
Epidemics 41 (2022) 100643

Available online 15 October 2022
1755-4365/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Structural identifiability of compartmental models for infectious disease 
transmission is influenced by data type 

Emmanuelle A. Dankwa a, Andrew F. Brouwer b, Christl A. Donnelly a,c,* 

a Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford, United Kingdom 
b Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA 
c Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Structural identifiability 
Infectious disease transmission 
Compartmental models 
Data types 
Initial conditions 

A B S T R A C T   

If model identifiability is not confirmed, inferences from infectious disease transmission models may not be 
reliable, so they might result in misleading recommendations. Structural identifiability analysis characterises 
whether it is possible to obtain unique solutions for all unknown model parameters, given the model structure. In 
this work, we studied the structural identifiability of some typical deterministic compartmental models for in-
fectious disease transmission, focusing on the influence of the data type considered as model output on the 
identifiability of unknown model parameters, including initial conditions. We defined 26 model versions, each 
having a unique combination of underlying compartmental structure and data type(s) considered as model 
output(s). Four compartmental model structures and three common data types in disease surveillance (incidence, 
prevalence and detected vector counts) were studied. The structural identifiability of some parameters varied 
depending on the type of model output. In general, models with multiple data types as outputs had more 
structurally identifiable parameters, than did models with a single data type as output. This study highlights the 
importance of a careful consideration of data types as an integral part of the inference process with compart-
mental infectious disease transmission models.   

1. Introduction 

Goals of infectious disease transmission modelling often include 
making inferences about the underlying transmission process, predict-
ing the future course of an epidemic given a range of interventions, or 
estimating what would have happened in a counterfactual scenario. A 
defined model is fitted to a given data set (frequently an incidence time 
series generated by passive surveillance). This model-fitting process is 
parameter estimation, where one determines parameter values or dis-
tributions corresponding to model outputs that best fit (or at least, 
approximate) the observed data. Parameter estimation however can 
only produce robust results if the model is identifiable (Audoly et al., 
2001; Castro and de Boer, 2020; Cobelli and Distefano, 1980; Kao and 
Eisenberg, 2018; Ljung and Glad, 1994; Villaverde et al., 2016; Wieland 
et al., 2021): that is, if it is possible, in principle, to obtain unique so-
lutions for all unknown model parameters, given the model structure 
and available data. We note that other properties such as predictability 
(Castro et al., 2020; Scarpino and Petri, 2019) and uncertainty quanti-
fication (Capaldi et al., 2012; McCabe et al., 2021) also affect the 

reliability of model inferences (Massonis et al., 2021a); these are not 
treated here, however. 

Although the subject of identifiability has received considerable 
attention in the systems biology and control literature (see Wieland 
et al., 2021 for a recent review), it is inconsistently applied in the in-
fectious disease modelling literature. Relatively few studies exist on the 
identifiability analysis of infectious disease models, (e.g., Brouwer et al., 
2018; Eisenberg et al., 2013; Evans et al., 2005; Kao and Eisenberg, 
2018; Massonis et al., 2021a; Tuncer et al., 2016; Tuncer and Le, 2018), 
and the practice of routinely checking the identifiability of these models 
before parameter estimation is not widespread. Nevertheless, identifi-
ability is required to make meaningful inferences on model parameters 
and, consequently, to provide reliable evidence to inform public health 
policymaking. 

In a non-identifiable model, parameter sets with similar values may 
yield considerably different model predictions (Kao and Eisenberg, 
2018; Roda et al., 2020). Thus, a failure to consider identifiability could 
result in misleading recommendations, as has been previously noted 
(Kao and Eisenberg, 2018; Massonis et al., 2021a; Roda et al., 2020; 
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Roosa and Chowell, 2019), some of which could have serious conse-
quences. For example, Kao and Eisenberg demonstrated using a dengue 
transmission model that two sets of parameters which fit the incidence 
data comparably well yielded very different predictions for incidence 
after an intervention is applied (see Fig. 9 in their paper) (Kao and 
Eisenberg, 2018). Roda and colleagues also showed that the lack of 
identifiability in COVID-19 transmission models could lead to extreme 
variability in predictions (Roda et al., 2020). 

A distinction is made between the two types of identifiability: 
structural identifiability and practical identifiability. Structural identifi-
ability, a concept first introduced by Bellman and Astrom in 1970, is a 
property of the model structure and associated measurement function (i. 
e., the function of model variables that is to be observed) and does not 
depend on the quantity or quality of the observed data. It addresses the 
question: Given an error-free model structure, and assuming noise-free, 
infinite data, do unique solutions exist for the model parameters? 
Structural identifiability is affected by: 1) the nature of the model 
parameterisation (Muñoz-Tamayo et al., 2018) which influences sym-
metries, i.e., functional relationships between model parameters 
(Eisenberg and Hayashi, 2014; Hengl et al., 2007; Massonis et al., 2021a; 
Villaverde, 2022); and 2) the data type considered as model output 
(Balsa-Canto et al., 2010; Chis et al., 2011; Massonis et al., 2021a; 
Tuncer and Le, 2018). Practical identifiability, on the other hand, is 
related to the adequacy of the available observed data for the estimation 
problem at hand (Balsa-Canto et al., 2010; Brouwer et al., 2017; Kao and 
Eisenberg, 2018; Miao et al., 2011; Raue et al., 2009; Tuncer et al., 2016; 
Tuncer and Le, 2018). The corresponding question is: Do the data 
contain enough information to infer the model parameters? Structural 
identifiability is a necessary, but not sufficient, condition for practical 
identifiability; that is, a structurally non-identifiable parameter cannot 
be practically identifiable, and a structurally identifiable parameter 
could be practically non-identifiable depending on the data available 
(Cobelli and Distefano, 1980; Eisenberg et al., 2013). In this work, we 
are considering structural identifiability of infectious disease trans-
mission models. 

