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Abstract

This thesis focuses on the optimality and efficiency of organism locomotion strate-

gies, specifically of microscopic undulators, in two distinct parts. Undulators loco-

mote by propagating waves of bending deformation along their bodies, and at the

microscale (ie low Reynolds number) interactions between undulators and their

surroundings are well-described by biomechanical models due to high viscosity

and negligible inertia. Frameworks such as resistive force theory enable the de-

termination of optimal gaits for micro-undulators, often defined as the waveform

maximising the ratio of swimming speed to energetic cost.

Part I explores this avenue of research in a theoretical setting. Primary mathe-

matical focus has been on finding optimal waveforms for straight-path forwards

locomotion, but organisms do not move exclusively this way: turning and ma-

noeuvring is key to survival. Here we establish a mathematical model, extend-

ing previous approaches to modelling swimming micro-undulators, now intro-

ducing path curvature, to obtain optimal turning gaits. We obtain an analytical

result demonstrating that high-curvature shapes minimise energetic cost when the

penalty for bending is reduced. Imposing limitations on the curvature, and inves-

tigating multiple high-dimensional shape-spaces, we show that optimal turning

results can be closely approximated as constant-curvature travelling waves.

Part II adopts an experimental approach. Quantitative phenotyping tools can be

used in behavioural screens of the model organism C. elegans to detect differences

between wildtype and mutant strains. Expanding the current set of tools to in-

clude more orthogonal features could enable increased detection of deficiencies.

Here we develop efficiency as a phenotyping lens for C. elegans, quantifying the

gait optimality of rare human genetic disease model strains. Genetic diseases in

humans are modelled in C. elegans with disease-associated orthologs. We find

worm gait efficiency is found to correlate highly with percentage time paused.

High efficiencies are exhibited during reversals and backing motions, due to sup-

pressed head-swinging and increase in speed.
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Chapter 1

Introduction

1.1 Motivation

All types of organisms on this planet maintain their existence by means of re-

production, growth, development, and maintenance. In addition, responding to

stimuli (averse or otherwise) is also key to survival. Many organisms can engage in

these existential activities without motility (eg trees, corals, sponges). However,

for a vast number of organisms the ability to self-locomote is crucial to staying

alive. Many organisms need to move to find food, to find a suitable habitat, to

seek a mate, or to avoid aversive stimuli such as toxins or predators. Even for some

sessile organisms, there is a motile stage during development. Motility is there-

fore essential for survival for many species, and evolutionary processes have thus

shaped the locomotion strategies that motile organisms employ when traversing

their surroundings.

One such strategy is undulatory locomotion, which is motion characterised by the

propagation of waves along an often long, slender body. This wave-like movement

pattern exists across all scales to generate organism propulsion through a variety

of different media: from snakes on sand and eels in the ocean, to nematodes
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on agar and spermatozoa in mucus. The prominence of undulatory locomotion

across life is evidence of the effectiveness of this particular movement strategy,

and thus has inspired many man-made devices in technology and robotics. Bio-

inspired robots have been designed to employ this undulatory movement strategy

across a wide range of applications and scales. From the microscale for medi-

cal diagnosis and drug delivery in precision medicine [1], to the macroscale for

searching for victims in rubble-composed disaster sites [2], biomimetic design is

becoming increasingly popular in modern robotics, often taking inspiration from

undulatory gaits exhibited by organisms in nature [3].

Underlying both design in robotics, and also metabolism in organism motility, is

an energetic cost associated with such undulatory motions. To build an efficient

robot, designers can seek to attain maximum functionality per unit power input.

Likewise, for many organisms it is preferable to achieve the required displace-

ment for survival (eg to find food), while conserving as much energy as possible.

Biologically, there is a cost associated with this kind of motion, and thus one of

the avenues of research is understanding that cost, how it can be optimised for

manoeuvrability, and how this impacts the gaits that are exhibited by these undu-

latory organisms.

The avenue of research on efficient organism locomotion spans across a broad

range of scales (from snakes and eels at the macroscale to nematodes and flag-

ellates at the microscale), and also spans across a broad range of definitions of

‘efficiency’. How we mathematically define the energetic cost of locomotion, and

how this might differ between different modes of motion (eg moving forwards, re-

versing, turning), as well as differ between different organisms or different strains

of organism depending on their physiological properties, is an active area of re-

search. The focus of this thesis is at the microscale, and this thesis is split into two

related by distinct parts which respectively explore these theoretical mathematical

approaches and differences between optimality in individuals. The overarching

motivation across both parts is to expand the current understanding of optimality
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and efficiency of microscale undulatory locomotion. This is done by extending

the current mathematical approaches to previously unconsidered motion modes

(undulatory turning strategies) in Part I, and then investigating behavioural dif-

ferences across models of Mendelian genetic diseases in C. elegans in Part II.

C. elegans is a model organism that is used extensively across a wide breadth of

scientific research areas. It is a microscopic worm (approximately 1mm long)

and locomotes by propagating planar waves along the length of its body. It has

an extremely well-characterised nervous system [4,5], and the ability to perform

genetic perturbations on this animal [6,7] combined with the excellent availability

of large datasets characterising its movement patterns to a high resolution make

it an excellent opportunity for studying organism gait efficiency.

1.2 Thesis outline

This thesis explores this avenue of optimal undulatory locomotion in two parts.

Part I lies in the realms of mathematical biofluid dynamics and computational

micromechanics, addressing the question of optimal undulatory locomotion —

initially for straight-path forwards locomotion in chapter 2, and then for novel

considerations of undulatory turning in chapter 3. Part II addresses the question of

optimal undulatory locomotion in an experimental setting, applying gait efficiency

as a phenotyping tool in a C. elegans behavioural screen in chapter 4.

Part I

The anatomical simplicity and elegant wave-like movement patterns of undula-

tory organisms inherently lends themselves to mathematical analysis. Developing

a mathematical framework to describe this type of movement is an active area of

research, and many models have been devised to further understanding of how
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undulatory organisms traverse their surroundings. In particular, at the micro-

scopic scale where these organisms live in a world of high viscosity and negligible

inertia (termed “low Reynolds number”), the simplification of the associated hy-

drodynamics allows for rigorous theoretical analysis of the fluid mechanical forces

involved in swimming micro-undulation. Chapter 2 provides an overview of the

mathematics of low Reynolds number undulatory locomotion, and quantitatively

replicates results from the literature for optimal straight-path forwards undulatory

motion for planar undulations. The optimal undulatory gait in this chapter is de-

fined as the shape which maximises a generalised swimming efficiency function,

which includes a dimensionless parameter allowing for variation in the relative

importance of energetic cost for bending versus energetic cost due to dissipation.

We are explicit in saying straight-path undulatory movement above because, for

the vast majority of the literature concerning planar undulations, the focus of the

mathematical models has been emphatically for the case of straight-path forwards

motion of these organisms. There exists a gap in the literature for the consider-

ation of optimal turning strategies of these undulatory organisms. To this point,

one of the main focuses of this thesis is to extend current approaches to modelling

optimal microscale undulatory locomotion, for the question of optimal turning

gaits. This is addressed in chapter 3, in which optimal turning gaits for a variety

of parametrisations of the shape space are obtained. The motion of a slender rigid

body through a surrounding fluid of high-viscosity is analysed by the resistive force

theory (of Gray and Hancock, 1955 [8]). This thesis considers the propagation of

planar waves along the length of a microscopic slender body. The resistive force

theory framework assumes that hydrodynamic forces are proportional to the local

body velocity only — nonlocal forces that account for long-range hydrodynamic

interactions are disregarded in this framework. This is a widely-used simplifi-

cation of slender body theory, and neglecting nonlocal forces provides a suitable

approximation for flagella locomotion in the absence of a cell body, and also for

propagating waves of large amplitude (discussed in more detail in chapter 2).
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The optimal undulatory turn is determined via numerical optimisation, and is de-

fined as the body shape that minimises the energetic cost of motion (the objective

function), subject to the constraint that after one wave-period the net-orientation

of the body is equal to some specified turning angle (a parameter that is set prior to

optimisation). The objective of the optimisation in this chapter has changed from

the previous chapter: in chapter 2 we maximise a measure of efficiency, whereas

in chapter 3 we minimise a measure of energetic cost. This energetic cost is pre-

cisely the denominator of the efficiency function in chapter 2. This change in

objectivity allows for the consideration of reorientation strategies without inher-

ently rewarding or penalising gaits with high velocities or large net-displacement.

The shape of the waveform is decomposed onto a finite number of modes which

prescribe the shape of the body. These modes are the control parameters in the

optimisation routine, which are modified at each iteration such that the objec-

tive function is optimised. Several parametrisations of the shape space are inves-

tigated: Fourier travelling waves, shapes parametrised with Chebyshev polyno-

mials, and travelling waves of constant curvature. The optimal turning results

from high-dimensional shape spaces (travelling waves and wave shapes given by

Fourier series or Chebyshev polynomials) are shown to in fact be well-characterised

both qualitatively and quantitatively by constant curvature waves, which are pre-

scribed by only a two-parameter family. The approach is applied to all kinds of

turns: from slight steers to sharp u-turns. The results are analysed and inves-

tigated by approximating high-dimensional shape spaces with low-dimensional

families of shapes, parametrised by variables that are comparatively easily inter-

preted.

The optimal turning gait of a low Reynolds number undulatory organism is found

to depend fundamentally on the penalty for bending since the most efficient turns

require high-curvature postures. These results expand the current theoretical

understanding of micro-undulatory locomotion to more complex movement be-

haviours, adding to the overall picture of mathematical considerations of why
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these organisms move the way they do. The optimal turning results from part I

pertain to the microscopic (Stokesian) regime, and can provide insight into how

undulators at small scales employ reorientation strategies, from nematodes like

C. elegans to flagellates like spermatozoa.

Part II

Part II of this thesis pertains to a different question regarding microscopic undula-

tory locomotion. In contrast to the theoretical and analytical questions addressed

in chapters 2 and 3, chapter 4 analyses experimental data from a C. elegans be-

havioural phenotypic screen. We apply gait efficiency as a phenotyping tool in the

context of human genetic disease model C. elegans strains. Rare genetic diseases

in humans can be modelled in C. elegans with disease-associated genetic variants

of conserved genes. Such disease models exhibit locomotion changes compared

to wildtype ‘healthy’ worms, and these changes can be quantified in behavioural

phenotypic screens. Expanding the set of current quantitative phenotypes to in-

clude more orthogonal features, like gait efficiency, is a worthwhile pursuit as it

could lead to the detection of more movement defects.

It remains an open question to what extent animal gaits are optimal. We use C.

elegans in this thesis due to the high volume of data that exists characterising its

movement patterns in a variety of contexts, in order to study the question of effi-

ciency. Specifically, we test the suitability of gait efficiency as a phenotyping tool,

seeking to establish if quantitative differences can be detected between individu-

als in a behavioural screen.

This is tested by looking at strong genetic perturbations in the organism, and

genes where disruption causes severe disease in humans might be expected to be

strong perturbations. We therefore consider such human genetic disease model

strains, testing efficiency as a phenotyping lens. A detailed analysis of the 25 C. el-

egans strains, each with a human genetic disease association, provides insight into
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how movement differences affect the computationally determined efficiency. Par-

allels between resulting gait efficiencies can be drawn between strains associated

with the same or similar genetic disease in humans, ultimately determining that

efficiency as a C. elegans phenotype can yield quantitative differences between

individuals in a behavioural screen.

The complex natural gaits of C. elegans analysed in part II are taken as given —

that is, accepted as true or real representations of the animals behaviour. Due to

the complexity of their movements, the quantitative measure of efficiency applied

as a phenotyping lens is taken to be the most simple expression of hydrodynamic

efficiency used for straight-path microscopic undulatory locomotion (introduced

by Lighthill (1975) [9] and discussed in chapter 2). This is a different metric from

the objective function applied in chapter 3, which contains the other main results

of this thesis. To explicitly emphasise: the results from parts I and II of this thesis

are presented distinctly from one another, and little intersection between the main

results of this thesis exists.

The data analysed in part II of this thesis is a recently-obtained dataset in the

Behavioural Phenomics lab, within the Medical Research Council London Insti-

tute of Medical Sciences (MRC LMS). Data is unpublished at time of submission

of this thesis (May 2022). Experimental (wet lab) methods were performed by

Ida Barlow and Tom O’Brien. The data was collected using state-of-the-art imag-

ing systems which allows for multiple worms to be tracked in parallel and the

collection of high-quality imaging data. Analysis of the worm videos obtained

was performed using the Tierpsy Tracker software (developed and maintained

by the Behavioural Phenomics lab, MRC LMS) [10, 11]. Feature extraction and

gait optimality features were obtained with novel computational pipelines con-

structed by Madeleine Hall in the MATLAB programming platform. The advan-

tage of analysing this particular dataset in this thesis lies solely in its availability

and recentness of acquisition within the lab — no assumptions of optimality or

efficiency across any of the strains are imposed.
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1.3 Contributions of this thesis

This thesis is the outcome of a highly interdisciplinary research degree seeking

to apply resistive force theory and principles from low Reynold’s number hydro-

dynamics to understand the locomotion of microscopic undulatory organisms, an

example of which is given by the model organism, the nematode worm C. elegans.

The results presented in parts I and II respectively in this thesis, whilst related, are

distinct, and investigate two different questions pertaining to the overall theme

of microorganism gait efficiency.

1.3.1 Part I

Previously there has been extensive work on how microscopic undulators can

move optimally in straight lines. Given how obviously important changing direc-

tion is for animals, there is surprisingly little research and consideration on how

undulators can turn optimally. Part I of this thesis makes fundamental contribu-

tions to our understanding of optimal turning, including the interesting discovery

that simply propagating a wave of constant curvature (about the simplest way

of implementing a turn for an undulator) is close to optimal. The simplicity of

this insight is likely to spur further work and find applications in slender robotics,

as well as lend insight towards the broader question of how and why organisms

move the way they do.

1.3.2 Part II

Part II of this thesis applies resistive force theory and principles from low Reynold’s

number hydrodynamics to derive new features that are applied to quantify the

behaviour of C. elegans worm models of Mendelian genetic diseases. These new

features improve our ability to detect so-called worm “symptoms” of these human

disease mutations. Identifying behavioural differences in the disease models is
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the first step in understanding the function of the disease genes and in designing

drug screens to search for treatments.



Part I
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Chapter 2

Optimal undulatory locomotion

at low Reynolds number

2.1 Introduction

This chapter covers the mathematical background, model, and results for optimal

undulatory locomotion at low Reynolds number. We begin with a review of the key

literature pertaining to this part of the thesis, which includes an introduction of the

fluid dynamics associated with microscopic undulatory locomotion, outlining key

results and theories which fundamentally underpin our model framework. This

includes considerations of optimising undulatory locomotion such that the most

efficient gait can be determined, based on a mathematically defined measure of

efficiency.

In this thesis, as in many studies in this area of research, we prescribe a given un-

dulatory shape or beat pattern (ie gait) to our theoretical micro-undulator. Then

the propulsive velocity, rate of working against the surrounding fluid, and distribu-

tion of applied viscous bending moments along the slender body can be calculated.

The optimality of the gait can then be determined from these values. Here the no-
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tion of optimality specifically refers to incurring the lowest possible mechanical

cost (or energy dissipation) for a given movement. The most efficient gait can be

defined as the undulation that maximises the ratio of propulsive velocity to this

energy dissipation. The rate of working against the surrounding fluid (the hydro-

dynamic cost) describes the force required by the body to distort its surroundings

in order to move. At the microscale, the hydrodynamic cost plays a dominant role

in the overall cost of moving, due to these organisms experiencing high viscosity,

and therefore high resistance in their surroundings. To illustrate this, you can

imagine the difference in effort required between walking through a large vessel

of honey versus walking across a field (ie through air). Aside from any differences

in difficulty breathing between these two scenarios, in the high-viscosity scenario

(the honey) the energy you spend distorting the fluid contributes dominantly to

the overall cost of moving. This contrasts the scenario of walking through air,

where the viscosity is orders of magnitude less, and thus the hydrodynamic cost

of distorting the surroundings in negligible.

Of course, the way to minimise the hydrodynamic cost associated with distorting

the fluid surrounding the body is to not distort it at all. That is, remaining com-

pletely still and not changing shape at all incurs no hydrodynamic cost, since no

effort is being made to push against the surrounding fluid. For micro-undulators, if

we also account for the cost associated with distorting the body (as it is reasonable

to assume that there is a cost for bending and assuming high-curvature shapes),

this means that the gait which minimises the mechanical cost is a completely still,

straight posture. This gait of course is not optimal in many senses, as no net

motion is incurred, and the organism is not navigating through its surroundings

seeking food, a mate, etc. The most efficient gait can therefore be determined by

minimising this mechanical cost, whilst maximising the propulsive velocity or net

motion of the organism. That is, the most efficient gait maximises the ratio of the

propulsive velocity to the mechanical cost of moving.

To this point and this particular definition of ‘optimal’ gait, it is of course the
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case that not all costs associated with locomotion are purely hydrodynamical or

mechanical. There is, for example, a metabolic cost associated with an organism

moving through its surroundings. There are many possible notions of optimality

— being alive is a multi-objective function. That being said, in this thesis we

consider only the mechanical cost of locomotion (capturing the hydrodynamical

cost and bending cost) for these micro-undulators.

We present a hydrodynamical model, laying out the kinematic framework which

describes the motion of our theoretical undulatory microswimmer, and apply re-

sistive force theory (Gray and Hancock (1955) [8]) to model the interactions

between the body and the surrounding fluid. Optimising over a quantitative

measure of efficiency, we present the optimal gait for a micro-undulator swim-

ming forwards. This chapter replicates existing results in the literature (Ligthill

(1975) [9], Spagnolie and Lauga (2010) [12]) using a numerical approach with

an independently-developed code framework. The results presented in this chap-

ter align with and agree with those from the literature.

2.2 Background

The following section provides a review of literature covering key results relating

to the study of microscopic undulatory locomotion, and the optimality thereof.

This literature underpins the results presented in this thesis. Across the literature,

and in this thesis, key assumptions regarding the theoretical micro-undulator are

that it is deformable, but inextensible. We consider a planar, two-dimensional

undulatory beat pattern propagating along the length of a slender body, and as-

sume the body neither stretches nor twists about its local axis. Since all points on

a particular cross-section of the body then move at approximately the same ve-

locity, the motion of the undulating body can be described by a two-dimensional

position vector, describing the shape of the body in the 2D plane.
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2.2.1 Related literature

Theoretical considerations of undulatory locomotion for microscopic organisms

extend back to the 1950s, in which Taylor (1951) [13], motivated by spermato-

zoa, analysed the swimming of microscopic organisms by considering propagating

waves of lateral displacement along a thin, flexible infinite sheet. Though this ge-

ometry has little physiological relevance, it allowed a relatively straightforward

solution of the Stokes equations, and the results of this analysis gave the first ex-

planation of how a propulsive tail can move a body through a viscous fluid without

relying on inertial forces.

This contribution by Taylor, along with others throughout the 1950s and 60s (in-

cluding studies from Gray, Hancock, Lissman and Wallace [8,13–16]) formulated

the methods of describing the force interactions involved with long, thin bodies

locomoting in a planar fashion at the microscale. Namely, it was at this time that

widely used slender body theory and the also widely-used approximation of re-

sistive force theory were developed. These theories provide the frameworks for

mathematical models of undulatory microscopic locomotion, and are explained

in more depth in section 2.2.2.

A pioneering publication by Pironneau and Katz (1974) [17] established that at

an instant in time, a travelling wave in the direction opposite to propulsion is hy-

drodynamically optimal. In this study, the ideal question to address is: “Given

that an organism swims from A to B in a given time, how can the total energy

expenditure during this interval be minimised?” However, given that this ques-

tion posed an optimal control problem of non-standard type (ie the boundaries

are non-stationary), an alternative closely-related problem was solved. Starting

from the fact that an organism is swimming forward in a straight line at a given

rate, they considered what the most economical way of doing so is, minimising

the instantaneous rate of working at each time [17]. The propulsive hydrody-

namics in this analytical study are modelled by the resistive force theory of Gray
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and Hancock (1955) [8]. Requiring that the rate of viscous working by the organ-

ism against the fluid be minimal at all times, the equivalent condition imposed

is to minimise the global rate of instantaneous viscous dissipation in the fluid (as

discussed in section 2.2.2).

Following this, implementing local analysis on the theoretical microscopic undu-

latory slender body, Lighthill (1975) analytically derived his famous ‘saw-tooth’

result as the hydrodynamically optimal shape for a flagella travelling wave [9]

(the derivation of this result is discussed in more detail in section 2.2.2). In the

above studies, optimality is defined as the gait that minimises the rate of working

(which is equivalent to the rate of dissipation due to viscosity in the surrounding

fluid) for a given rate of swimming forward (swimming speed or net motion). As

discussed in the introduction, it is not only the rate of working against the sur-

rounding fluid which contributes to the complete cost of moving. We may also

include a cost for bending in the body, which is incurred due to the elastic nature

of the internal structure. Recently, studies have been carried out to investigate

the relationship between internal structure and hydrodynamics [18, 19]. These

organisms can be considered as rod-like elastic structures which move and bend

as a result of stresses that are generated internally, allowing for the cost of bend-

ing the body to be accounted for using approaches from classical elastic beam

theory [20].

This approach was considered by Spagnolie and Lauga (2010) [12], who deter-

mined the optimal travelling wave shape for an elastic flagellum which maximises

a generalised swimming efficiency. The generalised swimming efficiency was sim-

ilar to Lighthill’s hydrodynamic efficiency, however it also included this penalty

for bending discussed above. Along with the work done by the swimmer against

the surrounding fluid, there is also included an energetic cost capturing the elastic

energy stored in the bending of the body, penalising high curvature shapes. When

varying the importance of rate of mechanical work versus bending cost in the gen-

eralised efficiency expression, they found a regularisation of Lighthill’s sawtooth
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solution, and that the optimal waveform becomes increasingly sinusoidal as the

importance of the bending cost increases. These results from Spagnolie and Lauga

(2010) are replicated both qualitatively and quantitatively later in this chapter

of the thesis, using an independently-developed code and numerical framework.

This replication verifies that the novelly constructed numerical framework aligns

with preexisting results.

The results from Spagnolie and Lauga (2010) were extended upon by Lauga and

Eloy (2013) [21], who computationally determined the optimal travelling-wave

flagellum shape, maximising the swimming speed for a fixed energetic cost. More

recently, Lauga (2020) [22], for a periodic long-wavelength model of flagella,

shows that the planar flagellar waves maximising the time-averaged propulsive

force for a fixed amount of energy dissipation correspond to waves travelling

with constant speed, ie travelling waves are hydrodynamically optimal for long-

wavelength flagella.

Having discussed some of the key studies from the relevant literature, we now

go on to explain the associated hydrodynamics on a more technical level. The

results of these studies discussed above were derived in the context of low Reynolds

number hydrodynamics. These microscopic undulatory organisms swim through

a fluid that surrounds their bodies. In the following section we present how the

flow of that fluid is modelled, what Reynolds number is, and discuss in detail how

the propulsive speed, rate of working, and bending cost are determined.
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2.2.2 Fluid dynamics and microscopic undulatory locomotion

Reynolds number

The flow of the fluid surrounding the swimming microorganism is governed by

the incompressible Navier–Stokes equations:

∇∇∇ · u = 0 (2.1)

ρ
Du
Dt
=∇∇∇ ·σ +G (2.2)

where u is the velocity, its material derivative Du/Dt (describing the time rate of

change of the quantity) is given by

Du
Dt
=
∂ u
∂ t
+ u ·∇∇∇u , (2.3)

and ρ is the density, σ the stress tensor, and G the external forcing, all of which

will be explained in more detail below. These equations assume that the fluid

is Newtonian, meaning that the viscosity is flow-independent. Specifically, for a

Newtonian fluid, the stress tensor σ — which models the stress in the fluid that

is attributed to the strain rate (the rate at which the the fluid is deforming), and

is the sum of the viscous stress and hydrostatic pressure — is given by

σ = −(pI) +µ(∇∇∇u + (∇∇∇u)T ) (2.4)

with p the pressure, µ the viscosity, and I the identity tensor. The viscosity µ is

a coefficient that relates the stress to the deformation. Viscous stresses describe

the resistance to shear, which is the gradient of the velocity field. The higher the

viscosity, the more resistance there is to shear.

The pair of equations that is Navier–Stokes (for an incompressible fluid) are re-

ferred to as the incompressibility equation and the momentum equation. As a
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result of the incompressibility equation (∇∇∇ · u = 0), the fluid density remains

constant. The momentum equation (∇∇∇ ·σ +G = ρDu/Dt) is a manifestation of

Newton’s second law, which is popularly referred to as “F = ma” (“force equals

mass times acceleration”).

In the momentum equation, the “acceleration” is the material derivative of the

fluid velocity with respect to time, and the “mass” is described by the density of

the fluid (how ‘heavy’ or ‘concentrated’ the particles are in the fluid). The forces

in the momentum equation can be separated into internal forces σ (how the fluid

is interacting with itself) and external forces G (which account for things like

gravity, or electromagnetism). The internal forces are the pressure force and the

viscous stress, and are captured in the expression of the stress tensor σ. The

pressure force describes the movement of particles from areas of high pressure to

low pressure, and the viscosity force describes the internal friction of the fluid —

the stronger the friction, the higher the viscosity. For a Newtonian fluid (meaning

the viscosity is flow-independent), and under the assumption that there are no

external forces (ie G = 0), the momentum equation can be written as

ρ
Du
Dt" #$ %

“ma”

= −∇∇∇p+µ∇2u" #$ %
“F”

, (2.5)

where ρ is the density, u the velocity, p the pressure, and µ the viscosity.

The Reynolds number is a dimensionless number that arises from the non-dimens-

ional form of the Navier–Stokes equations for a Newtonian fluid [23]. It can be

written as

Re=
ρLU
µ

(2.6)

for an object of length L moving through the fluid at a characteristic velocity U (eg

U might be the mean swimming speed of the undulator). Non-dimensionalising

with typical length, time, and force scales, the momentum equation can be re-
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written as

Re
Du
Dt
= −∇∇∇p+∇2u. (2.7)

In the limit Re→ 0, the above expression reduces to

−∇∇∇p+∇2u = 0, (2.8)

which when paired with the incompressibility equation comprises the Stokes equa-

tions, which describe fluids for which velocities are very slow, viscosities very

large, and/or length-scales very small (termed “Stokes flow”). In eq. (2.8), time

has disappeared from our momentum equation, as the only term that had time

associated with it was the acceleration term. This means that Stokes flow has

no dependence on time other than through time-dependent boundary conditions.

For a given initial condition, if a force is enacted on the fluid at one time, and the

exact opposite force is enacted on the fluid at a later time, the initial condition will

be exactly recovered — this property of Stokes flow is termed “time reversibility”.

The Reynolds number becomes very small in environments with very large vis-

cosity (like a person swimming in honey) or very small speeds and length scale

(like a microscopic undulatory organism swimming in water). Undulators like

eels, nematodes, and spermatozoa propel themselves through their environment

by propagating waves along the length of their bodies, exerting a force on the

surrounding fluid in order to push through the medium. At the microscale, in

the low Reynolds number regime, there is instantaneous diffusion of momentum

throughout the fluid, which means that inertia is negligible, and swimming stops

the instant the body stops deforming. It is therefore the case that, at each instant

in time, the total force acting on the microswimmer is always zero. Thus there is

no coasting or drifting, and in order to keep moving through its environment a mi-

croscopic undulator must constantly deform its body in order to keep progressing

through its surroundings.
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This wavy undulatory locomotion strategy of organisms at the microscale regime

originated due to the time-reversibility of Stokes flow. In his classic animated

introduction “Life at low Reynolds number”, Purcell (1977) [24] presented his

renowned scallop theorem, laying out the mechanical necessity of so-called break-

ing of temporal symmetry in order to make progress whilst swimming at low

Reynolds number. In the absence of inertia, the translation of a microscopic

body is fully determined by its sequence of body postures. A scallop switches

between opening its shell and closing its shell. It is able to swim through its

usual (high Reynolds number) environment because it closes more rapidly than

it opens, which results in a propulsive force which transports the body. However,

at low Reynolds number this difference in speed of closing and opening would

not generate propulsion. Simply changing its shape followed by performing the

exact same motion in reverse, regardless of the speed of the manoeuvre, would

result in the body returning to its exact initial starting position. Hence, the scallop

cannot swim at low Reynolds number. This scallop motion is often referred to as

“time-reversible deformation”, as the motion is the same forwards in time as it is

backwards, ie it is temporally symmetric.

In order to actually progress through the surrounding fluid, swimming microor-

ganisms therefore need to change their shape in a manner that indicates a clear

direction of time. The prototypical example of such a motion is that of a travel-

ling wave [25]. Comprehensive texts on microorganism locomotion in the low

Reynolds number regime include concise works by Childress (1981) [23] and

Lighthill (1975,1976) [9, 26], a beginners guide to undulatory locomotion by

Cohen and Boyle (2010) [27], and a review of principles by Lauga and Powers

(2009) [28]. Childress (1981) includes a detailed explanation of the equivalence

of rate of working and viscous dissipation, which is discussed later in this chapter.

