises under inspection, Bland-Altman plots and linear regression were used to assess

the agreement between the methodologies. In Bland-Altman analysis the agreement between

two measures is assessed with the estimation of the standard deviation (SD) of differences with

95% limits of agreement (LoA) ± 1.96 SDs of the mean [22].

Results

Representative plots for abduction and adduction, radial walking, metacarpophalangeal flexion

and thumb opposition in Fig 8 show the similarity between the two trends determined using

OpenPose and obtained with the optical motion capture system, during the four tasks

performed.

For abduction and adduction, the finger kinematics inferred with OpenPose presented an

RMSE below 9˚ (Fig 9), with larger errors observed for the 4th-to-5th digit angles due to occlu-

sion by the other fingers while performing the task, and a mean absolute difference of 8.2˚.

The TAF values exhibited a mean difference between OpenPose and the optical motion cap-

ture system of 4.72˚ (Fig 10) with limits of agreement (LoA) of 8.8˚ and 0.56˚, and coefficient

of determination of 0.73 (Fig 11), indicating good agreement (reference) between the two

methodologies for this activity.

For the radial walking hand activity performed on the table, the finger kinematics estimated

with OpenPose presented an RMSE below 9˚ (Fig 9), and a mean absolute difference of 10.7˚.

The TAF values presented a mean difference between the methods of 5.03˚ with LoA ranging

from 13.25˚ to -3.19˚ (Fig 10). Larger variability (coefficient of determination = 0.40) (Fig 11)

was suggested, as compared to the abduction and adduction activity.

Fig 8. Examples of raw data for one healthy participant. Examples of averaged raw data for (A) 2nd-to-3rd digit angle for four repetitions of the

abduction and adduction task, (B) 2nd-to-3rd finger angle for two repetitions of the radial walking task, (C) 2nd metacarpophalangeal (MCP) joint

angle for two repetitions of the MCP flexion task, (D) 2nd proximal interphalangeal joint angle for the thumb opposition task, estimated using

OpenPose (ML; solid lines) and measured with the optical motion capture system (QTM; dashed lines) for one representative healthy participant.

https://doi.org/10.1371/journal.pone.0276799.g008
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During the metacarpophalangeal joint flexion activity, the comparison between the two

methodologies presented an error below 11˚ Fig 9), apart from two participants who had an

error value between 11˚ and 12˚, and a mean absolute difference of 11.93˚. The Bland-Altman

plot (Fig 10) presented a mean difference of 6.82˚ (Fig 10) with LoA that went from 14.45˚ for

the upper limit (+1.96 SD) to -0.8˚ for the lower limit. The comparison between the two meth-

odologies yielded a modest coefficient of determination value of 0.53 (Fig 11).

Finally, during thumb opposition task, the RMSEs (Fig 9) were below 10˚ for 93.3% of the

estimated values, while the other 6.7% reported an error between 12˚ and 14.5˚, and a mean

absolute difference of 12.8˚. The principal reason for observing higher errors in 10% of the

cases was occlusion by the other fingers, and OpenPose inadvertently swapping finger segment

values. The mean difference between values (Fig 10) was 4.7˚ with LoA 9.64˚ and -0.23˚, and a

coefficient of determination of 0.85 (Fig 11).

Discussion

This work proposes the validation of a tracking method to quantify hand kinematics during

specific hand activities using a monocular RGB camera. The chosen markerless technique

makes use of a convolutional-neural-network-based model, known as OpenPose, and two fil-

tering techniques, the Hampel and the Butterworth, to capture, quantify and evaluate finger

kinematics from video recordings. The accuracy of OpenPose in tracking 2D finger kinematics

Fig 9. RMSEs for the four activities. Root mean square error (RMSE) differences between OpenPose on monocular images and marker-based optical

motion capture system during A) finger abduction and adduction, B) radial walking, C) finger metacarpophalangeal flexion, and D) thumb opposition.

Each colour represents a different participant.

https://doi.org/10.1371/journal.pone.0276799.g009
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was assessed by comparing it with the 2D projections of 3D finger kinematics obtained using a

marker-based motion capture system.

Markerless technologies that leverage deep-learning architectures have exhibited great

potential for motion tracking, using monocular video cameras. For instance, two-dimensional

pose estimation models have been validated for human gait, reporting an error of 5˚ to 15˚ [9,

11, 23, 24]. Leveraging these findings, this paper offers a preliminary proof-of-concept investi-

gation showing that pose estimation of hand kinematics using OpenPose can reach similar lev-

els of accuracy during hand-specific exercises. The comparison between the marker-based and

the markerless technologies presented an error below 10˚, apart from a few outliers; these

occurred with a 3.4% frequency rate.