Several studies have demonstrated the influence of the type of 
observed data on the structural identifiability of infectious disease 
models. For example, Tuncer and Le studied a Susceptible-Infected- 
Treated-Recovered epidemic model which becomes structurally identi-
fiable only when both cumulative incidence rates and the number of 
treated individuals is observed (Tuncer and Le, 2018). In the same work, 
the authors explored the identifiability of a Susceptible-Exposed- 
Infected-Recovered model and showed that the type of structural iden-
tifiability for two parameters (recovery rate and length of latent period) 
depended on whether the observed data were cumulative incidence or 
prevalence. Similar works include Evans et al. (2005), on the structural 
identifiability of a seasonally forced SIR model with prevalence and a 
proportion of the incidence as outputs; Eisenberg et al. (2013), on the 
identifiability of parameters of compartmental models for cholera with 
prevalence as output; Tuncer et al. (2016), on the identifiability of an 
immune-epidemiological model for Rift Valley fever with time-series 
data of viremia levels as output; Kao and Eisenberg (2018), on the 
identifiability of a dengue transmission model with various types of 
human and mosquito incidence data as outputs; and more recently, 
Massonis et al. (2021a), on the structural identifiability of a wide range 
of COVID-19 transmission models with a variety of surveillance data 
types as outputs. 

However, few of these studies (e.g., Eisenberg et al., 2013; Evans 
et al., 2005) have explicitly studied the identifiability of unknown initial 
conditions (ICs). Other studies have either assumed known ICs (e.g., 
Tuncer and Le, 2018) or have implicitly considered unknown ICs 
through assessment of the observability of model states (Massonis et al., 
2021a); i.e., whether the state variable trajectories can be uniquely 
determined from observed data. (Structural identifiability has been 
considered as a particular case of observability (Massonis et al., 2021a; 
Sedoglavic, 2002; Tunali and Tarn, 1987; Villaverde, 2019).) Here, we 

explicitly consider ICs as unknown parameters in all models and analyse 
their structural identifiability given various data types. Often values are 
assumed for ICs, but careful analysis often reveals that parameter esti-
mates depend on these IC assumptions. We can ask under what cir-
cumstances ICs can be uniquely determined from observed data. 
Although this question might technically be considered one about 
observability, when the ICs are reframed as parameters, the question is 
one of identifiability. Thus, our work adds to the literature by examining 
how the structural identifiability of ICs of classic compartmental models 
change with data type. Additionally, we employ a publicly available 
web-based toolbox, SIAN (Hong et al., 2019), to analyse the structural 
identifiability of model parameters, allowing us to demonstrate the 
utility of such tools. 

Specifically, we consider four compartmental structures (SIR, SLIR, 
SLIR with vaccination and relapse and a vector-borne disease model 
with SLIR for hosts and SLI for vectors) and three common data types in 
disease surveillance (incidence, prevalence and detected vector counts). 
Using SIAN, we analyse the structural identifiability of unknown pa-
rameters in 26 model versions, each a unique combination of underlying 
compartmental structure and data type considered as model output. We 
use the term “model version” to refer to a compartmental structure- 
output(s) combination; e.g., SIR with incidence, or SLIR with inci-
dence and prevalence. 

Although the compartmental structures and data types we consider 
are by no means exhaustive, our work is intended to demonstrate the 
importance of identifiability and to be instructive for those seeking to 
apply these techniques to their own models. We have therefore made 
available all input codes and output files to facilitate reproducibility: 
https://github.com/emmanuelle-dankwa/structural-identifiability-e 
pi-models. 

The paper is outlined as follows. In Section 2, we introduce the 
general modelling framework and notation and provide formal defini-
tions of relevant structural identifiability concepts. Here, we also 
introduce the four compartmental structures, briefly introduce the 
software toolbox utilised, present the model versions examined and 
finally, outline the structural identifiability analysis performed. Section 
3 presents the results and Section 4 presents a discussion of results. 
Concluding remarks are given in Section 5. 

2. Methods 

2.1. General modelling framework and formal definitions 

Consider a deterministic ordinary differential equation (ODE) in-
fectious disease transmission model M of the form 

M :=

⎧
⎨

⎩

Ẋ(t) = f (X(t),p, u(t))
y(t) = g(X(t), p)
Xt0 = X(t0)

(1)  

with observations on the interval t0 ≤ t ≤ T, where Ẋ(t) is a system of 
non-linear ODEs, X(t) ∈ RnX is a vector of time-varying disease states and 
the unique solution to the system Ẋ(t), p ∈ Rnp is a vector of constant 
unknown model parameters, y(t) ∈ Rny is a vector of time-dependent 
model outputs corresponding to a specific data type (for example, case 
incidence rates), u(t) ∈ Rnu is a time-dependent input vector, g is the 
measurement equation (which defines the relationship between X(t), p 
and y), and Xt0 ⊂RnX is a vector of the known ICs. Note that unknown 
components of Xt0 are included in p and that f and g are vectors of an-
alytic functions of their arguments. 