Lighthill (1975, 1976) includes a derivation of the normal and tangental resis-

tance coefficients experienced by the microswimmer (the ratio of which is termed

the ‘drag anisotropy’), as well as his famous saw-tooth result. Beyond theoretical
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foundations and key concepts, the review by Cohen and Boyle (2010) includes

simulation tools and also extends to considering non-Newtonian media, consid-

ering not only flagella but also microscopic worms (nematodes).

Modelling microscale undulatory locomotion

A popular framework for modelling microscale undulatory locomotion is slender

body theory, which was formulated throughout the 1950s [13, 14], and signifi-

cantly developed further some decades later by contributions including Keller and

Rubinow (1976) [29], Lighthill (1976) [26], and Johnson (1980) [30]. The the-

ory reduces the Navier–Stokes equations for the specific case of long, thin cylin-

ders, (ie high aspect ratio) in order to model the flow of the fluid surrounding the

body. That is, for a cylinder of length L and radius a, the ratio a/L = ε≪ 1. The

respective derivations of the theory [26,29,30] are all based on matched asymp-

totic expansions, and although formulated slightly differently, are high related.

The problem of solving Navier–Stokes for high aspect ratio cylinders is reduced

from describing a two dimensional surface (ie the structures body) to simply de-

scribing a curve. For a long, thin cylinder of length L with arclength s ∈ [0, L]

(ie distance along the length of the body), with curve of the centreline given by

Y (s), the result of slender body theory is that there exists a collection of point

forces along the curve in the fluid [26,30]. Then, the velocity at a point along the

centreline is given by

u(Y (s)) = L[ f ](Y (s)) +K[ f ](Y (s))

where f is the force per unit length, L is the local force operator (capturing the

fluid-body interactions at s), and K is the nonlocal force operator (accounting for

long-range interactions away from the point). Fundamentally, we see that the

point-velocity is simply only related to the force at that point.
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A widely used simplification of slender body theory is the resistive force theory of

Gray and Hancock (1955) [8], which assumes that the hydrodynamic forces are

proportional to only the local body velocity. That is, the nonlocal force operator

K is disregarded. Under this assumption, the force acting on the fluid by the

undulating body scales linearly with the velocity in the tangential and normal

directions:

fT = KT uT , fN = KN uN , (2.10)

where KT , KN are respectively, the resistance coefficients in the tangential and

normal to the body centreline directions. The ratio of these coefficients rk =

KT/KN is often termed the ‘drag anisotropy’.

By resistive force theory, and uniformly discretising the body along its length, the

linear force–velocity relationship can be applied to each point along the body, in

order to determine the force per unit length acting on the fluid by the undulatory

motion. In the asymptotic limit, the body is now reduced to a one-dimensional

curve, as opposed to a two-dimensional surface in the fluid. The underlying as-

sumption of resistive force theory is that the hydrodynamic forces scale linearly

with the local velocity along the body, with some constant of proportionality (the

resistance coefficient) [31].

This assumption (ie the omission of nonlocal forces), as pointed out by Lighthill

(1976), may be inconsistent with the true hydrodynamic situation in which vis-

cous effects dominate and can produce long-range interactions [26]. For the case

of a swimming flagellum, the flow field actually experienced by a moving point

along its length will also be influenced by: i) the movement of the other points

along the flagellum, especially by the proximity of the ends (s = 0 and L), and

ii) by the presence, position and movement of a cell body attached to one end

of the flagellum [31]. Slender body theory can model the hydrodynamic inter-

actions between nearby points along the flagellum, provided the curvature is not

too large. This means that points far away in space are also far apart on the flag-
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ellum. As established by Johnson and Brokaw (1979), resistive force theory is a

satisfactory approach when the beating pattern of the undulatory planar wave is

large amplitude, and also when there is no cell body present (ie the long slender

body encapsulates the organism in its entirety, as is the case for nematodes) [31].

Swimming drag anisotropy

Lighthill (1976) [26] derived in the context of zero-thrust (free, unaccelerated

swimming) flagellar undulations that the tangential and normal resistance coef-

ficients can be expressed as

KT =
2πµ

ln(2q/a)
, KN =

4πµ

ln(2q/a) + 1
2

, (2.11)

and their ratio

rk =
KT

KN
=

1
2
+

1
4
(ln(2q/a))−1 (2.12)

for a the flagellar radius, and q = 0.09Λ a small fraction of the flagellar wave-

length (where Λ is the wavelength measured along the flagellum). In particular,

setting q to this value accurately captures the resistance coefficients and drag

anisotropy for undulations of arbitrary wave amplitude. An assumption of this

derivation is that q is also a large multiple of the radius a, and it is clear that

lim2q/a→∞ rk = 1/2.

For low Reynolds number undulatory swimming, it is generally approximated that

rk = 1/2 [23]. This approximation is made based on the context of the result

which was derived by Lighthill in the limit of infinitessimal radius (a → 0) or

infinite length (L →∞). To provide a concrete example, consider a swimming

nematode of length 1mm and width 80µm, ie aspect ratio a/L = 0.04. Assum-

ing a wavelength of Λ ≈ 1.5, which is approximately the typical observation

for nematodes swimming in water and fluids of similar viscosity [32, 33], then

rk ≈ 1/2+(1/4) ln(27/4)−1 ≈ 0.6. The value of rk approaches 1/2 for greater Λ,
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and strictly speaking cannot subceed this value in Newtonian fluids. However, C.

elegans and other nematodes are often studied crawling across agar surfaces and

in other higher-viscosity environments.

To this point, although the development of the theory pertains to microscopic

undulatory swimming flagella in viscous fluids, resistive force theory has in fact

been shown to provide an effective empirical framework for modelling crawling

microscopic undulators, eg nematodes on the surface of agar. This environment

is not only higher viscosity, but also has higher ratios of normal to tangential re-

sistivity. This makes the medium non-Newtonian, and such environments may

hold elastic properties or may be governed by some nonlinear stress-strain rela-

tionship. An experimentally determined value of rk can be used in such models.

Rabets et al (2014) [34] directly measured drag forces experienced by crawling

C. elegans with a micro-cantilever based measurement technique, for a range of

different substrate viscoelasticities (1.0% agar to 6.0% agar). Drag forces were

found to increase for gels with higher agar concentration, as well as with worm

crawling speeds. For high worm speeds (between 500–1000 µm/s), across all

agar concentrations the drag anisotropy rk ≈ 1.4−1, which is close to the value of

1.5−1 suggested by Gray and Lissman [15]. For lower speeds, the drag anisotropy

ceases to scale linearly with worm velocity, and measurements across different

substrate viscoelasticities were found to range from approximately 1/2 to 1/10.

An overall representative measure determined by Rabets et al (based on typical

worm speeds measured across different substrate viscoelasticities) is rk = 1/7.

This is one of the values used by Keaveny and Brown (2017) [35] for predicting

the paths of C. elegans from sequences of undulations and body postures. Em-

pirical resistive force theory for undulatory crawling of C. elegans is discussed in

more detail in section 4.2.1, but by example we see that the value rk = 1/7 can

be used in empirical resistive force models of microscopic undulatory crawling.

This value is used later in this chapter (section 2.5) when determining the op-

timal straight path undulatory gaits, to compare optimised shapes for swimming
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undulators versus crawling, and to study differences between results for these two

different scenarios.

2.2.3 Optimality and efficiency

It is natural to consider the optimality of a given locomotion strategy for an un-

dulatory organism, since efficient motion is intrinsic to survival. In particular, low

Reynolds number undulatory organisms are a popular choice for studying optimal

locomotion. Their microscopic size, living in a world of high viscosity and neg-

ligible inertia, simplifies physical analysis as outlined above. Furthermore, their

anatomical simplicity, and elegant sinusoidal movement patterns inherently lend

themselves to mathematical analysis.

Due to linearity of the Stokes equations, undulatory organism locomotion in Stokes

flow will scale linearly with wave frequency (if you undulate twice as fast you will

simply get from A to B in half the time). Therefore, quantitative measures of hy-

drodynamic efficiency need to be normalised such that the optimal undulatory

gait is frequency-independent [9].

Rate of mechanical work

To determine the most efficient or optimal swimming undulatory motion at low

Reynolds number, we can seek the motion that achieves a maximum swimming

speed U for a minimum rate of working. At a given time t, for any object with

surface boundary S(t) moving through a fluid, the rate of working on the fluid

surrounding the object, denoted by WS(t), is obtained by integrating the scalar

product of the velocity with the force acting on the fluid over the surface [23]:

WS(t) = −
&

u ·σ · n dS. (2.13)
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where recall u, σ are the fluid velocity and stress tensor respectively, and n is

the outward normal from S. An in-depth derivation is provided by Childress

(1981) [23], but to summarise, in relation to the first law of thermodynamics

(the law of conservation of energy, colloquially known as “energy can neither be

created nor destroyed”), under the relevant assumptions pertaining to swimming

microorganisms, this rate of working WS can be expressed as

WS =
dE
dt
+ Φ̃(t) (2.14)

where dE/dt is the rate of change of kinetic energy E(t) between the surface

of the organism and the fluid boundary, and Φ̃ is the rate of heat output due to

viscous dissipation. Explicitly, eq. (2.14) directly expresses the first law of thermo-

dynamics: rate of working = change in energy + rate of heat output. The mean

(time-averaged, denoted by angular brackets) work done by the organism on the

surrounding fluid is obtained by

〈WS〉= lim
T ∗→∞

1
T ∗

& T ∗

0

WS dt (2.15)

and given that 〈dE/dt〉= 0, since

'
dE
dt

(
= lim

T ∗→∞
1
T ∗

& T ∗

0

d
dt

E(t)dt = lim
T ∗→∞

1
T ∗
(E(T ∗)− E(0)) = 0 (2.16)

it results that the mean work done is in fact equivalent to the time-averaged heat

generated due to viscous dissipation:

〈WS〉=
)
Φ̃
*

. (2.17)

Hydrodynamic efficiency

Lighthill (1975) [9] studied the problem of minimising the rate of working (de-

noted by WS) for a given swimming speed U for a headless flagellum of length L
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by maximising the hydrodynamic efficiency of the undulatory locomotion given

by

η =
KT LU2

WS
, (2.18)

which is arrived at by non-dimensionalising the ratio of the animal’s rate of work-

ing at the swimming speed U to the rate of working required by an external force

to drag the animal through the water at speed U with its flagellum stretched out

straight behind it.

Lighthill’s sawtooth

The optimal gait (ie planar undulatory motion) that maximises η is determined by

Lighthill to be a shape that has constant angle to the body centreline (up to sign

±) almost everywhere. Specifically, the optimal gait is the shape where the cosine

of the tangent angle along the length of the body, denoted by ψ (see fig. 2.2), is

constant almost everywhere. Furthermore, the value of this maximum efficiency

for this optimal motion is determined to be

ηmax = (1− rk
1/2)2 (2.19)

which interestingly depends critically on the value of the drag anisotropy. The

optimal value of ψ, which also fundamentally depends on rk, is given by

ψ∗ = tan−1(r1/4
k ). (2.20)

This optimal angle does not vary drastically for different values of rk. For rk = 1/2,

ψ∗ ≈ 40◦ and ηmax ≈ 0.0858. This means that, at this drag anisotropy, the the-

oretically best undulator (that is, Lighthill’s sawtooth) locomotes with a hydro-

dynamic efficiency of 8.5%. If η = 1, this would imply one full body length

progress per undulation of the body. Hence, in this low Reynolds number New-

tonian fluid, Lighthill predicts that the optimal swimmer would need to undulate
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approximately 12 times to progress a single body length.

Lighthill’s result of optimal undulatory motion of constant tangent angle must

necessarily be saw-tooth shaped: the slender body must alternate between di-

agonal straight segments each making an angle of approximately 40◦ with the

direction of motion, with infinite curvature at the vertices between the segments.

Obviously, this saw-tooth shape is not physically possible in reality, as organisms

cannot attain such sharp shapes with points of infinite curvature. Nevertheless,

this optimal saw-tooth result is interesting and unintuitive, and the true biological

optimum (subject to the individual organisms achievable radius of curvature) is

postulated to be a saw-tooth with rounded corners of circular arcs [9]. This gait

was in fact observed by Brokaw (1965) [36] for spermatozoa, and by Gray and

Lissman (1964) for nematodes [15] (see fig. 2.1).

Generalising efficiency to include bending energy

Eukaryotic flagella have an internal structure (the axoneme) comprised of nine

microtubule doublets encircling a central singlet pair, which slide between each

other to propagate waves along the length [23,37]. C. elegans’ internal digestive

and reproductive systems are surrounded by its neuromuscular system, hypoder-

mis, and cuticle [38]. In addition to energetic cost due to dissipation in the sur-

rounding fluid, it also costs energy to bend the body, which needs to be accounted

for in the objective of efficiency. We can account for this by applying results from

classical beam theory (also known as Euler–Bernoulli beam theory). The active,

energy-consuming propagation of waves along the length of the body results in

a bending movement being produced that balances the external and internal vis-

cous resistance and the elastic properties of the body [39]. By including elastic

energy in the evaluation of the cost of moving, we are capturing not only the cost

of deforming the environment (the viscous dissipation), but also the metabolic

cost of the undulator deforming itself, which forms a significant proportion of the
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(i) Adapted from Brokaw 1965 [36]. Typical wave patterns of spermatozoa. Successive
positions at intervals of 0.02 seconds (flash rate of 50/sec). Images labelled 1 and 2
display spermatozoa of the sea urchin Lytechinus. Image labelled 7 is an enlargement of
a portion of 1, with circular arcs and straight lines drawn on the image of the flagellum.

(ii) Adapted from Gray and Lissman 1964 [15]. Successive positions (tracings from suc-
cessive photographs) at intervals of 0.0625 seconds of a swimming Turbatrix aceti nema-
tode.

Figure 2.1: Example images of saw-tooth with rounded corners of circular arcs
gait, adapted from the literature.

cost of moving for the organism.

The elastic energy stored in the bending of the body Ẽ(t), by classical elastic beam

theory [20], is a function of the effective Young’s modulus E, its second moment
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of area I , and local curvature κ(s, t):

Ẽ(t) =
1
2

EI

& L

0

κ2(s, t)ds , (2.21)

and represents the potential energy due to the internal forces. The Young’s mod-

ulus E describes the body’s tendency to deform along its axis when force is ap-

plied, and the second moment of area I geometrically describes the distribution

of points with respect to the body axis. Their product EI (the flexural rigidity,

which describes the resistance offered by the body whilst undergoing bending)

for spermatozoa flagella has been determined to be EI ≈ 2×10−22N m2 [40,41],

yielding an elastic energy stored of Ẽ ≈ 3.6×10−16N m for typical curvatures [12].

Relative to the rate of working, the time-averaged viscous dissipation for sperma-

tozoa has been found to be Φ≈ 3.5×10−13N m/s [12]. Hence, the elastic energy

is of the same order as the rate of working for 10−3s (approximately 1/30th of a

flagellum beat). The (non-dimensionalised) time-averaged elastic energy stored

in the flagellum per unit period of the propagated wave describes the energy cost

per time:

PBending = γB

)
Ẽ(t)
*

(2.22)

with γB = EI/2. Employing this, Spagnolie and Lauga (2010) [12], in study-

ing the optimal elastic flagellum, introduce and use a generalised swimming effi-

ciency:

η =
rkU2

(1− AB)Φ+ ABPBending
(2.23)

where Φ =
)
Φ̃
*

is the time-averaged rate of mechanical work (equivalently, time-

averaged viscous dissipation), PBending is the time-averaged elastic energy stored

in the flagellum, and AB ∈ [0, 1] is a dimensionless parameter (set prior to optimi-

sation) allowing for the control of relative importance of mechanical work versus

bending in the objective function of efficiency. In including the energy stored

elastically in the bending of the body, this approach recovers Lighthill’s saw-tooth

waveform when AB ≪ 1, as well as shapes that optimise the efficiency for vari-
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ous importances of bending energy costs. As bending becomes more costly, the

optimal solution becomes decreasingly saw-tooth in shape, and more like those

postulated by Ligthill: straight segments with rounded corners of circular arcs.

2.3 Model

Determining the optimal undulatory gait

To answer the question of optimal locomotion strategy for a low Reynolds number

undulator, an optimisation problem must be solved. Explicitly, the optimisation

procedure must compute the shape which maximises the defined efficiency, sub-

ject to relevant constraints. The optimisation problem can be solved by decom-

posing the undulatory shape onto a finite number of modes n∗ which describe the

time-dependent tangent angle along the body length, for example:

ψ(s, t) =
n∗+

n=1

αn f (2πnk(s− t)) (2.24)

where f is some function of the travelling wave described by the coefficients αn, k

is the wavenumber (how many times along the bodylength the wave is repeated),

and the values of αn for n = 1, ..., n∗ are to be determined by the optimisation.

When the tangent angle is prescribed, the shape and velocity of the undulator

are recovered by integration and differentiation. In the following section we lay

out the model framework, kinematics, objective function and constraints of this

optimisation problem, in order to determine the optimal undulatory gait.

A schematic summarising our model framework is shown in fig. 2.2. Working

with a mechanical and hydrodynamical model, we consider a slender inextensible

body along which planar waves propagate down the length, resulting in a net

movement in the opposite direction. We consider the problem of prescribing the

undulatory movement via a time-dependent tangent angle along the body length,
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which we denote by ψ(s, t). We revisit the results established by Spagnolie and

Lauga (2010) [12], using independently developed code to both qualitatively and

quantitatively reproduce the results. We also explore what happens when the

drag anisotropy changes, investigating how the optimal gait changes for a higher

friction environment.
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Figure 2.2: Reproduced from Spagnolie and Lauga (2010) [12]. A schematic sum-
marising the kinematic and resistive force model framework. In the x–y plane,
a wave of bending deformation is propagated from the head x0 down along the
length of the body, resulting in a net movement in the opposite direction. The
shape of the wave is prescribed via the tangent angle ψ(s, t). At time t, the wave
passes along the length of the body at an angle θ (t) to the x-axis. By resistive
force theory, the velocity of the body u(s, t) is separated into tangential and nor-
mal components, as is the corresponding force per unit length f (s, t). To illustrate
this in this diagram, the tangential and normal resistance coefficients are respec-
tively KT = 1 and KN = 2.
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2.3.1 Kinematics

For an undulator of length L confined to movement in the x–y plane, the position

of the body centreline as a function of arclength s ∈ [0, L] at time t is

x (s, t) =

,
-.

x(s, t)

y(s, t)

/
01 = x0(t) +Rr (s, t) (2.25)

where x0(t) = x (s = 0, t) is the position of the head, r (s, t) is the position vector

in the body frame, and the rotation matrix

R =

,
-.

cosθ (t) − sinθ (t)

sinθ (t) cosθ (t)

/
01 ,

with θ (t) being the angle the body centreline is to the x-axis (see fig. 2.2). The

unit tangent vector along the body (in the direction of increasing s) is given by

t̂ =
∂ x
∂ s
= R

∂ r
∂ s

, (2.26)

and the velocity of each point is

u =
∂ x
∂ t
= ẋ0(t) + θ̇ (t)

dR
dθ

r (s, t) +R
∂ r
∂ t

(2.27)

where the dot represents differentiation with respect to time.

We consider the problem of prescribing the tangent angle at each point along the

length of the body over timeψ(s, t) in order to determine the optimal gait. When

ψ(s, t) is prescribed, the position and velocity are recovered by integration:

t̂ = R

,
-.

cos(ψ(s, t))

sin(ψ(s, t))

/
01 , (2.28)
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r (s, t) =

,
-.
! s

0 cos(ψ(s′, t))ds′

! s
0 sin(ψ(s′, t))ds′

/
01 , (2.29)

∂ r
∂ t
=

,
-.
! s

0 − sin(ψ(s′, t)) ∂ψ∂ t ds′

! s
0 cos(ψ(s′, t)) ∂ψ∂ t ds′

/
01 . (2.30)

2.3.2 Resistive force model

Let the unit normal be represented by n̂ = t̂⊥, and KN , KT be respectively the nor-

mal and tangential resistance coefficients. Defining uT and uN as the tangential

and normal components of the velocity respectively (see fig. 2.2), we have

uT = (t̂ · u)t̂ , uN = (n̂ · u)n̂, (2.31)

and hence

u = uT + uN . (2.32)

From resistive force theory, the force per unit length (on the fluid) depends linearly

on the velocity and with the respective directional resistance coefficients:

t̂ · f (s, t) = KT t̂ · u, n̂ · f (s, t) = KN n̂ · u. (2.33)

This is the fundamental assumption of resistive force theory. Similarly to the ve-

locity, we denote fT and fN as the tangential and normal components of the force

respectively:

fT = (t̂ · f )t̂ , fN = (n̂ · f )n̂ (2.34)

and

f = fT + fN . (2.35)



2.3. Model 59

Hence, by eq. (2.33),

f = KT (t̂ · u)t̂ + KN (n̂ · u)n̂ (2.36)

= KT (t̂ · u)t̂ + KN (u − (t̂ · u)t̂ ). (2.37)

Thus the force acting on the fluid per unit length of the body is

f = (KT − KN ) t̂ (t̂ · u) + KN u. (2.38)

In the absence of inertia, the translation and rotation of the body are obtained by

imposing conditions of zero net force and zero net torque:

& L

0

f (s, t)ds = 0, (2.39)

& L

0

[x (s, t)− x0(t)]× f (s, t)ds = 0. (2.40)

These conditions are linear in the velocities ẋ0, ẏ0, θ̇ , and thus can be solved by

inverting a 3× 3 linear system (derivation in appendix section A.1). This linear

system is solved at each t ∈ (0, T ) given the shape of the body at that time x (s, t),

in order to calculate the velocity of the body at that time u(s, t). Thus, the geom-

etry of the body at each instant is what enables the unique determination of the

velocities ẋ0, ẏ0, θ̇ at each instant.

2.3.3 Determining the optimal gait

To determine the optimal gait for our swimming micro-undulator, we need to

determine the ratio of mechanical cost incurred for an achieved swimming speed.

Our cost considers both rate of mechanical work due to viscous dissipation, and

also bending cost due to deformation of the body.
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Energetic cost due to dissipation

In order to determine the energetic cost of the undulatory movement, we consider

the work done on the surrounding fluid by the swimmer. The rate of work on the

surrounding fluid by the undulator is obtained by integrating the scalar product

of velocity and the force per unit length along the body:

Φ̃(t) =

& L

0

f (s, t) · u(s, t)ds. (2.41)

In our optimisation, we consider the time-averaged rate of mechanical work (equiv-

alently, the viscous dissipation), given by

Φ=
)
Φ̃(t)
*

(2.42)

where angular brackets denote period-averaging:

)
Φ̃(t)
*
=

1
T

& T

0

Φ̃(t)dt (2.43)

where T = 1/k is the fundamental period of the waveform, for wavenumber k.

To perform period-averaging, the time-average of a quantity Q(t) is given by

〈Q(t)〉= 1
T

& T

0

Q(t)dt ≈ k∆t
Nt−1+

n=0

Q(tn) (2.44)

where t0 = 0 and tNt−1 = T −∆t.

Energetic cost due to bending deformation

The work required for bending deformations is included by explicitly taking into

account the elastic nature of the body, considering the bending energy of an in-

extensible elastic rod in a viscous fluid [12, 20, 42]. The (non-dimensionalised)

time-averaged elastic bending energy stored internally in the body PBending is cal-
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culated by integrating the square of the curvature along the length of the body:

PBending =

2& L

0

κ(s, t)2 ds

3
(2.45)

where

κ(s, t) =
∂ψ

∂ s
(2.46)

denotes the curvature.

Efficiency

A widely-used measure of hydrodynamic efficiency for undulatory gaits in the low

Reynolds number regime is given by

ηH =
rkU2

Φ
(2.47)

where rk = KT/KN , and U is a measure of mean undulatory speed of the body,

which we determine by calculating

U = | 〈ẋ0〉 |

= (〈 ẋ0〉2 + 〈 ẏ0〉2)1/2. (2.48)

This quantity for the efficiency arises from considering the ratio of the rate of

mechanical work required to drag the swimmer with a frozen shape though the

fluid at speed U to the average rate of work done by the swimmer [28].

A generalised measure of efficiency which incorporates bending cost (from Spag-

nolie and Lauga [12]) is given by

η =
rkU2

(1− AB)Φ+ ABPBending
, (2.49)

where AB is a dimensionless parameter fixed prior to optimisation that takes a
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value between 0 and 1, which controls the relative importance of the rate of me-

chanical work Φ versus the bending cost PBending. As AB increases from 0 towards

1, curvature in the waveform is penalised increasingly, and incurs a greater cost.

2.4 Numerical methods and optimisation

Time is discretised into Nt equal time steps over t ∈ [0, T] where T = 1/k (k the

wavenumber), the period of motion, is the fundamental period of the waveform.

Space is discretised into Ns uniformly distributed points on the domain s ∈ [0, L],

where L is the length of the body.

The optimisation problem posed is to determine the optimal undulatory gait which

maximises the efficiency (the objective function), subject to necessary constraints.

As mentioned prior, determining the optimal gait is achieved by decomposing

the shape of the body onto a finite number of modes which describe the time-

dependent tangent angle ψ(s, t). For this chapter, the expression for the tangent

angle (as in Spagnolie and Lauga (2010) [12]) is given by:

ψ(s, t) =
n∗+

n=1

an cos(2πnk(s− t)) + bn sin(2πnk(s− t)) (2.50)

which is a finite sum over n∗ Fourier modes, yielding a linear combination of func-

tions which prescribe a travelling wave. The Fourier modes an, bn are the control

parameters which are to be determined by the numerical optimisation routine,

such that the efficiency is maximised. The wavenumber k is, in this chapter, also

included as a control parameter to be determined by the optimisation.

Numerical optimisation is performed using a sequential quadratic programming

(SQP) method in the MATLAB optimisation toolbox. For an initial undulatory

shape prescribed by the parameters an, bn, k, given the tangent angle ψ(s, t) the

body kinematics are determined by integration, and the body motion is uniquely
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determined at each time step by solving the 3 by 3 linear system of the veloc-

ities (eqs. (2.38) to (2.40), the terms in this system are provided in appendix

section A.1). Following calculation of the velocity at each time step, the force,

rate of mechanical work, and bending cost are all calculated as outlined by the

model framework (section 2.3). Hence, the efficiency is determined by evaluating

eq. (2.49).

At each iteration in the optimisation routine, the control parameters an, bn, k

which prescribe the shape of the body are modified in order to maximise the gait

efficiency η, until the change in the value of the objective function is within a

certain tolerance (which we set to be 10−14). This tolerance level follows that of

previous studies [12], and at higher tolerances the results are indistinguishable.

The problem is intrinsically constrained by the fact that the velocity is determined

by the resistive force theory, requiring zero net force and zero net torque. In

accordance with Spagnolie and Lauga (2010), an extrinsic constraint is imposed

in the optimisation problem, requiring that the body rotation remains the same

over the total period of the wave:

θ (0) = θ (T ) . (2.51)

This constraint is necessary numerically in the case of maximising efficiency for

straight-path locomotion as it ensures that the body does not rotate in circles

over many periods. Without this constraint, the undulator does not actually only

move along a straight line. It is implemented in the numerical optimisation rou-

tine (MATLAB’s fmincon which optimises a constrained nonlinear multivariable

function) in the nonlinear equality constraints argument. The constraints in the

optimisation routine are also satisfied to within a certain tolerance (again, 10−14).

The parameters that are fixed prior to optimisation are: i) rk = KT/KN , the

drag anisotropy ratio, and ii) AB, the relative importance of mechanical work
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versus bending cost. To compare the results of swimming versus crawling drag

anisotropy, we obtain results for two different values of rk: 1/2 and 1/7. The

optimal gaits for different values of AB were obtained for AB = 10δ for δ ∈

{−7,−6, ...,−1, 0}. Seeking to quantitatively replicate results from the literature

[12], we take n∗ = 160, Nt = 160, Ns = 2400, with L = 1.

In this scenario, it is not possible to run the numerical optimisation for the purely

hydrodynamic efficiency (AB = 0), as this is a singular case. For a finite length

swimmer, you obtain (analytically) the optimal gait as an infinite number of in-

finitesimally small amplitude waves. This gait is therefore not numerically viable,

as one would need an infinite number of modes in order to capture it. This limita-

tion of the numerical framework could be considered problematic, but as we will

see the AB = 10−7 in fact recovers Lightill’s sawtooth, and the variability of AB

for the generalised swimming efficiency regularises the behaviour of this optimal

gait.

2.5 Results for optimal straight-path locomotion

2.5.1 Swimming drag anisotropy

For rk = 1/2, optimal waveforms for a selection of AB values are shown in fig. 2.3.

