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A B S T R A C T   

The exceptional functional performance of articular cartilage (load-bearing and lubrication) is attributed to its 
poroelastic structure and resulting interstitial fluid pressure. Despite this, there remains no engineered cartilage 
repair material capable of achieving physiologically relevant poroelasticity. In this work we develop in silico 
models to guide the design approach for poroelastic mimics of articular cartilage. We implement the constitutive 
models in FEBio, a PDE solver for multiphasic mechanics problems in biological and soft materials. We inves-
tigate the influence of strain rate, boundary conditions at the contact interface, and fiber modulus on the reaction 
force and load sharing between the solid and fluid phases. The results agree with the existing literature that when 
fibers are incorporated the fraction of load supported by fluid pressure is greatly amplified and increases with the 
fiber modulus. This result demonstrates that a stiff fibrous phase is a primary design requirement for poroelastic 
mimics of articular cartilage. The poroelastic model is fit to experimental stress-relaxation data from bovine and 
porcine cartilage to determine if sufficient design constraints have been identified. In addition, we fit experi-
mental data from FiHy™, an engineered material which is claimed to be poroelastic. The fiber-reinforced 
poroelastic model was able to capture the primary physics of these materials and demonstrates that FiHy™ is 
beginning to approach a cartilage-like poroelastic response. We also develop a fiber-reinforced poroelastic model 
with a bonded interface (rigid contact) to fit stress relaxation data from an osteochondral explant and FiHy™ +
bone substitute. The model fit quality is similar for both the chondral and osteochondral configurations and 
clearly captures the first order physics. Based on this, we propose that physiological poroelastic mimics of 
articular cartilage should be developed under a fiber-reinforced poroelastic framework.   

1. Introduction 

Over the last several decades there has been increasing interest in 
developing functional materials to replace or regenerate cartilage. Since 
cartilage is a load-bearing tissue that supports a low friction sliding 
interface, it is imperative to engineer a synthetic implant that can 
perform the mechanical roles of cartilage. Due to its unique composition 
and structure, it has been observed that, upon contact, extracellular fluid 
is pressurized, which stiffens the contact, reduces the load carried by the 
solid matrix, and provides the lowest friction coefficient. However, this 
same fluid pressure also drives fluid from the tissue leading to decreased 
pressure, increased deformation, and increased friction over time 
(McCutchen, 1962). These observations guided the development of 
biphasic-poroelastic theory for cartilage mechanics (Mow et al., 1980; 
Lai and Mow, 1980a; Armstrong et al., 1984; Soltz and Ateshian, 1998; 
Forster and Fisher, 1999; Caligaris and Ateshian, 2008; Ateshian, 2009; 

Biot, 1941; Basalo et al., 2004) which describes the physics leading to 
interstitial fluid pressurization. 

Over the last four decades poroelastic theory has been expanded 
upon (e.g., poroviscoelasticity (Wilson et al., 2005a; Wilson et al., 
2004a), strain dependent permeability (Lai et al., 1981), anisotropic 
fiber distribution (Ateshian, 2007; Ateshian et al., 2009), and zonally 
graded material properties (Wilson et al., 2004b, 2007)) and repeatedly 
shown to be an excellent predictor of the creep and stress relaxation 
response of cartilage in both confined and unconfined compression 
(Soltz and Ateshian, 1998; Basalo et al., 2004). Furthermore, experi-
mental interrogation of cartilage mechanics has uncovered unexpected 
(e.g., migrating contacts (Caligaris and Ateshian, 2008), tribological 
rehydration (Moore and Burris, 2016) and regions of sub-atmospheric 
fluid pressures (Han and Eriten, 2018)) but predictable behavior based 
on poroelastic theory. Despite these advancements in understanding the 
natural tissue and their underpinning in poroelasticity, there remains no 
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demonstration of a physiologically relevant poroelastic mimic for 
cartilage. While a few cartilage mimics have been reported to exhibit 
some similarities to native cartilage, none have rigorously demonstrated 
the ability to generate interstitial fluid pressure, which is fundamental to 
articular cartilage function. We propose that this gap in translation is 
partly due to the interdisciplinary nature of the solution (multiphasic 
mechanics and biomaterials design) and an unclear narrative for guiding 
the minimum design requirements. 

In this work we use an in silico approach in the open-source finite 
element software FEBio (Maas et al., 2012) to develop a physiological 
poroelastic cartilage mechanics model. While material models of artic-
ular cartilage have become increasingly sophisticated, we aimed to 
develop the simplest material model for which cartilage-like perfor-
mance could be observed. In this work, we define the degree of 
cartilage-like performance as poroelasticity and it is quantified as the 
fraction of the applied load supported by fluid pressure (FLS). We fit the 
finite element models to representative unconfined compression stress 
relaxation experiments on articular cartilage and FiHy™, a composite 
material that has been proposed to mimic articular cartilage (Moore 
et al., 2019). In addition to defining the minimum material model, we 
evaluate how variables such as strain rate, contact interface, and fiber 
modulus affect FLS. These results inform the material properties and 
experimental conditions necessary for designing and evaluating engi-
neered cartilage mimics. 