The formal definition of structural identifiability for a model and its 
parameters is given below. The structural identifiability of a parameter 
may either be local (i.e., holding only within a limited region of the 
parameter space or about a given point) or global (i.e., holding (almost) 
everywhere within the parameter space) (Ljung and Glad, 1994). 
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Definition 1. [Parameter structural identifiability] (Cobelli and Dis-
tefano, 1980; Ljung and Glad, 1994). 

A parameter pi ∈ p is structurally globally identifiable (s.g.i.) on the time 
interval [t0,T] for a given output y if a unique solution exists for pi; that is, if 
and only if for almost any p∗ ∈ Rnp and almost any IC (i.e., excluding 
degenerate values), y(t, p̂) = y(t, p∗) implies p̂i = p∗i . Otherwise, pi is struc-
turally globally non-identifiable. 

A parameter pi ∈ p is structurally locally identifiable (s.l.i.) on the time 
interval [t0,T] for a given output y if there exists a neighbourhood V(p∗) of the 
parameter space within which a unique solution exists for pi. Otherwise, pi is 
structurally non-identifiable (s.n.i.). 

Definition 2. [ Model structural identifiability] (Cobelli and Dis-
tefano, 1980; Ljung and Glad, 1994). 

The model M is s.g.i. for a given output y if every pi ∈ p is s.g.i. given y. 
The model M is s.l.i. for a given output y if at least one pi ∈ p is s.l.i. given 

y and if no pi ∈ p is s.n.i. 
The model M is s.n.i. for a given output y if at least one pi ∈ p is s.n.i. given 

y. 

2.2. Model structures 

The most basic model structure we consider is the SIR model. For 
simplicity, we assume no demography, no migration, homogenous 
populations, and a constant, unknown population size N. In this SIR 
model, there are three mutually exclusive compartments, each corre-
sponding to a distinct infection state: Susceptible S, Infectious I and 
Recovered (and immune) R. Susceptible individuals become infected at 
a rate βI/N where β is the transmission rate and is equal to the product of 
the contact rate and the probability that a contact will successfully result 
in an infection. Infectious individuals recover at a rate γ. These dynamics 
can be described by the following set of ODEs: 

SIR :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −
βSI
N

dI
dt

=
βSI
N

− γI

dR
dt

= γI

(2) 

ICs for the S, I and R states will be denoted by S(0), I(0) and R(0), 
respectively. At any time t ≥ 0, N = S(t)+ I(t)+ R(t). For the SIR model, 
we consider two outputs: incidence, y1 = βSI/N, and prevalence, y2 =

I/N. In this context, incidence is defined as the number of new cases 
arising within a given time period, while prevalence is defined as the 
infectious proportion of the population at a given time point. In many 
situations, incidence data are presented as cumulative incidence; cu-
mulative incidence contains the same information from an identifi-
ability perspective, but, for statistical reasons, it is preferable to convert 
cumulative incidence to incidence before fitting (King et al., 2015). 
Incidence data are often generated through passive surveillance (e.g., 
number of new cases reported each day from a hospital system), while 
prevalence data may be generated through active surveillance (e.g., 
door-to-door data collection; testing of people at random regardless of 
symptoms). In reality, both incidence and prevalence are subject to bias 
from reporting rates and asymptomatic infection. Some studies explic-
itly include a reporting rate parameter κ in their measurement equa-
tions, or the effect can be implicitly accounted for in β or N. For this 
reason, N does not necessarily correspond to population numbers from a 
census of the catchment region, and thus we treat it as an unknown 
quantity. 

For diseases with a non-negligible latent period (e.g., COVID-19 (Liu 
et al., 2020)), the SIR model can be modified to include a latent state L.
The modified dynamics are described by the following set of equations: 

SLIR :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −
βSI
N

dL
dt

=
βSI
N

− αL

dI
dt

= αL − γI

dR
dt

= γI

(3)  

where 1/α represents the length of the latent period. Let L(0) denote the 
IC for the latent state. For all t ≥ 0, N = S(t)+ L(t)+ I(t)+ R(t). We 
study an equivalent set of outputs as for the SIR model: incidence, y3 =

αL, and prevalence, y4 = I/N. 
For diseases where a relapse of symptoms is possible after a period of 

remission (e.g., hepatitis A), we can include a compartment Q to 
represent the remission state. In this model, we also allow for immunity 
by vaccination. The dynamics of this SLIRQ (Susceptible-Latent-Infec-
tious-Recovered (or immune)-Remission) model as adapted from 
Dankwa et al. (2021) are as follows. In this model, individuals in the R 
compartment are immune, either as a result of vaccination or past 
infection. Susceptible individuals become exposed at a rate βI/N and 
move to the latent state, where they remain for 1/α time units, after 
which they become infectious. A proportion, 1 − η, of infectious in-
dividuals recover temporarily, moving to the remission state for a period 
of 1/σ time units, after which they experience a relapse of symptoms, 
becoming infectious. The remaining proportion, η, of infectious in-
dividuals recover permanently and become immune. The recovery rate 
is γ. A number v(t) of individuals are vaccinated at time t and become 
immune. These dynamics are captured by the following set of ODEs: 