A plot displaying the results of both hydrodynamic efficiency ηH and generalised

swimming efficiency η in this case for all values of AB is shown in fig. 2.4. For

AB = 10−7, 10−4, 10−2 and 1, the resulting optimal waveforms have efficiency

η = 0.0858, 0.08, 0.0369, and 7.86×10−4 respectively. These results are not only

in agreement with [12] (η = 0.0858,∼ 0.08,∼ 0.035, and 7.68× 10−4, approxi-

mate values obtained from results figures), but the value ofη for the smallest value

of AB = 10−7 recovers exactly the optimal hydrodynamic efficiency ηmax derived

by Lighthill given the drag anisotropy (eq. (2.19)). Furthermore, as AB decreases

from 1 towards zero, the waveform becomes increasingly saw-tooth, visually re-
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covering Lighthill’s analytical study which determined this global optimum [9] .

This can be seen in fig. 2.5, where the tangent angle ψ as a function of s becomes

increasing like alternating between diagonal straight segments with increasingly

abrupt change in curvature at the vertices between the segments. Furthermore,

as AB → 0 the angle which those straight segments make with the body centreline

approaches Ligthill’s analytically determined optimal: ψ∗ = tan−1(r1/4
k )≈ 40.06◦

for rk = 1/2.

As the bending cost increases from 10−7 to 1 the efficiency η of the undulatory

locomotion decreases. Both the optimal wavenumber k and the mean swimming

speed U also decrease (see fig. 2.8), aligning with results from the literature [12].

For physical swimmers, the value of AB could be modified from one type of or-

ganism to another. To determine AB in a context-specific manner, this value will

depend on the ratio of flexural rigidity and viscosity. That is, it should appropri-

ately balance the ratio of bending cost to viscous dissipation. For highly flexible

organisms intuitively one would have a lower AB than for more rigid organisms.

For example, AB for spermatozoa would be expected to be smaller than for a nema-

tode. Typically observed efficiencies of biological swimming cells are frequently

found to be approximately 1%, suggesting that AB could be between 10−1 and

10−2 for this case (as η = 0.007 and 0.037 respectively for these values). How-

ever, it could also (and likely) be that real biological cells do not move completely

efficiently, and indeed indications that there exists room for further biological tun-

ing have been suggested [12]. A perhaps more appropriate alternative to inferring

from observed biological efficiencies is examining estimates of bending costs and

viscous dissipation separately, which could yield better determination of AB in spe-

cific contexts. As discussed in section 2.2.3, typical estimates of these quantities

for biological swimming cells (flagellates) are found to be around Ẽ ≈ 3.6×10−16N

m and Φ≈ 3.5×10−13N m/s. If we assumed that these quantities contribute com-

parably to the mechanical cost of locomotion, this indicates that AB ≈ 1 − 10−3

could be a reasonable estimate, which is notably different from suggestions above.
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The precise approach to determining AB in a context-specific manner remains an

open question.
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Figure 2.3: Optimal swimming (rk = 1/2) waveforms for a selection of AB ∈
[0, 1]. As the bending cost increases, the optimal waveforms become decreasingly
saw-tooth like, with smaller wavenumber. These optimal waveforms align with
those found in [12].
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Figure 2.4: Maximum swimming (rk = 1/2) efficiencies for a selection of AB ∈
[0, 1].
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Figure 2.5: The tangent angleψ as a function of s along the length of the undula-
tor, for values of AB ∈ [10−7, 1]. As AB → 0, ψ becomes increasingly like diagonal
straight segments of alternating sign, and the angle which those segments make
with the body centreline approaches Lighthill’s analytically determinedψ∗ ≈ 40◦.

2.5.2 Crawling drag anisotropy

For rk = 1/7, optimal waveforms for a range of values for AB are shown in fig. 2.6.

Analogously to the results for rk = 1/2, again the waveforms become increas-

ingly saw-tooth with wavenumber increasing as AB tends towards zero from 1.

Comparing these with results for swimming drag anisotropy, the amplitude of the

waveforms is decreased (see fig. 2.7). Furthermore, with the relative increase in

normal resistance, the undulator moves with less slip.

For AB = 10−7, 10−4, 10−2 and 1, the efficiency of the optimal waveforms is η =

0.3851, 0.3644, 0.1440 and 0.0027 respectively. These values are compared with

those for rk = 1/2 in fig. 2.8. Interestingly, again referring to Lighthill’s derived

maximum hydrodynamic efficiency as a function of the drag anisotropy, for rk =

1/7 we have that

ηmax = (1− (1/7)1/2)2 ≈ 0.386 (2.52)

which agrees quantitatively very closely for our AB = 10−7 result.

The overall trends are consistent with those for swimming drag anisotropy, with

η, k, and U decreasing as AB tends from zero to 1. The values for the wavenumber

k for both cases of rk are consistent. For efficiency η and speed U , the values are
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higher for the crawling drag anisotropy. The reduce in slip results in an optimal

waveform with which the undulator moves faster through the space, with lower

dissipation, and thus by definition increasing η.
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Figure 2.6: Optimal crawling (rk = 1/7) waveforms for some values of AB ∈ [0, 1].
Analogously to rk = 1/2, decreasing the relative importance of the bending cost
results in progressively saw-tooth shapes.
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Figure 2.7: Amplitude of optimal waveforms for swimming (rk = 1/2) and crawl-
ing (rk = 1/7). The amplitude for crawling drag anisotropy is decreased to com-
pared with swimming.
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Figure 2.8: Comparison of properties of the optimal waveforms as a function of
the bending cost. From top left to bottom right: (i) the efficiency η, (ii) the
wavenumber k, (iii) the swimming speed U , (iv) the rate of mechanical work Φ.
Trends are maintained and consistent for the cases rk = 1/2 (swimming) and
rk = 1/7 (crawling).

2.5.3 Discussion

There is an interesting modulation of the wavenumber across the different val-

ues of AB as it decreases from 1 towards zero. For AB between 1 and 10−4, the

wavenumber k of the optimal waveform increases gradually from 1.08 to 1.42.

An interesting transition occurs beyond AB = 10−4, where the optimal wavenum-

ber jumps discontinuously to the next half integer wavenumber (approximately

2.5). This discontinuous jump occurs again beyond AB = 10−6. This observation

was also made in [12], where these transitions were found to also result in more

locally optimal solutions arising. As emphasised in [12], the bias towards half-

integer wavenumbers is an output of the optimisation, and yields hydrodynamic

benefits as the half-integer spatial modes limit vertical drift.
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This discontinuous jumping in the wavenumber as AB decreases highlights the

qualitative behaviour change from sinusoidal to sawtooth waveforms. In fig. 2.7,

for AB < 10−5 the behaviour of the amplitude as a function of AB changes notably.

This is in the sawtooth regime and is a result of a coupled effect. The body is finite

length, so the increase in wavenumber results in this decrease in amplitude.

As opposed to this theoretical analysis, in an experimental context in many sys-

tems the observed trend is: the lower the viscosity the lower the wavenumber.

For example, C. elegans swimming gait which occurs in a lower-viscosity envi-

ronment characteristically has lower wavenumber (approximately 0.5) than its

crawling gait which occurs in a higher-viscosity environment (with wavenumber

greater than 1) (this is discussed in much more detail in chapter 4). This suggests

that the lower the resistivity of the environment, the lower the hydrodynamic cost

(since there is less resistance from the environment to being distorted). Hence the

fixed bending cost increasingly dominates, suggesting further that AB is a function

of viscosity, and could be higher in such environments.

2.6 Summary

In this chapter we have presented a model framework to determine the optimal

undulatory locomotion for a microswimmer in the low Reynolds number regime.

For the context of straight-path forwards locomotion, the optimal travelling wave

gait which maximises the hydrodynamic efficiency is that of a saw-tooth, de-

rived theoretically by Lighthill (1975) [9] and recovered computationally here.

When the generalised swimming efficiency is maximised (Spagnolie and Lauga

(2010) [12], increasing the penalty for bending deformation in the body results

in increasingly smooth optimal gaits. For both swimming and crawling drag

anisotropies tested, Lighthill’s maximum hydrodynamic efficiency is recovered for

the lowest bending penalty tested.



2.6. Summary 71

The majority of research up to this point on optimal microscopic undulatory loco-

motion has wholly focused on optimal gaits for straight-path forwards locomotion.

However, it is not the case that these organisms move exclusively forwards and in

straight lines. Indeed, they turn and reverse and reorient themselves in order to

navigate their surroundings. In the following chapter we extend the approaches

described above, to introduce path curvature, modelling optimal undulatory turn-

ing for low Reynolds number microswimmers. Addressing this question from a

theoretical perspective has the potential to provide us with insight into the biome-

chanics and behavioural characteristics of different motion modes of undulatory

microorganisms.



Chapter 3

Optimal undulatory turning

3.1 Introduction

In the previous chapter we reviewed optimal undulatory locomotion in the con-

text of low Reynolds number hydrodynamics, established a model framework,

and recreated results from the literature (Spagnolie and Lauga, 2010 [12]) with

independently-developed numerical framework and code for straight-path for-

wards locomotion. Lighthill’s famous saw-tooth is the optimal shape which max-

imises hydrodynamic efficiency (Lighthill, 1975 [9]). For a generalised measure

of efficiency, which accounts for bending energy stored in the body, as the relative

importance of bending cost versus viscous dissipation is increased, the optimal

shape becomes increasingly smooth with less extreme curvature [12].

The majority of research in this realm up to this point has focused on optimal

straight-path forwards locomotion. It is of course not the case that organisms

move exclusively forwards and in straight lines. C. elegans, for example, em-

ploys many types of movement patterns when swimming or crawling to navi-

gate its surroundings. Its well-known omega turn, in which the worm makes a

sharp turn forming an Ω-shape, and the reversal, in which the worm draws it-

72
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self backwards, are commonly observed motion modes. These behaviours have

been well-characterised for several decades [43–46]. Episodes of turning termed

“pirouettes” (Pierce-Shimomura et al 1999 [46]) have been shown to mediate

chemotaxis and thermotaxis behaviour. Through series of sharp turns (reversals

and omega turns) between bouts of forward motion, random reorientations are

induced in the absence of gradients (chemical or thermal), and biased random

walks arise when a gradient is present [46–49]. Precise quantification of these

behaviours (enabled by analysing nematode movement captured in video record-

ings) has lead to the identification of specific interneurons involved in different

modes of C. elegans locomotion [50–52]. Further details and a more extensive

literature review of C. elegans behaviour can be found in chapter 4 of this thesis.

In addition to the omega turn, gentler disruptions to the propagating wave are

observed in ‘shallow turns’ (analysed by Kim et al (2011) [53]), resulting in a

relatively small change in orientation, and maintaining a sinusoidal pattern. The

ability to turn and manoeuvre is important to survival.

In the context of robotics, optimal undulatory turning gait was studied by Ko-

hannim and Iwasaki (2012) [54] by considering a mechanical rectifier model

describing the the locomotion of a link-chain system. Formulating the optimal

control problem, they minimise a quadratic cost function comprised of the con-

trol input and joint angles, subject to constraints in the average tangential and

rotational velocities. The control input is restricted to the class of sinusoidal sig-

nals, with periodic shapes restricted to planar waves. This study extended upon

in Kohannim and Iwasaki (2014) [55] and Kohannim and Iwasaki (2017) [56] to

investigate optimal turning gaits for mechanical rectifier systems for three dimen-

sional motion. They consider a multi-body system consisting of two rigid bodies

connected arbitrarily – a system that can be viewed as a mechanical model for bi-

ological motions such as flying birds or swimming batoids (eg stingrays). Though

pertaining to the macroscale, these studies provide insight on how parallels to

animal locomotion can be drawn from mechanical models, as the dynamics that
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convert periodic body movements to a positive average thrust result in a steady

locomotion velocity.

Developing a mathematical framework to describe optimal undulatory turning for

low Reynolds number organisms is one of the main focuses of this thesis. When

investigating optimal micro-undulator locomotion, Lighthill responded to his fa-

mous saw-tooth result saying “it is noted that in reality some minimum achievable

radius of curvature of bending would prevent this saw-tooth waveform from ac-

tualising for an undulatory mover” [9]. This saw-tooth result is surprising and

unintuitive, and is indicative of how results from mathematical models cannot

be interpreted too literally. Real-world observations are almost inevitably more

complicated than empirical models would suggest. Solutions to the problem of

optimal undulatory turning could be equally surprising and unintuitive.

In this chapter we expand on and adapt the framework presented previously in

chapter 2 for straight-path forwards movement, to investigate optimal undulatory

turning gaits in this low Reynolds number hydrodynamical context.

Structure of this chapter

Section 3.1.1 describes how the framework presented in the previous chapter of

this thesis is adapted from considering straight path forwards locomotion to in-

stead modelling optimal undulatory turning. Following this, we present an ana-

lytical result in section 3.1.1 that demonstrates the importance of curvature con-

straints in the optimisation problem. Specifically, we find that as the bending cost

AB approaches zero, there exists an optimal radius of curvature R for the optimal

gait that minimises the mechanical cost of locomotion. This optimal radius of

curvature also tends to zero, and this analytical result is verified numerically.

Following this, we present results for optimal undulatory turns in the low Reynolds

number regime. These are defined as the waveform that minimises the mechani-
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cal cost of locomotion (our objective function) given that a turn of a certain size

is achieved. Results are obtained for several different shape spaces: Fourier trav-

elling waves, Chebyshev waves, and travelling waves of constant curvature. The

results from these different parameterisations of the shape space are compared,

analysed and discussed.

3.1.1 Adapting the straight-path model

Objective function and rotational constraint

Recall that in chapter 2 the optimal waveform for straight-path forwards locomo-

tion was determined by maximising the efficiency, subject to constraints of zero

net force and torque (required by the resistive force model), as well as the rota-

tional constraint that θ (T ) = θ (0), where θ (t) is the angle the body centreline is

to the x-axis, and T = 1/k the period of the waveform (k is the wavenumber).

This constraint ensured that the body does not rotate in circles over many periods.

For the case of determining the optimal turning gait, instead of a measure of ef-

ficiency which rewards higher mean speeds or increased net displacement, our

objective function to be optimised captures only the mechanical cost of the move-

ment:

F = (1− AB)Φ+ ABPBending. (3.1)

This ensures there is no requirement for the optimal turn to be performed whilst

achieving a maximum swimming speed, or maximum translation — we neither

reward nor assume any explicit displacement or mean velocity. The objective func-

tion F is the denominator of the generalised swimming efficiency from Spagnolie

and Lauga (2010) [12] which was used in the previous chapter, and incorporates

both the rate of mechanical work Φ and the elastic energy stored in the bending of

the body PBending. Again, AB is a dimensionless parameter that takes a value be-

tween 0 and 1, that is fixed prior to optimisation and allows control of the relative
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importance of mechanical work versus bending cost in the objective function.

In the previous chapter we sought to maximise the efficiency, whereas in the con-

text of turning we opt to minimise only the mechanical cost of motion so as not

to require the undulator to achieve a certain speed or net displacement. It would

not make sense to use the same objective function for turning as we did in chapter

2 (where the objective was to maximise the efficiency for the case of straight-path

forwards motion), as the question posed in this chapter seeks to determine the

optimal in-place reorientation strategy for the undulator.

To obtain the optimal turning gait, we adapt the rotational constraint included

in the numerical optimisation routine for straight-path locomotion to require that

the body achieves a given turning angle by the time t = T :

θ (T ) = θ (0) + θ ∗ (3.2)

where θ ∗ is the size of the turn to be performed. Imposing this constraint with

θ ∗ ∈ [−π,π] in the optimisation routine enables the investigation of the optimal

turning gaits, and is what allows us to model optimal turning. The parameter θ ∗

is fixed prior to optimisation, and dictates the angle that the undulator is required

to reorientate itself by the end of the fundamental period of the waveform. Here

the numerical formulation is separate from the statement of the problem, as it is in

chapter 2. Again as in chapter 2, this constraint is imposed via MATLAB’s nonlin-

ear constraint function in the optimisation toolbox. Explicitly, we are considering

the problem of minimising the mechanical cost of moving for an undulatory mi-

croswimmer, subject to the constraint that it achieves a reorientation of size θ ∗

after one period. No assumption on a given speed or net motion achieved by the

undulator is imposed: we do not require the swimmer move from point A to B in

space, we simply consider a given reorientation, independent of how fast or how

much distance is travelled in the process. The problem posed in this chapter is

not a path optimisation, but instead a reorientation optimisation.
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The kinematics and resistive force model which describe the fluid–body interac-

tions are identical to that laid out in section 2.3. Again, the optimal gait is de-

termined by decomposing the shape of the body onto a finite number of modes

describing the tangent angle ψ(s, t).

The optimal undulatory turn is defined as the waveform which minimises the cost

function F over the modes which describe ψ, subject to the resistive force model

(section 2.3.2), and also that the orientation of the body after one period be equal

to that at the start plus some turning angle θ ∗:

min
ψ(s,t)

F subject to: eqs. (2.25) to (2.40),

θ (T ) = θ (0) + θ ∗.
(3.3)

For straight-path forwards locomotion, the hydrodynamic efficiency is the ratio of

the rate of mechanical work required to achieve a given swimming speed to the

rate of working required by an external force to drag the undulator through the

fluid at that speed with its body stretched out behind it. An alternative way of

thinking about hydrodynamic efficiency for straight path forwards locomotion is

to consider imposing a constraint on how far the body needs to travel, requiring

a fixed displacement, and then minimising the cost associated with locomotion.

That is, the problem posed in chapter 2 could be considered as: fixing the swim-

ming speed U , and finding the minimum mechanical cost F such that the efficiency

η is maximised.

By that analogy, in this chapter (where we have adapted the objective function to

address a related yet separate and alternative question from the previous) we are

determining the optimal turning gait by fixing the size of the turn required, and

minimising the cost associated with that motion. Hence the turning constraint

θ (T ) = θ (0) + θ ∗ is crucial for determining the optimal turn. Minimising the

cost function F without imposing this constraint would result in the undulator

simply doing nothing, as not moving at all naturally incurs no locomotory cost.
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The turning constraint forces the undulator to do something, rather than nothing.

Conceptually, one could devise a measure of hydrodynamic efficiency for the case

of turning. By similar analogy as above, it could be possible to consider the ratio

of mechanical work required by the undulator to achieve turning angle θ ∗ to the

rate of working required by an external torque to rotate the swimmer by that

amount. This ratio would yield a hydrodynamic efficiency for the specific case of

turning. Whilst not considered in this thesis, this would provide an alternative

objective function for which we could optimise over in order to determine the

optimal undulatory turn.

The objective function minimised in the optimisation problem in this chapter cap-

tures only the mechanical cost associated with the undulatory turning strategy.

The reorientation of the body given by θ ∗ achieved after one period of the wave

does not impose or require any distance travelled across the space. The formu-

lated problem applies to in-place turning (ie imagine a person turning around

whilst their feet stay in the same spot), rather that traversing a curved path of a

given radius (such as a person walking around the edge of the Colosseum). More

precisely, there are no restrictions on motion: the formulation of the problem

does allow for translation, and the constraint only specifies that the body must

reorient itself. Hence although the body may translate, in one period it won’t

get very far. This formulation captures the real-animal behaviour of undulators

turning to head in a different direction locally: an in-place reorientation whilst

not attaining any significant net displacement over one period. For the example

of C. elegans, the magnitude of the reorientation (how large θ ∗ is) captures the

spectrum of behaviours from shallow turns to omega turns. Large θ ∗ can be as-

sociated with omega turning since the change of direction is prominent. For the

commonly observed behaviour of gradual reorientation (eg to move up or down

some gradient), a series of small θ ∗ turns would capture this gait. For example,

four θ ∗ = π/32 turns become a turn of π/8 after four periods. The problem being

investigated in this chapter — the (gradual or sizeable) reorientations and consid-
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eration of optimal in-place turning strategies — lies within the broader problem

of answering the question “what is the most efficient way of getting from point A

to B under given circumstances?”.

Model parameters

As in chapter 2, some parameters in the model need to be fixed prior to numerical

optimisation. We again set the parameter AB ∈ [0, 1] to control the penalty for

bending, and also rk = KT/KN the ratio of tangential to normal resistance, which

for swimming micro-undulators is 1/2. This value is applicable for flagella and

organisms such as spermatozoa, but we note here that this ratio is different for mi-

croundulators such as nematodes (as these are not even approximately infinitely

slender). We choose rk = 1/2 in this chapter for consistency with chapter 2. We

also set the turning angle θ ∗ which via the rotational constraint dictates the net

path curvature and the size of the turn to be performed.

When optimising for straight-path forwards locomotion, the wavenumber k was

included with the modes that describe the tangent angle in the set of control

parameters, the values of which are determined by the optimisation routine such

that the efficiency is maximised. However, for optimal undulatory turning instead

of maximising the efficiency we are minimising the cost. As a result, including the

wavenumber as a control parameter results in k → 0. This clearly minimises F ,

as T →∞ allowing the undulator infinite time to perform the turn. We therefore

fix the value of k prior to optimisation.

The parameters to be fixed prior to numerical optimisation are therefore: i) AB, the

relative importance of mechanical work versus bending, ii) rk, the drag anisotropy,

iii) θ ∗, the turning angle, and iv) k, the wavenumber.
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Overlapping

For the case of straight-path forwards locomotion, non-self-intersecting optimal

shapes are readily found, and it is easy to find optimal shapes where overlapping

does not occur. However, for investigating optimal turning gaits, overlapping is

potentially unavoidable and it is intuitive to think that for the resulting body pos-

tures, it may be optimal to perform the turn by assuming high-curvature shapes

that would induce the undulator to cross over itself.

Here we interpret self-intersection as the body crossing over itself, with the un-

dulator coming out of the plane. No additional penalty is incurred for any kind

of overlapping by the body. We note that the validity of resistive force theory

for the extreme scenario of self-intersection is brought into question, since this

framework neglects nonlocal forces which arise (the actual forces experienced by

a point along the body length is also influenced by the motion of the other points).

Alternative frameworks such as slender body theory could be used to investigate

such interactions, at the expense of high computational cost.

3.2 Reducing the radius of curvature

In this section we demonstrate that for the case of optimal undulatory turning, a

definitive way to minimise the objective function F is for the undulator to reduce

its radius of curvature, and shrink to a tightly-coiled shape.

Here we present an analytical result which shows that for a slender body moving

along a circle of radius R, that is propagating a travelling wave of magnitude ε,

as AB approaches 0, there exists an optimal value of R such that the cost function

F is minimised.

For the purposes of this result, we introduce an alternative basis from the one

used previously, whereby analysis and integration is performed with respect to the
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origin. This alternative parametrisation simplifies the derivation of the analytical

result. This result is also established in the instantaneous case. This allows for

and simplifies assumptions (for example, of zero net translation) which yield the

result. A schematic summarising this basis is shown in fig. 3.1.

The derivation of this result in the instantaneous scenario enables and simplifies

the proceeding analysis. In the optimal control problem, there is a limit to how

many unknowns can be solved for. In the optimisation, we need to determine x (t)

and θ (t). Therefore, in the derivation of this analytical result, we take ẋ0(t) = 0

(translational velocity is zero), and thus the zero net force constraint disappears.

The constraint of zero net torque remains.

3.2.1 Analytical result

The position (ie shape) of the undulator along the arc-length ϕ at time t is now

given by

x (ϕ, t) = R(θ (t))(R[1+ ε f (ϕ − c t)]r̂ (ϕ)) (3.4)

where R is the rotation matrix, R the radius of curvature, f a travelling wave

perturbation to the radius of size ε, and

ϕ̂ = [− sin(ϕ), cos(ϕ)] , r̂ = [cos(ϕ), sin(ϕ)]. (3.5)

The perturbation ε refers to the perturbation from the radius of curvature R. They

are related as: taking R → 0 also results in the amplitude of the wave going to

zero. The amplitude of the travelling wave is εR. Thus, ε is the amplitude relative

to the radius.



3.2. Reducing the radius of curvature 82

! = 0! = $

%

&

'( )*

Figure 3.1: A schematic illustrating the basis for our analytical result. For f (ϕ−c t)
which prescribes the shape of the undulator via x (ϕ, t) = R(θ ){R[1 + ε f (ϕ −
c t)]r̂ (ϕ)} where r̂ (ϕ) = [cos(ϕ), sin(ϕ)], we show analytically that, in the in-
stantaneous case, the viscous dissipation Φ relates to the radius of curvature of
the body R via Φ = ε2c2R2KN

! L
0 f ′2ds with KN the normal resistance coefficient,

and f ′ = ∂ f /∂ ϕ. This result is derived under the assumption that translational
velocity is zero. Furthermore, it is shown that for a given AB, there exists an opti-
mal radius of curvature R that minimises the cost of locomotion, which approaches
zero as AB does.

Differentiating eq. (3.4) with respect to t, we obtain the velocity

u = θ̇
dR
dθ
(R[1+ ε f ]r̂ ) +R(εR

∂ f
∂ t

r̂ ) (3.6)

= θ̇
dR
dθ
(R[1+ ε f ]r̂ ) +R(−εcR f ′ r̂ ) (3.7)

where f ′ denotes ∂ f /∂ ϕ. Explicitly, here we have used the fact that, since f is a

function of ϕ − c t (ie a travelling wave), it is the case that d f /dt = −c(d f /dϕ).
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Since (dR/dθ )r̂ = Rϕ̂, equation (3.6) becomes

u = θ̇R(R[1+ ε f ]ϕ̂) +R(−εcR f ′ r̂ ). (3.8)

The unit tangent vector along the body is given by

t̂ =
∂ x/∂ ϕ
|∂ x/∂ ϕ| . (3.9)

Computing the numerator and denominator of t̂ , we obtain

∂ x
∂ ϕ
= R[ εRf ′ r̂ + R(1+ ε f )ϕ̂] (3.10)

and 4444
∂ x
∂ ϕ

4444
2

= R2[(1+ ε)2 + ε2 f ′2]. (3.11)

Denoting |∂ x/∂ ϕ|= a to simplify notation, we obtain

t̂ = R
5
ε

R
a

f ′ r̂ +
R
a
(1+ ε f )ϕ̂
6
. (3.12)

To determine the force per unit length f , which by the resistive force model is

given by

f = (KT − KN )(u · t̂ )t̂ + KN u, (3.13)

we require an expression for u · t̂ . In the instantaneous case, we take θ = 0 such

that R = I. It follows that

u · t̂ = θ̇ R2

a
(1+ ε f )2 − ε2 R2

a
c f ′2. (3.14)

For ε≪ 1, we have to leading order

a = R+O(ε). (3.15)
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Thus, we have that

u · t̂ = θ̇R− ε2Rc f ′2. (3.16)

Similarly,

t̂ = ϕ̂ + ε f ′ r̂ , (3.17)

u = Rθ̇ϕ − εcR f ′ r̂ . (3.18)

Thus,

f = (KT − KN )[θ̇R− ε2Rc f ′2](ϕ̂ + ε f ′ r̂ ) + KN (Rθ̇ ϕ̂ − εcR f ′ r̂ ). (3.19)

Recall that the viscous dissipation Φ is given by

Φ=

& L

0

f · uds (3.20)

=

& L

0

5
(KT − KN )(u · t̂ )2 + KN u2

6
ds. (3.21)

Hence, evaluating this integral with our expressions for u and f given by eq. (3.18)

and eq. (3.19) respectively, the analytical expression for the viscous dissipation is

given by

Φ̌=

& L

0

(KT − KN )[θ̇R− ε2cR2 f ′2]2ds+ KN

& L

0

5
R2θ̇2 + ε2c2R2 f ′2

6
ds. (3.22)

Recall also that to ensure no external forcing, the dynamics of the resistive force

model are set by conditions ensuring zero net force and zero net torque. Imposing

the latter of these constraints, we require that

& L

0

ẑ · (x × f )ds = 0. (3.23)
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This yields

KT

& L

0

θ̇R2 ds− (KT − KN )ε
2R2c

& L

0

f ′2 ds = 0. (3.24)

Hence

θ̇ = (1− KN

KT
)
ε2c
L

& L

0

f ′ ds. (3.25)

Therefore, to leading order in ε, the analytically determined viscous dissipation

is given by

Φ̌= ε2c2R2KN

& L

0

f ′2ds. (3.26)

Recall our objective function which describes the cost of the undulatory gait is

F = (1− AB)Φ+ ABPBending (3.27)

where

PBending =

& L

0

7
∂ψ

∂ s

82
ds (3.28)

which is derived from the elastic energy stored in the bending of the body, where

∂ψ/∂ s denotes the curvature. In this parametrisation, to leading order in ε the

curvature is 1/R. This is can be seen clearly by construction of this basis, that the

curvature is due to the radius of the circle along which the undulator is travelling

(for more detail, an in-depth derivation of howψ(s, t) is related to f (ϕ, t) is given

in appendix section A.2). Hence, the analytical expression for the bending term

is given by

P̌Bending =
L

R2
. (3.29)

Thus we obtain, to leading order:

F = (1− AB)ε
2c2R2KN

& L

0

f ′2ds+ AB
L

R2
. (3.30)
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Recall that the perturbation ε is the amplitude of the undulation relative to the

radius of curvature R. That is, the perturbation of the body away from the circle of

radius R is equal to εR. As we are in the limit ε≪ 1, a factor of ε does not appear

in the approximation of the bending energy. What we observe from the form of

eq. (3.30) is that the bending cost is related to the overall radius of curvature of

the body, and the hydrodynamic cost (the viscous dissipation) is a function of the

undulating wave propagating along the body length.

