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ABSTRACT 
Urinary tract infections (UTIs) are one of the most common bacterial infections experience by humans, with 150 
million people suffering one or more UTIs each year. The massive scale at which UTIs occurs translates to a 
tremendous health burden comprising of patient morbidity and mortality, massive societal costs and a 
recognised contribution to expanding antimicrobial resistance. The considerable disease burden caused by UTIs 
is severely exacerbated by an outdated diagnostic paradigm characterised by inaccuracy and delay. Poor 
accuracy of screening tests, such as urinalysis, lead to misdiagnosis which in turn result in delayed recognition 
or overtreatment. Additionally, these screening tests fail to identify the causative pathogen, causing an 
overreliance on broad-spectrum antimicrobials which exacerbate burgeoning antimicrobial resistance. While 
diagnosis may be accurately confirmed though culture and sensitivity testing, the prolonged delay incurred 
negates the value of the information provided doing so. 

A novel diagnostic paradigm is required that that targets rapid and accurate diagnosis of UTIs, while providing 
real-time identification of the causative pathogen. Achieving this precision management is contingent on the 
development of novel diagnostic technologies that bring accurate diagnosis and pathogen classification to the 
point of care.  

The purpose of this thesis is to develop a technology that may form the core of a point-of-care diagnostic capable 
of delivering rapid and accurate pathogen identification direct from urine sample. Raman spectroscopy is 
identified as a technology with the potential to fulfil this role, primarily mediated though its ability to provide 
rapid biochemical phenotyping without requiring prior biomass expansion. Raman spectroscopy has 
demonstrated an ability to achieve pathogen classification through the analysis of inelastically scattered light 
arising from pathogens. The central challenge to developing a Raman-based diagnostic for UTIs is enhancing the 
weak bacterial Raman signal while limiting the substantial background noise. 

Developing a technology using Raman spectroscopy able to provide UTI diagnosis with uropathogen 
classification is contingent on developing a robust experimental methodology that harnesses the multitude of 
experimental and analytical parameters. The refined methodology is applied in a series of experimental works 
that demonstrate the unique Raman spectra of pathogens has the potential for accurate classification. Achieving 
this at a clinically relevant pathogen load and in a clinically relevant timeframe is, however, dependent on 
overcoming weak bacterial signal to improve signal-to-noise ratio. 

Surface-enhanced Raman spectroscopy (SERS) provides massive Raman signal enhancement of pathogens held 
in close apposition to noble metal nanostructures. Additionally, vacuum filtration is identified as a means of 
rapidly capturing pathogens directly from urine. SERS-active filters are developed by applying a gold nanolayer 
to commercially available membrane filters through physical vapour deposition. These SERS-active membrane 
filter perform multiple roles of capturing pathogens, separating them from urine, while providing Raman signal 
enhancement through SERS. The diagnostic and classification performance of SERS-active filters for UTIs is 
demonstrated to achieve rapid and accurate diagnosis of infected samples, with real-time uropathogen 
classification, using phantom urine samples, before piloting the technology using clinical urine samples. 

The Raman technology developed in this thesis will be further developed toward a clinically implementable 
technology capable of ameliorating the substantial burden of disease caused by UTIs.   
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CHAPTER 1: INTRODUCTION 

1.1 THE CLINICAL CHALLENGE 
Urinary tract infection (UTI) is one of the most common bacterial infections, with 150 million people suffering 
from one or more urinary tract infections each year[1]. Half of women will suffer from UTIs in their lifetime. The 
pervasiveness of UTIs has normalised the infection to one of mundanity, distracting from the substantial health 
burden caused. The frequency with which UTIs occur rapidly translates to a massive health burden. In the United 
States (U.S.) alone, UTIs lead to 10.5 million consultations, a fifth of which are emergency department (ED) visits. 
UTIs account for $3.5 Billion in societal costs in the US alone[2].  

Arguably the relatively low proportion of cases that progress to serious infections distracts from the high 
absolute numbers of infection sequelae. The US has 250000 cases of acute pyelonephritis annually, a condition 
associated with a 10% mortality risk. Worse still is the misperception of treatment reliability. Antimicrobial 
therapy has historically been the mainstay of UTI management despite providing little protection against serious 
sequalae. Where placebo controlled trials have been performed they have not demonstrated protection against 
upper urinary tract infection, sepsis or death[2]. There is now, however, a growing appreciation for the adverse 
effects of antimicrobial therapy, most notably on the risk of antimicrobial resistance (AMR), but also on the 
negative effects on patient microbiome. The lack of efficacy and risk of adverse outcomes has prompted the 
National Institute for Health and Care Excellence (NICE) to advocate against routine use of antimicrobials[3].  

The underappreciation of UTI’s health burden may also explain the tolerance of an antiquated diagnostic 
paradigm. The backbone of the UTI diagnostic paradigm is still centred on urinary Dipstix and culture, first 
developed in the 1950s and 1800s respectively. Screening through Dipstix and urinalysis has sensitivity and 
specificity of 80%, leading to delayed recognition or overtreatment respectively[4]. Gold-standard identification 
through culture incurs a 48-hour delay, effectively negating the value of the diagnostic information provided[5, 
6]. 

Shortcomings in existing diagnostics has prompted the development of a new diagnostic paradigm, which aims 
to develop technologies with greater accuracy and faster turnaround times. Polymerase chain reaction (PCR) 
and mass spectrometry (MS) have received the greatest interest as a result of the highly granular diagnostic 
information in relatively short turnaround times, however neither is suited to the unique disease burden 
constraints presented by UTIs. A novel diagnostic technology able to deliver accurate diagnosis at large scale 
and low cost is required to address the burden of disease placed by UTI[5]. 

Raman spectroscopy has the potential to act as the ideal diagnostic technology for UTIs. Utilising the inelastic 
scattering of light, Raman spectroscopy provides real time biochemical fingerprinting. It has the potential to do 
so without prior biomass expansion, and so may be capable of providing UTI diagnosis along with pathogen 
classification at the point of care[7]. 

This thesis hypothesises that Raman spectroscopy can reduce the burden of disease caused by UTIs by acting as 
the effective diagnostic technology capable of providing rapid and accurate diagnostic information. The thesis 
therefore aims to develop a technology using Raman spectroscopy to diagnose UTIs and provide rapid pathogen 
identification. 

1.2 STRUCTURE OF THESIS 
Chapter 2 describes the way in which the current UTI diagnostic paradigm exacerbates the substantial burden 
of disease cause by UTIs. The chapter is structured as a narrative review to refine the broad epidemiologic and 
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clinical features of UTIs down to the salient features that define burden of disease, and in so, the characteristics 
of the ideal diagnostic technology. Rapid, ideally point of care, and accurate diagnosis are identified as the key 
attributes of the ideal diagnostic technology. 

Chapter 3 interrogates the hypothesis that Raman spectroscopy can perform as the ideal technology for UTI 
diagnosis. A narrative review covers the broad topic of Raman spectroscopy focussing on clinical diagnostics 
before a systematic review assess the state of the art of UTI diagnosis and classification using Raman 
spectroscopy. The chapter identifies the ability to provide instantaneous biochemical profiling without the need 
for prior biomass expansion underpins Raman spectroscopy as the basis for an effective UTI diagnostic 
technology. The systematic review demonstrates that the unique Raman spectra of uropathogens provides for 
accurate pathogens classification. It also highlights limitations of Raman spectroscopy. Published research 
frequently relies upon combining Raman spectroscopy with microscopy to gain spatial resolution, however the 
cost and physical footprint are incompatible with point of care UTI diagnosis. An additional challenge arises in 
that the exquisite sensitivity that underpins Raman spectroscopy’s ability to provide granular classification 
leaves it vulnerable to misclassification when strict experimental variation is not maintained.  

Recognising the exquisite sensitivity of Raman spectroscopy to the experimental parameters applied, Chapter 4 
aims to develop robust methods to be applied in further experimental work. The chapter outlines an approach 
to Raman research into UTIs covering sample preparation, Raman acquisition, digital spectral processing, and 
classification through supervised learning. Individual parameters within each section are experimentally isolated 
and interrogated to develop an understanding of the effect of these on the resulting spectra and final 
classification. 

Chapter 5 interrogates the hypothesis that uropathogens have unique Raman spectra that provide for UTI 
diagnosis and classification. Raman spectra acquired from 100 clinical samples highlight the challenge posed by 
spectral variability caused by broad range of biochemical components in urine. Thereafter, Raman spectra 
acquired from concentrated suspensions of reference strain uropathogens demonstrate that the unique spectra 
thereof provide for accurate classification. Extending this to suspensions diluted to clinically relevant 
concentrations, Raman spectroscopy augmented by prolonged acquisition times is unable to achieve pathogen 
classification. These findings combined demonstrate that uropathogens have unique Raman spectra with the 
potential for rapid and accurate UTI diagnosis, however that methods are required to capture pathogens and 
enhance their signal while separating them from the overwhelming background signal of urinary components 
to achieve classification at clinically relevant concentrations. 