SLIRQ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −
βSI
N

− v
S
N

dL
dt

=
βSI
N

− αL

dI
dt

= αL − γI + σQ

dR
dt

= v
S
N
+ ηγI

dQ
dt

= (1 − η)γI − σQ

(4) 

The IC corresponding to the remission state will be denoted by Q(0). 
For all t ≥ 0, N = S(t) + L(t) + I(t) + R(t) + Q(t). We consider the same 
set of outputs as before: incidence, y5 = αL + σQ, and prevalence, y6 =

I/N.. 
Finally, we introduce a SLIR/SLI model structure suitable for vector- 

borne diseases, and adapted from the works of Ngwa and Shu (2000) and 
Kao and Eisenberg (2018), who apply the model to malaria and dengue, 
respectively. In the model, infection dynamics within the host popula-
tion are explained via a SLIR model, as in Eq. (3), while the dynamics in 
the vector population are explained via a SLI model, thus a SLIR/SLI 
model. Transmission can only occur between individuals of different 
populations, i.e., host-to-vector or vector-to-host. Like in the previous 
models, we assume constant sizes for both populations: let Nh and Nv 
represent the sizes of the host and vector populations, respectively. We 
use subscripts “h” and “v” to represent compartments for hosts and 
vectors, respectively. Thus, we have Nh = Sh(t)+Lh(t)+Ih(t)+Rh(t) and 
Nv = Sv(t) + Lv(t) + Iv(t),∀t ≥ 0. 

The pathogen transmission rate from host to vector βhv is equal to the 
product of the contact rate between host and vector (in malaria for 
example, this may be the human biting rate of mosquitoes) and the 
probability of successful transmission from an infectious host to a sus-
ceptible vector. Similarly, the transmission rate from vector to host βvh is 
equal to the product of the contact rate between vector and host and the 
probability of successful transmission from an infectious vector to a 
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susceptible host. Infected hosts become infectious after a latency period 
of 1/αh time units and remain infectious for a period of 1/γh time units 
before recovery. Recovered hosts become immune to the disease. In-
fectious hosts transmit the pathogen to susceptible vectors at a rate 
βhvIh/Nh. Infected vectors become infectious after a latency period of 1/
αv time units. Infectious vectors transmit the pathogen to susceptible 
hosts at a rate βvhIv/Nh. Within each population, we assume equal birth 
and death rates: μh and μv for hosts and vectors, respectively, so no 
disease-related mortality is incorporated. The SLIR/SLI model is repre-
sented by the following system of ODEs: 

SLIR

/

SLI :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh

dt
= μhNh −

βvhShIv

Nh
− μhSh

dLh

dt
=

βvhShIv

Nh
− αhLh − μhLh

dIh

dt
= αhLh − γhIh − μhIh

dRh

dt
= γhIh − μhRh

dSv

dt
= μvNv −

βhvSvIh

Nh
− μvSv

dLv

dt
=

βhvSvIh

Nh
− αvLv − μvLv

dIv

dt
= αvLv − μvIv

(5) 

The ICs for the SLIR/SLI model will be denoted by (listed in order of 
states): Sh(0),Eh(0), Ih(0),Rh(0), Sv(0), Lv(0) and Iv(0). 

The following outputs are studied: 1) incidence in hosts (host inci-
dence), y7 = αhLh; 2) prevalence in hosts (host prevalence), y8 = Ih/Nh; 
3) incidence in vectors (vector incidence), y9 = αvLv; and 4) detected 
vector counts, y10 = λv(Sv +Lv +Iv), λv is an unknown vector detection 
rate. 

2.3. Toolbox employed 

In this study, we employ the SIAN (Structural Identifiability Analy-
ser) (Hong et al., 2019) software tool for structural identifiability 
analysis. The algorithm implemented in SIAN, proposed by Hong et al. 
(2020), is based on a combination of differential algebra and Taylor 
series approaches to structural identifiability analysis. SIAN is imple-
mented in Maple and is available as a web application: https://maple. 
cloud/app/6509768948056064. 

Here, we are interested in assessing both local and global structural 
identifiability of model parameters, including ICs. Therefore, although 
other toolboxes exist which are capable of assessing the local and global 
structural identifiability of M (e.g., COMBOS (Meshkat et al., 2014), 
DAISY (Bellu et al., 2007) and GenSSI 2.0 (Ligon et al., 2018)), we 
employ SIAN because it uniquely possesses the following combination of 
characteristics as desired for this study. First, it is capable of assessing 
both local and global identifiability of model parameters. Second, it 
provides identifiability results for parameter-based ICs. Third, it is 
available as a web application and accepts a simple text-based input, 
hence more accessible than toolboxes which require programme 
installation or knowledge of a particular programming language. This 
latter characteristic is a particularly desirable one for a structural 
identifiability analysis software, as it addresses a potential barrier to the 
application of structural identifiability analysis. A comparison of the 
performance and features of toolboxes for structural identifiability 
analysis of ODE models is beyond the scope of the study. Interested 
readers may consult Ligon et al. (2018) and Hong et al. (2019). 