To find the optimal (ie minimum) cost as a function of the radius of curvature,

it is necessary to compute dF/dR = 0. Evaluating this derivative, we solve for R

in terms of AB to find the following relationship between the optimal radius of

curvature R and AB:

dF
dR
= 0 =⇒ R4 =

AB L

(1− AB)ε2c2KN

! L
0 f ′2 ds

. (3.31)

Hence, as we reduce the importance of bending in the cost function, as we de-

crease the penalty for bending in the body, taking AB → 0, there exists some

optimal radius of curvature R that minimises our cost function F , and this R also

tends towards 0. This optimal radius of curvature scales relative to AB according

to

AB ∼ R4. (3.32)

The result illustrates that the mechanical cost can be minimised by shrinking and

reducing in size, which is not a surprising outcome. The bending cost was deter-

mined to be a function of the overall radius of curvature (R). The hydrodynamic

cost is a function of the undulatory wave (ε and f ). When the importance of bend-

ing cost is reduced, the undulator can assume increasingly tightly-coiled shapes.

Through the derivation of this result we have quantitatively established that in

order for the optimisation not to predict shapes of increasing curvature, we need

to place some restriction on the shape space. This is a useful conclusion, and our
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principal interpretation of this result is applicable in guiding the optimisation.

3.2.2 Numerical confirmation of analytical result

We can confirm this analytical result numerically by specifying the shape using

this basis with respect to the origin. As the result is obtained in the instantaneous

case, we simply prescribe

f (ϕ) = sin(kϕ) (3.33)

and choose wavenumber k = 4π, and ϕ ∈ (0, 6π). This choice of f here is made

as it is a simple sine wave of size ε propagating along the length of the body, that

itself has an overall radius of curvature R. We expect the approximation to hold

for any f provided that 1/k is not too small. Furthermore, the derivative of f with

respect to ϕ should remain small relative to R−2, such that there is no breakdown

in the asymptotic structure..

The results of this numerical confirmation are shown in fig. 3.2. The analyti-

cal viscous dissipation can in fact be computed without any assumptions on ε.

Comparing the numerically determined dissipation Φ with that given by the ex-

pression obtained analytically Φ̌, dividing by the factor of ε2R2 for both, we see

that as ε→ 0, the numerical and analytical result agree increasingly. Similarly, for

the bending term, the numerically determined PBending agrees with the analytical

expression P̌Bending increasingly as R→ 0. The range of R for which the two agree

expands to greater radii of curvature as we take ε→ 0.

For a fixed value of ε we can perform a parameter sweep over a range of AB and R

values, and evaluate the cost function F for a given AB and R. For a given AB, the

optimal radius of curvature R can be found by seeking the point in the landscape

where F is minimised. To demonstrate the derived result that this optimal radius

of curvature relates to the bending importance according to R4 ∼ AB, the slope

of the optimal R is determined using the MATLAB polyfit function, by fitting a
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polynomial of degree 1 to the points. The slope of the line fitted for both example

cases shown here (ε = 10−3 and 10−5) is approximately 4, which confirms our

derived result.
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Figure 3.2: Numerical confirmation of analytical result which shows that reduc-
ing the radius of curvature yields the optimal undulatory turn. The numerically
determined viscous dissipation Φ agrees increasingly with the analytical result Φ̌
as ε → 0, independent of R. For the bending term, the numerical PBending and
analytical P̌Bending agree increasingly as both R and ε decrease. To demonstrate
the result that the optimal R4 ∼ AB, we show two examples: ε = 10−3 and 10−5.
Fitting a polynomial of degree 1 to the optimal radii of curvature across a range
of AB values yields slopes of 3.9989 and 4.0005 respectively, confirming with our
analytical result.
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3.2.3 Optimisation

The principal takeaway from the analytical result is that, in the numerical optimi-

sation problem, when optimising reorientation (as opposed to path-optimisation),

we need to choose the shape space such that there is some limitation on the cur-

vatures of the shapes. We now consider the question of how the optimisation

controls changing the travelling wave shape versus the overall radius of curva-

ture. Given that the optimal gait is established by decomposing the tangent angle

onto a finite number of modes, we seek to determine how exactly does the op-

timisation routine balance tuning modes which parametrise the travelling wave

with those which control the overall radius of curvature.

We now consider the case of running the optimisation routine, solving the opti-

misation problem for a shape space relevant to our analytical result, for a more

general set of shapes. The set of parameters to be optimised yields a shape with

constant curvature, plus a travelling wave propagating along it. This is a more

general shape space compared with that prescribed for the analytical result.

By allowing the shape of the travelling wave to change, as well as the swimmer

radius of curvature, we can observe how the optimisation routine decides what

is optimal. Specifically, we can determine if there is a preference in changing the

travelling wave shape versus changing the overall radius of curvature in order to

achieve the optimal gait.

We prescribe the tangent angle — for arc length s ∈ [0, L] (ie point along the body

from head to tail) and t ∈ [0, T] where T = 1/k is one fundamental period of the

waveform — as

ψ(s, t) = cs+
n∗+

n=1

an cos(2πn(s− t)) + bn sin(2πn(s− t)) (3.34)

where an, bn for n = 1 to n∗ (as in chapter 2) are Fourier modes parametrising

the travelling wave shape, to be determined in the optimisation such that F is
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minimised. Additionally, the parameter c ∈ ! is also included in the set of control

parameters to be determined by the optimisation. This parameter allows the body

shape to assume an overall constant curvature via the cs term in the expression.

Changes to c imply changes in the overall radius of curvature. This parametri-

sation of ψ(s, t) is equivalent to that used in chapter 2 to determine the optimal

straight-path forwards gait with k = 1, plus the constant curvature term cs.

The model parameters that are set prior to optimisation are AB, rk and θ ∗. We

select two fixed values of AB: 10−2 and 10−4, which were chosen to distinguish

qualitative differences in the results when the cost function is mostly bending ver-

sus mostly hydrodynamics. These choices of AB are based on results from chapter

2. For AB = 10−2 the optimal straight path gait was in the sinusoidal regime. For

AB = 10−4 and lower, an interesting transition occurred where optimal gaits be-

came increasingly sawtooth, and optimal wavenumbers jumped discontinuously,

exhibiting bias towards half-integer values. Thus, choosing AB = 10−2 and 10−4

will highlight categorical differences in optimal turning behaviour, between bend-

ing cost contributing significantly, and dissipation dominating the mechanical

cost. Recall that for lower values of AB, bending is penalised less in our objective

function F . For the two values of AB, and setting rk = 1/2, we run the optimisa-

tion routine, fixing the parameter θ ∗ for increasingly sharp turning angles from

π/32 to π. The results are shown in fig. 3.3.

Examining the cost function F as a function of θ ∗, we see that the higher the turn-

ing angle, the higher the cost. We also observe that as θ ∗ increases, the magnitude

of the optimal value of c also increases. This shows that, for a larger turning angle,

it is optimal to increase the radius of curvature, for both values of AB tested. Note

that this observation is not by construction. The turning angle θ ∗ is not built into

the mechanical cost objective function. That is, the objective function does not

depend on θ ∗, and only is linked to the dissipation and the bending cost. Our mo-

tivation for investigating this particular optimisation problem is to observe how

the routine balances changing the overall radius of curvature, versus changing the



3.2. Reducing the radius of curvature 91

0 1 2 3
3$

0

0.2

0.4

0.6

0.8

F

0

5

10

15

20

jc
j

AB = 10!2

AB = 10!4

3$ = :=32

3$ = :=16

3$ = :=8

3$ = :=4

3$ = :=2

3$ = :

AB = 10!2

3$ = :=32

3$ = :=16

3$ = :=8

3$ = :=4

3$ = :=2

3$ = :

AB = 10!4

Figure 3.3: Results for the optimal turns for prescribing the tangent angle ψ(s, t)
via (3.34). For increasing θ ∗, both the cost F (solid black line, left axis) and
optimal radius of curvature c (dashed grey line, right axis) also increase, for both
values of AB. Reducing AB results in reducing the radius of curvature, as confirmed
with the previous analytical and numerical result. Dots in the optimal turning
gaits here and henceforth indicate the point s = 0 (the ‘head’ of the slender body)
and are for purely indicative purposes.

shape of the propagating wave. In this scenario, we have relaxed the assumptions

made in our analytically derived result above, and more simply investigate what

happens if this reduction in the radius of curvature occurs in a more general set-

ting, without the assumptions of the analytical framework. We have determined

that having a high bending cost does regularise the problem somewhat. For high

AB, realistic gaits can be obtained without extreme control on the shape space.

We can observe this trend by looking at the turns themselves, noticing the change

in gait as the turning angle increases. Distinctively, we see that for the lower AB

(the case where bending is penalised less, and the cost function is mostly viscous
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dissipation) the radius of curvature is significantly higher. The shapes for AB =

10−4 are visibly more curled-up than those for AB = 10−2. This further emphasises

our analytical result, that for lower AB it is more optimal to curl up more tightly.

3.2.4 Prescribing the shape space for modelling optimal undulatory

turning

With the results presented in this section we have demonstrated that as AB → 0

the optimal gait is achieved by curling up tightly, reducing the radius of curvature

and shrinking to a dot. Whilst this is an interesting mathematical result, much

like Lighthill’s saw-tooth, in the biological context organisms are limited in their

capacity to assume such shapes. The extreme cases of our results are not phys-

ically possible for many undulatory microorganisms. Lighthill remarked that, in

the context of straight-path forwards locomotion “real flagella possess some min-

imum achievable radius of curvature of bending, which would prevent the from

achieving the saw-tooth waveform” [9]. The same can be said of these tiny radius

of curvature shapes.

Therefore, in order to prevent our optimisation routine simply taking all our turns

to curl up tightly, we must choose our shape space carefully such that there is some

inherent constraint on the curvature, either explicitly written as a constraint in the

optimisation, or fundamentally required by the shape space. For instance, we can

require the body to start and end in a straight zero-curvature configuration, or

that the curvature in the body must integrate to zero over one period. Thus, the

constraints in the optimisation and/or the expression chosen forψ(s, t)must take

this into account.
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3.3 Results

Before we analyse the results and effects of prescribing different shape spaces,

we first describe the model parameters that are to be set prior to running the

numerical optimisation routine.

Setting parameter values prior to optimisation

We obtain optimal turning gait results for two different values of AB: AB = 10−2

and 10−4, which were chosen to investigate qualitative differences when bending

is penalised more or less. For AB = 10−2, the emphasis is on minimising curva-

ture cost. This contrasts with AB = 10−4, where the emphasis is on minimising

environmental cost.

The turning angle θ ∗ is also fixed prior to optimisation, for a series of increasingly

sharp turns: θ ∗ = π/32, π/16, π/8, π/4, π/2, π. When running the numerical

optimisation, the initial position in the routine is taken to be the optimal found

for the immediate prior turning amount. Explicitly, starting with θ ∗ = π/32, the

starting values of the modes describing the tangent angle ψ(s, t) are taken as

normally-distributed random numbers, generated using MATLAB’s randn func-

tion. Then for θ ∗ = π/16, the initial position is taken to be the optimal waveform

found for θ ∗ = π/32. And so on, for θ ∗ = π/8 the initial position is the optimal

found for θ ∗ = π/16, etc. This continuation in the initial position for the optimi-

sation was successful in ensuring convergence to the optimal solution, as opposed

to using a random initial position for each case.

The drag anisotropy rk is fixed at 1/2, to model swimming micro-undulators.
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3.3.1 Fourier travelling waves

From our analytical result we established that the shape space needs to be care-

fully chosen such that there is some constraint on the curvature that the body can

assume, either via the expression for ψ or including additional constraints in the

optimisation.

Our initial approach to constraining the curvature in the body does not require an

additional constraint to be explicitly included. Rather, the shape space thatψ(s, t)

occupies is limited to that of travelling waves. Prescribing the tangent angle as

ψ(s, t) =
n∗+

n=1

an cos(2πnk(s− t)) + bn sin(2πnk(s− t)) , (3.35)

which is the expression used in chapter 2 , and is also equivalent to the expression

used in section 3.2.3 without the constant curvature term. As a result of removing

the radius of curvature term, the wave-averaged curvature is zero:

& 1/k

0

∂ψ

∂ s
ds = 0. (3.36)

The Fourier modes an, bn for n = 1, ..., n∗ are the control parameters to be deter-

mined by the optimisation routine. This expression for ψ(s, t), which is a travel-

ling wave and a finite sum over n∗ Fourier modes, we refer to as ‘Fourier ψ’.

In addition to setting AB,θ ∗ and rk prior to optimisation, we also want to inves-

tigate the effect of changing the period and wavenumber of the travelling wave

propagating along the body length. In this shape space the wavenumber k also

needs to be fixed prior to optimisation, due to the fact that our objective is to min-

imise the cost function. We therefore test several fixed values of k in our model:

k = 1.5, 1, 0.5, 0.25 and 0.1, and determine the optimal turn for each case.
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Results for AB = 10−2

Setting the value of AB = 10−2, an overview of the resulting optimal turning

gaits is shown in fig. 3.4. The results show that the cost of turning decreases

monotonically with both decreasing k and decreasing θ ∗ (fig. 3.4i). Hence, it is

consistently more costly to perform a larger turn, for a higher wavenumber.

The resulting costs as a function of k can be understood by examining the shapes

themselves. For example, for a given turning angle — here isolating θ ∗ = π/4 —

we observe that the body curvatures decrease as k decreases (fig. 3.4ii). This is

as expected — for AB = 10−2 the cost function F depends mostly on PBending, and

we see the radius of curvature decrease as k decreases. The most optimal turns,

for all values of θ ∗, result from when k is minimised, ie when the period of the

waveform is extended.

Examining the optimal turns for low wavenumber (k = 0.1) we see that for in-

creasing turning angle θ ∗, the larger turns require higher curvatures (fig. 3.4iii).

This is shown in the waveforms and also quantitatively in fig. 3.4iv, where we can

examine ∂ψ/∂ s as a function of s/k, as well as the maximum value of |∂ψ/∂ s|

in the wave over the period of the turn. Not only is the magnitude of the max-

imum curvature increasing as the turning angle increases, but the near constant

curvature assumed by the undulator for the initial portion of the wave is also

greater as the turning angle increases — the y-intercept in fig. 3.4iv increases

as θ ∗ increases. This is an effect of the form of our expression for ψ, and that

the curvature integrates to zero over one period. If the maximum curvature must

increase in order to perform a larger turn, the curvature in the body at its initial

configuration balances this out.
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Figure 3.4: Optimal turning results for AB = 10−2 for Fourier ψ. 3.4i: The to-
tal cost F/k as a function of wavenumber k increases monotonically with both
wavenumber and turning angle θ ∗. 3.4ii: Isolating θ ∗ = π/4, we can observe the
change in optimal turning behaviour as the wavenumber decreases. 3.4iii: Fixing
k = 0.1 for which we find the optimal turns with the lowest cost, we can observe
the change in turning behaviour as the turning angle θ ∗ increases. 3.4iv: The
curvature of the optimal turning waveforms in s over a period for k = 0.1. The
maximum curvature magnitude increases as θ ∗ increases.
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Results for AB = 10−4

We now consider the case of setting AB = 10−4. With this smaller value of AB, we

have reduced the importance of bending in the cost function, so F now depends

mostly on hydrodynamics, and high-curvature shapes incur a lower penalty. An

overview of the results for this lower value of AB is shown in fig. 3.5.

Overall, the total cost of turning for the AB = 10−4 cases are lower than for the

10−2 case, as indicated by the vertical axis in fig. 3.5i. However, there are sev-

eral more prominent differences between these results and those for AB = 10−2.

Firstly, we see here that F is no longer monotonically increasing with θ ∗ when k

is 1 or greater. For example, when k = 1 it is more costly to perform of π/2 than

it is to perform a turn of π. The highest total cost incurred is for wavenumber

k = 0.25, performing a turn of π.

These results can be investigated further by again isolating a single turning angle

(θ ∗ = π/4) and examining the changes in waveform as the wavenumber changes.

Similarly to the AB = 10−2 case, we see a qualitative decrease in curvature as k

decreases (fig. 3.5ii). Why then is the total cost higher for k = 1 compared with

k = 1.5? As the wavenumber becomes greater than 1, the body assumes multiple

wavelengths when performing the turn. Between k = 1 and k = 1.5, the ‘peak’ of

the waveform does not change significantly — the magnitude of the curvature in

the body grows increasingly up to a sharp peak, before sloping back down. The

terms in our cost function F are time-averaged over a single period of the wave,

and for a higher value of k, this period is lower. Hence, for a similar shape over

one wavelength, for the total cost F/k (the total cost of turning over one period),

this value is lower for k = 1.5 versus k = 1. This explanation also applies to

θ ∗ = π/2 and π, for k increasing from 0.1 to 1.5.

For θ ∗ = π/4, the peak of the wave (the point of highest-magnitude curvature)

becomes increasingly smooth as k gets smaller. Considering the implication of k
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Figure 3.5: Optimal turning results for AB = 10−4 for Fourier ψ. 3.5i: The mono-
tonic relationship observed for AB = 10−2 is not seen here. The total cost F/k as
a function of wavenumber k increases monotonically in θ ∗ for k < 1. 3.5ii: Iso-
lating θ ∗ = π/4, we can observe the change in optimal turning behaviour as the
wavenumber decreases. 3.5iii: Fixing k = 0.1 for which we find the optimal turns
with the lowest cost, we can observe the change in turning behaviour as the turn-
ing angle θ ∗ increases. 3.5iv: The curvature of the optimal turning waveforms in
s over a period for k = 0.1. The maximum curvature magnitude increases as θ ∗

increases.

in our expression forψ, in that, for example, the n= 20 Fourier mode for k = 0.1

is the equivalent ‘wiggle’ to the n = 2 mode for k = 1, this explains how, for

lower wavenumbers, the transition from switching sign in ∂ψ/∂ s is smoother. For

smaller k, the modes which parametrise the shape are prescribing more ‘wiggles’

at the lower frequency end.

This smoothness can be seen by, again, isolating the optimal turns for k = 0.1.

For this low value of k, looking at the turns we can see an increase overall in
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the curvature of the body compared with AB = 10−2 (fig. 3.5iii). Especially for

the larger values of θ ∗, the body assumes a distinctly more curled initially pos-

ture, before bending and coiling in the opposite direction in order to perform the

turn. This can be examined quantitatively again in the s/k against ∂ψ/∂ s plot

(fig. 3.5iv), and again follows from the fact that for this expression of ψ the cur-

vature integrates to zero over one period. However, this is notably different from

the analogous figure for AB = 10−2, as instead of maintaining a near-constant

curvature before and after turning, ∂ψ/∂ s increases significantly, before switch-

ing signs in order to perform the turn. Furthermore, this transition from positive

to negative curvature happens much less abruptly than for the AB = 10−2 case,

and overall the transition is smoother. Whilst the maximum curvatures between

the two AB values for θ ∗ are very similar, this optimal turning strategy was not

realised in the AB = 10−2 case as this increase in curvature would have incurred

unnecessary cost in the objective function.

Expanding the shape space

As we observed in section 3.2.3, we see that for lower AB, it is optimal to decrease

the overall radius of curvature of the body. The results for this Fourier ψ high-

light the qualitative difference in optimal turning strategy for these two different

values of AB. This parametrisation of the tangle angle prescribes that shape of the

waveform as a travelling wave. In the context of optimal straight-path forwards

locomotion, Pironneau and Katz (1974) [17] derived that travelling waves are

hydrodynamically optimal by solving the optimisation problem, imposing a con-

straint on net linear velocity over one period. More recently, Lauga (2020) [22]

obtained the result that travelling waves are hydrodynamically optimal for long-

wavelength flagella.

There is a lot of evidence that travelling waves are optimal for the straight-path

forwards motion problem. But how optimal are travelling waves for undulatory
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turning strategies? We investigate this question now by expanding the shape space

to beyond only travelling waves, decoupling space and time and reducing the

limitations on the variety of shapes that can be assumed in the shape space.

3.3.2 Chebyshev waves

The Fourier results assumed a travelling-wave shape for the optimal turning gaits.

In this section we relax this assumption and expand the shape space, taking inspi-

ration from Alben (2013) [57], which considers the problem of optimising snake

locomotion in the plane. In this study the tangent angle is prescribed using Cheby-

shev polynomials in s, decoupling space and time so thatψ is no longer a function

of s− t. The shapes that this parametrisation allows can therefore change in time

in a more general way.

We now prescribe the shape of the body via parametrising the curvature as

κ(s, t) =
m∗−1+

m=0

n∗−1+

n=0

(αmn cos(2πmt) + βmn sin(2πmt))Tn(s) (3.37)

where Tn is the nth Chebyshev polynomial in s:

Tn(s) = cos(n cos−1(s)). (3.38)

The prescribed curvature is periodic in time with the same period T a previously:

κ(s, t) = κ(s, t + T ), (3.39)

and the tangent angle is recovered by integration:

ψ(s, t) =

& s

0

κ(s′, t)ds′. (3.40)

Without loss of generality, ψ(0) = 0. This expression for the tangent angle is
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referred to as ‘Chebyshev ψ’. The control parameters αmn,βmn for m = 1, ..., m∗

and n = 1, ..., n∗ are now the modes to be determined by the optimisation rou-

tine. The parameters fixed prior to optimisation are i) AB, which again we fix

at 10−2 and 10−4, ii) rk, which remains fixed at 1/2, and iii) θ ∗, we again we

fix at π/32,π/16, ...,π/2,π. In alignment with Alben (2013) [57], we choose

n∗ = m∗ = 5.

We are thus generalising the shape space such that the waveform is not necessarily

periodic in s. Time-periodicity is however still incorporated in this parametrisation

of the shape. The terms in κ(s, t) with coefficients β0n are zero by construction,

so the objective function F is thus minimised in 45-dimensional space ((2m∗ −

1)n∗ dimensions). This number of control parameters is small enough to enable

convergence to the minima, whilst not considerably slowing said convergence and

sufficiently characterising biologically relevant curvatures [57].

The shapes that this parametrisation allows can change in time in a more general

way, since s and t are decoupled, however the number of attainable shapes (in

terms of the curvature) are limited by the value of n∗— the number of Chebyshev

polynomials. There is therefore a trade-off with the travelling-wave case: here

we can only reach a certain polynomial order that is much smaller than for the

Fourier waves, but the shapes can change in a more general way.

Including an additional constraint

This generalised shape space of Chebyshev waves does not inherently constrain

the curvature as our Fourier ψ does. Therefore we must include an additional

constraint in the numerical optimisation routine requiring that that body start

(and end, due to periodicity) in a straight posture:

∂ψ

∂ s
(s, t = 0) = 0. (3.41)
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This satisfies the required constraint on curvature in the body, the applicability of

which is demonstrated by our analytical result (section 3.2.1). Furthermore, the

choice of this constraint is motivated by what was observed for the low wavenum-

ber AB = 10−2 case.

Results

An overview of the results for optimal turns for this Chebyshev shape space are

shown in fig. 3.6. Between the two AB values, the results for the optimal turn-

ing gaits upon first glance appear essentially identical. Examining these results

more closely in fig. 3.7, for AB = 10−4 the maximum body curvature over time

is marginally greater than for AB = 10−2. In particular, for the highest turning

angle we considered, the body achieves a higher maximum curvature value along

its length sooner in the period of the wave than for the lower AB case.

There are also some low-magnitude waves present in the AB = 10−4 case (in

particular these can be seen in the first few shapes for θ ∗ = π). It is likely these are

present due to not being eliminated in the optimisation routine from the random

initial condition, as for this lower value of AB they will contribute minimally to
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Figure 3.6: Optimal turn results for Chebyshev ψ. Between the two values
AB = 10−2 and 10−4 there is no significant qualitative difference in behaviour
for optimal turning. This is surprising as we would anticipate the AB = 10−4 to
assume higher curvature shapes, as bending is penalised less in this scenario.
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the objective function.
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Figure 3.7: Analysis of results for optimal turns with Chebyshev ψ. For the two
values of AB, the maximum body curvature over time is largely similar. Compar-
ing the optimal turns for this shape space with the least-costly optimal turns for
the Fourier ψ: for AB = 10−2 the optimal turns for the Chebyshev shape space
are marginally less costly, for 10−4 the Fourier k = 0.1 turns are more optimal,
incurring overall a lower total cost.

Increasing the number of modes m∗, n∗ had negligible effect on the optimal turn

results, and we continued to find highly similar turning gaits between the two

AB values, across all turning angles θ ∗. It is interesting and unintuitive that the

optimal turns for AB = 10−2 and 10−4 are so similar in this case. We would expect,

as we had seen previously, the 10−4 turns to assume a shape with higher curvature,

as bending is penalised less in the objective function for this case. Because the

constraint on curvature in this case is now explicitly included as ∂ψ/∂ s(s, tend) =

0 in the optimisation routine, this is perhaps limiting the fundamental behaviour

of the optimal turns in these results.

One possibility is that the numerical optimisation routine is just not computation-
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ally capable of finding the globally optimal turning gait. The energy landscape

maybe be very shallow and ‘bumpy’, with many local optima. We observed that

as we remove the curvature cost (solving the optimisation with decreased AB) the

resulting optimal turns become more variable (see fig. 3.8). For different random

initial conditions, the resulting optimal turning gait as determined by the numeri-

cal routine can vary significantly, in both shape and objective function value. The

fact that the optimisation predicts identical shapes here for the two values of AB

requires further investigation.

3$ = :=32,
F = 0:18691

3$ = :=32,
F = 0:33466

3$ = :=32,
F = 0:6553

Figure 3.8: Turning results determined by the numerical optimisation routine for
θ ∗ = π/32 for the Chebyshev shape space, from three different random initial
conditions in the solver. As the curvature cost is removed (AB = 10−4), the result-
ing optimal turns become more variable.

Chebyshev waves with non-zero curvature

In order to further investigate the results of this Chebyshev return-to-straight

shape space for AB = 10−4, we can adapt the approach above to consider an

alternative scenario. Suppose now that it is not the case that the body must be

in a completely straight line initial configuration. We now adapt eq. (3.41) such

that instead:
∂ψ

∂ s
(s, t = 0) = c∗ (3.42)

where c∗ ∈ ! (fixed and set prior to optimisation) is the curvature of the optimal

gaits given by the Fourier k = 0.1, AB = 10−4 optimisation results. This adaptation
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no longer requires that the body be in a completely straight line configuration,

and is instead informed by the optimal starting configuration from the Fourier

shape space. The motivation for this adaptation is to provide more insight into

the AB = 10−4 results, in the regime where the objective function is dominated by

hydrodynamic cost. We would expect the results of this optimisation problem to

be less costly than those for the ∂ψ/∂ s(s, tend) = 0, because the return-to-non-

zero-curvature c∗ is informed by the Fourier results, which were found to be more

optimal (see fig. 3.7).

The resulting optimal gaits from this adaptation of the curvature constraint are

shown in fig. 3.9. And the resulting mechanical cost of these optimal gaits in this

shape space with the adapted curvature constraint are shown in fig. 3.10. Sur-

prisingly, contrary to our expectation we find in fact that the ∂ψ/∂ s(s, tend) = c∗

turns are less optimal than the previous ∂ψ/∂ s(s, tend) = 0 case. This is likely due

to the intermediate S-shaped posture assumed by the undulator between its initial

and final configuration, which intuitively contributes highly to the cost function.

The results of this Chebyshev shape space that enable undulations in a more gen-

eral way compared with the Fourier, as well as the possible approaches to adapting

the curvature constraint, remain open to scrutiny.
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Figure 3.9: Optimal turn results for Chebyshev (AB = 10−4) with the constraint
on the curvature now given by ∂ψ/∂ s(s, tend) = c∗, where c∗ is taken to be the
curvature of the initial and final postures of the optimal Fourier k = 0.1 results.
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Figure 3.10: Chebyshev with ∂ψ/∂ s(s, tend) = c∗: the constant-curvature to be
returned to c∗ as a function of θ ∗, and the value of F for the optimal return-to-
constant-curvature results. Surprisingly, these results incur a greater mechanical
cost than the ∂ψ/∂ s(s, tend) = 0 results, despite the fact that the high curvature
Fourier k = 0.1 turns are more optimal than the Chebyshev shapes.
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Approximation to travelling waves of constant curvature

The shape spaces of the optimal turning gaits so far have been high-dimensional,

parametrised by a large number of modes and variables. Particularly for the

Chebyshev waves, the control parameters in the optimisation routine are not eas-

ily interpretable. It would be useful to be able to investigate the qualitative be-

haviour of these optimal turns with easily-interpretable control parameters, or a

simplified expression of ψ and a reduced shape space.