2. Methods 

This work leverages the framework of poroelastic theory that de-
scribes the deformation response of fluid-saturated porous media. It 
should be noted that in this work we do not develop new material 
models, but rather apply existing ones to understand the minimum 
design requirements. The poroelastic model is implemented in FEBio 
3.4.0 (FEBio Studio 1.5), an open-source nonlinear finite element solver 
for mixture mechanics, fluid mechanics, reaction-diffusion, and heat 
transfer (Maas et al., 2012). The model geometry consists of three 
components: a poroelastic body, a top plate, and a bottom plate, see 
Fig. 1. The geometry and mesh are generated using Gmsh 4.8.4, an 
open-source 3D finite element mesh generator (Geuzaine and Remacle, 
2009). The poroelastic body is governed by poroelastic theory, while the 
top and bottom plate are modeled as rigid, impermeable bodies. The 
rigid material model indicates that the deformation of the rigid body is 
zero or so small that it can be neglected. In addition, the nodal degrees of 
freedom for a rigid body are eliminated and replaced with the trans-
lational and rotational degrees of freedom. The contact between the top 
plate and the poroelastic body is modeled as frictionless, while that 
between the bottom plate and the poroelastic body is generally modeled 
as frictionless. However, we also implemented a rigid contact to inves-
tigate the role of a bonded interface in the case of an osteochondral 

implant. 

2.1. Model geometry 

The top and bottom plate are set up as cuboids with dimensions 5 × 5 
× 2 mm, and are represented by single 8-node hexahedral (HEX8) ele-
ments each as there was no concern for deformation of the rigid bodies. 
The poroelastic body is set up as a quarter cylinder with radius (R) of 3 
mm and height (H) of 1.5 mm, and 6302 HEX8 elements were used. We 
use the quarter cylinder based on symmetry conditions and the reduced 
computational cost. Hexahedral elements are preferred over tetrahedral 
elements due to the limited availability of quadratic tetrahedron ele-
ments in combination with effective contact algorithms, and the 
perceived increased computational cost of quadratic finite elements 
(Maas et al., 2016). A mesh convergence study was performed along the 
radial, axial, and circumferential directions to balance computational 
cost and accuracy, see Supplemental Information 7.1 Mesh Convergence. 

2.2. Poroelastic theory 

Poroelastic theory (Maas et al., 2011, 2012) describes the material as 
a binary mixture of two constituents, namely solid (s) and fluid (f). Both 
constituents are assumed to be intrinsically incompressible, but the 
mixture can change volume when fluid enters or leaves the porous body. 
Under quasi-static conditions, the mixture mass balance and momentum 
balance reduce to 

div(vs +w)= 0, (Eq.1)  

and 

div σ= 0, (Eq.2)  

respectively, where vs is the solid matrix velocity, w is the volumetric 
flux of fluid relative to solid (volume of fluid passing through a cross- 
section of the mixture, per mixture area, and per time), and σ is the 
Cauchy stress for the mixture. 

The relation between relative fluid flux w to fluid pressure p is given 
by 

w= − k⋅grad p (Eq.3)  

where k is the hydraulic permeability tensor. 
Since the mixture is porous, the Cauchy stress for the mixture can be 

decoupled into the solid and fluid components, 

σ= − pI + σe (Eq.4)  

where I is the identity tensor and σe is the stress resulting from solid 
matrix strain. Consequently, the traction force or load of the mixture (f) 
can be decoupled into two contributions as well when the stresses are 
integrated over the same surface, giving 

f = − ff + fe (Eq.5)  

2.3. Material models 

The simplest model for permeability assumes isotropy and strain 
independence, hence the permeability tensor is given by, 

k= kI (Eq.6)  

where k is a scalar material constant. 
The solid ground matrix is modeled as a compressible neo-Hookean 

material and its strain energy density function is given by, 

Ψ =
μ
2
(I1 − 3)− μ ln J +

λ
2
(ln J)2 (Eq.7)  

where μ and λ are the shear modulus and first Lamé parameter from 

Fig. 1. Modeled components: top plate, poroelastic body and bottom plate. The 
top contact is treated as frictionless, while the bottom contact is treated as 
frictionless or rigid depending on the question of interest. Note that all pa-
rameters of the model are defined in Cartesian coordinates. 
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linear elasticity, and J is the volume ratio that describes the volume 
change of the solid. The shear modulus and first Lamé parameter are 
related to Young’s modulus (E) and Poisson’s ratio ν via μ = E

2(1+ν) and 
λ = Eν

(1+ν)(1−2ν). I1 denotes the first invariant (trace) of the right Cauchy- 
Green deformation tensor C. Therefore, only two material parameters (E 
and ν) are needed to describe the Neo-Hookean material. This model is 
referred to as the poroelastic model in the following sections. 