For a given model, SIAN typically produces one of the following 
results for the structural identifiability of each model parameter: s.g.i., s. 
l.i. or s.n.i. SIAN is also capable of computing identifiable combinations, 
although we do not employ that functionality here. 

2.4. Structural identifiability assessments 

Structural identifiability analysis was conducted in four stages, each 
stage designed to reflect a possible scenario that may be encountered 
when modelling infectious disease transmission. Across these stages, we 
studied the structural identifiability of model parameters given three 
common data types as model outputs – incidence, prevalence, and 
detected vector counts (the latter only applicable to SLIR/SLI). We 
analysed 26 ODE model versions, assuming in all cases constant, un-
known population sizes. For each model, we assessed the structural 
identifiability of all unknown parameters, including ICs. 

Stages are now described.  

• Stage one (single outputs, all parameters unknown): Structural 
identifiability analysis was conducted for models defined with a 
single data type as output and assuming all parameters were un-
known. This scenario is typical in the initial stages of an outbreak of 
an emerging pathogen, when little is known of pathogen epidemi-
ology and consequently, natural history parameters or transmission 
rates. Furthermore, in such scenarios, as data are often limited, only 
one type of data may be available for parameter estimation. It is 
therefore of interest to determine which parameters are structurally 
identifiable in such contexts. Therefore, for SIR, SLIR and SLIRQ, we 
assessed the structural identifiability of model parameters given 
either incidence or prevalence data. For SLIR/SLI, output was host 
incidence or host prevalence. We do not consider vector data at this 
stage, as such data are less likely to be available during the early 
stages of an emerging vector-borne disease outbreak. Thus, at this 
stage, eight model versions were analysed.  

• Stage two (single outputs, only natural history parameters 
known): In the case of an endemic disease which has been widely 
studied (e.g., malaria in sub-Saharan Africa), a high level of certainty 
may be obtained on the values of natural history parameters. In 
modelling transmission of such diseases, knowledge of natural his-
tory parameters may be assumed and hence these parameters may be 
treated as known quantities in the model. Stage two considers this 
scenario. For the model versions analysed at stage one, we assumed 
all natural history parameters to be known and re-evaluated the 
structural identifiability of the other (unknown) model parameters, i. 
e., all ICs, transmission rate parameters, and for the SLIR/SLI models, 
the demography parameters, additionally. This analysis enabled us 
to identify how the structural identifiability properties of unknown 
parameters change once other parameters in the model are assumed 
known. As in stage one, eight model versions were analysed at this 
stage. 

• Stage three (multiple outputs, all parameters unknown): In in-
stances where surveillance capacities are strengthened in the face of 
an emerging outbreak, it is possible to observe more than one type of 
data. For example, in the context of a vector-borne disease outbreak, 
there may be, in addition to host incidence data, data on the size of 
the vector population, as could be obtained through traps in the case 
of mosquitoes (for mosquito-borne diseases), or field signs, in the 
case of badgers (for bovine tuberculosis). In stage three, we studied 
the structural identifiability of model parameters in these “data-rich” 
scenarios by defining models to have at least two output types. All 
parameters were treated as unknown, as in stage one. Thus, we were 
able to compare results obtained at this stage to results at stage one 
(with single outputs) to assess the influence of additional outputs on 
parameters’ structural identifiability. 

For the SIR, SLIR and SLIRQ structures, outputs were incidence 
and prevalence. For the SLIR/SLI structure, we studied two output 
combinations. One comprised host incidence and host prevalence, 
reflecting a scenario in which host infection data are available but 
vector data are absent, while the other comprised both host and 
vector data: host incidence, host prevalence, vector incidence and 
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detected vector counts. Thus, five model versions were analysed at 
this stage.  

• Stage four (multiple outputs, only natural history parameters 
known): Here, we consider the five model versions analysed at stage 
three, but assuming knowledge of natural history parameters, as in 
stage two. Thus, we could compare the structural identifiability of 
parameters at this stage to corresponding results: 1) at stage two, to 
determine whether additional outputs improved parameters’ struc-
tural identifiability after some parameters have been assumed 
known; and 2) at stage three, to determine how structural identifi-
ability of parameters improved with knowledge of natural history 
parameters, given multiple outputs. 

3. Results 

Structural identifiability results of model parameters assessed at 
stages one, two, three, and four are presented in Tables 1–4. For some 
models, SIAN was unable to complete global identifiability calculations 
but provided results for local identifiability. For these model versions, 
parameters assessed as being s.l.i. by SIAN are referred to in this study as 
being at least s.l.i., given that they may potentially be s.g.i. 

Results are now discussed by stage. 
Stage one (single outputs, all parameters unknown): See Table 1. 