By examining the results for the optimal turns in this Chebyshev space (and also

those for the AB = 10−2 Fourier case), we can see that there appears to be an

almost travelling wave of constant curvature propagating along the length of the

body from head to tail (fig. 3.11). This indicates that these optimal turns could

in fact be approximated as precisely that: simply a travelling wave of constant

curvature. We can reduce our shape space to exactly that, of shapes prescribed

by a much smaller number of control parameters, that are also easy to interpret.

This idea of using constant-curvature-travelling-wave approximations could also

provide us with insight into the optimal turning results from the Fourier ψ.
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Figure 3.11: Curvature heatmaps of optimal Chebyshev turns for AB = 10−4, θ ∗ =
π/8,π/2,π. Observing the heatmap of the curvature for these three cases, there
appears to be a near-constant travelling wave of curvature propagating along the
body length in order to achieve the optimal turn.
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3.3.3 Travelling waves of a single constant curvature

To further understand the results from the Fourier and Chebyshev shape space

optimisations, we now substantially simplify our shape space to be only prescribed

by a small number of parameters. In this section we investigate the cost of turning

for simple travelling waves of constant curvature. These form a two-parameter

family of wave shapes, and we can therefore easily visualise the entire energy

landscape, to provide valuable insight into the resulting optimal turns.

We now consider prescribing the shape of the undulator via a travelling wave of

constant curvature κ∗ such that: at t = 0, ∂ψ/∂ s(s, t = 0) = 0, then as the

waveform propagates from s = 0 down along the length of the body, a segment

of length l < L passes along the body, in which ∂ψ/∂ s = κ∗. Following this

segment, the body returns to zero curvature, resuming a final straight position.

Let ξ= s− t for s ∈ (0, L), t ∈ (0, T ), with T = L+ l0 where l0 is the dimensionless

lengthscale: l = l0/L. Then the travelling wave of constant curvature is given by

∂ψ

∂ s
(ξ) =

9
:;
:<

κ∗, ξ ∈ (−l0, 0)

0, otherwise
(3.43)

Hence, the curvature prescribed is a periodic square wave, with period T = L(1+

l). As an example, if l = 0.5, κ∗ = 10, the resulting travelling wave of constant

curvature yields a turning angle of |θ ∗| ≈ 9π/10 (see fig. 3.12). The problem is

now reduced to optimising over only these two parameters: l and κ∗. Explicitly,

we again fix rk = 1/2, and seek the optimal constant-curvature wave turns for the

two values of AB selected previously, and for the same set of θ ∗ as previous.
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Figure 3.12: Example turning gait for constant curvature travelling wave, l = 0.5,
κ∗ = 10. A square wave prescribing the body curvature propagates down along
the length of the body for t ∈ (0, T ).

Because we have now limited our shape space to that of only two parameters,

we can perform a parameter sweep across both κ∗ and l in order to visualise

the complete energy landscape for the optimisation problem. For a range of κ∗

and l, we can evaluate the cost function F , and simultaneously determine the

resulting rotation achieved by each pair of parameter values, ie the turning angle

θ ∗. Obtaining the contours of constant turning angle in the landscape, for a given

θ ∗ the optimal turn is the point along the contour at which F is minimised.

The optimal constant curvature wave turns are shown in fig. 3.13 (AB = 10−2)

and fig. 3.14 (AB = 10−4). The results for AB = 10−2 qualitatively agree with the

analogous results for the Chebyshev shape space. Moreover, the value of F also

agrees fairly consistently as θ ∗ increases, though the Chebyshev results remain

less costly, ie more optimal.
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Figure 3.13: Optimal l,κ∗ travelling waves of constant curvature turns for AB =
10−2. A parameter sweep over l,κ∗ yields the optimal turn for a given θ ∗ as the
point along the contour of constant turning angle that minimises F (red points).
These turns closely approximate those for the Chebyshev shape space.
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The results for AB = 10−4 yield a more interesting energy landscape from the pa-

rameter sweep. Here we observe some local optima for high values of κ∗ at certain

l. These wells of local optima in fact correspond to cases where the swimmer as-

sumes a travelling wave of constant curvature shape that results in a perfect circle

of exactly one circumferences propagating along its length, ie a perfect wheel ro-

tational along the otherwise straight body. This configuration incurs a minimised

rate of mechanical work compared with shapes of the same κ∗ for different l, as

there is hydrodynamical advantage to being completely straight if only for a wheel

propagating along your length. Hence, these local optima arise for the AB = 10−4

case. These wells are not seen when AB = 10−2 as the bending costs dominate the

cost due to viscous dissipation.

Furthermore, the optimal constant curvature wave turns for AB = 10−4 incur an

interesting trend as θ ∗ increases. For higher turning angles, the optimal constant-

curvature wave turn is achieved by assuming an increasingly high curvature, across

an increasingly small length of the body. The points along the contours of constant

turning angle for which F is minimised gravitate increasingly towards the lower

right corner of the landscape. These turns also emerge as more optimal than those

for the analogous Chebyshev case. This is an interesting result, as the Chebyshev

shape space is much more general compared to this simple two-parameter family

of shapes.

Plotting the values of the cost function F for a given κ∗ as a function of l, and

also for a given l as a function of κ∗ (see fig. 3.15) we again see the local optima

arise, in particular for high κ∗ and high l. Below a certain threshold, the presence

of such local optima ceases. For small enough l, a higher cost is always incurred

as κ∗ increases (F is monotonically increasing with κ∗ when the length is small).

The same is true for small enough κ∗. We observe that when κ∗ ≤ 10 (which is a

regime applicable to real biological swimmers), the cost F is always increasing and

l increases. The gradient of the function varies, and in particular for very small

κ∗, the function becomes almost flat as l → 1. This implies that there is little
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Figure 3.14: Optimal l–κ∗ travelling waves of constant curvature turns for AB =
10−4. The resulting energy landscape that a parameter sweep over l,κ∗ yields
contains local optima in the bottom right, for low l and high κ∗. These local
optima arise when the swimmer assumes a travelling wave of constant curvature
shape that results in a perfect circle of exactly one circumference propagating
along it’s length. The results for these constant curvature turns for this AB are
more optimal than those for the analogous Chebyshev case.

difference in mechanical cost between curling up say only half of the bodylength

and curling up completely (assuming uniform curvature over the entire length of

the body). At least, in this low-curvature regime.
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Figure 3.15: The cost function F as a function of l for a given κ∗, and as a function
of κ∗ for a given l. The presence of local optima ceases below a certain threshold.

Approximating constant curvature square waves with Chebyshev functions

For the l–κ∗ waves, we have seen that when the cost is mostly bending (AB =

10−2) the optimal turns closely approximate those for the Chebyshev shape space,

both visually and in terms of cost F . However, when the cost is mostly hydrody-

namics (AB = 10−4), as θ ∗ increases the optimal turn is achieved by assuming

increasingly higher curvature over a shorter section of the body. And for higher

turning angles, the optimal constant-curvature wave turn is actually less costly

than the equivalent Chebyshev wave turn, which is a much more general shape

space.

We can investigate this interesting result by using an approximation to the con-

stant curvature waves via Chebyshev expansions. The travelling waves of constant

curvature that prescribe the shape space above are discontinuous Heaviside-like

functions, which can be approximated by a truncated series of Chebyshev poly-

nomials. We can therefore use the Chebfun software system [58] to obtain the

Chebyshev polynomial approximation to these discontinuous, constant-curvature

travelling waves. Furthermore, we can control the truncation of the series to in-

vestigate how the approximation of the square wave is affected by the degree of

Chebyshev polynomial included. Of course, a better approximation is achieved

when the series is truncated at a higher polynomial degree.
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Figure 3.16: Truncated Chebyshev series (n = 5), which approximates the trav-
elling wave of constant curvature given by l = 0.5, κ∗ = 10. As t increases from
0, the travelling wave of constant curvature propagates from left to right: from
s = 0 to L. At each t, the Chebyshev series approximation (truncated at n = 5
polynomials) attempts to best fit the square wave by adapting the coefficients of
the polynomials.

With our l–κ∗ wave example shown previously, for l = 0.5, κ∗ = 10 the Cheby-

shev series approximating the travelling wave of constant curvature is shown in

fig. 3.16, truncated at the n = 5 polynomial. The Chebyshev approximation rea-

sonably captures the travelling square wave, and the resulting turning gait as pre-

scribed by this Chebyshev approximation qualitatively matches that of the con-

stant curvature turn. The most notable difference is, of course, the increased

‘wiggly-ness’ in the Chebyshev approximation turn, due to the variation in body

curvature.

Similarly, applying the Chebfun approximation to the optimal constant curva-

ture wave for AB = 10−2,θ ∗ = π (for which the optimal parameter values are

l = 0.4235,κ∗ = 11.2502), the Chebyshev series and resulting turning gait fairly

closely align with the travelling constant curvature wave and associated turn (see

fig. 3.17). Furthermore, the costs associated with the constant-curvature turn and
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Figure 3.17: Truncated Chebyshev series approximate (at the n= 5th polynomial)
for the optimal l–κ∗ turn with AB = 10−2,θ ∗ = π. The series approximation rea-
sonably captures the constant curvature travelling wave, with comparable costs
F , but does not quite yield a turn of π.

the Chebfun approximation are also similar: 0.8727 and 0.89485 respectively.

That being said, the approximation does not actually achieve a turning angle of

θ ∗ = π, whilst incurring a marginally greater cost.

Applying the Chebfun approximation to the optimal constant curvature turn for

AB = 10−4,θ ∗ = π is a different story. From fig. 3.18 we can see that, the 5th de-

gree Chebyshev polynomial expansion cannot actually capture the high-constant-

curvature across the small-lengthscale shape. The peak of the travelling square

wave is so sharp that the Chebyshev series cannot recreate this turning behaviour,

both qualitatively and quantitatively – we see that the turning angle achieved by

this 5th degree approximation to the π turn is not much more than π/2.

However, if the Chebyshev series expansion were truncated at a higher n to in-

clude higher degrees of polynomials, the approximation can in fact appropriately

capture the sharp-peaked square travelling wave, as we see in fig. 3.19. Increas-

ing the expansion to include Chebyshev polynomials up to degree n = 50 results
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Figure 3.18: Truncated Chebyshev series approximate (at the n = 5th polyno-
mial) for the optimal l–κ∗ turn with AB = 10−4,θ ∗ = π. For this case, the series
is truncated at too few polynomials to sufficiently capture the sharpness of the
travelling square wave.

in the series approximation closely capturing the high curvature shape, with re-

sulting θ ∗ = 3.1575 — significantly closer to the π turn we are approximating.

Recall that from our results for the Chebyshev wave turns (section 3.3.2), we

prescribe the shape of the body with a finite double-sum over m∗ modes in t and

n∗ modes in s, which are nth degree Chebyshev polynomials. In our finite sum,

we set the number of polynomials n∗ = 5.

The fact that for this Chebyshev series approximation (to the l–κ∗ wave) truncated

at n = 5 closely approximates our constant curvature wave when AB = 10−2 —

which itself is close to the Chebyshev wave that it was devised to approximate

— but does not closely approximate the constant curvature wave for AB = 10−4

gives us key insight as to why the Chebyshev waves look near identical between

the two different values of AB tested.

For AB = 10−2, because bending is penalised significantly in the cost function,

high curvature shapes are avoided. Hence, high-degree Chebyshev polynomials
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Figure 3.19: Truncated Chebyshev series approximate (at the n = 50th polyno-
mial) for the optimal l–κ∗ turn with AB = 10−4,θ ∗ = π.

are not needed, and so n∗ = 5 is sufficient for this bending cost. However, when

AB = 10−4, we are allowing for higher curvature shapes, and in fact (given the

constant-curvature wave analysis) we have found that when bending isn’t pe-

nalised it is optimal to assume a very high curvature over a short segment of the

body in order to perform the turn. The n= 50th degree Chebyshev polynomial se-

ries approximation does effectively capture this very sharp travelling square wave,

and the resulting turning gait closely matches the constant-curvature turn. This

suggests that significantly increasing n∗ in our Chebyshev waves turns would re-

sult in the AB = 10−4 actually looking different from the 10−2 ones, adopting the

higher-curvature shapes that the increased number of polynomials would allow.

However, increasing n∗ so drastically would have computational implications and

the number of control parameters would significantly slow the numerical optimi-

sation routine.
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3.3.4 Travelling waves of two constant curvatures

Whilst useful in providing insight into the Chebyshev optimal turn results, the

previous travelling-waves-of-constant-curvature turns clearly do not integrate to

zero-curvature over one period. Recall that at the beginning of this chapter it was

discussed that it is important to have constraints on the curvature in the context

of optimal turning. The Chebyshev turns, and the previous travelling waves of

constant curvature incorporate this constraint by enforcing (by construction or

otherwise imposed in the optimisation) that the body start and end in a straight

posture.

The Fourier waves did not have to start and end in a straight posture, as the

constraint was included via the fact that the body curvature integrated to zero

over one period of the wave:

& 1/k

0

∂ψ

∂ s
dt = 0. (3.44)

We now investigate the case of imposing this constraint on the curvature in the

context of travelling constant-curvature waves. In particular, this approach could

provide us with insight into the Fourier low wavenumber (k = 0.1) optimal turns,

which were found to be the least costly.

The integrating to zero-curvature over one period is not going to be satisfied for

a single constant curvature over some portion of the bodylength, with zero cur-

vature otherwise (ie the l,κ∗ waves). The second curvature would have to be

non-zero to cancel out the total curvature contribution from the first.

Hence, we now construct a travelling wave of constant curvature with two curva-

tures κ1,κ2 over lengths l1, l2 respectively. For ξ= s− t, the shape of the wave is
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prescribed via the curvature as

∂ψ

∂ s
(ξ) =

9
:::::;
:::::<

κ1, 0< ξ< l1

κ2, −l2 < ξ< 0

κ1, ξ< −l2

(3.45)

and to preserve symmetry, l1 is bounded by the length of the body: l1 ≥ L. If

l1 < L, this would result in initial and final cane-like body shapes.

To ensure zero-curvature over one period T = 1/k, we require that:

l1 + l2 =
1
k

, (3.46)

κ1l1 + κ2l2 = 0. (3.47)

Hence

& T

0

∂ψ

∂ s
dt =

& l1

0

∂ψ

∂ s
dt +

& 1/k

l1

∂ψ

∂ s
dt (3.48)

= κ1l1 + κ2l2 (3.49)

= 0, (3.50)

thus the requirement that the curvature integrates to zero is satisfied by eqs. (3.46)

and (3.47). Furthermore, from these equations we see that we can prescribe only

l1 and κ1, and determine l2 and κ2 by simple rearrangement:

l2 =
1
k
− l1, (3.51)

κ2 =
l1κ1

l1 − 1/k
. (3.52)

Hence, this parameterisation also forms a 2-parameter family of shapes. Again,

we may perform a parameter sweep over these two values l1, κ1 to fully visualise

the energy landscape.
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Figure 3.20: Example l1,κ1 constant curvature waves. The symmetry in this shape
space is demonstrated here by the two different pairs of values the result in the
same turn being prescribed.

To investigate the k = 0.1 Fourier results, we test this parametrisation of the

shape space with the same fixed value of k. There is, by construction of this shape

space, some symmetry. If the values of l1,κ1 are interchanged with the symmetric

values for l2,κ2, the same constant curvature wave would be propagated for the

same period, there would simply be an offset in the square wave. For example for

k = 0.1, l1 = 6,κ1 = −10/3 is the same wave as l1 = 4,κ1 = 5 (see fig. 3.20).

Due to this symmetry, it is therefore only required to perform a parameter sweep

for l1 ∈ [1/2k, 1/k].

We perform a sweep over the energy landscape which prescribes this two-parameter

family of constant curvature waves. The optimal turn is found by seeking the point

along the contour of constant θ ∗ which has the minimal cost F . The results are

shown in fig. 3.21 and fig. 3.22 for AB = 10−2 and 10−4 respectively.

For AB = 10−2 (fig. 3.21), the contours of constant turning angle θ ∗ incur the

lowest undulatory cost F when l1 is high (close to 1/k), and κ1 is small. Zooming

in on the part of the energy landscape, we can see in fig. 3.21 that for increasing

turning angle, the optimal κ1 steadily increases with θ ∗, whilst l1 remains rel-

atively constant — approximately 9.4–9.6. Comparing these results with those

of the Fourier k = 0.1 waves, visually they appear extremely similar. It is there-

fore unsurprising that they incur the same trend and comparable costs F over the

different turning angles.

For AB = 10−4 (fig. 3.22), in the energy landscape of this parameter sweep we can
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Figure 3.21: Optimal l1,κ1 travelling waves of constant curvature turns for
wavenumber k = 0.1, and AB = 10−2. A parameter sweep over l1,κ1 yields the
optimal turn for a given θ ∗ as the point along the contour of constant turning
angle that minimises F (red points). Zooming in on the upper left corner of the
landscape, we observe that for increasing θ ∗, the optimal κ1 increases whilst l1 re-
mains relatively consistent. These constant curvature waves qualitatively appear
similar to the Fourier k = 0.1, and have comparable (though marginally higher)
turning cost F .

observe, as we did for the l–κ∗ waves, the existence of local optima due to the

perfect-wheels-rotating-along-a-straight-body shapes that these combinations of

l1, κ1 values prescribe, that are hydrodynamically less costly. As for AB = 10−2, the

optimal turn is again achieved with high l1 and low κ1, in the upper left region of

the landscape. Again, for increasing θ ∗ the optimal l1 remains relatively constant

(approximately 9.4), and κ1 steadily increasing as the turning angle increases.

Except from, notably, θ ∗ = π, which does not follow the trend of increasing κ1,

and instead maintains a similar curvature as for the π/4 turn but for a larger
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Figure 3.22: Optimal l1,κ1 travelling waves of constant curvature turns for
wavenumber k = 0.1, and AB = 10−4. A parameter sweep over l1,κ1 yields the
optimal turn for a given θ ∗ as the point along the contour of constant turning
angle that minimises F (red points). Zooming in on the upper left corner of the
landscape, we observe that the contours of constant θ ∗ appear parallel as l1 ap-
proaches 1/k. These constant curvature waves are less optimal (have higher cost
F) than the Fourier waves of the same k.

segment, with l1 notably increased. We can see by the contours of the landscape

that the minimum F along the constant θ ∗ = π contour is approaching one of the

aforementioned local optima. The incidence of these wells of locally low cost are

certainly what appears to be influencing this shift in trend for the optimal π turn

for this shape space.

As θ ∗ increases, the constant curvature wave turns here becoming decreasingly

visually similar to the analogous Fourier k = 0.1 turns. Recall that the Fourier

turns assumed much higher initial and ending curvatures along the body length.
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It is therefore interesting to see that the Fourier k = 0.1 significantly outperform

these constant curvature waves for AB = 10−4, in that they incur much lower cost.

To try and recreate the result for the Fourier k = 0.1, θ ∗ = π turn for AB = 10−4

with this parameter space, we can move down along the contour of θ ∗ = π in the

landscape, to a pair of l1, κ1 that yield a visibly similar result to that of the Fourier

wave. For example, fig. 3.23 shows the constant curvature turn for l1 = 8.1,κ1 =

2.25, which in initial and final position looks much more alike the Fourier turn

in question (see fig. 3.5). This constant-curvature turn however incurs almost

twice as high a cost F . This two-curvature shape in this wave obviously incurs

a higher hydrodynamic cost than that of the actually optimal constant curvature

wave (that has higher l1, and lower κ1). The s-shaped posture of the body for

this wave contributes significantly to the dissipation cost. We can conclude, in

this shape space at least, that it is optimal to reduce the curvature and increase

the length scale.

These two-constant-curvature wave results (with κ1,κ2 over l1, l2 respectively)

appear visually notably similar to the singular-constant-curvature wave results

(κ∗ over l, otherwise 0). From this we can conclude that, with such restrictions

on the curvature in the body, it is optimal to assume almost (or entirely) straight

postures for most of the period of the propagating wave, in order to minimise the

cost function.

The restriction of only two constant curvatures is clearly an extremely minimal

shape space. Such a shape space does not yield the Fourier travelling wave shape

that is found to be optimal for the low wavenumber, low bending cost case.

3$ = 3:1416

Figure 3.23: Turning gait prescribed by l1 = 8.1,κ1 = 2.25. Visually, this shape
aligns more closely with the Fourier k = 0.1 optimal turn for θ ∗ = π, with initial
and final posture, but is not the optimal in this shape space.
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3.4 Conclusion

3.4.1 Summary

We have revisited the problem of optimal undulatory locomotion, in the context

of low Reynolds number hydrodynamics, and extended previous approaches to

consider rotations and manoeuvrability, in order to determine optimal undulatory

turning gaits. The framework presented in chapter 2 was adapted from the case

of straight-path forwards locomotion, to introduce path curvature for modelling

turning. In our turning model framework, we construct the optimisation problem

by choosing to impose the rotational constraint θ (T ) = θ (0) + θ ∗ which requires

the body to have performed a turn of size θ ∗ in one period of the waveform T ,

and minimise the cost (ie the objective function) associated with the motion.

We determined, with an analytical result and numerical confirmation, that the

theoretically optimal way for an undulatory microswimmer to perform a turn –

that minimises F = (1− AB)Φ+ ABPBending — as the importance of bending cost

is reduced (AB → 0), it is optimal to also reduce the radius of curvature R and

assume a tightly-coiled high-curvature shape. Furthermore, the dependence of

the optimal radius of curvature scales with the given relative importance in the

cost function according to AB ∼ R4. As a result, for small AB the parametrisation

of the shape space can be chosen to include some constraint on the curvature of

the shapes. Otherwise, a constraint on the curvature must be explicitly imposed

in the optimisation problem, along with the constraints required by the resistive

force model, and of course the rotational constraint which is what allows us to

model optimal turning.

Performing numerical optimisation, to investigate optimal undulatory turning gaits

we chose to isolate two values of AB to highlight categorical differences in optimal

turning strategies when the cost function is mostly bending (AB = 10−2) versus

mostly environmental (AB = 10−4). In order to determine the optimal turning
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gait, the tangent angle ψ(s, t) is decomposed onto a finite sum of a number of

modes, the values of which are determined by the optimisation.

Our initial parametrisation of the shape space for ψ(s, t) — the Fourier travel-

ling waves — imposed the constraint on the curvature by construction: for this

parametrisation the curvature integrates to zero over one period of the waveform.

We then generalised the shape space to no longer limit the turns to only travel-

ling waves. Decoupling space and time, our Chebyshev shape space — which

parametrised the shape of the body via nth degree Chebyshev polynomials — re-

quired an additional constraint that ∂ψ/∂ s(t = 0) = 0 which, due to periodicity,

ensured that the undulator start and end the turn in a straight posture.

In order to gain further insight into the results from the Fourier and Chebyshev

parametrisations, we investigated approximations to the turns by prescribing the

shape using only two parameters — some constant curvature κ∗ over some length

l < L. A benefit of this simple shape space is that the parameters are easily-

interpretable, compared with the high-dimensional shape spaces of the Fourier

and Chebyshev waves. The l–κ∗ optimal turns captured similar turning behaviour

as the Chebyshev waves (for the AB = 10−2 case), and using approximations to

these square constant curvature waves of truncated Chebyshev polynomials series

provided insight as to why the Chebyshev turns for the two different values of AB

we chose did not differ significantly. For n∗ = 5 Chebyshev polynomials, the series

approximation could not sufficiently capture the sharpness of the square wave

that is optimal in the l–κ∗ shape space for AB = 10−4. Significantly increasing

the number of polynomials (eg n∗ = 50) did lead to a close approximation of the

constant curvature wave, indicating that increasing n∗ in the optimisation may

yield differences between the 10−2 and 10−4 optimal turns. Overall, the results

from the Chebyshev shape space would benefit from further investigation.

Turning back to the Fourier results, for which it was optimal to reduce the wavenum-

ber k (ie extend the period T = 1/k of the waveform), we sought to approximate
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these with constant-curvature waves via a travelling wave of two constant cur-

vatures κ1,κ2 over two length scales l1, l2, with the imposition that this shape

space satisfied the same constraint on the curvature as the Fourier space — that

it integrates to zero over one period. With k = 0.1, we obtained these optimal

constant curvature turns in this second low-dimensional shape space, finding that

the results did not vary drastically from those of the l–κ∗ turns.

Overall, we found that the nature of the optimal turning gait for the low Reynolds

number undulatory swimmer depends fundamentally on the relative importance

of bending versus hydrodynamical cost in the objective function. When the cost

function is mostly bending (AB = 10−2), the Chebyshev waves yielded the most

optimal turns out of the parametrisations we considered. These Chebyshev turns

are however closely approximated as travelling waves of constant curvature (as

seen in (fig. 3.13)). When the cost function is mostly hydrodynamics (AB = 10−4),

from the parametrisations we have considered the least costly turn is given by the

Fourier travelling waves when the wavenumber k is minimised, and the nature of

these optimal turns was not captured by either constant-curvature wave approxi-

mation.

3.4.2 Further considerations

There are many further considerations that could be made to extend our ap-

proaches and analysis carried out here to continue the investigation of optimal

undulatory turning gaits. The optimal turning gait results presented here are

from the basis of theoretical and analytical results from low Reynolds number hy-

drodynamics. Scientific models predominantly are used to understand, define, or

quantify particular parts or features of the world. They are constructed to attempt

to describe observable phenomena. To this point, it would be valuable to inform

our model with biological data, and apply our framework to microscopic undu-

latory turns observed in nature, to further our understanding of this particular
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mode of motion of these kinds of organisms.

Possible extensions or adaptations to our presented model include: imposing a

penalty for overlapping and self-intersection (since in reality there are non-trivial

mechanical forces associated with the undulator’s body crossing over itself), devis-

ing an expression of hydrodynamic efficiency for turning by considering the ratio

of mechanical work required for the undulator to turn θ ∗ to the rate of working

required by an external force to rotate the undulator by θ ∗ (as discussed in sec-

tion 3.1.1), and hence changing the objective function and posing an alternative

optimisation problem which maximises hydrodynamic efficiency for turning, as

opposed to minimising the associated cost for performing a turn.

It is not intuitive as to how the turning angle would inform the optimal gait if this

approach were considered. The result of this hypothetical optimisation problem

may point to an optimal turning angle which is the preferred angle of reorientation

for these undulatory microorganisms. However, there is of course no globally

preferred angle of reorientation — the desired turning amount is context-specific,

and depends on, for example, if an organism is simply exploring its surroundings

(in which case shallow, small θ ∗ turns may be preferred) versus escaping an averse

stimulus (we hypothesise that, when encountering a predator, a turn of θ ∗ = π

is the most optimal). The mathematical analysis for the question of maximising a

hydrodynamic efficiency for turning in particular requires further consideration.

Regarding the results presented in this chapter, further quantitative analysis of

how the number of Chebyshev polynomials included in the shape space affects

the nature of the resulting optimal turns could provide more insight into these re-

sults. Whilst it may be beneficial to drastically increase n∗ to test if high curvature

shapes are optimal in this parametrisation for low bending cost, the computational

limits of the numerical optimisation routine in its current form do not allow for

such a large number of control parameters to be included without compromising

algorithm performance.
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Of course, the advantage of prescribing the shape space as a function of only two

variables, as was done for the constant-curvature waves, obviously yields a very

small set of control parameters in the optimisation routine. Hence, computation-

ally the limits of exploring this shape space are minimal. Given this, it could

provide further insight to investigate these kinds of shape spaces further. In par-

ticular, using the second type of constant curvature waves considered (with two

curvatures κ1,κ2 over two lengths l1, l2) to investigate the Fourier wave results for

other values of the wavenumber k could yield quantitatively interesting analysis

and provide further insight.

Furthermore, recall that Lighthill (1975) [9] postulated, after deriving his saw-

tooth result, that the true biologically optimum shape (for the straight-path con-

text) would be to alternate between diagonal straight segments and rounded

corners of circular arcs — the radius of which would be subject to the individ-

ual’s achievable radius of curvature. This supposition was realised by Spagnolie

and Lauga (2010) [12], when obtaining the optimal gaits for multiple values of

AB ∈ [10−7, 1]. Hence, this determined optimal straight-path undulatory gait is

in fact almost a travelling wave of constant curvature. The straight segments

have zero-curvature, and the ‘rounded corners’ are circular arcs also with con-

stant curvature. The parallel that, by our findings, the optimal undulatory turn

is achieved by approximately assuming a travelling wave of constant curvature

(for the AB = 10−2 case) echoes the straight-path results from the literature, and

further investigation could lend more insight into optimal undulatory gaits as a

whole.
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Chapter 4

C. elegans locomotion optimality

4.1 Introduction

In this chapter we lay out the framework for developing efficiency as a phenotyp-

ing lens in order to quantify C. elegans gait optimality. We begin with a brief intro-

duction to the organism Caenorhabditis elegans, in particular its status as a model

organism for small-scale undulatory locomotion, and discuss previous studies on

how and why it moves the way it does. The answers to these questions lie in the

realms of biomechanics, hydrodynamical models, studies of its neural circuitry,

and genetic factors. Beyond these, further important factors that may affect C.

elegans movement include its ecology, development, biochemistry, and ethology.