Surface enhanced Raman spectroscopy (SERS) provides massive Raman signal enhancement up to 1014 times, 
providing a potential means of identifying uropathogens at clinically relevant concentrations. Chapter 6 
addresses the hypothesis that SERS using nanoparticles can identify pathogens at clinically relevant 
concentrations. Firstly, SERS spectra are acquired from concentrated suspensions of reference strain 
uropathogens with classification achieved with only 5 samples of each strain. In the second experimental work, 
suspensions at clinically relevant concentrations were rapidly physically processed by vacuum filtration through 
polyvinylidene fluoride (PVDF) membrane filters before acquisition of SERS spectra using colloidal nanoparticles. 
These experiments demonstrate that SERS spectra augmented by vacuum filtration can identify infected 
samples, however fell short of providing pathogen classification. It is postulated that inconsistency in the 
apposition of nanoparticles to the pathogens induces variability in the SERS spectra and improving this will 
provide for diagnosis with pathogen classification. 

SERS-active filters are developed through physical vapour deposition of a nanolayer of gold to PVDF membrane 
filters. Chapter 7 investigates the hypothesis that SERS-active filters can achieve UTI diagnosis with pathogen 
classification direct from urine samples. Prior to working on pathogen samples, an optimal gold nanolayer 
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thickness of 50 µm was established through assessment of SERS enhancement using Rhodamine 6G. 
Experimental work demonstrated SERS-active filters diagnostic and classification performances on phantom 
urine samples of 93.2% and 91.7% respectively. Extending this to clinical samples, a dual filtration system was 
developed to separate urine particulate matters prior to capture of uropathogens on SERS-active membrane 
filters.  The clinical pilot of 100 samples did not achieve UTI diagnosis but demonstrates signal that may be built 
upon in larger clinical trials. 

The thesis is concluded in Chapter 8, summarising the finding and the limitations of the experimental work. The 
future directions of the work are described with the adaptations planned for a definitive clinical trial assessing 
the clinical performance of SERS-active filters for UTI diagnosis with uropathogen classification. 

The major contributions of this thesis are: 

1. Development of a Raman methodology for pathogen research using a handheld Raman spectrometer. 
The multistage process from sample preparation to classification encompasses clinical microbiology, 
quantum physics, biomedical engineering and chemometric data analysis. The exquisite sensitivity of 
Raman spectroscopy that provides for rapid pathogen identification, also necessitates a deep 
understanding across these fields and strict experimental control. 

2. SERS-active membrane filters were developed and optimised for uropathogen capture and Raman 
enhancement. This work is the first to optimise SERS-active filters, demonstrating PVDF contributes 
minimal noise, and that a gold nanolayer thickness of 50 µm was provides the greatest enhancement 
of signal. 

3. This is the first published work to validate SERS-active membrane filters on urine samples, 
demonstrating accurate UTI diagnosis with pathogen classification in under 10 minutes. 

4. A prototype technology using dual filtration to rapidly capture uropathogens while separating these 
from urine components was developed and employed in a clinical pilot.  

 

The work presented in this thesis resulted in the following publications in peer reviewed international journals, 
conference proceedings and presentations at international conferences: 

• Original publication: Dryden, S. D. et al. Rapid uropathogen identification using surface enhanced 
Raman spectroscopy active filters. Sci Rep 11, 8802, doi:10.1038/s41598-021-88026-9 (2021). 

• Presentation: Dryden, S. et al. in Optical Diagnostics and Sensing XX: Toward Point-of-Care Diagnostics   
(2020). 

• Conference Proceeding: Simon D. Dryden, Salzitsa Anastasova, Giovanni Satta, Alex J. Thompson, 
Daniel R. Leff, Ara Darzi, "Toward point-of-care uropathogen detection using SERS-active filters," Proc. 
SPIE 11247, Optical Diagnostics and Sensing XX: Toward Point-of-Care Diagnostics, 1124705 (14 
February 2020); https://doi.org/10.1117/12.2545515 
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CHAPTER 2: URINARY TRACT INFECTION AND THE NEED FOR NOVEL 

DIAGNOSTICS 

2.1 INTRODUCTION 
Urinary Tract Infection (UTI) is one the most common infections worldwide, leading to a substantial health 
burden encompassing societal costs, patient morbidity and mortality, and a well-recognised contribution 
towards burgeoning antimicrobial resistance (AMR)[1, 8, 9][10]. Furthermore, any uncertainties in the diagnostic 
and management pathways for UTI resulting delayed or incorrect treatment exacerbate the mal-effects of UTI. 

This narrative review will provide an overview of UTIs, with a special focus on the burden it creates. This review 
aims to demonstrate that this burden is exacerbated by insufficiencies in current diagnostics and will aim to 
identify how these may best be addressed to alleviate the burden of disease associated with UTI. 

2.1.1 HYPOTHESIS 
Novel technologies providing rapid and accurate UTI diagnosis with pathogen classification can fundamentally 
alter the UTI paradigm therein alleviating the burden of disease caused by UTIs. 

2.1.2 AIMS 
Primary: 

• Define the ideal diagnostic technology to alleviate the burden of disease caused by UTIs. 

Secondary: 

• Describe the burden of disease caused by UTIs, specifically: the epidemiology of the condition, patient 
morbidity and mortality, economic costs, and antimicrobial resistance. 

• Describe the pathophysiology and microbiology of UTIs with reference to both burden of disease and 
potential susceptibility to novel diagnostics. 

• Describe the current UTI diagnostic paradigm, including currently used diagnostics, with specific 
reference to how this contributes toward the burden of disease. 

• Describe novel and evolving diagnostic technologies with reference to how these may alleviate the 
burden of disease caused by UTIs. 

2.2 METHODS: 
This chapter consists of a narrative review of the published literature related to urinary tract infections. The 
review addresses the epidemiology, the pathophysiology and microbiology of UTI in addition to reviewing the 
current diagnostic, preventative, and treatment strategies. The review will focus on the burden posed by UTIs 
and how this is influenced by current diagnostic modalities. 

 

2.3 LITERATURE REVIEW 
2.3.1 DEFINITION AND CLASSIFICATION 
UTI is defined as an infection anywhere in the urinary tract, including the urethra, the bladder, the ureters and 
the kidneys[8]. The clinical paradigm of UTI may be further subclassified in various ways, with each sub-
classification having unique epidemiologic and clinical consequence.  
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• Asymptomatic bacteriuria (ASB) refers to infection in the absence of symptoms. 
• Lower UTIs refer to infection of the urethra or bladder, while upper UTI refers to infection of the ureters 

or kidneys. 
• Uncomplicated UTI refers to urinary tract infection in a healthy non-pregnant individual without any 

functional or structural abnormality, while complicated UTI refers to urinary tract infection in those 
with health or structural abnormalities. The majority of complicated UTIs are associated with urinary 
catheterisation[11] 

• Community-acquired UTI differs from nosocomial-acquired UTI which include those acquired in a 
health facility. The majority of nosocomial UTIs are associated with catheterisation. 

2.3.2 BURDEN OF DISEASE 
UTI is one of the most common infections both in the community and in the healthcare setting. 150 million 
people worldwide will have one or more UTIs each year[1]. In the US 12.6% of adult females will have a UTI each 
year, with a total lifetime risk of 40-50%[10]. A simplified conceptual approach to UTIs is that of an ascending 
infection, starting as asymptomatic urethral colonisation, progressing to symptomatic infection of the lower 
urinary tract and ascending to the upper tract, ultimately risking systemic dissemination via the kidneys 
(Figure 2.1). While the proportion progressing passed each step is low, the constant assault of uropathogens at 
the urethra translates into large downstream absolute numbers for each stage of infection. 

Point prevalence surveys have demonstrated that 3.7% of women in the community will have ASB, with 
increased numbers seen in those who with recent sexual activity[8]. While the majority of these will not progress 
to symptomatic infection, a large absolute number will develop a symptomatic infection over time. 12.6% of 
women in the US will have one or more uncomplicated lower UTIs annually, with an estimated lifetime risk of 
60.4%[8]. Furthermore, UTI is likely to recur, with 30-50% of women experiencing one or more UTIs within a 
year of an initial infection[8]. Progression to upper urinary tract infection is an uncommon, but well recognised 
sequelae of lower UTI leading to a 4.4 times increased risk of pyelonephritis. The annual incidence of 
pyelonephritis in the community is 59 per 10000 and 12.6 per 10000 in women and men respectively[8]. 
Pyelonephritis risks progression to UTI associated bacteraemia and potentially life-threatening Gram-negative 
sepsis. Al-Hasan et al. demonstrated that the age adjusted incidence of UTI associated Gram-negative sepsis in 
the community of  Olmsted County, Minnesota was 55.3 per 100000 and 44.3 per 1000000 for women and men 
respectively[12]. The 28 day and 1-year all-cause mortality in this group was 4.9% and 15.6% respectively. 
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FIGURE 2. 1 THE PATHOGENESIS OF URINARY TRACT INFECTIONS AMENDED FROM FLORES MIRELES ET AL. [1]. UTIS TYPICALLY ARISE 
FROM ASCENDING BACTERIAL INFECTION. 1) THE URETHRAL ORIFICE IS COLONISED WITH COMMENSAL AND PATHOGENIC BACTERIA. 2) 
VIRULENCE FACTORS OF UROPATHOGENS ALLOW THEM TO OVERCOME IMMUNE MECHANISMS TO CAUSE URETHRITIS. 3) 
UROPATHOGENS GAIN ACCESS TO THE BLADDER TO CAUSE CYSTITIS WITH HOST IMMUNE RESPONSE. 4) UROPATHOGENS ASCEND THE 
URETERS LEADING TO PYELONEPHRITIS. 5) UROPATHOGENS TRAVERSE THE BASEMENT GLOMERULAR MEMBRANE GAINING ACCESS TO 
THE BLOOD STREAM LEADING TO BACTERAEMIA. 