When all parameters were assumed unknown and single outputs 
considered, all models except the SLIRQ models are s.n.i. All parameters 
of the SLIRQ model are s.l.i., irrespective of output type. In the SIR and 
SLIR models with output as prevalence, the transmission rate β is s.g.i. 
However, with output as incidence, β becomes s.n.i. We should note, 
however, that β/N is an identifiable combination (meaning that its value 
is identifiable even if the constituent parameters are not), and the 
assumption of unknown N is the reason that both R(0) and β are s.n.i. in 
these two models. The IC for the recovered compartment R(0) is s.n.i. in 
all SIR and SLIR models studied at stage one but is at least s.l.i. in both 
SLIRQ models (i.e., given incidence or prevalence as output). In the 
SLIR/SIR model with incidence as output, the IC corresponding to the 
recovered compartment for hosts Rh(0) is at least s.l.i. when output is 
host incidence but s.n.i. when output is host prevalence. The 

transmission rate parameter and all ICs corresponding to the vector 
population are s.n.i. with host prevalence or host prevalence as output, 
while other parameters associated with the vector population (birth rate 

μv and parameter controlling the length of latent period αv) are at least 
s.l.i. 

Stage two (single outputs, only natural history parameters 
known): See Table 2. Assuming knowledge of the natural history pa-
rameters in the SIR, SLIR and SLIR/SLI models did not lead to an 
improvement of the structural identifiability of parameters which were 
s.n.i. at stage one (where all parameters – including natural history 
parameters – were unknown), irrespective of output type. However, for 
the SLIRQ models, the structural identifiability of unknown parameters 
(β and ICs) is seen to improve with the assumption of knowledge of 
natural history parameters: these parameters are s.g.i. at this stage but 
were at least s.l.i at stage one. 

Stage three (multiple outputs, all parameters unknown): See 
Table 3. When incidence and prevalence data are considered jointly as 
outputs in the same model, structural identifiability of the SIR, SLIR and 
SLIRQ models improves considerably compared to stage one. All pa-
rameters in these models which were s.n.i. at stage one become s.g.i. For 
example, β is s.n.i. in the SIR model with incidence only as output; 
however, with the addition of prevalence data as an output in the model, 
β becomes s.g.i. Likewise, R(0) is s.n.i. in all SIR and SLIR models with 
single outputs (either incidence or prevalence; Table 1) but becomes s.g. 
i. when these outputs are considered simultaneously. 

For the SLIR/SLI model, all parameters associated with the host 
population are at least s.l.i. when host incidence and host prevalence 
data are joint model outputs. However, the ICs and transmission rate 
parameter associated with the vector population are s.n.i., as in stage 
one when these outputs were considered separately (Table 1). 

Stage four (multiple outputs, natural history parameters 
known): See Table 4. Even when natural history parameters are 
assumed known, the ICs and transmission rate parameter associated 
with the vector population in the SLIR/SLI model remain s.n.i. with host 
prevalence and host incidence as joint model outputs. It is only with the 
addition of vector data (vector incidence and detected vector counts) as 
outputs that these parameters become s.g.i. 

Table 1 
Stage one. Structural identifiability of parameters and models assuming all parameters are unknown and given single model outputs: incidence (I) or prevalence 
(P). For the SLIR/SLI models, outputs corresponding to the host population are annotated with “(h)”. Output cells are shaded according to the structural identifiability 
of the model given that output: a green shade indicates the model is structurally globally identifiable (s.g.i.), a yellow shade indicates the model is structurally locally 
identifiable (s.l.i.) and a brown shade indicates the model is structurally non-identifiable (s.n.i.).  

a Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed. 
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4. Discussion 

In this work, we have studied the structural identifiability of 26 ODE 
model versions, each with a unique combination of underlying 
compartmental structure (SIR, SLIR, SLIRQ or SLIR/SLI) and data type 
considered as model output (incidence, prevalence or detected vector 
counts). 

The consideration of multiple data types as outputs generally 
improved models’ structural identifiability. Indeed, when only single 
outputs were considered (Table 1, Table 2), all models except the SLIRQ- 
structured models were s.n.i. However, when these models were defined 
to have at least two data types as outputs, all but one model become s.g.i. 

(Table 3, Table 4). 
The exception – the SLIR/SLI model with outputs as host incidence 

and host prevalence – had its transmission rate parameter and ICs for the 
vector population remaining s.n.i. despite having host incidence and 
host prevalence as model outputs (Table 3), and even after all natural 
history parameters in the model were assumed known (Table 4). How-
ever, when vector-related data (vector incidence and detected vector 
counts) were added as outputs in the model, these parameters become s. 
g.i. (Table 3, Table 4), suggesting that data on host infection alone 
(incidence, prevalence or both) are not sufficient to identify these 
vector-related parameters. 

We found it surprising that the other vector-related parameters 

Table 2 
Stage two. Structural identifiability of parameters and models assuming all natural history parameters are known (transmission and demography parameters 
unknown) and given single model outputs: incidence (I) or prevalence (P). For the SLIR/SLI models, outputs corresponding to the host population are annotated with 
“(h)”. Output cells are shaded according to the structural identifiability of the model given that output: a green shade indicates the model is structurally globally 
identifiable (s.g.i.), a yellow shade indicates the model is structurally locally identifiable (s.l.i.) and a brown shade indicates the model is structurally non-identifiable 
(s.n.i.).  

a Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed. 