There are considerations across many branches of biology that can be made to

address this complicated question. Whilst the scope of this question spans many

avenues of biological research, in this thesis we focus specifically on C. elegans’

gait efficiency.

The experimental and computational methods for applying efficiency as a phe-

notyping tool in C. elegans behavioural screening are described. Specifically, we

address the question “can efficiency as a C. elegans phenotype yield quantitative

131
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differences between individuals in a behavioural screening?” for the particular

context of rare human genetic disease models. For a number of C. elegans mutant

strains, each with a rare human genetic disease association, we determine the ef-

ficiency of its locomotion along with other behavioural features, and analyse the

results.

Rare genetic diseases in humans can be modelled in C. elegans with disease-

associated genetic variants of conserved genes. Such disease models exhibit lo-

comotion changes compared with wildtype ‘healthy’ worms, and these changes

are often quantified in behavioural phenotypic screens. Expanding the set of cur-

rent quantitative phenotypes to include more orthogonal behavioural features is

valuable to pursue, so that more movement defects can be detected.

In this chapter we examine if gait efficiency as a phenotype may be useful for

distinguishing mutant strains from wildtype. This can be tested by looking at

strong genetic perturbations, and genes where disruption causes severe disease

in humans might be expected to be strong perturbations. We therefore consider

such human genetic disease model strains, testing efficiency as a phenotyping

lens. Furthermore, efficiency is not completely defined by speed: two different

gaits that have equal speeds could have different efficiencies. It could therefore be

the case that efficiency contains different or independent information from other

motility measures alone.

Structure and contributions of this chapter

This chapter explores the development and application of gait efficiency as a phe-

notyping tool for C. elegans behavioural screens. We begin with a review of re-

lated studies and results from the literature before describing the approach taken

(employing tools from low Reynolds number hydrodynamics) for developing effi-

ciency as a quantitative behavioural phenotype. The phenotyping lens is applied

to C. elegans rare human genetic disease models — a recently-obtained dataset
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in the Behavioural Phenomics lab (unpublished at the time of submission of this

thesis). This data was collected using advanced imaging systems, with arrays of

high resolution cameras so that many worms can be recorded in parallel. Exper-

imental (wet lab) work was carried out by Ida Barlow and Tom O’Brien. Video

data processing of the mutant C. elegans strains was performed using the using the

Tierpsy Tracker software [10,11]. Per-well feature extraction and gait optimality

features were obtained with computational pipelines constructed by Madeleine

Hall in the MATLAB programming platform.

This chapter, whilst related to chapter 3 through the themes of low Reynolds num-

ber hydrodynamics and optimality, addresses an entirely separate question and

comprises an entirely separate set of results. Whilst still exploring the general

question of optimal micro-undulatory locomotion, this chapter has no specific fo-

cus on turning strategies, as this is a more complicated problem than general C.

elegans locomotion. It would be a worthwhile future extension to consider dif-

ferent movement strategies, separating turning from other modes of locomotion,

to extend the phenotyping tool. The work in this chapter is a first step in devel-

oping this specific phenotyping lens of efficiency, and we thus consider overall

displacement, and not simply isolating just worm turns.

The results of applying the efficiency phenotyping lens in the rare human genetic

disease models context are discussed and analysed. In the results section we ex-

plore the applicability of efficiency as a tool for detecting C. elegans behavioural

differences. We find that efficiency, whilst related to other behavioural features

and summary metrics, complements and contributes to the pre-existing set. Ef-

ficiency provides not only a quantitative measure of behaviour but also an inter-

pretable one. It possesses intuitive meaning, and is not simply captured by for

example only speed or curvature, but encompasses a combination of these quan-

tities amongst others. The overarching motivation behind this chapter is that we

are striving to find new interpretable features that are distinct from pre-existing

ones and contribute to the broader understanding of C. elegans behaviour.
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4.2 Background and context

The animal Caenorhabditis elegans is so named from the Greek caeno- (recent),

rhabditis- (rod-like), and the Latin elegans (elegant). It is a microscopic worm

(an adult typically measures approximately 1mm in length), and is in the phylum

nematoda. Since its use first pioneered by Sydney Brenner in the 1960s [59], it

has become a popular model organism used to study a wide range of phenomena

across a breadth of scientific disciplines. It was the first multicellular organism

to have its entire genome completely sequenced [60], and through forward and

reverse genetics, many key genes in developmental and cell biology have been

identified. This organism offers a valuable opportunity to connect studies on the

physics of behaviour with genetics and neuroscience.

Since its popularisation, this small but mighty model organism has provided a

platform for performing cutting-edge scientific research across many branches of

biology. To name just a few examples: for everything from studying age-associated

mitochondrial damage (Shen et al, 2014 [61]), to cell-specific proteomics (Yuet et

al, 2015 [62]), to frontiers in embryogenesis (Packer et al, 2019 [63]). Specifically

pertaining to the study of behaviour and genetics in neuroscience, in recent years

the contribution of C. elegans neurogenetics research has included furthering the

understanding of many neurodegenerative diseases, including but not limited to

ALS, Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease (Liang

et al, 2020 [64]). The global community of worm researchers is empowered by

extensive and continually-maintained databases and tools, such as WormBase (the

central repository for the genetics and genomics of the nematode, Davis et al, 2022

[65]), OrthoList (a compendium of C. elegans-human orthologs, Kim et al, 2018

[66]), and WormAtlas (a database featuring behavioural and structural anatomy,

Altun et al, 2021 [67]).
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4.2.1 Modelling C. elegans undulatory locomotion

C. elegans provides a popular platform for studying undulatory locomotion. They

are microscopic and thus can be kept in the lab on agar plates, where inertia is neg-

ligible for their locomotion, which simplifies mathematical analysis. Furthermore,

their anatomical simplicity and their namesake elegant sinusoidal movement pat-

tern inherently lends itself to mathematical analysis. Developing mathematical

frameworks to describe this type of movement in a variety of contexts is an active

area of research, and many models have been devised to further understanding

of how these undulatory microorganisms traverse their surroundings.

The importance of external media

C. elegans moves by propagating undulatory waves along its body via alternat-

ing contraction and relaxation of dorsal and ventral body muscle. An early study

of the locomotion of nematodes by Gray and Lissman (1964) observed that the

form and frequency of the waves propagating down along the worms body de-

pends on the nature of the external medium [15]. As well as C. elegans, other

nematodes included in this study were Panagrellus redivivus, Turbatrix aceti, and

Haemonchus amtortus. The nematodes were observed “gliding” or “creeping”

(crawling): through a suspension of starch grains, on the surface of 1-2% agar or

gelatine, and on a damp rigid surface. They also observed nematode swimming

in aqueous media, which they determine to be a different mode of locomotion

from the gliding (crawling) gait of the other media studied. They observe that

the wavelength, frequency and wavespeed of the undulations propagating along

the body are much less for creeping worms than for swimming, but that the ra-

tio of amplitude to wavelength remains largely the same between creeping and

swimming. Across the different media, the nematodes experience varying degrees

of slip, which reportedly (and explained in Gray Hancock, 1955 [8]) depends on

the ratio between the normal and tangential resistance coefficients. Since then,
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numerous studies have been conducted to investigate the effects of external en-

vironments on C. elegans gaits [16, 32, 33, 68–77]. In the wild, C. elegans are

commonly found living in rich soil or compost (where the species was originally

isolated [78]), as well as on rotting fruits and stems [79]. The locomotion of C.

elegans in soil-inspired media has been widely considered and investigated, and

the question of the efficiency of its locomotion has been posed since early studies,

as efficient locomotion is inherent to survival.

Early research by Wallace (1968) estimated the optimal soil particle diameter

for maximum mobility (30–100 µm) — specifically that the optimal diameter in-

creases with the worm length [16]. More recently, C. elegans locomotion has been

studied in wet granular media [68], saturated particulate systems [69], as well

as stuctured microfluidic environments [33,70]. The presence of particles or ob-

stacles is consistently found to significantly alter the worm’s gait, often enabling

locomotion of a greater distance per body undulation than in particle-free set-

tings. This shows that stroke effectiveness is higher in some environments than

others. As to whether nematodes are ‘optimised’ for certain modes of locomotion

— there is likely a selective pressure on using the least possible amount of en-

ergy to achieve a locomotion goal, which will involve a combination of straight

paths and curved paths (turns). The precise nature of the locomotion depends on

many other things, which could range from information gathering, to robustness

to perturbation, to predator avoidance.

These organisms are commonly studied in laboratory environments on surfaces

very different from those of their natural habitat. C. elegans are frequently ob-

served under the microscope crawling on agar gels or swimming in fluids, which

respectively yield the adoption of visibly distinct gaits. Crawling gait is charac-

terised by undulations with low frequency and short wavelength, whereas swim-

ming gait is characterised by undulations with higher frequency and longer wave-

length [32,71]. Whilst C. elegans crawling versus swimming appears visibly very

different, Berri et al (2009) found a smooth transition from swimming to crawling
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gait in media with a tunable degree of viscoelasticity, establishing that forward lo-

comotion is in fact achieved through modulation of a single gait [32]. Following

this, Fang Yen et al (2010) [71] quantified internal viscoelastic properties of the

worm, suggesting that its gait continuously adapts to external mechanical load in

order to maintain propulsive thrust, which aligns with the single gait result from

Berri et al (2009). In a related study, Snzitman et al (2010a) [72] also quantified

internal properties of the nematode, finding that these properties are sensitive

to changes in muscle functional properties. Later, Sznitman et al (2010b) [73]

carried out detailed flow dynamics which found that C. elegans delivers propul-

sive thrusts on the order of a few nanonewtons, with results supported by values

obtained using resistive force theory.

Further considerations of propulsion, and additional studies concerning viscoelas-

tic media include Shen et al (2011) [75] who found that fluid elasticity hinders

self-propulsion — reporting a 35% slower propulsion speed than for the com-

pared Newtonian fluids. Following this, analysis of locomotion specifically on wet

surfaces was carried out by Shen et al (2012) [74], using kinematic data and a

hydrodynamic model based on lubrication theory. They calculated both the sur-

face drag forces and the nematode’s bending force while crawling on the surface

of agar gels, finding that the normal and tangential surface drag coefficients dur-

ing crawling are approximately 222 and 22 respectively, and the drag coefficient

ratio is approximately 10 (the value applied later in the analysis and results of

this chapter — see section 4.3.2). Beyond this, considerations of alternative sce-

narios and studying the effects of confinement on gait include studies by Lebois

et al (2012) [76] and Bilbao et al (2013) [77]. Studies of the locomotion of this

nematode have evidently spanned across a breadth of environments: from swim-

ming in fluids (of varying degrees of viscosity or viscoelasticity), to crawling on

wet surfaces or in granular media, to locomoting in confinement.

More recently, Cohen and Ranner (2017) [80] presented a biomechanical model

of C. elegans locomotion alongside a novel finite element method that applies to
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a range of environments. Their approach allows for the study of the dynamics of

arbitrary undulation gaits and the link between the animal’s material properties

and its performance across a range of environments. Their model incorporates the

collective passive viscoelasticity of the tissue, an active moment, and drag forces.

The inclusion of these elements captures the interactions between the organism

and its low Reynolds number environment. Many mathematical and computation

models of C. elegans locomotion have been developed and studied over the years,

some of which are discussed below.

Mathematical and computational models of C. elegans locomotion

As well as moving forwards, other locomotion modes C. elegans employs for nav-

igation include reversing, turning and the well-known omega turn, in which the

worm makes a sharp angle turn forming an Ω-shape with its body, as well as

shallow turns, in which a gentler disruption of the forward locomotory gait is

employed. Kim et al (2011) found that shallow turns are the most frequent reori-

entation strategy of C. elegans crawling on agar in the absence of food [53], and

provide a theoretical model to extract a small set of parameters that characterised

this motion. This specific model of C. elegans shallow turning is one of many the-

oretical and computational models of this organisms gait to have been developed

in order to better understand its locomotion. Mathematical models of C. elegans

general undulatory locomotion have been widely considered, frequently based on

mechanics [81–84] — describing the frictional, hydrodynamical, elastic, and/or

internal pressure forces — and often incorporating internal biophysical or neu-

ronal components, such as mechanosensory feedback, muscle dynamics based on

neural oscillations, and neuromuscular control systems [85–88].

Whilst some analysis has been performed specifically in three dimensions [89,

90], many of the proposed models of C. elegans locomotion capture only planar

undulations. When swimming and crawling, C. elegans propels itself by planar
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body undulations, and so models concerning the propagation of two-dimensional

waves are effective in capturing many gaits exhibited by the organism. Gagnon

and Montenegro-Johnson (2017) determine that neglecting out-of-plane effects

during swimming through a shear-thinning fluid results in an overestimate of fluid

viscosity, and therefore an overestimate of the power the swimming nematode

expends [91]. However, overestimation of the power expended by assuming the

two-dimensional (as opposed to the three-dimensional) shear-rate only lead to

significant disagreements in fluids with effective viscosities higher than ∼ 102

mPa s, which is higher than is relevant for C. elegans crawling on the surface of

standard agar substrate. The C. elegans behavioural phenotypic screens carried

out to obtain the data analysed in this chapter were done on 1.7% agar plates,

which although non-Newtonian is essentially flow-independent at the relevant

speeds, and which has a viscosity of approximately ∼ 50 mPa s [92].

Resistive force theory models of C. elegans locomotion

In the particular case of modelling swimming worms, low Reynolds number hy-

drodynamical models are used for computing the flow of the surrounding fluid,

and hence the computation of the worm’s translation and velocity. The undula-

tory locomotion can be modelled by resistive force theory of Gray and Hancock

(1955) [8]. This approach has been used widely and effectively for both mod-

elling swimming locomotion as well as obtaining direct measurements of physical

properties of the worms [71, 72, 93, 94]. Backholm et al (2015) directly mea-

sured the forces experienced by worms swimming in viscous fluids, by catching

the nematode by its tail with a force-calibrated micropipette, and measuring the

pipette deflection in two orthogonal directions [93]. They employ resistive force

theory to determine the drag coefficients, as well as to calculate the viscous power

output of the swimming worm, finding that this value is constant over the range

of fluid viscosities tested. This invariance of power output was also observed by
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Fang-Yen et al (2010) [71], and indicates that C. elegans actively changes its un-

dulatory gait in order to maintain the same level of energy output across different

environments.

Backholm et al (2015) found that the experimentally measured intrinsic normal

drag coefficient surprisingly transitions between classical models of Lighthill at

low viscosities (approximately 5–6) to models of Gray and Hancock at high vis-

cosities (approximately 3). This transition was attributed to the gait modulation

of the nematode, adapting from a swimming gait (large-amplitude motion), to a

more conventional crawling gait (small-amplitude motion).

Adaptations of resistive force theory have been shown to effectively predict the

dynamics and properties of crawling (as opposed to swimming) worms, despite

only providing an empirical framework. Although the theory was originally devel-

oped for the context of swimming microscopic slender bodies, the drag anisotropy

can be set to a value much smaller than 1/2 due to the environment experienced

by a worm crawling on agar having higher-friction and the worms experiencing

less slippage. This approach has been shown to provide effective empirical mod-

els of crawling worms, and has been widely employed to study crawling gaits,

kinematics and properties [27,32,81,85,95].

Resistive force models of crawling worms have also been constructed based on di-

rect experimental measurements. Rabets et al (2014) directly measured the forces

required to drag worms on the surface of agar in both the tangential and normal

direction, finding that the forces depend on the surface viscoelasticity [34]. They

found drag forces increased on gels with higher agar concentration, and did not

scale linearly with velocity. This indicates that rk may be non-constant in this

context and thus a global drag anisotropy cannot be defined. However, an adap-

tation to resistive force theory in which the force–velocity mapping scales nonlin-

early can capture the velocity dependence of the drag coefficients. Both linear and

nonlinear resistive force theory models have been shown to accurately reproduce
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and predict worm paths from the sequence of body postures [35]. Keaveny and

Brown (2017) computationally determine the optimal drag anisotropy values at

the level of individual worms, by minimising the difference between experimen-

tally observed velocity, and the velocity reconstructed by the resistive force theory

model [35]. For the linear model, the optimal drag anisotropy was found to be

approximately rk = 1/60. For the nonlinear model, the drag anisotropy scaled

with the velocity according to:

rk =
βT uγT−1

βN uγN−1
(4.1)

where the parameters γT ,γN govern the nonlinear nature of the model (when

γT = γN = 1, parameters in the expression reduce to βT = KT and βN = KN and

the linear resistive force theory model is recovered). In general, optimal values for

these parameters were found to be βT ≈ 0.37, βN ≈ 5.9, γT ≈ 0.5, γN ≈ 0.37, so

for average worm speeds (in the range of approximately 50−150µm per second),

the drag anisotropy was found to be rk ≈ 1/10.

A factor contributing to the discrepancy between experimentally measured and

numerically optimal values of the drag anisotropy is the groove that is created by

the worm when crawling across the agar. The profile of the groove (its width and

depth) was found by Rabets et al to be dependent on the velocity of the worm and

the stiffness of the substrate [34]. Worm sinking depths increased on softer gels,

with a lower percentage of agar. Sauvage et al (2011) [82] developed a mechan-

ical model of worms crawling on gel which included capiliarity (which pins the

worm onto the substrate), and estimated the energy costs associated with motion

along and perpendicular to the groove. They found decreasing efficiency as the

ratio of viscous stress to elastic stress increased. Parida et al (2017) also studied

the effects of grooves and substrate stiffness on C. elegans locomotion [96]. The

stroke effectiveness of worm locomotion (defined as η = vc/vw where vc and vw

are the centroid and wave velocities respectively) was found to in fact decrease as
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the substrate becomes stiffer. This result of higher effectiveness on softer surfaces

was attributed to the groove height being higher on these substrates, yielding in-

creased resistance from the side walls of the agar, resulting in less lateral slippage.

In this thesis, the data that is analysed is of worms crawling on an agar surface.

The precise value of the resistance coefficients across a breadth of gaits and envi-

ronments remains an open question, and an active area of research. This is due to

the limitations of resistive force theory, as well as varying conditions resulting in

the value of rk not being known very accurately. Estimates of rk for this environ-

ment in the literature range from over 1/5 to less than 1/50 [32, 34, 35, 74, 93].

Acknowledging this, in our analysis and results presented later in this chapter we

fix rk at the intermediary value of 1/10. In our analysis, the important assumption

is not the value of rk itself, as the efficiency results scale linearly with this param-

eter. Rather, what is important is that we are assuming rk is constant across all

strains in the data.

Stroke effectiveness and efficiency of C. elegans locomotion

In Parida et al (2017), no direct relationship between effectiveness and centroid

speed was observed. Furthermore, maximum centroid speed was not achieved

when substrate slippage was minimised. In their study, maximum forward ve-

locity was achieved when substrate elasticity was equal to 5.37 kPa (1% agar

with 0.01% silica nanoparticles), yet maximum stroke effectiveness was achieved

with the softest substrate tested with elasticity of 0.755 kPa (1% agar with 2%

gelatin) [96]. As the groove height is higher on softer surfaces, the lateral re-

sistance offered by the side walls of the groove increases. Estimating the drag

anisotropy (by resistive force theory), and assessing gait efficiency (from Chil-

dress (1981) [23]) as

η =
α(KN/KT − 1)
α(KN/KT ) + 1
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where α = 2π2A2/λ2 for A the wave amplitude and λ the wavelength, they ob-

served little variance in gait efficiency for substrates with elasticity in the range of

2.28− 5.37 kPa, indicating that there is no direct correlation between efficiency

and drag anisotropy.

The measure of stroke effectiveness as the ratio of centroid velocity to velocity of

propagating waves is commonly adopted to assess the optimality of C. elegans un-

dulatory locomotion. Krajacic et al (2012) in describing C. elegans swim gait also

define effectiveness as the ratio of body velocity to wavespeed, studying the effect

of room temperature on the undulatory gait of wildtype N2 worms [94], observing

a small decrease in effectiveness at 25◦C compared with 20◦C and 16◦C. They also

analysed the locomotion of several C. elegans mutant strains, specifically strains

with mutations affecting neuromuscular structure and function. Whilst finding

significant differences between N2s and mutant strains in some biomechanical

phenotypes, visually apparent defects between N2s and mutants in motility gaits

were generally not observed, and the stroke effectiveness showed little variation

between strains. Phenotypes that did produce significantly different results from

N2 included swimming speed, body curvature, and mechanical swimming power,

and strains with mutations affecting similar biological processes exhibited similar

patterns of biomechanical differences.

Karbowski et al (2006) [85] also analysed Caenorhabditis locomotion effectiveness

across different mutant strains, as well as across different developmental stages

and other nematode species, including C. briggsae and C. japonica. Again, the

‘effectiveness coefficient’ used in this study was defined as the ratio of propulsion

velocity to wave velocity, but the experimental setup was for worms crawling on

agar gels. The stroke effectiveness remained relatively constant across different

developmental stages of wildtype C. elegans, and also exhibited little variability

across the different nematode species analysed. Mutants affecting cuticle prop-

erties and muscle structure were observed to move more slowly than wild-types,

and strains with significantly different stroke effectiveness from N2 included cat-4
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and sqt-1 and one strain of unc-54. This result was attributed to the fact that these

worms move very slowly. They also tested different concentrations of agar in the

substrate, finding little variation in the stroke effectiveness up to 6% agar concen-

tration, and only a slight decrease at 8% (confirmed by Parida et al (2017) to a

higher degree). It is reasonable to question how one can differentiate between

worms not wanting to move, being sluggish and tired, versus worms not being

able to move as effectively due to, for example, genetic factors. In this thesis,

from a phenotyping perspective we look empirically at their viscous dissipation,

whether by choice or defect. Such differentiation is not addressed here.

Majmudar et al (2012) [33] investigated the swimming of C. elegans through ar-

rays of micropillars of different densities, varying the spacing between pillars (rel-

ative to the length of the worm). This was the chosen experimental parameter due

to the fact that the number of pillars the worm comes into contact with depends

on both the spacing between pillars and also its length. For the highest density

(the smallest spacing) tested, worms were in constant contact with one or more

pillars, and adopted higher curvature, shorter wavelength body postures. Worms

generally travelled along the diagonals of the micropillar array with high veloc-

ity, between periods of swimming that were locally-concentrated. Increasing the

spacing between the micropillars resulted in high-velocity diagonals again, as well

as looped-trajectories. At the lowest pillar density tested, the wave amplitude of

the worm swimming gait was approximately equal to the lattice spacing, so con-

tact between the worm and pillars rarely occurred, resulting in mostly straight-line

motion, with turns typically arising when the worm did come into contact with a

pillar.

The stroke effectiveness of the worms was determined by scaling the worm veloc-

ity with undulation frequency and bodylength. Worm undulation frequency was

found to be dependent on the lattice spacing, with higher frequencies occurring

when pillars were further apart, which was when worms adopted visibly regular

swim-like behaviour. The highest stroke effectiveness (and velocity) was found
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for the intermediate density of micropillars — the pillar spacing corresponding

to the case where the worm moves one diagonal lattice spacing in a single un-

dulation. This result was also observed in simulations of their mechanical and

hydrodynamical model of the worm, in which they also considered the hydrody-

namic efficiency (average speed / average viscous dissipation) of model worms,

measuring the speed of locomotion achieved for a fixed power output per stroke.

Taking into account both the dissipative cost due to pushing against pillars as

well as the fluid, the maximum hydrodynamic efficiency was attained at the point

where the undulation frequency yields the highest speed for a given pillar spacing.

This indicates that, for the simulated worm, maximum hydrodynamic efficiency

is achieved by decreasing undulation frequency as pillar spacing increases. This

was the opposite of what was observed in the experiments with real swimming

worms in the micropillar arrays, in which frequency increased as pillar spacing in-

creased. This suggested that C. elegans does not adjust its undulation frequency to

maximise hydrodynamic efficiency, at least in this environment. It is possible that

the worms in fact cannot adjust undulation frequency in the higher-spacing pillar

environments, as they may not have a good way of responding to the structure

when they are not in constant contact with it.

A similar result was presented by Bilbao et al (2013) [77], in a study which showed

that confinement enhances the stroke effectiveness of C. elegans swimming due to

the increased resistance coefficient ratio. This result was obtained in the context

of a piecewise-harmonic curvature model, simulations of which showed that nor-

malised swimming velocity (average velocity of the worm / propagation velocity

of the curvature wave) is maximised for a wavelength shorter than is typically ob-

served for C. elegans swimming in water. This study also observed the maximum

normalised velocity was achieved by the simulated worms when the correct bal-

ance of space between obstacles and dimensions of the worm’s body allowed for

optimal frequency. Hence, undulation frequency and the speed of the propagating

dorsal-ventral waves to generate motion, evidently influence the effectiveness of
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C. elegans locomotion.

Berman et al (2013) [97] theoretically determined the most hydrodynamically

efficient swimming gait for a low Reynolds number undulator, using both ap-

proximate resistive force theory and also particle-based numerical computations

which captured internal hydrodynamics in the body (taking into account the intra-

filament hydrodynamic interaction). The particle-based computationally optimal

was found to diverge from the prediction from the resistive force model. They

determined that there is an optimal combination of the dimensionless undulation

amplitude and wavenumber that yields the furthest advancement per period of un-

dulation. The particle-based model was applied to C. elegans swimming data, and

whilst the model and data exhibited similar values of the optimal amplitude and

wavenumber of undulations, the real swimming C. elegans actually out-performed

the particle-based model in both displacement and hydrodynamic efficiency. Be-

yond quantitative out-performing, the trends between wavenumber and efficiency

between the model and real worms revealed that the nematode is superior to the

model swimmer in terms of both the swimming distance per stroke and also hy-

drodynamic efficiency as estimated from particle-based computations exploiting

the nematode swimming gait extracted from experiments. This indicates the im-

portance of the amplitude modulation in the waveform adopted by C. elegans,

deviating considerably from a simple sine wave as in the model.

Variations between observations across the literature discussed above underline

the importance of further investigation of C. elegans gait efficiency. To summarise

for the case of stroke effectiveness, Parida et al found no direct relationship be-

tween centroid speed and stroke effectiveness, and Krajacic et al found little vari-

ation in effectiveness between different strains [94, 96]. Karbowski et al found

some variation across mutant strains, and Majmudar et al found the highest stroke

effectiveness at the pillar spacing corresponding to the scenario where the worm

moves one diagonal lattice spacing per undulation [33, 85]. It is evident, both

from theoretical and computational models, as well as widespread experimenta-
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tion across a variety of contexts, that external environment influences C. elegans

locomotion, and consequently, the optimality of its motion also varies. In addition,

as evidenced by the study of Berman et al, wave amplitude along the body is also

closely linked to optimality of locomotion [97]. These factors lie amongst multi-

ple others (eg development, genetics, ecology) that may also be closely linked to

gait optimality.

Neuronal control

In addition to external environment, a fundamental determinant of how and why

C. elegans move the way they do is their neural circuitry. As well as being the first

animal to have a fully-sequenced genome, C. elegans also boasts the first (and

so far only) fully-mapped connectome of any animal† [4, 5]. This fully-mapped

network of the 302 neurons comprising the C. elegans nervous system offers a

valuable opportunity for connecting behaviour and neural circuitry.

Interactions between distinct classes of C. elegans neurons have been identified

and associated with the different locomotion strategies of the organism. Specifi-

cally, the rich-club network (a network of hub nodes that are densely connected

among themselves compared with nodes of a lower degree, enhancing communi-

cation and coordination between sub-circuits of neurons) of C. elegans’ nervous

system comprises eleven classes of neurons [98], of which nine are prominent

in sensorimotor decisions and motor commands [99]. For example, one class of

head neurons (DVA) are proprioceptive — sensing self-movement and the worms

body position — and communicate with both forward and backward locomotion

neuron classes, coordinating both accelerations and reversals [99]. Propriocep-

tive neurons have been found to clearly play a role in the propagation of C. elegans

undulatory body postures for locomotion [88,100,101].

†Partial connectomes of the fruit fly, mouse, and of course, in our quintessential anthropocen-
tricity, the human brain have also been successfully reconstructed. The larva of the marine annelid
Platynereis dumerilii has also had its connectome fully mapped, and the Drosophila larval connec-
tome is also nearing completion.
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The neural circuitry of the organism is of course impacted by its genetic factors.

Genes encode instructions for an organism’s entire structure and function, and so

mistakes in instructions can lead to diminished or complete loss of function. For

example, Zheng et al (1999) observed that C. elegans that expressed a mutation

in the gene glr-1 which encodes for ionotropic glutamate receptors (a glutamate-

activated receptor that functions by opening ion channels that enable specific ions

to stream in and out of the cell) displayed rapid alternation between forward

and backward locomotion [102]. Mutations in this gene are also associated with

disrupted mechanosensation, and this hyperreversal phenotype observed in the

glr-1 mutants pointed to the role of sensory input in the gating of movement.