In the healthcare setting UTI is a more prominent and costly problem. UTI accounts for a third of hospital 
associated infections (HAIs). The prevalence of UTI on any day amongst hospitalised patients ranges from 1.1-
6.6%, leading to 1 million nosocomial UTIs annually in the US alone[2, 8, 13]. Urinary catheterisation accounts 
for 70-80% of healthcare associated UTIs[13, 14]. 

Catheters present a distinctive pathophysiology, diagnostic challenge and burden within the UTI paradigm. With 
over 100 million catheters produced annually, urinary catheters are one of the most commonly used medical 
devices[15, 16]. Prevalence surveys indicate that 17.5% of European patients and 23.6% of US patient will have 
a catheter during their admission[15]. Catheters are frequently misused, with 40% of catheterized patients 
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receiving one or more days of inappropriate catheterisation, and with healthcare providers unaware of 28% of 
urinary catheters in place[16, 17]. 

Urinary catheters are rapidly colonised at a rate of 3-10% per day leading to near universal colonisation within 
a few days[2, 8, 15]. Catheter-associated ASB (CA-ASB) is a precursor to symptomatic catheter associated UTI 
(CAUTI). The incidence of CAUTI varies widely by geography and department, reflecting catheter practices, 
ranging from 3.2 infections per 1000 catheter days in general wards going as high as 15.99 infections per 1000 
catheter days in certain neurologic ICUs[11, 18, 19]. The prevalence of symptomatic CAUTI in European hospitals 
is 1.3 %[9]. CAUTI may lead to ascending infection and predispose to bacteraemia. In a prospective multicentre 
study, Melzer et al. demonstrated that 15% of bacteraemic episodes were associated with urinary 
catheterisation, and that the 7-day mortality in this group reached 30.1%[20]. A survey across 61 hospitals in 
Quebec showed that 21% of blood-stream infections were associated with the urinary tract, of which 71% were 
catheter associated[21]. A large metanalysis of CAUTI in ICUs demonstrated a 1.99 odds ratio for death 
associated with CAUTI, as well as a 21-day increased length-of-stay, however this may be due to unmeasured 
confounding[22]. 

UTI leads to significant morbidity and imposes a substantial cost on healthcare and society. Each uncomplicated 
UTI leads to a mean of 3.83 symptomatic days, and 2.89 activity limited days[8]. As discussed above, both 
uncomplicated UTI and CAUTI are significant contributors to blood-stream infection, sepsis and mortality in the 
hospital setting and community. When multiplied by the frequent occurrence of UTI this rapidly expands to large 
societal costs. It is estimated the US suffers $3.5 billion in societal costs annually attributed to UTIs[1, 23]. The 
costs imposed on healthcare systems are pushed to the extreme: healthcare associated UTIs are estimated to 
cost $390-450 million annually in the US, and £123.9 million in the UK[24, 25]. 

A highly concerning sequela of UTI is the growing recognition of its contribution toward the emergence of AMR. 
UTI is the second most common cause for antibiotic prescription in the community in the US[2]. In this setting 
half of prescribed antibiotics are not needed or are sub-optimally prescribed. Uropathogens develop 
antimicrobial resistance both vertically (through natural selection) horizontally (through plasmid sharing), 
allowing for rapid development  of antimicrobial resistance[26]. Resistance rates display wide geographic 
variation, often reflecting prescribing practices. Resistance to ampicillin, previously used as a first line treatment 
for UTI ranges from 33% in Quebec to over 80% in Mexico. Resistance to ciprofloxacin, widely used as a current 
first line therapy, is negligible in Canada, but is found in 72% of isolates in Mexico[2]. 

AMR poses an interesting challenge in the setting of CAUTI. While treatment of CA-ASB is not recommended 60-
80% of hospitalised patients with a catheter will receive an antibiotic for another indication[27]. The potential 
for development of antimicrobial resistance in catheter associated infections is enhanced by bacterial biofilms 
which result in subtherapeutic antibiotic doses reaching bacteria.[28] Colonised catheter collecting systems have 
been demonstrated sources for resistant pathogen outbreaks within hospitals[15]. The most recent National 
Healthcare Safety Network (NHSN) survey on antimicrobial resistance in healthcare associated infections 
demonstrated resistance rates of 38.4% and 16.1% for E. coli to fluoroquinolones and extended spectrum 
lactamases respectively[29]. 

2.3.3 THE PATHOPHYSIOLOGY OF URINARY TRACT INFECTION 
Risk factors for UTI include factors that either enhance the degree of exposure to uropathogens or enhance 
colonisation of the urinary tract. Risk factors for uncomplicated UTI include female gender, increasing age, sexual 
activity, use of condoms, spermicides or diaphragms, current vaginal infection, diabetes and obesity and family 
history of UTI[1, 2, 8, 30]. Pregnancy increases the risk for ASB, symptomatic UTI and progression to 
pyelonephritis.[8] 
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The lead risk factor for CAUTI is the duration of catheterisation[31-33]. Other risk factors include increasing age, 
female gender, diabetes, obesity, insertion outside of the operating room, health worker hand hygiene practices 
and patient serum creatinine greater than 2mg/dl[11, 15].  

Pathogenesis of urinary tract infections is illustrated in Figure 2.1, adapted from Flores-Mireles et al.[1]. The 
initiating event for infection differs in non-catheter associated UTIs as compared to CAUTI. Close proximity of 
the urethral meatus to the vagina and perineum to the urethra allow for near-constant exposure of bacteria, 
however host defence mechanisms including innate immunity, regular urinary flushing and nutrient-deplete 
urine prevent the majority of bacteria from colonising and ascending the urethra[34]. To invade the healthy 
urethra uropathogenic bacteria have developed mechanisms allowing colonisation and nutrient acquisition 
(please see virulence factors under microbiology)[34].  

The presence of a catheter provides a surface for colonisation subverting normal defences. The catheter is a 
physical barrier which separates bacteria from the immune system. Urine flow through the catheter prevents 
flushing of bacteria from the urethra allowing unimpeded growth along the exterior surface, while static pooling 
of urine provides a growth medium for bacteria[15, 35]. Approximately two thirds of infections ascend the outer 
surface of the catheter, and one third arise from the lumen of the catheter[33]. 

Central to the pathogenesis of CAUTI is the establishment of biofilms. Normal urinary proteins such as 
Tamms-Horsfall protein in addition to fibrinous exudate caused by the immune reaction to foreign bodies form 
a coating on the catheter surface known as a conditioning membrane[1, 35]. Bacteria in a planktonic state use 
calcium-mediated adherence to attach to the conditioning membrane where they undergo a phenotypic change 
into sessile bacteria[36]. These bacteria secrete an extracellular matrix primarily composed of polysaccharides 
forming a complex 3-D structure[37]. Microorganisms may extend the biofilm or be shed to establish new 
colonies. The biofilm confers a survival advantage to bacteria. It provides a protective barrier from physical 
forces and immune cells. Bacteria are able to regulate the environment within the biofilm and are exposed to 
lower doses of antimicrobials, while bacteria in the sessile state are slower growing[35]. Crystalline biofilms, 
particularly those associated with Proteus species, may lead to catheter obstruction[38, 39]. 

Having gained access to the normally sterile bladder, either through urethral or catheter colonisation, bacteria 
multiply and establish further biofilm-protected colonies. Bacterial production of toxins and proteases leads to 
host cell damage, releasing nutrients and induces an immune response[1, 34, 40]. Bacteria may ascend the 
ureters and colonise the kidneys causing an upper UTI. 

Bacteria in the kidney may cross the tubular epithelium and enter the blood stream, leading to bacteraemia. 
Risk factors for UTI associated blood-stream infection include male gender, number of days in hospital before 
bacteriuria, cigarette smoking, malignancy, immunosuppressive therapy, neutropaenia and renal disease[15, 
41]. 