Table 3 
Stage three. Structural identifiability of parameters and models assuming all parameters are unknown and given multiple model outputs: outputs are incidence 
(I), prevalence (P) or detected vector counts (DC). For the SLIR/SLI models, outputs corresponding to the host and vector populations are annotated with “(h)” and 
“(v)”, respectively. Output cells are shaded according to the structural identifiability of the model given that output: a green shade indicates the model is structurally 
globally identifiable (s.g.i.), a yellow shade indicates the model is structurally locally identifiable (s.l.i.) and a brown shade indicates the model is structurally non- 
identifiable (s.n.i.).  

a Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed. 
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studied – μv, the vector birth rate and αv, the parameter controlling the 
length of the latent period – were at least s.l.i. given host incidence or 
host prevalence (Table 1), since we expected vector-related parameters 
to be non-identifiable in the absence of vector data. We thus checked 
with other structural identifiability software capable of computing 
global results – GenSSI 2.0 (Ligon et al., 2018), COMBOS (Meshkat et al., 
2014) and DAISY (Bellu et al., 2007) – but none of this were able to 
complete computations. That these vector-related parameters are iden-
tifiable with host data is not yet clear to us and it is a question we 
continue to explore. We suspect that these parameters are likely not 
practically identifiable from typically available host incidence data, 
even if they are structurally identifiable. 

Assuming knowledge of the natural history parameters did not seem 
to improve the structural identifiability of parameters in the majority of 
single-output models (Table 1, Table 2), likely because all natural his-
tory parameters were at least s.l.i. (in those models in which they were 
treated as unknown parameters; Table 1), indicating that they were not 
in identifiable combinations. Hence, fixing the values of these parame-
ters appeared not to have influenced existing symmetries. 

We note that for all SIR and SLIR models with single outputs (inci-
dence or prevalence), the IC corresponding to the recovered compart-
ment R(0) is s.n.i., and its structural identifiability does not improve 
even when natural history parameters in these models are assumed 
known (Table 1, Table 2). Only with the simultaneous analysis of mul-
tiple data types as outputs does R(0) become s.g.i. (Table 3). It is 
interesting to observe this “synergy-like” effect: separately, neither 
incidence nor prevalence is sufficient for the identification of R(0), but 
considered jointly, these data prove adequate to identify R(0). In this 
case, the at-risk population size N is identifiable if both incidence and 
prevalence are observed, allowing determination of R(0). More broadly, 
it is helpful to pre-determine which data types will lead to structural 
identifiability when used separately or in combination with new, 
external parameter information. We recommend that formal methods 
for pre-determination, such as the use of identifiable parameter com-
binations, be used in the development of study designs: these methods 
may result in more efficient data collection to support inference for the 

specific research question. 
Our results on the IC of the recovered state in models with unknown 

N are consistent with those of Massonis et al. (2021a) who, in a struc-
tural identifiability analysis of several compartmental COVID-19 trans-
mission models with known N, found that the recovered state is “almost 
never observable”. That is, its value over time cannot be determined 
from the given data, although it could potentially be observable with a 
single measurement (such as the initial condition or a later serosurvey). 
It is not surprising that if R(0) is not identifiable in models assuming 
known N (Massonis et al., 2021a) that it would not be identifiable in 
models with unknown N (our results). 

An important question then arises: what sources of data are useful to 
inform the IC of the recovered/immune state in scenarios where this 
state is not directly observed? Expert knowledge or seroprevalence es-
timates based on representative studies may be helpful in this regard. 
Where these data are not readily available, the IC for the recovered or 
immune state has often been set to zero; however, if the true value is 
different from zero, other parameters need to be interpreted accordingly 
and the assumptions need to be stated clearly. The transmission rate and 
the at-risk population size N, in particular, need to be interpreted in the 
context of the assumptions made about the ICs, as well as any assump-
tions about the reporting rate and asymptomatic fraction of cases. The 
distinction may be particularly important when trying to mechanisti-
cally interpret the transmission rate as a product of constituent param-
eters (e.g., contact rate times probability of infection) or when 
connecting N to catchment census data. More broadly, simulation 
studies and sensitivity analysis may be needed to understand the specific 
influences of IC values on one’s parameter estimates and thus the 
robustness of one’s inferences. 

Our study is a relevant contribution to the literature as it explicitly 
considers ICs and population sizes as unknown in models which have 
been mostly studied assuming these quantities are known. Data on ICs or 
population size may not always be available or able to be measured 
directly, hence the need to study identifiability in such scenarios. Also, 
as we had complete control over structure-output combinations, we 
were able to modify model characteristics such that the cause for a 

Table 4 
Stage four. Structural identifiability of parameters and models assuming all natural history parameters are known (transmission and demography parameters 
unknown) and given multiple model outputs: outputs are incidence (I), prevalence (P) or detected vector counts (DC). For the SLIR/SLI models, outputs corre-
sponding to the host and vector populations are annotated with “(h)” and “(v)”, respectively. Output cells are shaded according to the structural identifiability of the 
model given that output: a green shade indicates the model is structurally globally identifiable (s.g.i.), a yellow shade indicates the model is structurally locally 
identifiable (s.l.i.) and a brown shade indicates the model is structurally non-identifiable (s.n.i.).  
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change in identifiability results could be precisely identified. In addi-
tion, unlike most previous studies, we provide input code for all analyses 
conducted, to serve as a model to individuals who may be new to 
structural identifiability analysis. To further facilitate increased adop-
tion of structural identifiability analysis, we chose to use a web-based 
structural identifiability analysis tool, which accepts simple text-based 
inputs. This eliminates potential barriers to adoption such as the need 
for programme installation or proficiency in a programming language. 