A solid mixture model that incorporates continuous fibers (fi) within 
a neo-Hookean ground matrix (g) is used to model the effect of fiber 
reinforcement on the poroelastic response. This model assumes that the 
strain energy density of the mixture is the summation of the strain en-
ergy densities of all the constituents. Assuming no explicit dependencies 
between the fibers and ground matrix, and no residual stresses in the 
solid mixture, the strain energy density function of the mixture reduces 
to 

Ψ =
∑

α=fi,g
Ψα(F, ρα) (Eq.8)  

where F denotes the deformation gradient and ρα the apparent density of 
constituent α, and the Cauchy stress for the solid mixture becomes 

σe =
∑

α=fi,g
σα (Eq.9) 

In other words, the stress in the solid phase can be evaluated simply 
by summing the stresses in the fibers and ground matrix. 

To implement this model, the fibers are modeled as a continuous 
fiber distribution, of which the strain energy density function integrates 
the contributions from fiber bundles oriented along all directions 
emanating from a point in the continuum, 

Ψ(C)=

∫

A

H (In − 1)
1

2π Ψn (In) dA (Eq.10)  

where A represents a unit circle over which the integration is performed, 
In = n⋅C⋅n denotes the normal component of C along n (the square of the 
stretch ratio along that direction), and n is the unit vector along the fibre 
orientation in the reference configuration. H(•) is the Heaviside unit 
step function that includes only fibers that are in tension. The fiber 
density distribution is described using a circular distribution which 
models a transversely isotropic 2D distribution. 

Meanwhile, Ψn represents the strain energy density of the fiber 
bundle oriented along n. The fiber bundles are modeled using an 
exponential power law and the strain energy density function is given as 

Ψ n (In)=
ξ

αβ

(
exp

[
α (In − 1)β

]
− 1

)
(Eq.11) 

Overall, three material parameters (ξ, α and β) are needed to describe 
the continuous fiber distribution model. This fiber-reinforced 

poroelastic model is referred to as the fiber-reinforced model in the 
following sections. 

2.4. Boundary conditions 

The following boundary conditions are applied to the different sur-
faces (see Fig. 2 and Table 1), 

ux (0, y, z, t)= 0  

uy (x, 0, z, t)= 0  

p (R cos θ,R sin θ, z, t) = 0 for 0◦ ≤ θ ≤ 90◦

The first two boundary conditions are Dirichlet boundary conditions 
where the x- and y-displacement, at x = 0 and y = 0 respectively, are 
fixed at all times. The third boundary condition indicates that the fluid 
pressure at the curved surface of the poroelastic body is zero, hence fluid 
can flow out of the body from this surface. 

Furthermore, the stress-relaxation experiment requires the sample to 
be compressed between two plates using displacement-control. To 
model this experimental setup, a rigid displacement uz is prescribed onto 
the top plate in the negative z-direction (compression). Specifically, a 
linear ramp (1% strain/s unless otherwise stated) to the target 
displacement (10% strain) is applied and maintained until the end of the 
simulation. The 10% strain was chosen to model in vivo cartilage strains 
which are typically 5–10% during daily activity (Sanchez-Adams et al., 
2014; Widmyer et al., 2013; Coleman et al., 2013). Since deformation of 
the rigid body is negligible, the prescribed displacement is applied to the 
poroelastic body. Other than the prescribed rigid displacement, the top 
plate is constrained in the x- and y-displacement, and rotation in all 
three directions. The bottom plate is constrained in all displacements 
and rotations. 

In the case of a frictionless bottom contact, the bottom surface of the 
poroelastic body (at z = 0) can slide in the x- and y-direction, but not in 
the z-direction, giving 

Fig. 2. 2D visualization of the boundary conditions on the poroelastic body for the case where the bottom contact is frictionless in the front view (left) and the top 
view (right). 

Table 1 
Summary of the boundary conditions and rigid constraints implemented.  