2.3.4 MICROBIOLOGY OF UTI 

2.3.4.1 BACTERIAL STRUCTURE AND FUNCTION 
The vast majority of UTIs are caused by uropathogenic bacteria, while a small proportion may be caused by 
yeasts. Bacteria are prokaryotes, meaning they lack a defined nucleus and membrane-bound cell organelles such 
as mitochondria. Instead, the cytoplasm contains the bacterial cell’s DNA as a single ring chromosome. In 
addition to this the cytoplasm contains ribosomes, proteins, and metabolites. The cell membrane consists of a 
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phospholipid bilayer surrounding the cytoplasm. Embedded in the cell membrane are enzymes such as those 
responsible for respiration, ion pumps and transporters[42]. 

Surrounding the bacterial cell membrane is the cell wall, which provides structural support, provide stability, 
and protect the bacteria from the environment and immune cells. Bacteria may be classified as Gram-positive 
or Gram-negative according to their response to Gram staining, which provides both a structural and functional 
differentiation of bacteria. Bacterial cell walls are unique to different bacterial species[42-44].  

 

FIGURE 2. 2 GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIAL CELL WALL STRUCTURE, ADAPTED FROM MOSIER-BOSS ET AL.[45] 
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The Gram-positive cell well consists of a thick peptidoglycan layer, which is a mesh-like porous layer that 
provides structural support while still allowing diffusion of nutrients and metabolites. Embedded in the thick 
peptidoglycan layer are proteins, polysaccharides and lipoteichoic acids, unique to the bacterial species and 
serotype[42, 46]. 

In contrast, the Gram-negative cell contains only a thin peptidoglycan layer not containing lipoteichoic acid. An 
additional outer membrane surrounds this and encloses the periplasmic space. Contained in this space are 
transport systems and hydrolytic enzymes that allow for nutrient acquisition as well as other enzymes such as 
collagenases, elastases and lactamases. The outer membrane is punctuated by porins and transport enzymes 
that allow uptake and excretion of metabolites. The outer membrane contains lipopolysaccharide, also known 
as endotoxin, a potent immune stimulator[42]. Lipopolysaccharide structure is unique between Gram negative 
bacterial species[43, 47]. External to the cell wall bacteria may have additional structures such as polysaccharide 
capsules, flagella and fimbriae[42]. These structural differences are the basis on which current diagnostic 
technologies identify UTIs and provide for pathogen classification, and similarly form the basis for evolving 
diagnostic technologies such as mass spectrometry. Rapid assessment of microbial biochemical constitution is 
therefore likely to be central to rapid UTI diagnosis with a granular classification of the causative pathogen. 

2.3.4.2 VIRULENCE FACTORS 
To colonise the urinary tract and overcome the host immune response uropathogens have developed a variety 
of virulence factors, described in Table 2.1. Virulence factors may be activated by quorum sensing – auto-
activators that result in virulence factor expression once a certain critical mass of bacteria is present.  Adhesion 
factors such as adhesins, pili and fimbriae recognise and bind to urothelial antigens, allowing for attachment 
and ascending colonisation[1, 34]. 

Uropathogens including uropathogenic Escherichia coli (UPEC) may form intracellular bacterial communities 
within urothelial cells thereby evading immune recognition. Groups of 4-10 bacteria may remain quiescent 
within urothelial cells for months, providing a source for recurrence[1]. 

Urine is a nutrient depleted medium, as such uropathogens have developed toxins and proteases to liberate 
nutrients from host tissue. UPEC and Proteus species produce haemolysin A, a calcium dependant toxin[1]. Iron 
is an important growth factor for bacteria and is depleted in urine. Bacteria use heme, enterobactin  and 
siderophore systems to actively take up iron in urine[34]. 

Urease catalyses the conversion or urea into ammonia and carbon dioxide. Ammonia increases urinary pH, 
precipitating calcium and magnesium which are incorporated into crystalline biofilms. Furthermore, ammonia 
damages urothelium, releasing nutrients and allowing bacterial invasion[1, 39]. Urease is most prominent in 
Proteus mirabilis where it results in significant alkalinisation, but is also produce by Klebsiella pneumoniae, 
Staphylococcus saprophyticus, and Pseudomonas aeruginosa[1].  



TABLE 2. 1 THE VIRULENCE MECHANISMS OF COMMON UROPATHOGENS. ADHERENCE FACTORS SUCH AS PILI ALLOW PATHOGENS TO ASCEND THE GENITAL TRACT. TOXINS DAMAGE THE UROGENITAL LINING 
THEREIN LIBERATING NUTRIENTS FOR THE PATHOGENS. IRON ACQUISITION FACTORS ALLOW FOR CAPTURE OR IRON WHICH IS NECESSARY OF CELL RESPIRATION. QUORUM SENSING PROVIDES A LEVEL OF 
COMMUNICATION BETWEEN PATHOGENS TO ALLOW SYNCHRONISED ACTIVATION OF GENES INVOLVED IN PATHOGENESIS.  AIPA: ADHESION AND INVASION PROTEUS AUTOTRANSPORT; CNF1: CYTOTOXIC 
NECROSING FACTOR; EBP: ENDOCARDITIS AND BIOFILM ASSOCIATED; EPA: ENTEROCOCCAL POLYSACCHARIDE ANTIGEN; ESP: ENTEROCOCCAL SURFACE PROTEIN. EXOS: EXOENZYME S; F1C: TYPE 1-LIKE 
IMMUNOLOGICAL GROUP C; HLYA: a-HAEMOLYSIN; HPMA HAEMOLYSIN; MR/P: MANNOSE RESISTANT PROTEUS-LIKE; MR/K MANNOSE RESISTANT KLEBSIELLA-LIKE; MSR: METHIONINE SULPHIDE REDUCTASE; 
NAF: NON-AGGLUTINATING FIMBRIA; ND: NOT DESCRIBED; PMF: PROTEUS MIRABILIS-LIKE FIMBRIA; P-PILI: PYELONEPHRITIS ASSOCIATED PILI; PTA: PROTEUS TOXIC AGGLUTIN; TAAPTRIMERIC AUTOAGGLUTIN 
AUTOTRANSPORTER OF PROTEUS. 

Uropathogen Virulence Factor References 

Adherence Toxins Immune Evasion Iron Acquisition Urease Quorum Sensing 

UPEC F1C Pili 

P Pili 

S Pili 

Type 1 Pili 

Dr Adhesins 

HlyA 

CNF1 

HlyA 

CNF1 

Yersinibactin 

Aerobactin 

Enterobactin 

Salmochelin 

Yersinibactin 

 

ND ND [1, 34, 42, 48] 

Klebsiella 
pneumoniae 

Type 1 Pili 

Type 3 Pili 

ND Capsule Aerobactin 

Enterobactin 

Weakly active ND [1] 

Proteus mirabilis MR/P Pili 

MR/K Pili 

HpmA 

HlyA  

Pta 

Capsule 

ZapA 

IgA Protease 

Proteobactin 

Yersiniabctin 

Strongly active Yes [1, 34, 39] 

Pseudomonas 
aeruginosa 

Exopolysaccharides ND Capsule 

Elastase 

Pyochelin 

Pyoverdin 

ND Yes [1, 49] 
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ExoS 

Phospholipase 

Staphylococcus 
saprophyticus 

Ass Adhesin 

Sdrl Adhesin 

Uaf adhesin 

Aas ND ND Active ND [1] 

Staphylococcus 
aureus 

Adhesins ND ND ND Certain species ND [1] 

Enterococcus 
faecalis 

Ebp pili 

Ace Adhesin 

ND EpA ND ND ND [1] 

Enterococcus 
faecium 

Ebp pili 

Esp Adhesin 

ND ND ND ND ND [1] 



2.3.4.3 UROPATHOGENS 
The majority of UTIs are single organism infections, with some variation according to the type of UTI as 
demonstrated in Figure 2.3. adapted from Flores Mireles et al. 

 

 

FIGURE 2. 3 PIE CHARTS DEMONSTRATED THE CAUSATIVE UROPATHOGENS FOR UNCOMPLICATED (LEFT) AND COMPLICATED (RIGHT) 
UTIS ADAPTED FROM FLORES-MIRELES ET AL. [1] 

Escherichia coli is the most common causative agent in both complicated and uncomplicated UTIs. E. coli are 
Gram-negative rods (0.3-1.0µm by 1.0-6.0µm) which are rapid growing facultative anaerobes. UPEC have 
developed a number of virulence factors which have allowed them to colonise the urinary tract.[42, 48] 
Klebsiella species including K. pneumoniae and K. oxytoca are Gram-negative rods (0.3-1.5µm by 0.5-5.0µm) 
bacteria with a thick capsule. They are facultative anaerobes with simple growth media requirements. Proteus 
species, most notably P. mirabilis are Gram-negative rods which are facultative anaerobes. P. mirabilis produces 
a thick crystalline biofilm through urease mediated alkalinisation causing calcium and magnesium 
dissolution.[39, 42] Enterococci, most commonly E. faecalis and E. faecium, are Gram-positive cocci (1-2µm) and 
facultative anaerobes. An inherent resistance to many antibiotics, including cephalosporins, mean enterococci 
are seen in patients who have already received antibiotics[42]. Pseudomonas aeruginosa is a Gram-negative rod 
(0.5-1.0µm by 1.5µm). Although considered an obligate aerobic bacterium, pseudomonas may use nitrate as a 
terminal electron acceptor in certain circumstances[42, 49].  
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TABLE 2. 2 CHARACTERISTICS OF COMMON UROPATHOGENS 