Despite these strengths, some limitations exist. First, when models 
were complex (i.e., having more than four states, or multiple outputs 
and several parameters), it was generally challenging for SIAN (and 
other toolboxes used) to produce complete results. More work is needed 
on scaling toolboxes to match the increasing complexity of modern 
epidemic models. Second, it would have been desirable to use multiple 
toolboxes for all analysis, as that would have facilitated the detection of 
potentially problematic results; however as stated earlier, SIAN was the 
only publicly available toolbox – as far as we know – which had the 
combination of functionalities required for this study: 1) ability to assess 
both local and global identifiability of model parameters; 2) ability to 
assess identifiability of unknown ICs, and 3) possibility to implement 
without requiring programme installation or specialised programming 
language skills. Work on developing more accessible toolboxes with a 
range of relevant functionalities is therefore warranted. Third, the se-
lection of compartmental models studied here is limited. Similarly, 
although the set of data types examined here comprises some of the most 
commonly measured in disease surveillance, it is not representative of 
the wide variety of possible data types; for example, we did not directly 
consider detected incidence (i.e., incidence allowing for underreporting, 
although we do acknowledge that it is important to account for in real 
data and contributed to our decision to assume that N is unknown). Our 
work is intended to be primarily illustrative, providing the rationale for 
assessing structural identifiability and some approaches. We also note 
that the work here is relevant regardless of downstream decisions to take 
a frequentist or Bayesian approach to parameter estimation from real 
data, though we do note that making a choice of informative prior dis-
tributions on parameters or initial conditions is akin to changing the 
assumptions of what is known or unknown, which may impact the 
identifiability of other aspects of the model. 

Our work focused on deterministic, compartmental ODE models. It 
would be desirable to extend our study to cover stochastic models 
(Browning et al., 2020); models which incorporate population structure 
(e.g., age-structured or spatial models); time-varying parameters, which 
have been shown to address structural identifiability issues due to their 
role in breaking symmetries in the model structure (Massonis et al., 
2021a); and additional data types such as the number of recovered in-
dividuals (Massonis et al., 2021a) and environmental surveillance 
(Brouwer et al., 2019; Eisenberg et al., 2013). A critical caveat exists, 
however: the available structural identifiability toolboxes only allow for 
deterministic ODEs, although they could be used to establish proxy 
identifiability results for stochastic differential equation models 
(Browning et al., 2020). More research is needed towards developing 
identifiability analysis tools suited to stochastic models. 

So far, we have focused on answering the question: Given a model M , 
which data types can make model parameters more structurally identi-
fiable? Our discussions have therefore originated from an output (or 
data type) perspective. Less attention has been paid to the influence of 
the rest of the model structure on the identifiability of model parame-
ters. The alternative question, therefore, and one that is necessary for 
data-limited settings, is: Which structural modifications on the system of 
ODEs Ẋ(t) will improve the structural identifiability of M ? Some ap-
proaches have been suggested. One approach involves reparameterizing 
the model with the aim to reduce the number of parameters, concen-
trating particularly on identifiable combinations (Eisenberg and Hay-
ashi, 2014; Massonis et al., 2021a, 2021b; Meshkat et al., 2014; Wieland 
et al., 2021). Another approach centres on simplifying model complexity 

by reducing the number of features/states (Massonis et al., 2021a) and 
another entails non-dimensionalizing (Kao and Eisenberg, 2018) or 
scaling some state variables (Brouwer et al., 2018; Eisenberg et al., 
2013). These considerations are outside the scope of the current dis-
cussion but are important to the broader goal of developing infectious 
disease models for useful inference. 

It is important to note that although a model may be s.n.i, it may be 
useful for drawing inferences, if these are limited to the structurally 
identifiable parameters of the model (Janzén et al., 2016; Massonis 
et al., 2021a). For example, with the SIR model with incidence, studied 
at stage one (Table 1), inference may be made on γ, S(0) and I(0) but not 
on β or R(0), since β and R(0) are s.n.i while γ, S(0) and I(0) are s.g.i. 

In this work, we have demonstrated the influence of data types on 
structural identifiability of model parameters. A careful consideration of 
the type of data available for parameter estimation is therefore advised 
as a relevant initial step in performing inference with infectious disease 
transmission models. 

5. Conclusions 

We have studied the structural identifiability of parameters of 
various compartmental models for infectious disease transmission. We 
have demonstrated the influence of data types on structural identifi-
ability by considering different data types as model outputs and exam-
ining how structural identifiability of unknown parameters, including 
ICs, varied with varying outputs. The structural identifiability of some 
parameters varied depending on the type of model output, and single- 
output models were often not structurally identifiable. In general, the 
inclusion of additional data types as outputs improved structural iden-
tifiability of parameters. Attention ought therefore to be paid to the type 
(s) of observed data at hand, prior to estimating model parameters, 
given that data types influence a model’s structural identifiability and 
consequently, the robustness of resulting inferences. 
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