Differences when comparing the two methodologies may be introduced by several factors,

including the nature of the video recording. For instance, OpenPose depends on images

labelled with keypoints, whereas marker placement relies on the physical location of anatomi-

cal landmarks. Another possible cause of outliers could be linked to the comparison of the

two-dimensional keypoints and the 3D motion capture parameters. While we calculated the

Fig 10. Bland-Altman (BA). BA plots showing the total active flexion mean for A) abduction and adduction, B) radial walking, C)

metacarpophalangeal flexion, and D) thumb opposition of the 2nd, 3rd, 4th and 5th digits for the metacarpophalangeal and proximal interphalangeal

joints of the left and the right hands.

https://doi.org/10.1371/journal.pone.0276799.g010
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included angle between two vectors from a projection of the 3D landmarks onto a plane, the

fingers were still moving in 3D space, leading to potential differences in the angle calculation.

A further potential reason for these outliers was self-occlusion.

Across the different hand exercises illustrated, the coefficient of determination presented

good agreement between the two methods for the abduction and adduction and the thumb

opposition activities. Lower coefficient of determination values, representing lower agreement

between the two methods, were observed for the radial walking and the metacarpophalangeal

flexion activities. During the radial walking task, it was noted that the hand positioned verti-

cally reduced the amount of keypoints lost, compared to when the hand was placed on the

table. This was due to the nature in which OpenPose was trained to infer hand kinematics

from monocular RGB cameras. Given the modest agreement of the two tracking systems dur-

ing the radial walking task, and since the abduction adduction activity was able to extract the

same joint ranges of motion as the radial walking exercise, it is noted that the abduction and

adduction task would be the preferred activity for translation into clinical practice using appli-

cations monitored using OpenPose. The modest coefficient of determination value (0.53)

observed during the metacarpophalangeal flexion task can be attributed to the fact that during

RGB video acquisition the 2nd 3rd, and 4th digits were partially occluded by the 5th digit.

Fig 11. Linear regression. Linear regression plots of total active flexion for (A) abduction and adduction, (B) radial walking, (C) MCP flexion and (D)

thumb opposition of the 2nd, 3rd, 4th and 5th digits for the metacarpophalangeal and proximal interphalangeal joints of the left and the right hands.

https://doi.org/10.1371/journal.pone.0276799.g011
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Furthermore, it was visually observed that, during occlusion, OpenPose inverted the tracking,

swapping the digits’ values and causing visible errors for 18% of the dataset. This error could

be mitigated by adopting visual manual postprocessing techniques or occlusion detection net-

works. However, this approach could not be automated and thus would limit the adoption of

any activity into clinical practice.

OpenPose provides the joint centre locations together with the confidence values for

healthy participants. When the confidence value was low, then error unrelated to occlusion,

angle calculation, and the nature of the video recording was attributed to intrinsic parameters,

as this tracking methodology does not estimate hand movements perfectly from frame-to-

frame. The Bland-Altman plots (Fig 10) illustrated that the biases (mean differences) across

the methods were consistent, ranging from 4.7˚ to 6.8˚. Therefore, by offsetting the results

with the consistent biases detected in these acquisitions, the accuracy of future results could

potentially be improved. Given the constituency of the biases produced in output, further

adoption of these findings would include an automated bias-correcting solution.

This investigation has limitations, including the lack of tests under different visualization

parameters and lightening conditions and the intrinsic inaccuracy of the tracking system

(OpenPose). Also, the selected pre-trained network was chosen as previous studies had vali-

dated this model for lower limb kinematics. However, a pre-trained model was utilized, and

this model was not trained for the specific hand exercises included in the study.

Another limitation was identified by the extraction of two-dimensional hand keypoints; the

selected architecture (OpenPose) is also able to provide 3D parameters when more than one

camera is utilised. The difference in two-dimensional and 3D parameters, as well as discrepan-

cies in capturing the data from using different viewpoints or perspectives (e.g., sagittal, trans-

verse) could be examined in future work.

The entire approach provides a fully labelled dataset gathered using one monocular camera

(e.g., in smartphones/laptops) and encourages researchers to train novel architectures to

improve the accuracy of monocular 2D tracking. Given the latest advantages of novel smart-

phone devices delivered with dual cameras, future investigations could include capturing

images from additional cameras, enlarging the capabilities of this current investigation. Fur-

thermore, different architectures that have demonstrated good performances in tracking hand

gestures (e.g., MediaPipe [25, 26]) should be explored in future investigations.

Future directions for research include the evaluation of the selected markerless architecture

in impaired hands. In clinical hand biomechanics, hand kinematics may be a crucial metric to

quantify changes due to degenerative pathologies. This approach could not only be used to

monitor patient’s diseases in their natural environments, but also to support remote rehabilita-

tive pathways, supporting objectivity in remote hand therapy and leading to possible improved

clinical outcomes and better disease management. However, as OpenPose was only trained on

healthy participants, the lack of validation in a clinical population, where hand kinematics are

significantly different from those of healthy humans, could cause an issue in applying this pose

tracking method directly in clinical populations; this would need to be addressed in future

investigations.

Despite the promising features demonstrated by pose estimation models to track fine move-

ments of human hands, video-annotation and manual identification of relevant motions in

long video sequences still limits the scalability of this approach to fully automated clinical

applications. An approach that would enable automated temporal segmentation and video seg-

ment classification, leveraging video-level label data, could extend the capabilities of this inves-

tigation into clinical settings and provide the ability to examine larger volumes of video data in

uncontrolled environments.
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