Body Boundary Conditions 

Top plate Prescribed rigid displacement of −0.15 mm 
Fixed displacement in the x- and y-direction 
Fixed rotation in the x-, y- and z-direction 
Impermeable to fluid flow 

Bottom plate Fixed displacement in the x-, y- and z-direction 
Fixed rotation in the x-, y- and z-direction 
Impermeable to fluid flow 

Poroelastic body Fixed x-displacement in the yz-face of the body 
Fixed y-displacement in the xz-face of the body 
Zero fluid pressure for the curved surface  
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uz (x, y, 0, t)= 0 

However, to model for a fully bonded contact, the nodes of the 
deformable poroelastic body in contact with the bottom plate are 
coupled to the rigid body (implemented as rigid contact). Essentially, 
the bottom surface of the poroelastic body is constrained in all directions 
and is not allowed to slide freely as in the case of a frictionless contact, i. 
e. 

ux (x, y, 0, t)= 0  

uy (x, y, 0, t)= 0  

uz (x, y, 0, t)= 0 

Moreover, the top and bottom plates are impermeable, giving rise to 
the following boundary conditions: 

wz (x, y,H, t)=−wz (x, y, 0, t)= 0  

2.5. Stress relaxation simulation & FLS quantification 

An example stress relaxation simulation is shown in Fig. 3. There are 
several noteworthy observations. First, fluid pressure decays with time 
due to the permeability of the poroelastic body. Second, fluid pressure is 
greatest at the center of the poroelastic body for most times as it is the 
furthest from the zero-pressure boundary. Third, in an isotropic fric-
tionless contact the fluid pressure is uniform along z. 

Based on mixture theory, the load is partitioned between the fluid 
and solid matrix of the poroelastic body, and the sum of their contri-
butions equals the total applied load (Fig. 3C and D). The fluid load 
support (FLS) of the poroelastic body is simply the ratio of the fluid load 
to the total applied load. To evaluate the FLS on a particular surface on 
the poroelastic body, the fluid load and the total load on that surface 
need to be calculated and can be found by integrating the fluid pressure 
and the minimum principal stress (stress normal to the poroelastic body) 
over that surface respectively, giving 

FLS =

⃒
⃒
⃒
⃒
⃒
⃒

∫

S
p da

∫

S
σp,min da

⃒
⃒
⃒
⃒
⃒
⃒

where S is the surface of interest, and σp,min is the minimum principal 

stress. To gauge the transient response of the poroelastic body, we 
calculate the time for FLS to fall below 0.5%. The integrations and 
thresholding are performed using custom written MATLAB® (R2019b) 
scripts. 

2.6. Model parameters 

The work presented here includes one material coefficient (k) to 
describe the permeability of the poroelastic body, and two elasticity 
parameters (E and ν) to describe the ground matrix for the poroelastic 
model. In the fiber-reinforced model, three additional elastic parameters 
are used to describe the fibers (ξ, α and β). Table 2 provides a summary 
of the material parameters that are used within the simulation. 

The fluid volume fraction φf of articular cartilage generally ranges 
between 0.7 and 0.9 and variations over this range have negligible in-
fluence on the predicted response (Ateshian et al., 2009), hence φf is 
simply chosen to be 0.8. This value also corresponds to the experimen-
tally measured fluid volume fraction of FiHy™. The values for k, E, and ν 
are informed by past theoretical and experimental studies of articular 
cartilage, where k is reported to be on the order of 10−3 mm4/N ⋅ s 
(Ateshian, 2009), The Young’s modulus is approximately 0.5 MPa (Park 
et al., 2004; Armstrong and Mow, 1982), and the drained Poisson’s ratio 
is between 0.02 and 0.16 (Ateshian et al., 2004), which is also in 
agreement with the experimentally measured Poisson’s ratio for FiHy™. 

To date, few published studies have implemented the constitutive 
model for continuous fiber distribution. Therefore, our estimations of 
the fiber parameters ξ, α, and β are guided by conventions amongst the 
FEBio community. ξ is often chosen to be in the range of 1–4 MPa in 
models for continuous fiber distribution, ellipsoidal fiber distribution, 

Fig. 3. (A, B) Effective fluid pressure distribution 
within the (A) poroelastic model and (B) fiber- 
reinforced model (front view) at various times in 
the simulation. Initially, fluid pressure builds to sup-
port the applied compressive load, but as time goes 
on, fluid flows out of the body and the fluid pressure 
subsides. Note that the colors correspond to different 
fluid pressures in (A) and (B), and the time steps for 
(A) and (B) are different. (C, D) Plot of load (evalu-
ated at the top surface of the (C) poroelastic model 
and (D) fiber-reinforced model) against time. The 
total applied load is decoupled into two contribu-
tions: solid and fluid. All loads are given as positive 
values. (A) and (C) are obtained from the poroelastic 
model, while (B) and (D) are obtained from the fiber- 
reinforced model using the same initial conditions.   

Table 2 
Material parameters used in the poroelastic models.  