Uropathogen Stain Shape Size Aerobic/ 
anaerobic 

Denitrifying Urease 

UPEC Gram 
Negative 

Rod 0.3-1.0X 1.0-
6.0µm 

Facultative 
Anaerobe  

Yes No 

Klebsiella 
Species 

Gram 
Negative 

Rod 0.3-1.5X 0.5-
5.0µm 

Facultative 
Anaerobe 

Yes Yes 

Proteus Species Gram 
Negative 

Rod  Facultative 
Anaerobe 

Yes Yes 

Staphylococci Gram 
Positive 

Coccus 0.5-1.5um Facultative 
Anaerobe 

No Yes 

Group B 
Streptococci 

Gram 
Positive 

Coccus 0.6-1.2um Facultative 
Anaerobe 

No No 

Enterococci Gram 
Positive 

Coccus 1-2µm Facultative 
Anaerobe 

No No 

Pseudomonas 
aeruginosa 

Gram 
Negative 

Rod 0.5-1.0X 

1.5-5.0µm 

Aerobic Yes Yes 

Candida species PAS- positive Yeast/ 
oval 

3-5µm Aerobic No No 

 

2.3.5 THE CURRENT DIAGNOSTIC LANDSCAPE 
Clinical diagnosis of UTI follows a process of clinical assessment and screening, bacterial identification and 
antibiotic sensitivity testing (AST) (Figure 2.4). The initial step includes a clinical assessment paired with a 
screening urine dipstick upon which a decision for empiric management is made. While rapid, clinical assessment 
and screening with dipsticks are inaccurate with a sensitivity and specificity of 80%. Using dipstick testing to plan 
empiric treatment decisions results in 20% of patients without UTI receiving broad spectrum antibiotics where 
none are needed, while 20% of patients with UTI do not receive appropriate antimicrobial therapy. Furthermore, 
without bacterial identification broad spectrum antibiotics are required to cover the likely pathogens, increasing 
the risk of AMR developing. 

Positive screening tests may require confirmation and identification of the causative pathogen using culture 
potentially augmented by matrix assisted laser desorption/ionisation – time-of-flight (MADI-TOF) mass 
spectrometry.  The antimicrobial therapy may be refined to one likely to work based on local sensitivity profiles 
of the pathogen. Bacterial identification through culture may take up to 24 hours, delaying the change to narrow 
spectrum antibiotics and adding to workflows[5].  To this end NICE guidelines advocate not sending urine for 
culture for a first uncomplicated infection, citing cost-effectiveness analyses which demonstrate that the delay 
associated with microscopy culture and sensitivity (M,C&S) limited its value in decision making[50]. 

Pathogen identification is followed by phenotypic antimicrobial sensitivity testing (AST) allowing for 
personalised antimicrobial therapy. However, the 48-hour delay for AST results in significant exposure of 
uropathogens to potentially incorrect treatment[5]. 
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Developing novel diagnostics that streamline through providing rapid and accurate microbiologic information 
can address these insufficiencies. A diagnostic device that provides a rapid and accurate bacterial identification 
at the point of care will allow for appropriate antimicrobial therapy to be prescribed at the consultation. 
Expedited AST will improve antibiotic stewardship by allowing for early targeted therapy[5]. 

 

FIGURE 2. 4 EXISTING AND FUTURE DIAGNOSTIC PARADIGMS FOR UTI ADAPTED FROM DAVENPORT ET AL.[5]. 

An overview of current and investigational diagnostics can be seen in Table 2.3.  

Clinical assessment for UTI includes assessing for symptoms of dysuria, frequency, urgency, incontinence, 
offensive urine, abdominal or flank pain as well as signs including fever abdominal or renal angle tenderness. 
Clinical assessment is required to differentiate ASB from UTI.  However clinical assessment is inaccurate: clinical 
criteria alone has an error rate of 33%[51]. Diagnostic uncertainty arises because of poor correlation between 
signs and symptoms and confirmatory tests. 50% of women with classic symptoms of urgency and frequency 
will be culture negative, while asymptomatic bacteriuria (positive culture in the absence of symptoms) is present 
in 3.7% of the women at any time[2, 51]. 

Screening using urinary dipsticks is extremely cheap and immediately available, however it suffers from poor 
sensitivity and specificity. A large metanalysis demonstrated screening dipsticks to have a sensitivity and 
specificity of 80%[4]. Leucocyte esterase may have false positive results in the setting inflammation from 
another cause, such as urethritis of vaginal infection, while suffering from false negatives in 
immunocompromised patients. Nitrite testing will lead to false negatives in denitrifying bacteria such as 
Enterococcus faecalis[51]. 

Poor performance of screening dipsticks has prompted development of novel screening tests. Lateral flow 
assays, such as the RapidBac, provide an inexpensive alternative to traditional dipsticks. The RapidBac uses 
immobilised monoclonal antibodies to Enterobacteriacea and a broader spectrum Gram-negative antigen to 
provide rapid qualitative assessment of urine for infection. While an improvement on dipsticks, the sensitivity 
remains low at 86%. The test does not provide bacterial identification or AST[52]. 

 

 



TABLE 2. 3 CHARACTERISTICS OF EXISTING AND INVESTIGATIONAL DIAGNOSTIC TECHNOLOGIES. CORE FEATURES INCLUDE THE TIME-TO-RESULT, THE DIAGNOSTIC PERFORMANCE, AND THE INFORMATION 
PROVIDED SUCH AS IDENTIFICATION AND ANTIMICROBIAL SENSITIVITY. 

Test Turnaround Sensitivity Specificity Strengths Weaknesses ID AST 

Clinical Assessment Immediate NA NA Required to differentiate ASB 
from UTI 

High intra observer variability No No 

Leucocyte and nitrite 
dipstick (lateral flow assay) 

Minutes 80%[4] 80%[4] Fast. Cheap. Nitrite non-producers such 
enterococci and staphylococci 
negative. 

Poor sensitivity and specificity 

 

No No 

RapidBac (Lateral Flow 
ImmunoAssay) 

20 minutes 86%[52] 94%[52] Rapid, inexpensive, and easy 
to use 

False negatives for some bacteria 
and all fungi 

No pathogen ID 

No  No 

Flow 
Cytometry  

UF1000i Minutes 100%[53] 60%[53] Rapid No pathogen ID,  

Cost not amenable to point of care 
implementation. 

No No 

MALDI-TOF 1-3 hours 86%  Rapid identification of culture 
pathogens 

May be useful in polymicrobial 
infections 

Requires pre-processing steps for 
direct assessment  

Expensive 

Not amenable to POCT 

Yes 
(Known) 

No 

FISH 20 minutes >96%[5] >96%[5] Rapid and accurate for specific 
pathogens 

Requires specific probe 
development for all pathogens 

Yes No 
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Multiplex 
PCR 

Septi-Fast Hours[5] 82%[5] 60%[5] Rapid Identification and AST Requires further development for 
UTI 

Only identifies known pathogens 

Not quantitative 

High risk of contamination 

Yes 
(Known) 

Yes 
(Genotypic 
only) FilmArray <1 hour   

GeneXpert 90 minutes   

Real-Time 
Microscopy  

Ocelloscope 108 minutes NA NA Very rapid phenotypic AST Not assessed in urine Yes Rapid 

Accelerate 
ID/AST 

5 hours NA NA 

Biosensors 1 hour 89% 100% Amenable to automation and 
POCT 

Potentially high sensitivity and 
selectivity 

Early development. Only identifies 
known pathogens 

Yes Potentially 

Microfluidics  NA NA May augment other 
technologies such as 
biosensors or time-lapse 
microscopy 

Not widely adopted. 

Unclear route to market 

NA NA 
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Flow cytometry uses the scattering and fluorescence of labelled urine samples to provide rapid bacterial and 
leucocyte counts. The UF-1000i is used as a screening diagnostic in the laboratory providing excellent sensitivity, 
however it’s poor specificity would require a rapid and accurate follow-up confirmatory test[53]. 

Culture is the established gold-standard for confirmation and AST of UTI, providing serotype level identification 
and phenotypic AST. Culture may be augmented with molecular techniques, such MALDI-TOF, to provide reduce 
turnaround time and provide more accurate identification. Culture is performed in centralised laboratories and 
is slow, taking 24 hours for bacterial identification and up to 48 hours for AST. Furthermore, the gold-standard 
status of M,C&S has been questioned citing discordance with clinical presentation[54]. 