More recently, the four fundamental eigenworm shapes that characterise crawl-

ing postures (Stephens et al (2008) [103]) were also found to capture mutant

shapes [104]. Brown et al (2013) established a dictionary of behavioural motifs

that revealed clusters of genes affecting C. elegans locomotion [104], by cluster-

ing mutants into related groups based on how well they performed the different

behaviours in the dictionary. In terms of how well the eigenworms characterised

the mutant body postures, unc-4 and unc-34 were among those worst-fit by the

wildtype eigenworms. Mutations in these genes affect synaptic specificity, further

underlining the importance of neuronal circuitry in gait expression.

A recent study by Deng et al (2021) demonstrated that in fact inhibition underlies

fast undulatory locomotion [105]. C. elegans expressing mutations in the genes

unc-25, unc-46 and unc-49 were found to decrease in undulation frequency when

moving away from adverse stimuli (probing by a blunt glass rod). Mutations

in these genes are associated with impaired GABA transmission (a principal in-

hibitory neurotransmitter for the neurons in question), hence pointing to the role

of inhibition in fast body undulation, and further highlighting the role of genetic

factors and neuronal control in efficient locomotion.
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Efficiency of C. elegans across mutant strains

As evidenced by previous studies, C. elegans mutant strains often move visibly

differently (and arguably less efficiently) than wildtype N2 worms, including but

not limited to slower movements, uncoordination, or hyperactivity. In addition,

some strains have been observed to exhibit coiling behaviours, and tendencies

to move in a ‘less straight’ manner. Previous studies reporting quantitative dif-

ferences between C. elegans gait efficiency often quantify efficiency as simply the

ratio of body velocity to wave propagation speed, inherently penalising swimming

gaits relative to crawling gaits, or are limited in the number of different strains

of the organism. However, even between a small number of strains, quantifiable

differences in efficiency compared with N2 can be detected.

For example, Karbowski et al (2006) found cat-4 to have be significantly less wave

efficiency than N2. By simply looking at the strain compared with N2, by eye we

can see that this mutant is moving less efficiently compared to the wildtype healthy

worm (comparison of fig. 4.1 and fig. 4.2). This strain of C. elegans expressing

a mutation in the cat-4 gene is in fact associated with dystonia in humans —

a movement disorder in which muscles contract involuntarily. This is just one

example of a C. elegans human disease model.

4.2.2 C. elegans as a human disease model organism

C. elegans are a popular model organism for investigating a range of biological

phenomena. From an anthropocentric perspective, 60–80% of human genes have

an ortholog (a gene that evolved from a common ancestor by speciation) in the

C. elegans genome [106], and 40% of genes known to be associated with hu-

man diseases have clear orthologs in the C. elegans genome [107]. It is there-

fore a valuable and promising platform with which to perform disease model

screens, to investigate genetic diseases in humans. C. elegans have an average pe-
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Figure 4.1: Example data from N2 worms from two different wells. Stills from
the mp4 file and corresponding skeletons for the entire 6 minute video, seperated
by motion mode corresponding to paused (= 0), forwards (= 1), or backwards
(= −1). Skeletons extracted by Tierpsy tracker software. Data unpublished at
time of submission of this thesis (May 2022).

riod of developmental completion (from hatching to adult) of 3.5 days, and high

rate of reproduction, with individual worms existing primarily as self-fertilising

hermaphrodites (with males occurring at a frequency of< 0.2%). When hermaphrodites

reproduce, almost 100% of the individual’s genes are passed on to their (up to

300) progeny, so the offspring of a single worm are genetically nearly identical.

This attribute combined with their short life cycle enables high throughput screens

of this organism with an exceptional degree of genetic control.

Rare genetic diseases in humans manifest themselves in a range of symptoms with

varying severity. The majority of rare genetic diseases in humans affect the central
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Figure 4.2: Example data from cat-4 worms from two different wells. Over the
course of the 6 minute video file, this strain is observably less active and moves
less optimally than N2. Data unpublished at time of submission of this thesis (May
2022).

nervous system, resulting in neurodevelopmental, cognitive, behavioural and/or

psychiatric symptoms [108]. Due to advances in genome sequencing technolo-

gies, in recent years the genetic causes of many such diseases have been iden-

tified [109]. In developing treatments for human genetic diseases, C. elegans

provides a promising platform for identifying potential drug targets. The latest

genome editing technologies enable precise required mutations to be made in

the model organism which reflect the genotype of the genetic disease in humans.

When these mutant strains exhibit visibly distinct behaviours and characteristics

compared with the standard wild-type N2 ‘healthy’ strain, this further increases

the possibility of gaining insight into the genetic disease in humans.
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Furthermore, if such characteristics (eg uncoordinated motion, hyperactivity, faint-

ing, to name just a few examples of C. elegans phenotypes that have been widely-

observed throughout the worm literature) can be reversed in drug treatment as-

says, this could lead to the identification of new or repurposed compounds to treat

the associated genetic diseases in humans. A recent example of C. elegans drug

screening illustrating the promise of such approaches is Patten et al (2017), which

modelled ALS with disease-associated genetic variants of conserved genes in the

nematode, leading to discovering the effectiveness of the antipsychotic pimozide

in treating the disease [110]. A key component of this discovery was the pres-

ence of a distinct and quantifiable phenotype, which was able to be reversed by

successful drug candidates. Tracking and quantitative phenotyping in C. elegans

is fundamental to understanding the connection between genetics and behaviour.

However, many phenotypes are difficult to observe by eye, so quantitative tools

and lenses are necessary to asses such phenotypes.

Behavioural phenomics

To understand the connection between genetic variation and variation in physi-

cal characteristics (phenotypic variation), it is necessary to have good phenotypes

that are both quantitative and well-defined. Measuring phenotypes is essential in

many areas of biology, in particular in genetics where mutations in single genes

can yield strong effects on physical and behavioural characteristics. Successful

phenotypic measuring can give rise to extensive characterisations of a range of

traits at the level of individual organisms. Such characterisations can be invalu-

able when linking genotypes and phenotypes, in particular when linking genetic

differences with differences in movement behaviours.

High-throughput phenotypic screening technologies, such as Tierpsy [11], enable

this invaluable measuring of quantitative behavioural phenotypes. Using com-

putational ethology, a phenomic approach to behaviour analysis yields a high-
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dimensional representation of animal behaviour, namely C. elegans and other ne-

matodes. The behavioural features captured by Tierpsy are not only intuitive and

interpretable — compared with features that may be detected by, for instance,

black-box machine learning algorithms — but also powerful in that behavioural

differences between mutant strains and wild-types are effectively detected [10].

4.2.3 Efficiency as a phenotyping lens in C. elegans models of human

genetic disease

Is efficiency an interesting phenotype for C. elegans behaviour? Namely, does it

yield quantitative differences between strains, in particular in the context of a

human genetic disease model strain screening?

Developing gait optimality as a quantitative behavioural phenotype for C. elegans

locomotion — or more generally, the locomotion of any organism — would en-

hance the current set of phenotyping tools. Currently, in order to measure a

change in gait optimality, measurements would have to be taken across many

different dimensions, such as curvature at different parts of the body, speed, re-

versal frequency, etc. It is not sufficient to simply consider speed when concerned

with optimality — when comparing the walking gaits of two given people, it is not

the case that the one that is walking faster is necessarily walking more efficiently.

Multiple different dimensions would have to be monitored simultaneously, and

there would be a lack of certainty that the correct combination of different dimen-

sions and aspects of movement were being considered. Efficiency as a quantitative

phenotype has the potential to serve as an interesting, integrative measure, that

is applicable to any strain, capturing a complete picture of a given organism’s mo-

bility, and yielding a scalar, numerical value which informs us ‘how optimal is this

animal compared to the wild-type’.

This quantitative behavioural phenotyping approach could lead to opportunities

to perform screenings for drugs that are potentially able to treat and reverse the
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phenotypes of disease-model worms, and hence potentially treat the correspond-

ing disease in humans. To this end, and to the objective of this thesis chapter,

we want to be able to quantify the difference in gait optimality between wild-

type worms and mutant strains, so we can use it as a phenotyping tool. In order

to do that, we employ principles from low Reynolds number hydrodynamics and

resistive force theory, which have been widely shown to effectively capture the

nematodes undulatory gait previously, to measure how optimal a particular C.

elegans gait is.
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C. elegans gene Human orthologue Human disease association Strain name

add-1 ADD3, ADD1 Cerebral palsy; Intellectual disability PHX1598

avr-14 GLRA1, GLRB Hyperekplexia PHX1576

bbs-1 BBS1 Bardet-Biedl syndrome (ciliopathy) PHX1588

bbs-2 BBS2
Bardet-Biedl syndrome (ciliopathy);
Retinitos Pigmentosa

PHX1547

C43B7.2 (figo-1) FIG4 ALS; Epilepsy with polymicrogyria PHX1562

cat-2 GHC1 Segawa syndrome PHX1542

cat-4 TH Dystonia PHX1591

dys-1 DMD
Muscular dystrophy (Duchenne and
Becker type)

PHX1688

glc-2 GLRA1, GLRB Hyperekplexia PHX1557

glr-1 GRIA3, GRIK2 Intellectual disability PHX1556

glr-4 GRIK2 Intellectual disability PHX1518

gpb-2 GNB5
Intellectual disability; Retinal dis-
ease; Hypotonia; Seizures

PHX1577

kcc-2 SLC12A5, SLC12A6 Epilepsy PHX2673

mpz-1 MPDZ Hydrocephalus PHX1522

nca-2 NALCN Hypotonia PHX1612

pink-1 PINK1 Early onset Parkinsons PHX1546

snf-11 SLC6A1 Myoclonic atonic epilepsy PHX2683

snn-1 SYN1, SYN2 Epilepsy; Schizophrenia PHX2695

tmem-231 TMEM231 Joubert syndrome; Meckel syndrome PHX1575

tub-1 TUB, TULP1 Retinal dystrophy PHX1563

unc-25 GAD1
Cerebral palsy; Schizophrenia;
Epileptic encephalopathy

PHX1651

unc-43 CAMK2A, CAMK2B Epilepsy; Intellectual disability PHX1688

unc-49 GLRA2 Epilepsy; Hyperekplexia PHX2856

unc-77 NALCN Hypotonia PHX1548

unc-80 UNC80 Hypotonia PHX1531

Table 4.1: The C. elegans disease screen strains, and the human disease associated
with the strain. The strains selected are associated with neurological disorders in
humans, and therefore are expected to exhibit behavioural differences from the
wildtype. This is a recently-obtained dataset in the Behavioural Phenomics lab,
MRC LMS. Data was collected and analysed with state-of-the-art imaging systems
and computational ethology, yielding high-quality data valuable for analysis in
this thesis. Strain selection and experimental (wet lab) methods were carried out
by Ida Barlow and Tom O’Brien. In this thesis, the data is analysed in order to test
the usefulness of gait efficiency as a phenotype. No assumptions or impositions of
optimality are made. Data unpublished at time of submission of this thesis (May
2022).
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4.3 Methods

Experimental methods (strain selection, worm and plate cultivation and prepara-

tion, and video acquisition) were carried out by Ida Barlow and Tom O’Brien in

the Behavioural Phenomics lab, MRC LMS. Videos were processed using Tierpsy

Tracker, and per-well feature extraction and gait optimality features were obtained

with computational pipelines constructed by Madeleine Hall in the MATLAB pro-

gramming platform.

4.3.1 Experimental methods

Disease model strain selection

A list of the disease model strains analysed in the behavioural phenotypic screen

along with their associated human disease is given in Table 4.1. This is a recently-

obtained dataset in the Behavioural Phenomics lab, MRC LMS, that was acquired

for the purposes of a different project, unrelated to this thesis. This data (and

project) are unpublished at the time of submission of this thesis. The benefit of

analysing this data in this thesis chapter lies in its recentness of acquisition, high

image quality, and availability within the lab. The genes were not selected for

the particular study of gait efficiency. No assumptions of efficiency or optimal-

ity across any of the strains are imposed. A short summary of how the strains

were selected (for the unrelated project) is provided below. Strain selection was

performed by Ida Barlow, Tom O’Brien, and André Brown.

The strains were chosen using a combination of automated mining of databases

and hand selection of interesting targets. The C. elegans genes were identified in

Ortholist — a comprehensive dataset of C. elegans-human orthologs compiled in

2018 by comparative genomic analysis [111]. The genes were then filtered ac-

cording to: 1) if more than 2 orthology programs agreed that the C. elegans gene
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is a good ortholog for a human gene, and 2) the human ortholog of the C. elegans

gene has a disease association. Furthermore, genes were eliminated unless: 1)

the associated human diseases are neurological disorders, and therefore likely to

affect behaviour, 2) the C. elegans/human gene encodes either a neurotransmit-

ter or a neurotransmitter receptor, or 3) the C. elegans gene is associated with

chemotaxis or feeding behaviours. Genes that are developmental or lethal when

knocked out were rejected, and genes that may result in interesting behavioural

phenotypes or that are likely to be good drug targets were accepted. Mutants were

designed and made by SunyBiotech in their reference N2 strain background, using

CRISPR/Cas9 gene editing technology.

Worm and plate preparation

As stated above, this data was acquired by the Behavioural Phenomics lab for a

project that is unrelated to the analysis performed in this thesis. For your infor-

mation, a summary of the experimental methods is provided below. Wet lab work

was carried out by Ida Barlow and Tom O’Brien.

All strains were cultured on Nematode Growth Medium (NGM) at 20 degrees

celsius and fed with E. coli strain OP50 following standard procedure [112]. C.

elegans is usually grown in laboratories using OP50 as a food source. The growth

of OP50 is limited on NGM, which is desirable as it allows for easier observation

and better tracking of the worms.

Populations of young adult worms for imaging were obtained for each of the

strains, by allowing newly-hatched L1s to develop for two and a half days (de-

tailed protocol given in [113]). Several strains were developmentally delayed,

and thus were given more time to develop: cat-4, gpb-2, kcc-2, and unc-25 were

allowed to develop for three and a half days and dys-1, and pink-1 were allowed

to develop for five and a half days.
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On the day of imaging, young adults were prepared (detailed protocol given in

[114]), and transferred to OP50-seeded 96-square well imaging plates (3 worms

per well) using a COPAS 500 Flow Pilot (detailed protocol given in [115]), and

returned to an incubator for 1.5 hours. Plates were then transferred onto the

multi-camera tracker for another 30 minutes for habituation, prior to imaging

(detailed protocol provided in [116]).

4.3.2 Computational methods

Image acquisition and processing

Video data of the worms was acquired and processed following the methods de-

scribed in detail in [117]. Videos were recorded at 25 frames per second with a

resolution of 12.4 µm per pixel. Three videos were taken sequentially: a 5 minute

pre-stimulus video, a 6 minute blue-light recording with three 10 second blue-

light pulses starting at 60, 160 and 260 seconds, and a 5 minute post-stimulus

recording. Blue light is a noxious stimulus, and therefore upon stimulation the

nematode will exhibit typical avoidance behaviours, such as acceleration and re-

versal. Blue light can elicit an escape response in worms, thus expanding the

range of observable behaviours [118,119].

Videos were segmented and tracked using Tierpsy Tracker [11]. After segmen-

tation of worm skeletons, non-worm objects mistakenly tracked by the software

were excluded from being classified as worms via a convolutional neural network

classifier [117]. A manual threshold to filter skeletonised objects was also applied,

to further filter skeletonised objects likely to be non-worms (eg well edges, agar

cracks). Objects that were outwith the range 800–1400 µm in length were filtered

out prior to analysis. As an additional quality control measure, Tierpsy Tracker’s

GUI viewer was used to mark wells with visible contamination, agar damage, or

excess liquid as “bad”, and exclude these wells from downstream analysis.
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Feature extraction and gait optimality features

Following tracking, a set of behavioural features was extracted for each well [10].

The extraction of behavioural features was performed on a per-track basis and

are then averaged across tracks to produce a single feature vector for each well.

Features are classified as either time series features or event features.

Time series features (eg velocity, dissipation) are obtained frame-by-frame for

each worm. Features that can be localised to a part of the body can be calculated

separately for distinct segments along the worm (head, body, tail). Features can

also be subdivided according to the state of motion of the worm (paused, for-

ward, or backward). Time-averaged features were obtained by averaging over

1 second windows of features calculated on a frame-by-frame basis. The distri-

butions of features are quantified by calculating the 10th, 50th, and 90th per-

centile values, as well as the interquartile range. This results in features such

as time_avg_head_viscous_dissipation_50th which is the median 1 second time-

averaged dissipation by the head of the worm. Event features such as motion_mode-

_paused/forward/backward_fraction describe the fraction out of the total number

of recorded frames the worms spend in either paused, forward or backward mo-

tion mode for a given well.

The position of the worm at time t is given by x (s, t) = [x(s, t), y(s, t)] where s ∈

[0, L] is the arc length, measured from head (s = 0) to tail (s = L) along the length

of the body (see fig. 4.3). The features of normalised velocity, centroid speed,

viscous dissipation, and hence efficiency were all obtained for normalised skeleton

length. Worm skeletons at each frame are tracked at precisely Ns = 49 points

along the body, from head tip to tail tip. Whilst worm length may vary between

mutant strains, the aforementioned features were calculated for normalised worm

length L = 1. Video data was obtained at 25 frames per second, and to mitigate

noise in the tracking data a window of 10 frames was used to calculate velocity

(non-overlapping, as opposed to a sliding window), ie ∆t = 0.4 seconds.
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Figure 4.3: An image of C. elegans (adult N2) crawling on agar, with axes and
annotations added. The body is parameterised by arc length s ∈ [0, L], and its
position at time t is given by x (s, t).

The worm centroid is defined as the mean point along the skeleton in the hori-

zontal and vertical directions for a given frame:

xc(t) =
1
Ns

L+

s=0

[x(s, t), y(s, t)] (4.2)

and hence may lie outside the worm body, for example for C-shaped postures.

The normalised centroid speed is calculated according to

Uc(t) =

4444
xc(t +∆t)− xc(t)

∆t

4444=

=>?7 xc(t +∆t)− xc(t)
∆t

82
+
7

yc(t +∆t)− yc(t)
∆t

82
.

(4.3)

Uc(t)> 0 regardless of motion mode (ie if the worm is moving backward, centroid

speed is still described at positive).

The velocity of the body is calculated via

u(s, t) =
x (s, t +∆t)− x (s, t)

∆t
(4.4)

and the force acting on the surroundings per unit length of the body, by resistive
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force theory, is calculated as

f (s, t) = (KT − KN )t̂ (t̂ · u) + KN u, (4.5)

with t̂ (s, t) the unit tangent vector along the body in s at time t. The ratio of

tangential to normal resistance coefficients (the drag anisotropy) rk = KT/KN is

fixed at 1/10. The drag anisotropy is fixed at this value based on the studies

by Shen et al (2012) [74], Rabets et al (2014) [34], and Keaveny and Brown

(2017) [35], discussed in the introduction of this chapter.

The dissipation is calculated according to

Φ(t) =

& L

0

f (s, t) · u(s, t)ds (4.6)

≈∆s
L+

s=0

f (s, t) · u(s, t). (4.7)

where ∆s = 1/Ns ≈ 0.02. Features localised to a part of the body were calcu-

lated by segmenting the 49 points along the worms length into head region, body

region, and tail region. For example, for head/body/tail dissipation:

Φhead(t) =∆s
8/49+

s=0

f · uds, (4.8)

Φbody(t) =∆s
41/49+

s=9/49

f · uds, (4.9)

Φtail(t) =∆s
1+

s=42/49

f · uds. (4.10)

(4.11)

Time-averaged features are calculated over 1 second windows of continuous se-

quences of frames in the tracking data. The frame rate of the recorded videos was

25 frames per second. Time-averaged features were not calculated for frames that

were not contained within a period of 25 consecutive continuous skeletons ie if
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the tracked trajectory was less than 1 second long, this was discarded from the

time-averaging features.

The efficiency was determined via

ηH =
rk 〈Uc〉2
〈Φ〉 (4.12)

where 〈Uc〉, 〈Φ〉 are the time-averaged centroid speed and time-averaged dissi-

pation respectively (angular brackets denote time-averaging). This expression is

equivalent to the hydrodynamic efficiency discussed in section 2.2.3. This feature

is also, by construction, time-averaged over the 1 second windows of continuous

tracking in the data.

Statistical analysis

Statistically significant differences in the behavioural feature sets extracted from

each disease model strain compared to our N2 reference were calculated using a

Mann–Whitney test, for testing whether samples originate from the same distri-

bution. This is a non-parameteric test, and hence does not assume that the data

is normally distributed. Each strain was compared independently with the N2

control group, and all p-values calculated for the different comparisons. Python

(version 3.6.10) was used to perform the analysis. The p-values were corrected

for multiple comparisons using the Benjamini–Yekutieli procedure to control the

false discovery rate at 5%.



4.3. Methods 163

Figure 4.4: All p-values obtained from statistical analysis of the gait optimality
features results. Values were calculated using the Mann–Whitney test, and cor-
rected for multiple comparisons using the Benjamini–Yekutieli procedure, control-
ling the FDR at 5%. Strains are ordered from left to right by number of features
significantly different from N2, the control group. Statistically significant features
are distinguishable via the colour mapping: p-values less than the FDR (0.05) are
coloured from white to dark blue according to how much smaller than the FDR
the value is. All p-values greater than 0.05 are coloured red.



4.4. Results 164

4.4 Results

An overview of the median efficiency across all strains in the disease model strain

screening is shown in fig. 4.5. N2 (wildtype, ‘healthy’ worms) have a median hy-

drodynamic efficiencyηH ≈ 0.009 (median 0.00899, quartiles [0.00794, 0.0103]).

Out of 25 strains, 22 had median efficiency (hydrodynamic_efficiency_50th) sig-

nificantly different from N2 (p < 0.05).

Although many of the disease model strains have lower efficiency than N2, some

were found to have higher efficiency. The three strains that were found not to be

siginificantly different from the N2 reference strain are gpb-2, glr-1, tmem-231. Of

the other strains, 11 were found to have significantly lower median hydrodynamic

efficiency than N2, and (coincidentally also) 11 were found to have significantly

higher efficiency.
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Figure 4.5: Median efficiency across all strains in the disease model strain screen-
ing. Dashed red line at N2 median for easier comparison of distributions relative
to the control. All strains with the exception of glr-1, gpb-2 and tmem-231 are
significantly different from N2 (p < 0.05).

The variation in efficiency across all of the strains can be investigated by inspect-

ing correlations with the other behavioural features quantified and obtained in the

phenotypic screen. The median efficiency correlates highly with motion_mode_for-
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ward_fraction (r = 0.783), and also relatedly motion_mode_paused_fraction (r =

−0.755), as well as median time-averaged normalised centroid speed — time_avg-

_mean_centroid_speed_50th (r = 0.775). Scatter plots of these features which

correlate highly with efficiency are shown in fig. 4.6. An overview of these highly

correlated features across all strains is shown in fig. 4.7.

Figure 4.6: Scatter plots of median efficiency (hydrodynamic_efficiency_50th)
against other features that are highly correlated. Each dot represents
one well (ie each point corresponds to the well-averaged data). Me-
dian efficiency is strongly correlated with the fraction of time worms spend
paused — motion_mode_paused_fraction (r = −0.755), as well as the frac-
tion of time worms spend moving forward — motion_mode_forward_fraction
(r = 0.783), and median time-averaged normalised centroid speed —
time_avg_mean_centroid_speed_50th (r = 0.775).
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Figure 4.7: Boxplots of the features motion_mode_foward_fraction, mo-
tion_mode_paused_fraction, and time_avg_mean_centroid_speed_50th across the
full disease model screening, which are all highly correlated with median effi-
ciency measured.
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Efficiency is lowest when worms are paused

To explain the overall efficiency results, we note that efficiency is lower when

worms are paused compared with when they are moving forwards or backwards,

as shown in fig. 4.8. When worms are moving, the measured efficiency is higher.

Worms that spend more time paused (ie have relatively high motion_mode_pause-

d_fraction) therefore spend more time incurring a lower efficiency, resulting in a

lower efficiency overall.

For example, N2 and bbs-2 have comparable distributions across the hydrody-

namic_efficiency_w_backward/forward/paused_50th features (see fig. 4.9), but bbs-

2 has overall higher efficiency, due to having lower motion_mode_paused_fraction

(and higher overall motion_mode_forward_fraction). We observe this effect evi-

dently by looking at the worm skeletons themselves. Figure 4.10 shows the se-

quence of body postures of N2 worms and bbs-2 worms, taken from six different

wells on the same imaging plate. Paused efficiency is lower than not-paused ef-

ficiency across all wells. All of paused, forward, and backward efficiency respec-

tively are comparable between the two strains.

So in general, lower motion_mode_paused_fraction implies higher efficiency —

this is the case for avr-14, bbs-1, bbs-2, glc-2, mpz-1, snn-1, tub-1, unc-43. And

vice versa, higher motion_mode_paused_fraction implies lower efficiency — see

cat-2, cat-4, glr-4, nca-2, pink-1, unc-25, unc-77, unc-80.

There are however some exceptions to this trend: kcc-2 and unc-49 have higher

motion_mode_paused_fraction but higher efficiency than N2. And add-1, dys-1 and

snf-11 have lower motion_mode_paused_fraction but lower efficiency than N2.
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Figure 4.8: Boxplot of median efficiency across all strains separated by motion
mode (backward, forward, paused). Efficiency is substantially lower when worms
are paused compared with not. Efficiency for backwards locomotion is greater
than for forwards, with the exception of unc-43.

Figure 4.9: Boxplots: efficiency of bbs-2 compared with N2, for median ηH
overall, and separated by motion mode (backward, forward, paused). N2 and
bbs-2 have comparable distributions (similar median and quartile values) for
the efficiency measures separated by motion mode. However, bbs-2 has over-
all higher efficiency, as it spends less time paused compared with N2 (has lower
motion_mode_paused_fraction).
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Figure 4.10: Worm skeletons (sequence of body postures) for N2 (left) and bbs-
2 (right) worms, every 10th frame shown. Taken from six different wells from
the same imaging plate, ie date, time and stimulus invariant. Skeleton colour
indicates paused, forward, or backward locomotion (motion_mode = 0, 1, or −1
respectively).
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Efficiency when worms are paused is lower than when moving for several reasons.

Firstly, the worm centroid speed is naturally lower when it is paused, as shown in

fig. 4.11. In addition to this, the worms still incur a noteworthy mechanical work

cost (increased dissipation), due to the presence of movements in the body despite

being paused. Specifically, when worms are paused they continue to explore their

environment by swinging their heads, for the purposes of foraging (a behaviour

that has been widely observed and investigated [120]. This is observed in our data

by inspecting the sequences of skeletons for paused worms. The head-swinging

whilst paused can be seen in the N2 and bbs-2 worms in fig. 4.10. Furthermore,

fig. 4.12 compares the motion of specifically paused N2 worms with paused kcc-2

worms. The distinctive head-swinging behaviour is clearly exhibited by N2, and

incurs a high time_avg_head_viscous_dissipation relative to kcc-2. The sequence of

kcc-2 postures exhibit noticeably less head-swinging. Thus, the head (and overall)

dissipation is lower, resulting in a higher efficiency.

Furthermore, we can separate both dissipation and head dissipation into back-

wards, forwards, and paused motion modes (see fig. 4.13). We see that, over-

all, dissipation is lower when worms are paused than when they are not. This

is likely due to the fact that most of the body (namely the tail and midbody) is

near-stationary during pauses. However, paused head dissipation is not as sub-

stantially reduced than paused total dissipation (relative to non-paused worms).

This further explains why efficiency is low for paused worms, and aligns with the

wide-ranging observation that the head is the most active part of the worm.
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Figure 4.11: Boxplot of median time-averaged normalised centroid speed across
all strains separated by motion mode (backward, forward, paused). Centroid
speed is, naturally, lower when worms are paused.

Figure 4.12: Example N2 (right) versus kcc-2 (left) worm skeletons tracked by
Tierpsy. Only paused skeletons (motion_mode = 0), and every 10th frame shown.
The kcc-2 worms exhibit less head-swinging than N2 when paused, resulting in a
lower head dissipation for this motion mode, and consequently higher efficiency
when paused.
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Figure 4.13: Boxplots of total dissipation and head dissipation across all strains
separated by motion mode (backward, forward, paused). Dissipation is lower
when worms are paused, but paused head dissipation is substantially less reduced
than paused total dissipation (relative to non-paused worms). Axis truncated for
ease of observation, omitting some outliers.
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Efficiency is high for backward motion and reverals

We notice from fig. 4.8 that backward efficiency is consistently higher than for-

ward efficiency, with the exception of only one strain: unc-43. This is because

when reversing the worms centroid speed is also higher, ie worms are often mov-

ing backwards faster than they are moving forwards, as can be seen in fig. 4.11.

Worms often engage in backing motion and reversals when employing an es-

cape response. In the escape response, they back away from an adverse stimulus

quickly, resulting in a high centroid speed. Furthermore, head-swinging is sup-

pressed in an escape response. In their natural environment, suppressing head

swinging when reversing in response to adverse stimulus is key to survival, for ex-

ample when encountering predacious fungi [121]. Predacious fungi can catch and

trap nematodes by using constricting rings, which close around the worm when

stimulated by friction, in order to then penetrate the cuticle and digest the worm.