Parameter Value 

Fluid volume fraction φf 0.8 
Permeability k (mm4/N-s) 0.001 
Young’s modulus E (MPa) 0.5 
Poisson’s ratio ν 0.1 
Fiber modulus ξ (MPa) 4 
α 0 
β 2  
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spherical fiber distribution and discrete fiber bundles (Ateshian et al., 
2009; FEBio Forum, 2021; Wilson et al., 2005b). α is chosen to be 0 to 
provide the power-law relation for each fiber bundle as this relation has 
been validated for cartilage by Chahine et al. (2004). β is set to 2 so that 
it produces a piecewise-linear stress-strain response across the origin 
(Ateshian et al., 2009). 

2.7. Model fitting 

In this work, we use a manual fitting approach for purposes of speed 
and global fitting to the data. Using the built-in parameter optimization 
provides the best fit by minimizing the residual; however, this results in 
a fit that is biased toward zero fluid pressure, and thus fails to capture 
the initial response of the system. Using an iterative manual fitting 
approach we are better able to fit the initial response without the need 
for weighting functions. 

We use the following process to manually fit the data.  

1. Fit the equilibrium response, which is almost entirely controlled by 
E.  

2. Fit the peak force, which is controlled by E and ξ. Since E is fixed in 
step 1, only ξ requires iteration.  

3. Fit the transient response which is controlled by ξ and k. Since ξ is 
fixed in step 2, only k needs to be adjusted. 

The experimental data of the chondral specimens (bovine cartilage, 
porcine cartilage and FiHy™) are fitted with the fiber-reinforced model 
using a frictionless top and bottom contact. For the osteochondral 
specimens (porcine osteochondral explant and FiHy™ + bone substi-
tute), a fiber-reinforced model with a fully bonded bottom contact is 
implemented. The bonded contact is used to more faithfully reproduce 
the true boundary conditions for osteochondral specimens and the fused 
FiHy™ + bone substitute. The geometry of the poroelastic body is 
adjusted according to the actual specimen geometry (see Table 3). 

To assess the quality of fit, the standard error of regression S is 
calculated. 

S =

̅̅̅̅̅̅̅
SSres
n−2

√

where SSres =
∑

i
(yi − f(xi))

2. xi and yi are the experi-

mental time and force data, f(xi) is the predicted value obtained from the 
simulation model and n is the total number of data points. A good fit 
should have S values approaching 0. 

2.8. Experimental method 

Cylindrical biopsies of bovine articular cartilage, porcine articular 
cartilage, and FiHy™ were tested in stress relaxation and fit by the 
poroelastic models. We extracted osteochondral cores from stifle joints 
on the day of butchering and froze the explants at −20 ◦C until the day of 
testing. Frozen specimens were thawed under ambient conditions and 
submerged in fresh 1X phosphate buffered saline (PBS) for 2 h prior to 
cartilage isolation or testing. We isolated articular cartilage from the 
osteochondral cores using a biopsy punch and cut along the cartilage- 
bone interface. The cartilage cylinder was then placed in a V-block to 
cut the bottom surface into a right cylinder. The articular cartilage 

surface remained intact. For osteochondral testing the explant remained 
intact. FiHy™ specimens were provided as a sheet in both a cartilage- 
only and cartilage + bone substitute format. 6 mm diameter biopsy 
punches were used to extract FiHy™ cores for testing. Scaffolds were 
submerged in 1 ml of PBS for at least 2 h prior to testing. 

Hydrated specimen thickness and diameter were measured in trip-
licate and then loaded in compression between parallel stainless-steel 
plates on a mechanical test bench (TA Electroforce 5500). 100 μl of 
PBS was placed directly on the sample and a humidity chamber was 
placed around the entire setup to ensure hydration throughout testing. A 
22.2 N tension-compression load cell was used to quantify the 
compressive force while an internal displacement sensor recorded the 
axial position. 

The following stress-relaxation protocol was implemented: (1) ramp 
toward the sample at 0.5 V/s (~0.6 mm/s) until reaching the target 
load, (2) hold the position in which the target load was achieved until 
equilibrium, and (3) unload the specimen. The target peak compressive 
stress was 0.4 and 0.2 MPa for articular cartilage and FiHy™ respec-
tively. The time for equilibration was based on prior knowledge of the 
specimen’s relaxation behavior. Note that voltage control was used 
when loading the sample as it offered the highest loading rates and less 
stability issues in the control algorithm. 

3. Results and discussion 

3.1. Effect of loading rate on the transient response 

We observed very little effect of strain rate on FLS when considering 
the entire simulation period (Fig. 4). In fact, its effect is only apparent in 
the very early period of the simulation; the difference between FLS of 
each case was less than 0.8% after 300 s. The peak FLS increases as the 
loading rate increases because the poroelastic body deforms faster than 
the fluid can flow out; hence it acts as if it is ‘trapped’ within the solid 
matrix, building fluid pressure. However, once at the target displace-
ment the higher fluid pressure leads to an initially greater exudation rate 
and the FLS converges with the slower loading rates after a period of 
time. 