The need for reduced time to bacterial identification sensitivity has generated interest in molecular techniques 
including mass spectrometry, polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH). 
MALDI-TOF mass spectrometry generates a unique mass to charge fingerprint from ionised samples, which can 
be compared against a reference library to deliver accurate identification on cultured samples[5]. It has already 
proven to be a valuable adjunct in centralised laboratories – reducing workflows and improving turnaround 
times. The requirement for pre-culture and large initial cost limits its use to centralised laboratories. Direct 
analysis of urine using MALDI-TOF has the potential to reduce bacterial identification down to a few hours, 
however this requires further research to optimise pre-processing and rebuild reference libraries. Direct MALDI-
TOF will still be limited to centralised laboratories given the prohibitive cost of equipment[55]. 

PCR utilises nucleic acid amplification to identify bacterial genetics in biologic samples such as blood and stool. 
Early success has been demonstrated using PCR on urine samples, however, it has not been integrated into 
diagnostic pathways. PCR can potentially provide bacterial identification and genotypic AST within a few hours. 
While complicated pre-processing is required, this may be mitigated through prepared cartridges preloaded 
with buffer solution. The technique is highly susceptible to contamination and false positives as a result of 
indiscriminate amplification of all DNA. PCR may be limited to referenced genotypic signatures and so requires 
new libraries be developed for UTI[5, 56-58]. 

FISH utilised fluorescent labelled nucleic acid probes to identify known bacterial DNA and RNA targets. Kits exist 
for blood stream infection but require further development for use in UTI diagnostics FISH can potentially 
provide rapid bacterial identification, but no clear route to providing AST is available. FISH is not amenable to 
POCT.[5]  

Emerging technologies for UTI detection include biosensors and time-lapse microscopy, both of which may be 
augmented using microfluidic technology. A biosensor is a device that can translate a biological signal (most 
commonly an analyte concentration) into a digital output. These sensors consist of a biologic recognition 
element that binds the target analyte, paired with a transducer which converts the degree of binding into a 
digital output. Biosensors are well suited to infection detection as they are potentially automatable, require 
limited pre-processing, and may be incorporated into POCT. An expanding array of recognition elements is 
available ranging from simple ion and organic molecules up to proteins and nucleic acid and even up to whole 
cells. Multiplexing of sensors allows for multiple different analytes to be assessed simultaneously. A challenge 
lies in developing sensors that are sensitive enough to identify low concentrations of bacteria while retaining 
selectivity in complex media such as urine. Early work has demonstrated strong potential for biosensors to 
provide rapid uropathogen detection, and potentially AST[59, 60]. 

Time-lapse microscopy takes time-lapse digital micrographs of bacteria incubated in an appropriate culture 
medium. Image recognition software provides real-time colony counting and morphologic assessment. This 
technique can be adapted to provide rapid phenotypic AST. Early work has been assessed pathogens cultured 
from bloods, although easy translation to urine should be possible[5, 61]. 
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2.3.6 DIAGNOSTICS FOR CATHETER ASSOCIATE URINARY TRACT INFECTION 
There is no available diagnostic or monitoring modality for catheter associated UTI. Rapid catheter colonisation 
results in near universal CA-ASB over a relatively short timeframe. As CA-ASB does not correlate with clinically 
relevant outcomes (cost, morbidity, mortality), guidelines do not recommend monitoring of ASB with dipstick 
or M, C&S. 

CAUTI is, therefore a diagnosis made on clinical findings with microbiologic confirmation through M, C&S used 
only for antimicrobial guidance. The most common presentation is that of fever without localising findings and 
without another cause. Less commonly localising features including catheter obstruction, acute haematuria, 
suprapubic pain, or loin pain may be present[15, 62].  

A diagnostic technology capable of providing highly resolved metabolic profiling of uropathogens could provide 
valuable insights into the pathophysiology of CAUTI, therein providing a much-needed means of surveillance. 

2.3.7 MANAGEMENT OF UTI 
National Institute for Health and Care Excellence (NICE) guidelines recommend immediate treatment of 
uncomplicated UTI in all children, men and pregnant women, while in women a “back-up” prescription may be 
considered in place of immediate treatment[63]. Nitrofurantoin is the recommended first line antibiotic, while 
trimethoprim may be considered in those assessed to have a low-risk of resistance. 

Treatment for ASB is not recommended as the high prevalence of ASB paired with the low risk of progression to 
symptomatic infection leads to an unfavourable risk-benefit profile. Furthermore, treatment of ASB may 
precipitate symptomatic infection while increasing the risk of AMR. A notable exception is that of ASB in 
pregnancy, where untreated 20% of patients with ASB will progress to pyelonephritis.[8] 

While antimicrobial treatment risks adverse events including gastro-intestinal upset and colitis the principal 
concern is the development of AMR. This has motivated research into novel treatments that may be used to 
treat or prevent UTI without increasing AMR. These treatments target uropathogen virulence factors, and so are 
should have limited unintended effects on commensal bacteria. Treatments under investigation include vaccines 
against adhesins, toxins, urease and siderophores as well as small molecules targeting urease and pili.[1] 

The management of CAUTI should include removal or replacement of any catheter older than 7 days, paired 
with antimicrobial therapy[3]. Antimicrobial therapy needs to be guided by sensitivity results where available. 

 



 

 

35 
 

 

FIGURE 2. 5 THE CATHETER LIFE CYCLE ADAPTED FROM SAINT ET AL. [64]. METHODS DEMONSTRATED TO REDUCE CAUTIS INCLUDE: 1) 
RESTRICTED INSERTION AND ASEPTIC TECHNIQUE, 2) REGULAR REVIEWS AND CLOSED CATHETER SYSTEMS, 3) ELECTRONIC AND NURSE 
LED REMOVAL, 4) REDUCED REINSERTION 

Prevention is the primary goal in CAUTI due to its potential to avoid the morbidity and costs. Medding and Saint 
suggested preventative efforts should aim to disrupt the catheter life cycle, as illustrated in Figure 2.5[64]. While 
there are a number of methods for CAUTI prevention, there is no established technology to monitor catheters 
and predict CAUTI[31] (Table 2.4).  

Despite numerous attempts, no method has proven benefit in preventing CAUTI. These include prophylactic 
systemic antibiotics, bag instillation and routine meatal cleaning and catheter replacement. Early optimism for 
antimicrobial impregnated catheters has been met with unsatisfactory results. Silver alloy coated catheters did 
not reduce the incidence of CAUTI, while the small reduction afforded by nitrofuranzone impregnated catheters 
was overshadowed by increased discomfort requiring more frequent replacement[65, 66]. 
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TABLE 2. 4 METHODS FOR CAUTI PREVENTION AS DESCRIBED BY SAINT ET AL. FOCUS ON ADDRESSING THE STAGES OF THE CATHETER 
LIFE CYCLE. THE GREATEST GAINS ARE ACHIEVED BY MECHANISMS REDUCING THE NUMBER OF CATHETERS INSERTED AND THE TOTAL 
CATHETER TIME. 

Stage Recommended Not Recommended 

Catheter Insertion Restrict insertion to defined criteria 
Strict hand hygiene and aseptic technique 
Insertion Training 
Consider Alternatives (e.g., condom 
catheters) 
Meatal cleaning 
Smallest Catheter 

Antimicrobial catheters 

Catheter Care Regular review 
Secure catheter 
Closed catheter system 

Prophylactic antibiotic  
Antibiotic instillation 
Daily meatal cleaning 

Catheter Removal Electronic stop-order 
Nurse-led stop-order 

Routine replacement 

Catheter 
Reinsertion 

Avoid unnecessary re-insertion (bladder 
scanners) 

 

 

2.4 THE IDEAL UTI DIAGNOSTIC 
UTI is a condition pervasive throughout all societies and across all levels of healthcare. This pervasiveness 
underpins the substantial burden of disease attributable to UTIs. While the morbidity associated with an 
uncomplicated UTI and the risk of progression to severe disease may appear relatively small, when multiplied 
by the staggering number of UTIs occurring this presents a significant health burden. The current diagnostic 
paradigm, characterised by inaccuracy and delay, significantly exacerbates the burden of disease caused by UTIs.  

The UTI paradigm has an abundance of areas of uncertainty and unanswered questions, which may be improved 
upon by novel diagnostics. Limitations in current diagnostics contributes to a paucity of clinical data for 
important questions including: which microbes are likely to resolve spontaneously, which microbes are likely to 
recur after treatment, whether different virulence mechanisms warrant different pathogen load treatment 
cutoffs. 

A UTI diagnostic may, in fact, provide information on four questions: firstly, does the urine contain microbes 
(diagnosis); secondly, what microbes are present (classification); thirdly, what is the pathogen load 
(quantification); and finally, what are the antimicrobial sensitivities (sensitivity). The value of information 
provided by each of these questions differs depending on the use case. For example, UTIs are a prominent cause 
of morbidity and mortality in long-term care homes. In long-term care settings diagnosis has multiple nuances 
including, a high prevalence of bacteriuria, different symptom profiles resulting from cognitive impairment, and 
high prevalence of antimicrobial resistance[67]. Additionally, Gram positive uropathogen such as enterococci 
are considerably more prevalent in this setting, but are significantly less likely to severe disease[10]. Combining 
these attributes, the greatest value of information would not be provided by diagnosis of infected samples, 
which would risk overtreatment of asymptomatic bacteriuria, but rather microbial classification which would 
empower clinical decisions avoiding treatment of benign colonisation[68]. 
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While the notion of developing a diagnostic technology capable of addressing all four diagnostic questions is 
appealing, it is important to set research priorities where delivery of information will have the greatest value of 
information under the current paradigm. A secondary goal is understanding how the paradigm is likely to 
advance, therein developing a strategy as to how diagnostics may contribute to evolution of disease 
understanding and management in the future. 