Suppressing head swinging to minimise the friction when reversing maximises the

chance of successful retraction and evasion of capture. This ecologically relevant

behaviour can be seen in fig. 4.13, in which head dissipation is lower for backward

motion than forward. We also observe this behaviour by again inspecting worm

body postures during backwards motion. Minimal head-swinging during reversals

can be seen in fig. 4.10. More specifically, fig. 4.14 shows examples of N2 worms

specifically reversing, exhibiting suppressed head-swinging for this motion mode.

The backward head dissipation (and overall dissipation) is minimised, resulting

in a high efficiency for reversals.

These skeletons are compared with those of unc-43, the strain that has the high-

est head dissipation for backward motion (and the only strain that has backward

efficiency lower than forward efficiency — see fig. 4.8). The unc-43 head mo-

tion in these examples is visibly greater than that of N2, resulting in its increased

dissipation and thus lower backward efficiency.
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Figure 4.14: Example N2 (right) and unc-43 (left) worm skeletons for backward
motion (motion_mode = −1), every 10th frame shown. N2 worms exhibit sup-
pressed head motion during backward motion, as a function of effective escape
response. This results in reduced dissipation, and higher efficiency when these
worms are reversing. The unc-43 strain exhibits the highest head dissipation for
backward motion across all strains, and visibly swings its head more than N2 when
reversing.

Figure 4.15: Boxplot of motion mode fraction across all strains (backward, for-
ward, paused). All strains consistently spend more time paused than moving for-
ward or backward.
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unc-43

In addition to observing increased head swinging during reversals, is is interesting

to see from the sequence of body postures in fig. 4.14 that the backing motion of

unc-43 is sustained for substantially longer than that of N2. In fact, it is the case

that unc-43 has a higher motion_mode_backward_fraction than any other strain

(shown in fig. 4.15).

unc-43 stands out in these results as it has the highest measure of overall effi-

ciency across all strains (see fig. 4.5). Additionally, its centroid speed is the high-

est across all strains for all motion modes (see fig. 4.11). In particular, unc-43’s

time-averaged centroid speed when paused is higher than all the other strains.

Observing the sequence of body postures of unc-43 when paused (motion_mode

= 0), shown in fig. 4.16, we see that despite plotting only ‘paused’ frames, the

unc-43 worms appear to exhibit a rapid stop-start motion, frequently and rapidly

switching between pauses and forwards locomotion. If the switching between

paused and forwards occurs at a rate of less than one second (ie the time-averaging

window employed for time_avg features), then this will result in an increase in

time-averaged centroid speed when paused. This rapid switching between motion

modes can in fact be seen in fig. 4.17, in which over the trajectory of the worm,

the sequence of body postures changes from paused to forward to backwards in

a small number of frames. This hyperactive phenotype has been historically ob-

served in unc-43 (Reiner et al (1999) [122]). The results for the strain unc-43

provide a promising validation of efficiency as a useful phenotyping tool.



4.4. Results 176

Figure 4.16: Example unc-43 skeletons for paused motion (motion_mode = 0),
every 10th frame shown. Translation between paused skeletons indicates that
unc-43 rapidly switches between paused and not-paused locomotion.

Figure 4.17: unc-43 skeletons, every 10th frame shown. unc-43 exhibits a rapid
stop-start motion, frequently switching between paused and forward locomotion,
yielding an increased time-averaged paused centroid speed

Figure 4.18: Boxplots: efficiency of unc-43 compared with N2, overall and sep-
arated by motion mode (backward, forward, paused). unc-43 has overall higher
efficiency, as it spends significantly less time paused compared with N2 (has lower
motion_mode_paused_fraction).
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unc-43 has remarkably high overall efficiency due to its particularly small mo-

tion_mode_paused_fraction value — the lowest across all strains in the data (see

fig. 4.15). Comparing specifically with N2 (see fig. 4.18), although unc-43 shows

lower forward and backward efficiency, it is more efficient when paused. This

is due to its high paused centroid speed (discussed above), but also due to the

fact that unc-43 and N2 have the same head dissipation when paused (p > 0.05).

Hence, unc-43 has higher paused efficiency than N2, and is more efficient than

N2 overall, because N2 is paused approximately 80% of the time and efficiency

when paused is lower. The increased time N2 spends paused (incurring a lower

efficiency) results in an overall lower efficiency measured.

Other epilepsy models

The unc-43 strain has associated human diseases including intellectual disabilities

and epilepsy. Specifically, the unc-43 worms model epileptic seizures [123]. Other

seizure models in epilepsy in the screening are the C43B7.2, unc-25, and unc-49

worms [124–126]. unc-49 also has a higher efficiency than N2, was found to be

less active and generally slower, and in particular had lower dissipation than N2

across all motion modes, as well as lower head dissipation.

unc-25 and C43B7.2 worms were found to have significantly lower efficiency than

N2. Like unc-43, unc-25 also has a significantly greater time-averaged centroid

speed and dissipation than N2. However, unc-25 has significantly lower effi-

ciency than N2 due to having a higher motion_mode_paused_fraction. C43B7.2

was found to have not significantly different centroid speed, dissipation, and mo-

tion_mode_paused_fraction compared to N2 (p > 0.05). It was found to have a

marginally higher dissipation than N2 when paused and moving forward, result-

ing in its low relative efficiency.

The kcc-2, snf-11, and snn-1 worms are also epilepsy models, specifically solute

carrier and synapsin models of epilepsy. They are all found to be more effi-
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cient than N2. kcc-2 specifically has high efficiency when paused and moving

forward, due to low head dissipation and in general low dissipation across all

motion modes. This also applies to snf-11, which was additionally found to have

indifferent centroid speed to N2 (p > 0.05 for all time_avg_mean_centroid_speed

features). snn-1 was found to be more active than N2, with a significantly lower

motion_mode_paused_fraction.

Hypotonia and diminished neurotransmitter biosynthesis models have low

hydrodynamic efficiency

The nca-2, unc-77, and unc-80 worms are hypotonia models, and were all found

to be less efficient than N2, due to either diminished centroid speed, or increased

dissipation. The gpb-2 worms are also associated with hypotonia (amongst a num-

ber of other disorders), and were found to have overall not significantly different

efficiency from N2, despite having significantly higher dissipation, and also sig-

nificantly higher centroid speed.

The cat-2 and cat-4 worms have associated human diseases of Segawa syndrome

and Dystonia respectively, which are both disorders of diminished neurotransmit-

ter biosynthesis. Both of these strains were found to have lower efficiency than

N2, with both exhibiting significantly slower centroid speed, and cat-2 exhibiting

high dissipation.

Trends across other human disease association groups

gpb-2 worms are also associated with intellectual disabilities. Other intellectual

disability models are glr-1, glr-4, and add-1 worms. The glr-1 strain were found

to be significantly different from N2 in all features obtained apart from median

efficiency. In particular, glr-1 have significantly higher centroid speed, and signif-

icantly higher dissipation than N2. The glr-4 strain is less efficient than N2 due
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to having higher dissipation. add-1 worms are less efficient than N2, also having

higher dissipation, and marginally higher centroid speed.

Strains that model ciliopathies — disorders associated with genetic mutations en-

coding defective proteins, resulting in abnormal formation or function of cilia —

(bbs-2, bbs-1, tub-1, and tmem-231) were generally found to be more efficient

than N2, with higher centroid speeds, higher dissipation, and lower motion mode

paused fraction. The hyperekplexia (startle disease) model strains — avr-14 and

glc-2 — are both more efficient than N2, with higher centroid speed, higher dis-

sipation, and lower motion mode paused fraction. Strains that model neurode-

generative disorders (dys-1 and pink-1) were both found to be less efficient than

N2.
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4.5 Conclusion

4.5.1 Summary

We have analysed the results of expanding the current set of behavioural pheno-

types to include features that quantify C. elegans gait optimality, with the aim of

detecting a broader spectrum of movement defects. The quantitative gait optimal-

ity phenotypes employ tools from low Reynolds number hydrodynamics and resis-

tive force theory, which has extensively been shown to provide effective empirical

frameworks for modelling C. elegans locomotion. The gait efficiency of a given

worm is defined as the ratio of speed to rate of mechanical work (equivalently

dissipation), multiplied by the ratio of tangential to normal resistance coefficients

(the drag anisotropy).

We tested these phenotypes in the context of a rare human genetic disease mod-

els screen. The types of human disease modelled in our experiment included:

epilepsy, hypotonia, diminished neurotransmitter biosynthesis, intellectual dis-

abilities, and neurodegenerative disorders. Of the 25 strains analysed, 22 were

found to have statistically significantly different average efficiency compared with

N2 worms. Investigating trends in the results, we found that this feature was

highly correlated with the fraction of time worms spend moving forwards (or

paused), and also the worm’s average centroid speed.

Efficiency was overall found to be lower when worms are paused compared with

when they are moving. This is due to the naturally decreased centroid speed, as

well as the presence of head-swinging motions which incur a mechanical work

cost. Strains with suppressed head-swinging (such as kcc-2) were found to be

more optimal when paused than N2.

Furthermore, efficiency was found to be generally high during reversals, when

the worms engaged in backing motion. This is explained by the relatively in-
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creased speed (the worms often reverse quickly), and also the suppression of head-

swinging when reversing. This combination has ecological relevance in the C. el-

egans escape response to predacious fungi (a situation that intuitively demands

efficient motion), suggesting that this behaviour has evolved due to selection.

The overall findings that efficiency is generally low during pauses and generally

high during reversals make sense in retrospect, and these are uncovered by our

investigation.

One strain in particular — unc-43, an epilepsy model — stood out as it attained the

highest measured efficiency across all of the strains in the data. Furthermore, it is

the only strain to exhibit higher forward efficiency than backward efficiency. This

result was explained by investigating the hyperactivity exhibited by this strain, and

discovering that it engages in rapid stop-start behaviour, switching frequently be-

tween the different motion modes. This hyperactivity lead to overall higher mea-

sured efficiency due to increased centroid speed, and also results in increased effi-

ciencies separated by motion mode as the stop-start motion occurs at a frequency

smaller than the one second period the time-averaged features are calculated over.

Other epilepsy models (both seizure and solute carrier) were mostly also found to

have higher efficiency than N2, though not all strains were found to be categori-

cally so. The hypotonia models were generally found to be less efficient than N2.

Other trends across the disease types include: ciliopathies found to be more effi-

cient than N2, and neurodegenerative disorder models found to be less efficient.

Evidently, it is not the case that N2 exhibits the highest ‘efficiency’ across the

strains we have considered in this dataset. This can be attributed to characteristic

movement behaviours exhibited by these wildtype worms: high motion mode

paused fraction, and the motion of head swinging when paused.
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4.5.2 Further considerations

We have shown that efficiency as a phenotyping tool is potentially useful for de-

tecting differences in movement behaviours between worm strains. The results

of this chapter indicate that, between the strains analysed here, quantitative dif-

ferences in gait efficiency are found between individuals. Interpretability of be-

havioural features is a key aspect for possible usefulness, which makes efficiency

a good candidate as a phenotyping lens. An alternative quantitative measure of

efficiency that does not intrinsically penalise wildtype behaviours such as head-

swinging when paused (a behaviour that is crucial for sensory and navigatory

purposes), and generally stationary states could be devised to alternatively mea-

sure efficiency across strains. Such a measure could detect the highest efficiencies

to be exhibited by wildtype worms.

The efficiency applied in this analysis did not account for or penalise any bending

or high-curvature body postures, as the generalised efficiency used in Part I did.

Including a penalty for bending in the body for the quantitative phenotype could

provide suitable alternative measures of the efficiency. For this scenario, the rela-

tive importance of bending versus mechanical work (AB) would need to be chosen

to reflect the achievable radius of curvature of C. elegans, which could be context-

specific, and would require more analysis. A possible alternative approach could

be to estimate AB from the value of the wavenumber, though this requires further

consideration.

The time-averaged worm gait optimality features were calculated across one sec-

ond windows in the tracking data. This window size was chosen to capture periods

of worm locomotion under the assumption that categorical changes in movement

behaviour occur at a rate above this. Alteration of the window size for calculating

the time-averaged features could have significant effects on the relative efficien-

cies obtained across strains. Averaging over longer timescales could favour pe-

riods of sustained forward locomotion. Averaging over shorter timescales could
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minimise distortions from rapid switching between motion modes, but may also

be more sensitive to noise in the tracking data. Analysing the affects of time-

averaging over different window sizes requires further investigation.

Recall that the tracking data was collected, after an initial 30 minute habituation

period, according to: 5 minutes pre-stimulus, followed by 6 minutes of blue light

in which three 10 second blue light pulses occurred at 60, 160 and 260 seconds,

followed by 5 minutes post-stimulus data, resulting in a total tracking period of

16 minutes. Investigating the effects of how gait efficiency changes depending on

which stimulus stage the worms are at is another avenue for further consideration

in this analysis. This could lend further insight into for instance gait efficiency

specifically during escape response, by isolating only the blue light period from

the data.

In calculating the gait efficiency from the sequences of worm body postures, in

order to obtain the force per unit length of the body acting on the surroundings,

and thus the rate of mechanical work exerted by the worm, we applied resistive

force theory which provides effective empirical frameworks for C. elegans crawling

models. By this theory, the force is scaled linearly with the velocity in both the

tangential and normal directions, and therefore the ratio of tangential to normal

resistance coefficients rk = KT/KN needs to be defined. In this analysis, we fixed

rk = 1/10 as the globally applied value, in order to model the force, mechanical

work, and thus the efficiency.

This value was chosen based on experimental measurements by Rabets et al (2014)

[34] and also values determined numerically by Keaveny and Brown (2017) [35].

The value of the efficiency is linearly proportional to the drag anisotropy, and to

further justify our chosen fixed value here we could perform a linear stability anal-

ysis to assess the dependency of the efficiency on rk. For instance, between N2

and the disease models, how much variation in rk would result in for example all

strains being equally efficient.
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As discussed in the introduction, the value of rk for different environments has

been the subject of a number of studies. We chose to fix rk and apply this as

a global drag anisotropy, but studies have shown that drag forces do not scale

linearly with velocity on gels. It could be the case that a global drag anisotropy

cannot be defined in this context, and it may be more appropriate to apply rk on

a frame-by-frame basis. This could be done by finding the rk which minimises

the difference between the body translation recorded in the tracking data and the

translation recovered via the change in body posture in the resistive force model

(rigid body motion calculation). This approach was adopted in by Keaveny and

Brown (2017) [35], though on a worm-by-worm basis as opposed to frame-by-

frame. The resolution and amount of noise present in the data would require

significant improvement for rk to be inferred on a frame-by-frame basis. On a

worm-by-worm case, it has been shown that some strains move with more slip

than wildtype, due to mutations in genes affecting cuticle structure and function.

The drag anisotropy for these worms would thus be lower than for N2. A simi-

lar optimisation approach to [35] could lead to different trends in the efficiency

results between the strains analysed.

Efficiency as a phenotyping lens has the scope to be applied in a variety of contexts:

from disease screens, to across different environments, or across other species of

nematode. If the phenotype of low efficiency in disease model strains can be

reversed over the course of drug treatment assay, this could lead to the identifi-

cation of new or repurposed compounds to treat associated diseases in humans.

Applying the phenotyping lens across different environments and across other ne-

matode species has the possibility of lending insight into undulatory movement

behaviours that, like the escape from predacious fungi, may also have evolved

due to selective pressures. Further development of these tools therefore has the

potential to uncover more about the overall nature of this model organism.
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Chapter 5

Summary and outlook

This thesis has explored the avenue of efficient undulatory microorganism lo-

comotion in two parts. Part I extended current theoretical and computational

approaches to modelling optimal undulatory locomotion, which previously pre-

dominantly focused on straight-path forwards locomotion. We obtained optimal

undulatory turning gait results by posing an optimisation problem which min-

imised the objective function describing the cost of motion, subject to the con-

straint that a fixed turning angle was achieved in one period. Multiple different

parametrisations of the problem were investigated, and the optimal turning gait

was found to depend on the relative weighting of mechanical work versus bending

cost in the objective function. We established that optimal turning gaits from high-

dimensional parameter spaces can be closely approximated as travelling waves of

constant curvature.

Part II developed efficiency and gait optimality measures and tools for C. elegans

behavioural phenotypic screens. This was done in the context of a human disease

model screen, which comprised of mutant strains each associated with a rare ge-

netic disease in humans. Efficiency successfully detected differences in movement

behaviours between the strains in the data, yielding quantitatively distinct results

between worms. Trends between disease types were uncovered, and further work
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could lead to insight into how C. elegans movement behaviours may have evolved

for efficiency.

Characteristic differences between C. elegans gait in different environments (eg

swimming versus crawling), under the lens of quantitative efficiency phenotypes

could reasonably result in the conclusion that C. elegans moves more efficiently

when it is crawling on agar than when it is swimming in a fluid. For instance,

it achieves greater displacement per body undulation when crawling than when

swimming due to increased friction in the environment. This could shine a nega-

tive light on swimming worms: they are working really hard swimming and not

moving very efficiently compared to when they are crawling on agar. However,

it has been shown that swim exercise in C. elegans actually extends healthspan

and protects against degeneration [127–129]. So whilst swimming may seem in-

efficient compared with crawling, it is arguably good for them if it improves their

quality of life.

To marry the results obtained from the distinct parts of this thesis, it could be pos-

sible to investigate the efficiency or optimality of C. elegans undulatory turning

gaits. The well-known omega-turn is widely observed and characterised in the

literature, and isolating points of high path curvature in the tracking data could

provide a suitable dataset in order to test our optimal turning models. Modelling

the capacity of turning versus the efficiency of swimming are two potentially com-

peting ideas. There may be, biologically, a combination of the two that matters,

and these two ideas in nature are tightly linked with each other, and also with the

overarching aim of efficiency for survival. To combine models of optimal turning

with efficient swimming or crawling, a mixed model or decision-making model

which decides to switch between these two objectives every so often may be the

best solution. To form this kind of model, choices need to be made within the

framework about the objective function (potentially a multi-objective framework

would be optimal), and also the shape space. Based on these choices, the resulting

parametrisation of the model that can then be compared to data and biological
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insights. The parameters in the model should be directly measurable or infer-

able from the biological data, and describe particular phenomena. The set of ex-

tractable parameters from data is dictated by the specifics of experimental setup,

but the optimal gaits would thus be a function of the parameters in the model.

Ultimately, our main outlook is considering how to expressly connect biological

data with the theoretical models.
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Appendix A

Derivations, notes and

calculations

A.1 Invertible linear system for rigid body motion calcu-

lation

The shape of the undulator is given by

x (s, t) =

,
-.

x(s, t)

z(s, t)

/
01 = x0(t) +R(θ (t))r (s, t) (A.1)

with R(θ (t)) the rotation matrix:

R(θ (t)) =

,
-.

cos(θ (t)) − sin(θ (t))

sin(θ (t)) cos(θ (t))

/
01 . (A.2)
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Thus the unit tangent vector along the body is given by

t̂ (s, t) =

,
-.

t̂ x(s, t)

t̂z(s, t)

/
01 = ∂ x

∂ s
= R

∂R

∂ t
(A.3)

and the velocity is given by

u(s, t) =

,
-.

ux(s, t)

uz(s, t)

/
01 = ∂ x

∂ t
= ẋ0(t) + θ̇ (t)

dR
dθ

r (s, t) +R
∂ r
∂ t

. (A.4)

Explicitly, the terms that comprise this expression for the velocity: ẋ0, θ̇ (dR/dθ )r ,

and R∂ r/∂ t, are respectively: the translational velocity, the angular velocity (ie

velocity due to rotations of the body), and the velocity due to undulations (ie

changes in shape).

The fluid–body interactions are modelled by local resistive force theory. The force

per unit length of the body is separated into tangential and normal components:

f · t̂ = KT u · t̂ , f · n̂ = KN u · n̂ (A.5)

where n̂ = t̂⊥ the unit normal vector, and KT , KN the tangential and normal re-

sistance coefficients respectively. The force per unit length is thus given by

f (s, t) = KT t̂ t̂ T u + KN (I − t̂ t̂ T )u (A.6)

= (KT − KN ) t̂ (t̂ · û) + KN u . (A.7)

As required by the resistive force model, we impose the condition of zero net-

force: & L

0

f (s, t)ds = 0, (A.8)
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and zero net-torque:

& L

0

[x (s, t)− x0(t)]× f (s, t)ds = 0 (A.9)

which is equivalent to

& L

0

Rr (s, t)× f (s, t)ds = 0. (A.10)

We will now confirm that the conditions of zero net force and zero net torque are

linear in the velocities ẋ0(t), ż0(t), θ̇ (t).

To simplify notation, we denote some terms that appear in (A.1) or (A.4) as fol-

lows:

dR
dθ

r (s, t) =: d(s, t) =

,
-.

dx(s, t)

dz(s, t)

/
01 , (A.11)

R
∂ r
∂ t
=: v(s, t) =

,
-.

vx(s, t)

vz(s, t)

/
01 , (A.12)

Rr (s, t) =: D(s, t) =

,
-.

Dx(s, t)

Dz(s, t)

/
01 . (A.13)

The zero net force condition (A.8) can be written separated into x and z compo-

nents. The x component for this condition can be written as

& L

0

5
(KT − KN ) t̂ x( t̂ xux + t̂zuz) + KN ux

6
ds = 0 (A.14)

which can be expanded on the LHS to say

& L

0

5
(KT−KN ) t̂ x( t̂ x[ ẋ0+θ̇dx+vx]+ t̂z[ż0+θ̇dz+vz])+KN ( ẋ0+θ̇dx+vx)

6
ds = 0.

(A.15)
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Similarly, the z component for this condition is

& L

0

5
(KT − KN ) t̂z( t̂ xux + t̂zuz) + KN uz

6
ds = 0 (A.16)

which can be expanded on the LHS to say

& L

0

5
(KT −KN ) t̂z( t̂ x[ ẋ0+ θ̇dx+ vx]+ t̂z[ż0+ θ̇dz+ vz])+KN (ż0+ θ̇dz+ vz)

6
ds = 0.

(A.17)

The zero net torque condition (A.10) can be written as

& L

0

5
Dx([KT − KN ] t̂z[ t̂ xux + t̂zuz] + KN uz)

−Dz([KT − KN ] t̂z[ t̂ xux + t̂zuz] + KN ux)
6

ds

= 0 (A.18)

which can be expanded on the LHS to say

& L

0

5
Dx([KT − KN ] t̂z[ t̂ x( ẋ0 + θ̇dx + vx) + t̂z(ż0 + θ̇dz + vz)] + KN [ż0 + θ̇dz + vz])

−Dz([KT − KN ] t̂ x[ t̂ x( ẋ0 + θ̇dx + vx) + t̂z(ż0 + θ̇dz + vz)] + KN [ ẋ0 + θ̇dx + vx])
6

ds

= 0.

(A.19)

We can rearrange (A.15), (A.17), and (A.19) to be in the form of

ẋ0A1 + ż0A2 + θ̇A3 = b (A.20)

and hence find the entries of the matrix A ∈ !3×3 and vector b ∈ !3 in the linear
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system

A

,
-----.

ẋ0

ż0

θ̇

/
000001
= b. (A.21)

Rearranging (A.15) in this way gives

ẋ0

& L

0

5
(KN − KT ) t̂ x t̂ x + KN

6
ds

" #$ %
A11

+ż0

& L

0

5
(KN − KT ) t̂ x t̂z

6
ds

" #$ %
A12

+θ̇

& L

0

5
(KT − KN ) t̂ x(t̂ · d) + KN dx

6
ds

" #$ %
A13

= −
& L

0

5
(KT − KN ) t̂ x(t̂ · v) + KN vx

6
ds

" #$ %
b1

. (A.22)

Rearranging (A.17) gives

ẋ0

& L

0

5
(KN − KT ) t̂z t̂ x

6
ds

" #$ %
A21

+ż0

& L

0

5
(KN − KT ) t̂z t̂z + KN

6
ds

" #$ %
A22

+θ̇

& L

0

5
(KT − KN ) t̂z(t̂ · d) + KN dz

6
ds

" #$ %
A23

= −
& L

0

5
(KT − KN ) t̂z(t̂ · v) + KN vz

6
ds

" #$ %
b2

. (A.23)
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Rearranging (A.19) gives

ẋ0

& L

0

5
Dx([KT − KN ] t̂z t̂ x)− Dz([KT − KN ] t̂ x t̂ x + KN )

6
ds

" #$ %
A31

+ż0

& L

0

5
Dx([KT − KN ] t̂z t̂z + KN )− Dz([KT − KN ] t̂ x t̂z)

6
ds

" #$ %
A32

+θ̇

& L

0

5
Dx([KT − KN ] t̂z[t̂ · d] + KN dz)− Dz([KT − KN ] t̂ x[t̂ · d] + KN dx)

6
ds

" #$ %
A33

= −
& L

0

5
Dx([KT − KN ] t̂z[t̂ · v] + KN vz)− Dz([KT − KN ] t̂ x[t̂ · v] + KN vx)

6
ds

" #$ %
b3

.

(A.24)

NB: A12 = A21.

Hence, if we prescribe the shape of the undulator via the tangent angle ψ(s, t),

we obtain the vectors

t̂ (s, t) = [cos(ψ), sin(ψ)]

and

r (s, t) =

@& L

0

cos(ψ)ds,

& L

0

sin(ψ)ds

A
.

From this, we can construct this 3× 3 linear system to solve for the translational

and angular velocities, and hence calculate the rigid body motion for the undula-

tor.
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A.2 ψ vs ϕ for reducing the swimmer radius of curvature

analytical result

In the instantaneous scenario, taking θ = 0 and hence the rotation matrix is taken

to be the identity, we have that

x = x0 +

B& s

0

cos(ψ)ds,

& s

0

sin(ψ)ds

C
(A.25)

≡ R(1+ ε f (ϕ))
5

cos(ϕ), sin(ϕ)
6
. (A.26)

Let r̂ (ϕ) = [cos(ϕ), sin(ϕ)], ϕ̂(ϕ) = [− sin(ϕ), cos(ϕ)]. We take

ψ =
s
R
+ εψ̃ (A.27)

and hence the waveform corresponds to a circle of radius R plus some travelling

wave perturbation of size ε.

From above we have that

dx
dϕ
= R(1+ ε f (ϕ))ϕ̂(ϕ) + εRf ′ (A.28)

(A.29)

where f ′ = d f /dϕ. It follows that

4444
dx
dϕ

4444
2

= R2(1+ ε f (ϕ))2 + ε2R2 f ′2, (A.30)
4444
dx
dϕ

4444= R[(1+ ε f )2 + ε2 f ′2]
1
2 . (A.31)

Since
dx
ds
=

dx
dϕ

dϕ
ds

(A.32)
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and 4444
dx
ds

4444= 1 (A.33)

it follows that 4444
dx
dϕ

4444=
ds
dϕ

(A.34)

and hence

ds
dϕ
= R(1+ 2ε f +O(ε2))

1
2 (A.35)

= R(1+ ε f ) +O(ε2). (A.36)

Integrating this expression yields

s = R(ϕ −ϕ0) + εR

& ϕ(s)

0

f (ϕ′)dϕ′ +O(ε2). (A.37)

Let

g(ϕ) =

& ϕ(s)

0

f (ϕ′)dϕ′. (A.38)

To determine ϕ0, we begin by considering

t̂ =
dx
ds
= [cos(ψ), sin(ψ)]. (A.39)

Taking ψ as given by eq. (A.27), we have

cos(ψ) = cos(s/R)− εψ̃(s) sin(s/R) +O(ε2), (A.40)

sin(ψ) = sin(s/R) + εψ̃(s) cos(s/R) +O(ε2). (A.41)

Using the expression in eq. (A.37) for s(ϕ), we obtain

cos(ψ) = cos(ϕ −ϕ0)− εg(ϕ) sin(ϕ −ϕ0)− εψ̃(s) sin(ϕ −ϕ0), (A.42)

sin(ψ) = sin(ϕ −ϕ0)− εg(ϕ) cos(ϕ −ϕ0)− εψ̃(s) sin(ϕ −ϕ0). (A.43)
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Since

t̂ =
dx
ds
=

dx
dϕ

dϕ
ds

(A.44)

and from above
dϕ
ds
= R−1(1− ε f ) +O(ε2) (A.45)

we thus have

t̂ = ϕ̂ + ε f ′ r̂ +O(ε2) (A.46)

=
5
− sin(ϕ), cos(ϕ)

6
+ ε f ′
5

cos(ϕ), sin(ϕ)
6
. (A.47)

Comparing (A.47) with (A.42) and (A.43), we see that

ϕ0 =
−π
2

. (A.48)

Hence,

f ′(ϕ) = −g(ϕ)− ψ̃(s(ϕ)) (A.49)

−d f
ds

ds
dϕ
−
& ϕ(s)

−
f dϕ = ψ̃(s(ϕ)) (A.50)

−d f
ds

R− 1
R

& s

0

f (s)ds = ψ̃(s). (A.51)