Although there have not been many reports on the physiological 
strain rate or loading rate for the human knee due to the difficulty in 
obtaining reliable measurements, it is postulated by Oloyede and co- 
workers that the normal strain rate is about 0.5%/s (Oloyede et al., 
1992), while Chia and Hull have suggested walking to produce a strain 
rate of 32%/s (Chia and Hull, 2008). Therefore, the values considered in 
this work produce an upper (step loading) and lower (0.16%/s) bound 
for physiological strain rates in the human knee. Since the linear ramp at 
1%/s is within the suggested physiological range we have chosen it for 
all other investigations in this work. 

3.2. Effect of fiber-reinforcement 

Tension-compression nonlinearity is one of the major advancements 
in modeling articular cartilage as it explains the high FLS (as high as 
99%) observed experimentally (Park et al., 2003). The 
tension-compression nonlinearity of cartilage has been primarily 
attributed to the incorporation of fibers in a poroelastic material (Basalo 
et al., 2004; Ateshian et al., 2009; Soulhat et al., 1999), and highlights 
the significance of collagen fibers in articular cartilage. In the uncon-
fined compression setup, the fibers resist radial deformation due to their 
high tensile modulus and provide the reaction force for hydrostatic 
pressure. With stiffer fibers, more radial deformation is resisted during 
compression and thus a higher fluid pressure can be achieved within the 
poroelastic body. Indeed, our simulations confirm that incorporating 
stiffer fibers in the poroelastic body resulted in fluid pressures that were 
able to support up to 96% of the total load (Fig. 5a). Our results are 
corroborated by the experimental findings of Basalo et al. (2004). 

Interestingly, we observed that the time to reach equilibrium de-

Table 3 
Geometry of poroelastic body in the fiber-reinforced model used for optimiza-
tion. *The thickness of the poroelastic body is estimated to be 2 mm as only the 
overall thickness of FiHy™ + bone substrate is known (6.07 mm).  

Measure Bovine 
Cartilage 

Porcine 
Cartilage 

FiHy™ Porcine 
Osteochondral 

FiHy +
Bone 
Substitute 

Thickness 
(mm) 

2.130 2.160 2.030 2.400 2.000* 

Radius 
(mm) 

2.805 2.735 4.020 2.625 3.080  
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creases as fiber modulus increases (Fig. 5b). This transient response of 
fluid pressure in a poroelastic material is characterised by its time 
constant (τ). The analytical solution to 1D permeation is (Mow et al., 
1980; Armstrong et al., 1984; Ateshian, 2017), 

τ = h2

H+Ak
(Eq.12)  

where h is the characteristic path length in which fluid predominantly 
flows (in this work, radius of the poroelastic body) and H+A = HA+ ξ is 
the combined stiffness of the Neo-Hookean ground matrix and fibers. 
HA = λ + 2μ is the aggregate modulus of the ground matrix and can be 
related to the first Lamé parameter λ and shear modulus μ. The above 
relationship has been repeatedly demonstrated in the literature and in-
cludes the work of Carter et al. (2007). From Eq. (12), the characteristic 
time constant is shown to be inversely related to the fiber modulus if all 
other parameters remain the same. Thus, stiffer fibers produce greater 
fluid pressures that create a driving force for fluid to flow out of the 
body, thereby reducing the time to reach equilibrium. 

3.3. Effect of the bonded interface 

Two contact interfaces, namely the frictionless contact and the fully 
bonded contact, are investigated in this work. The fully bonded contact 
is relevant to the native tissue and osteochondral implants such as 
FiHy™, which involve a cartilage mimic bonded to a subchondral bone 
substitute. In a typical stress relaxation experiment in unconfined 
compression, FiHy™ is compressed between two frictionless plates. This 
means that FiHy™ is allowed to expand freely in the radial direction, 

hence the top and bottom contacts can be modeled as frictionless. 
However, with an attached bone substitute, the bottom surface of FiHy is 
unable to move as freely in the radial direction. In this case, the bottom 
contact can be modeled as a sliding interface with an extremely large 
friction coefficient, or simply as a rigid contact. The implementation of a 
rigid contact is less computationally intensive and provides a similar 
result as that of the sliding interface with a large friction coefficient (see 
Fig S7.2), hence a rigid contact is chosen in this work. It is noted that this 
contact condition is realistic under the assumption that the bond be-
tween FiHy and the bone substitute is extremely strong such that no slip 
will occur at the interface. 