Uncomplicated UTIs involving healthy women of reproductive age represent the vast majority of all UTIs. 
Uncomplicated UTIs are at low risk of progression to severe disease, are low risk to carry antimicrobial 
resistance, are likely to belong to belong to one of few uropathogens (over 90% of community acquired UTI arise 
from Escherichia coli, Klebsiella pneumoniae, Staphylococcus saprophyticus or Enterococcus species). 
Additionally, the high incidence of uncomplicated UTIs translates to a societal burden through activity limited 
days, health services burden and a substantial potential source given the large number of antimicrobial 
prescriptions.  

It is reasonable therefore, for prioritise research toward developing a minimum viable product with capabilities 
specific to uncomplicated community acquired UTIs. The most important characteristic is accurate diagnosis, 
with greater importance placed on test specificity as compared to sensitivity. Greater specificity should be 
prioritised as the cost of a false positive, represented by development of AMR caused by overtreatment, is higher 
than the cost of a false negative given community acquired UTIs are unlikely to progress to severe disease 
irrespective of antimicrobial therapy. 

As community acquired UTIs are predominantly diagnosed in the primary care setting, diagnosis at the point of 
care is vitally important. Transferring samples to laboratories from primary care setting incurs substantial 
logistical challenges, costs and delays. Additionally, where results are not available at the point of care, 
additional burden is placed on health services as they are required to implement procedures for following up of 
results. 

The high incidence of community acquired UTIs necessitates the diagnostic be low-cost. Currently implemented 
screening modalities including Dipstix are extremely low cost, although the true cost of existing tests is likely 
incurred through test inaccuracies. Nevertheless, a novel diagnostic needs compete against the extremely low-
cost incumbents. Importantly, the high incidence also implies that a relatively high initial capital cost may be 
offset if the unit cost is very low. 

A minimum viable product therefore needs to prioritise low-cost, accurate point of care diagnosis, with 
particular importance placed on specificity. Of secondary importance to these characteristics, achieving accurate 
pathogen classification is likely to deliver substantial value.  Knowledge of the causative pathogen may allow for 
more precise antimicrobial therapy, or potentially identify low risk infections not requiring antimicrobials 
therapy. Additionally, as community acquired uropathogens follow predictable sensitivity, classification may 
provide a reasonable surrogate for sensitivity testing. 

An additional characteristic of secondary importance, yet with the potential to deliver substantial value would 
be the ability to digitally capture results. The value of the results would then extend beyond the single patient 
to microbial surveillance and could be made available for secondary research. 

A diagnostic test with these capabilities is likely to substantially improve the management of uncomplicated 
UTIs. Thereafter, additional research may development the technology toward other use cases which may 
include hospital acquired infections or catheter associated UTIs. For these cases other characteristics such as 
rapid AST or quantification of pathogen load may be of greater importance. 
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2.5 CONCLUSION 
UTI is a common infection whose pervasiveness leads to significant morbidity and massive costs to patients, 
healthcare providers and society as a whole. As one of the most common indications for antimicrobial 
prescriptions, UTI continues to contribute towards the development of AMR. This significant burden of disease 
is severely exacerbated by a diagnostic paradigm that is plagued by inaccuracies and delays. 

Novel diagnostics are needed for UTI that will provide clinicians with reliable information at the time and place 
where treatment decisions are made. This will allow appropriate therapy to be given from the outset while 
avoiding overuse of antimicrobials. A novel point of care diagnostic also has the potential to improve workflows 
by reducing the need for results follow-up. A diagnostic technology whose characteristics reflect those of the 
ideal technology as described above has the potential fundamentally change the UTI paradigm by allowing rapid 
initiation of therapies specifically tailored to the causative pathogen. 

Additionally, the clinical paradigm of CAUTI poses a unique challenge, where despite being the most common 
HAI, there is no objective and reliable means of monitoring for its development. Clinical staff must limit catheter 
usage and attempt pre-emptive removal, while remaining blind to the specific risk profile of the catheter. An 
ideal monitoring platform would provide dynamic urinary analysis, providing a personalised real-time risk 
profile. This would allow pre-emptive management and avoidance of the morbidity and costs associated with 
CAUTI. 
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CHAPTER 3: RAMAN SPECTROSCOPY FOR UTI DIAGNOSIS 

3.1 INTRODUCTION 
The ideal diagnostic for UTI would provide rapid and accurate identification of uropathogens, allowing for 
targeted narrow spectrum antimicrobial therapy to be provided to those patients likely to gain the greatest 
benefit. This entails the differentiation of infected samples at the point of care, with pathogen classification and 
AST in a timeframe allowing for precision antimicrobial therapy. Accurate diagnosis using current technologies 
is reliant on biomass amplification, therein incurring substantial delays. 

Raman spectroscopy provides rapid high resolution biochemical analysis, and as such may provide real-time 
pathogen recognition and classification without the need for biomass amplification. Pathogen recognition using 
Raman spectroscopy is however challenged by weak Raman scattering and congested spectra both leading to 
low signal to noise ratios. A plethora of physical and analytical techniques must be potentially optimised to 
overcome these challenges. 

Hypothesis: Raman spectroscopy, once optimised, may provide rapid and accurate UTI diagnosis with pathogen 
classification. 

Aims:  

• To review the state of the art of Raman spectroscopy with regard to pathogen identification and 
classification. 

• To identify the opportunities and challenges of uropathogen identification and classification using 
Raman spectroscopy. 

• To identify and understand the settings and techniques that may be employed to optimise uropathogen 
identification using Raman spectroscopy. 

• Identify the barriers to translation of Raman spectroscopic pathogen recognition into clinical practice.  

3.2 RAMAN SPECTROSCOPY 
3.2.1 RAMAN SPECTROSCOPY OVERVIEW 

3.2.1.1 THE RAMAN EFFECT 
Raman spectroscopy utilises the inelastic scattering of light to provide rapid assessment of a target’s chemical 
composition. Numerous potential outcomes may occur when a photon (a particle or ‘single unit’ of light) 
interacts with a molecule (Figure 3.1). The photon’s energy may be absorbed by the target molecule, either with 
no emitted photon or with later emission of a fluorescence photon. The photon may be elastically scattered (i.e. 
reflected or rebounded) with no change in energy or wavelength (this process is known as Rayleigh scattering 
and occurs when no energy is transferred between the photon and the scattering molecule). Finally, the photon 
may be inelastically scattered (Raman scattered), which involves an instantaneous transfer of energy between 
the molecule and photon during the scattering process. This transfer of energy to/from the scattering molecule 
means that there is a concomitant change in the energy of the scattered photon[69-71]. 
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FIGURE 3. 1 JABLONSKI ENERGY DIAGRAM(LEFT) DEMONSTRATING DIFFERENT INTERACTIONS OF LIGHT WITH A MOLECULE, AND RAMAN 
SPECTRUM (RIGHT) DEMONSTRATING THE RELATIONSHIP OF SPECTRAL PEAKS WITH THIS CHANGE IN PHOTON ENERGY 

The change in energy in the scattered photon is apparent as a change in wavelength (or frequency) after the 
scattering event (Equation 3.1). In Raman scattering, the scattered photons may either lose energy (Stokes 
scattering) or gain energy (anti-Stokes scattering). The energy difference in the target molecule arises from a 
change in the vibrational state of the molecular bonds of the molecule, and as such the scattered photon’s 
energy change is unique to the molecular bonds of the target molecule. Plotting the number of photons and 
energy change (as described by the frequency change) of the scattered photons results in the Raman spectrum 
which is unique to the target molecule. The Raman effect is directly proportional to the magnitude in change in 
polarisability of the bond, and as such different molecules exhibit different Raman intensities, with aromatic 
compounds showing higher intensities than aliphatic compounds[72]. 

𝐸 =
ℎ𝑐
𝜆 = ℎ𝜈 

EQUATION 3. 1 EQUATION 3. 1 BOHR’S FREQUENCY CONDITION: ENERGY OF A PHOTON AS A FUNCTION OF FREQUENCY (OR 
WAVELENGTH). h = PLANCK’S CONSTANT = 4.14 X 10-15 E.V.S, C = SPEED OF LIGHT = 2.998 M.S-1, l = WAVELENGTH  , v = FREQUENCY, E 
= PHOTON ENERGY. 