It is important to emphasise that the effective fluid pressure, and 
hence the fluid load, is always uniformly distributed in the radial di-
rection for an isotropic poroelastic body with frictionless contact. In 
other words, there is no axial dependence of fluid pressure and FLS is 
consistent for the top and bottom surface of the poroelastic body 
(Fig. 6C); this is not the case for the fully bonded contact. There are three 
important observations that can be made using a fully bonded contact: 
(1) the peak FLS evaluated at the top surface of the poroelastic body is 
higher and propagates slower when a fully bonded contact is imple-
mented; (2) the FLS evaluated at the bottom surface (fully bonded 
contact) is higher than that at the top surface, but eventually equili-
brates at ~5000 s for the modeled conditions; (3) the overall FLS for the 
top and bottom surface in the case for the rigid contact is higher than 
that for the frictionless contact until ~3000 s. The bonded interface 
creates an effective radial confinement at the bottom, and in a way acts 
as further fiber reinforcement. These results demonstrate that the 
additional constraints imposed by the rigid contact result in higher peak 

Fig. 4. The effect of strain rate on FLS. (A) The response for the entire simulation period. (B) The early time response for FLS. A step displacement condition can be 
thought of as an infinitely large linear ramp rate. Note that the result shown here is obtained using the poroelastic model without fiber-reinforcement. 

Fig. 5. (A) Plot of FLS as a function of time for different fiber moduli ξ. The poroelastic model without fiber incorporation is denoted as ‘without fiber’. Note that the 
FLS is evaluated at the top surface of the poroelastic body. (B) The effect of fiber modulus on the maximum (peak) FLS and the time to reach equilibrium. 
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FLS that may have important physiological implications. 
While these findings demonstrate a possible method of amplifying 

FLS and a mechanism nature may already exploit, there are currently no 
experimental findings that can validate this observation. In fact, native 
cartilage tissues have been shown to have higher FLS at the superficial 
zone than at the deep zone (near the bone); however, this is generally 
linked to the collagen fiber orientation (Park et al., 2003). Some studies 
on contact mechanics of articular cartilage have modeled the cartilage to 
be ideally bonded to bone (similar to the rigid contact in this work) (Wu 
et al., 1997; Ateshian et al., 1994), but did not focus on the relationship 
between contact conditions and the resulting FLS. In future work we aim 
to experimentally validate the role of the bonded interface on the FLS. 

3.4. Cartilage and FiHy™ 

Numerous studies have demonstrated that poroelastic theory and its 
extensions can indeed be used to describe cartilage mechanics (Forster 
and Fisher, 1999; Caligaris and Ateshian, 2008; Ateshian, 2009; Soltz 
and Ateshian, 2000). To develop a synthetic implant that matches the 
mechanical properties of cartilage, it is necessary to show that the me-
chanical response of the implant can be described using poroelastic 
theory as well. Hence, the simulation models developed in this work are 
fit to experimental stress-relaxation data of a bovine cartilage specimen, 
a porcine cartilage specimen, and a representative FiHy™ sample. 

As seen in Fig. 7(A-C) and Table 4, the fiber-reinforced model 
showed good agreement (S = 0.12 and 0.42) with the experimental data 
of bovine and porcine cartilage. The goodness of fit is strongly depen-
dent on the inclusion of tension-compression nonlinearity, which agrees 
with previously published work for unconfined compression of articular 
cartilage (Soulhat et al., 1999; Soltz and Ateshian, 2000; Cohen et al., 
1998). In comparison, the fiber-reinforced model had a slighly lower fit 
quality to FiHy™ (S = 0.47). This may be due to additional material 
properties that are not captured in the fiber-reinforced model, such as 
poroviscoelasticity or directional permeability. Despite this, the 
fiber-reinforced model gave a similar overall response as the experi-
mental data and gives confidence that FiHy™ is at least partially 

governed by poroelasticity. The loading rates used in this study are more 
than an order of magnitude faster than most of the poroelastic literature 
using this same contact configuration (Park et al., 2003; Soltz and Ate-
shian, 2000; Cohen et al., 1998). We chose to use high loading rates in 
this work to better approximate the dynamic loading of joints. One study 
that looked at similar loading rates found similarly low overall agree-
ment between the model and experimental data (Huang et al., 2003); 
however, they showed that the use of a poroviscoelastic model improved 
fit quality. While the inclusion of viscoelasticity is certainly important 
for capturing the complete cartilage response it is left up to the reader to 
decide if this is a necessary design constraint. 

The fit material parameters for bovine and porcine cartilage have 
similar relationships and their values agree with the existing literature 
(Soltz and Ateshian, 2000; Moore and Burris, 2015). In contrast, FiHy™ 
had a lower E and ξ, and higher k. Despite this, the modulus ratio (ξ/E) 
was »1 for all materials (bovine = 28, porcine = 100, FiHy™ = 20) 
enabling FiHy™ to support a majority of the applied load through 
poroelastic fluid pressure. 

3.5. Osteochondral mechanics 

Using the optimized parameters found for isolated cartilage (Table 4) 
as inputs to the fiber-reinforced model with a fully bonded contact did 
not predict the stress relaxation response of their osteochondral coun-
terpart, Fig. 7 and Table 5. These findings are not surprising as it was 
previously established that having a bonded interface, such as sub-
chondral bone or bone substitute, would drive higher FLS (Fig. 6). 
Optimizing the model fits for the fully bonded contact resulted in better 
curve-fits to the experimental data for both the porcine osteochondral 
specimen and FiHy™ + bone substitute, with fit values of 0.40 and 0.24. 
While the fiber-reinforced model with fully bonded contact is certainly 
capable of describing the first order response of the osteochondral 
specimen it could be further improved by considering additional phys-
ics, such as a non-rigid and nonlinearly elastic body to which it is 
bonded, transversely isotropic fiber distribution, and viscoelasticity. 

Overall, the fiber-reinforced model provides a good first-order 

Fig. 6. (A, B) Effective fluid pressure distribution within the poroelastic body (front view) at selected times in the simulation. (A) and (B) are obtained from the 
poroelastic model with (A) frictionless bottom contact and (B) fully bonded contact. Note that the scales and time steps are different for (A) and (B). (C) Plot of FLS as 
a function of time. The FLS is evaluated at the top (denoted as T) and bottom (denoted as B) surface of the poroelastic body. 
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agreement with the experimental findings of both cartilage and FiHy™. 
Although there are more sophisticated constitutive models to describe 
the fiber behavior, and the α and β parameters could have been treated 

as optimizable parameters, we limited our model to account for the 
primary physics needed to demonstrate physiological poroelasticity. In 
terms of permeability, the fiber-reinforced model assumes constant 
isotropic permeability. In articular cartilage it has been shown that the 
permeability is anisotropic and strain-dependent (Soltz and Ateshian, 
2000; Lai and Mow, 1980b). While model fits would certainly improve 
from higher order fiber models, directional permeability, and poro-
viscoelasticity there remains limited experimental information to guide 
the appropriate selection of material parameters. 

4. Closing remarks 

The primary objective of this work was to identify the primary design 
requirements for developing a physiological poroelastic cartilage- 
mimic. To this end we constructed two constitutive poroelastic models 
(poroelastic and fiber-reinforced poroelastic). The models were fit to 
bovine and porcine articular cartilage. While the poroelastic model was 
incapable of providing a predictive response, the fiber-reinforced model 
provided a good fit to experimental data. We then fit the fiber-reinforced 
model to a cartilage substitute known as FiHy™ (Moore et al., 2019). 
The model provided a first order description of the physics and suggests 
FiHy™ is at least partially driven by poroelasticity. Furthermore, we 
evaluated the effect of a bonded interface for cartilage and FiHy™ using 
both a theoretical and experimental approach. The results demonstrate 
that the bonded substrate enhances the fluid load support of the 
poroelastic body; however, the fit quality is reduced likely due to 
additional physics not considered in this first order model. Our future 
work aims to increase the fiber modulus and decrease the permeability 

Fig. 7. Experimental unconfined compression stress- 
relaxation and corresponding curve-fits for (A) 
bovine cartilage, (B) porcine cartilage, (C) FiHy™, 
(D) porcine osteochondral explant, and (E) FiHy™ 
attached to a bone substitute. In addition to the 
optimized curve fits in (D) and (E), the experimental 
data is also fit with parameters that were determined 
from their chondral counterpart in (B) and (C). (A), 
(B), and (C) were fit with the fiber reinforced poroe-
lastic model while (D) and (E) were fit with the fiber 
reinforced poroelastic + rigid contact model.   

Table 4 
Optimized parameters (Young’s modulus E, permeability constant k, and fiber 
modulus ξ) of the bovine cartilage specimen, porcine cartilage specimen, and 
FiHy™. The standard error of regression (S) from the fits are shown in the last 
row.  

Parameter Bovine Cartilage Porcine Cartilage FiHy™ 

E (MPa) 0.18 0.05 0.01 
k (mm4/N-s) 0.04 0.10 3.00 
ξ (MPa) 5.00 3.00 0.20 
S (N) 0.12 0.42 0.48  

Table 5 
Optimized parameters (Young’s modulus E, permeability constant k and fiber 
modulus ξ) of the porcine osteochondral specimen and FiHy™ + bone substi-
tute, and parameters obtained from their chondral counterpart. The standard 
error of regression (S) from the fits are shown in the last row.  

Parameter Porcine Osteochondral FiHy™ + Bone Substitute 

From Cartilage Optimized From FiHy™ Optimized 

E (MPa) 0.05 0.05 0.01 0.10 
k (mm4/N-s) 0.10 0.03 3.00 0.10 
ξ (MPa) 3.00 3.00 0.20 1.00 
S (N) 0.49 0.40 0.51 0.24  
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of FiHy™ to produce a more cartilage-like response. 
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