3.2.1.2 A BRIEF HISTORY OF RAMAN SPECTROSCOPY FOR BACTERIAL IDENTIFICATION 
The inelastic scattering of light was first proposed by Smekal et al. in 1923[73]. Chandrashekara Venkata Raman 
independently postulated and began work on demonstrating the inelastic scattering of light. C.V. Raman first 
demonstrated the inelastic scattering of light in 1927[71, 74, 75]. The demonstration of inelastic scattering of 
light won C.V. Raman the Nobel prize, making him the first Asian to win the prize and granting him the eponym. 
To overcome the infrequency of inelastic scattering Raman required a 7-foot refracting telescope to focus the 
sun as a light source. Technical challenges like these limited the use of Raman spectroscopy to scientific 
endeavour for decades. 

Developments in laser technology, light capture and computing technology over the 1960s and 1970’s 
empowered Raman spectroscopy’s development as a powerful chemical analytic technique, while the 
development of machine learning techniques facilitated it’s use in substance identification and classification[76, 
77]. The 1980s saw the first use of Raman spectroscopy as a technique for bacterial investigation and 
classification[78].  
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FIGURE 3. 2 WEB OF SCIENCE PUBLICATION COUNT FOR ARTICLES CONTAINING RAMAN SPECTROSCOPY (BLUE) AND CONTAINING 
BACTERIA (RED). THERE HAS BEEN AN INCREASE IN THE NUMBER OF ARTICLES PUBLISHED ON RAMAN SPECTRSCOPY WITH AN 
INCREASING PORTION OF THESE INVESTIGATING BACTERIAL RAMAN SPECTROSCOPY. 

Two further developments potentiated Raman spectroscopy as a microbial diagnostic technology. In 1974 
Fleischman et al., stumbled upon massive Raman signal enhancements while attempting to use silver electrodes 
to aggregate pyridine targets[79, 80]. Four years later Jeanmarie and Van Duyne demonstrated the 
enhancement to have arisen from electromagnetic enhancement provided by application of the target to a 
roughened metal surface, therein describing surface enhanced Raman spectroscopy (SERS)[81]. 

Additionally, in 1972 optical microscopes were integrated with Raman spectroscopy to create Raman 
microscopy. Combining microscopy allowed the focusing of Raman excitation down to single cell focus, allowing 
the collection of single bacterial spectra known as whole organism fingerprinting. 

3.2.1.3 THE CHALLENGES OF AND OPPORTUNITIES OF BACTERIAL RECOGNITION USING RAMAN 

SPECTROSCOPY  
TABLE 3. 1 CHALLENGES AND OPPORTUNITIES FOR PATHOGEN RECOGNITION USING RAMAN SPECTROSCOPY. 

Strengths Weaknesses 
Possible without biomass amplification Weak Raman effect 
High target sensitivity and specificity Biologic molecules are weak Raman 

scattering 
Little sample physical pre-processing 
required 

Susceptibility to fluorescence 

Able to identify non-cultivable organisms Non-selective 
Water Raman signal is weak Highly sensitive to changes in Raman 

experimental variation 
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Raman spectroscopy faces multiple challenges that must be overcome before employing it for pathogen 
detection. The Raman effect is weak with only 1 in 106 incident photons being inelastically scattered.[69, 82-86] 
The weak Raman effect necessitates powerful laser and sensitive optical detection to bring the Raman effect up 
to the limit of detection. These electronics in turn contribute noise that may obfuscate the target’s signal. While 
it is possible to overcome this challenge by increasing the number of scattered photons through increasing 
incident light intensity and time this may lead to photodegradation or fluorescence. A further challenge arises 
in that many biologic molecules are weak Raman scatterers, further compounding the challenge in identifying 
biologic Raman signals. 

Raman scattering is in the order of 1014 times weaker than fluorescence[72]. Therefore, bacterial detection of 
pathogens may not be possible directly from media prone to fluorescence, notably urine. As such steps may be 
required to physically separate urine or quell urine fluorescence. 

The Raman effect is non-selective, arising from all molecules that light interacts with. Raman assessment of 
complex samples can result in overcrowded Raman spectra not amenable to classification. This provides a 
significant challenge in mixed infections where overlapping Raman spectra may obscure each other[77, 87]. It is 
frequently necessary to amplify target molecules and reduce competing signals through physical processing 
steps prior to acquiring spectra. 

Raman spectroscopy is highly sensitive, with minor changes in sample preparation, spectral acquisition and 
digital processing resulting in strikingly different spectra[82]. This necessitates strictly standardised 
experimental procedures during Raman investigation and poses a challenge in translation towards a clinical 
expansion.  

Raman spectroscopy has many strengths which make it optimally suited for the clinical challenge of UTI 
diagnosis. Developments in laser sources, charge coupled devices and processing hardware have provided low-
cost, compact and robust Raman equipment amenable to implementation at the point of care[45]. 

Raman spectroscopy delivers spectra with high sensitivity and specificity. High sensitivity has allowed the 
detection down to the level of single cells and molecules[88-91]. The high sensitivity simultaneously allows for 
quantitative assessment, providing a route not only for pathogen detection but also assessment of pathogen 
load and potentially rapid phenotypic AST[77]. The specificity is enabled by high resolution spectra with very 
narrow peaks as compared to Fourier transform infrared spectroscopy and fluorescence spectroscopy. High 
resolution spectra allow simultaneous identification of many chemical bonds allowing for accurate molecular 
detection. High resolution also providing for multiplex assessment, therein allowing for detection of molecules 
and organism with a high degree specificity[70, 82]. 

The ability of Raman spectroscopy to work with minute sample volumes potentially obviates the need for 
biomass amplification which is the single most time-consuming step in pathogen classification.  The ability to 
circumvent biomass amplification makes Raman spectroscopy one of a handful of technologies amenable to 
phenotypic point of care pathogen classification[76, 77]. Similarly the ability to identify samples without 
preculture potentially allows Raman spectroscopy to identify non-cultivable organism, or organisms suppressed 
by current antimicrobial therapy, therein avoiding false negative tests[77]. 

Raman spectra can be acquired with little or no physical pre-processing steps. Water has a weak Raman 
spectrum, avoiding the need to separate pathogens from the media without losing their signal[88]. Therefore, 
Raman spectroscopy can potentially be reagentless and fully automatable, therein having the potential to be 
transformed into a point of care test. 
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3.2.2 ACQUIRING A SPECTRUM 

 

FIGURE 3. 3 PATHOGEN IDENTIFICATION FROM SAMPLE TO CLASSIFICATION. 

 

FIGURE 3. 4 THE ANATOMY OF A RAMAN SPECTROSCOPE 

The complete process from sample to classification using Raman spectroscopy is depicted in Figure 3.3. Within 
each step several factors must be adjusted to optimise sample classification. Samples may be physically 
processed with the goal of aggregating the target within the spectroscope’s focal volume and potentially 
separating off other substances that may overcrowd the Raman spectrum. A spectrum is captured from the 
sample using a Raman spectroscope. The spectrum may be digitally pre-processed with the intention of 
removing noise while retaining the target signal. Unsupervised chemometric machine learning techniques may 
identify groups without the need for prior knowledge. Certain chemometric classification techniques may 
require or be enhanced by preceding feature reduction. Finally, validation is employed to confirm the accuracy 
of the result on independent data. The identification of microorganisms requires strict standardisation of 
sampling procedures and strict control of spectral acquisition parameters[76]. 
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TABLE 3. 2 FACTORS UNDER CONTROL DURING SPECTRA ACQUISITION. 

Spectrum acquisition 

Factor Process Strengths/Opportunities  Challenges/ weaknesses 

Laser Power  Delivery of more incident 
photons with a linear 
increase in Raman signal 

Simple means of 
increasing signal 

Non-selective 

Higher power laser may 
destroy samples or lead 
to photodestruction 

Acquisition time Deliver more incident 
photons with a linear 
increase in Raman signal 

Simple means of 
increasing signal 

Linearly increased 
stability of spectra 

Non-selective 

Increasing time may not 
be feasible 

Laser wavelength Selection of wavelength 
according to target 
molecule causes signal 
enhancement mediated 
by preresonance 

Selective signal 
enhancement 

UVRR con provide signal 
enhancement up to 106 

Minor signal 
enhancement 

Certain wavelengths are 
destructive 

UVRR not compatible 
with SERS 

Raster orbital scanning A narrow focal field is 
moved across a sample 

Narrow focal field 
provides higher 
resolution spectra while 
limiting small sampling 
challenges and 
photodestruction 

Not possible with Raman 
microscopes 

Raman microscopy Pairing a spectroscope 
with an optical 
microscope allows, 
allowing a reduce field of 
focus 

Incident light tightly 
focussed on target 
generates high 
resolution spectra while 
avoiding competing 
signal from substances 

Expensive. 

Technical user 
experience required for 
accurate focussing 

Raman spectra are acquired using a Raman spectrophotometer (Figure 3.4). A laser provides an exciting 
monochromatic light source which is focused on the sample. Scattered light from the photons is passed through 
filter to remove elastically (Rayleigh) scattered photons before the Raman scattered photons are quantified 
using a charge couple device. 

3.2.2.1 LASER POWER AND ACQUISITION TIME 
The factors under control during spectral acquisition are summarised in Table 3.2. Improving the captured 
Raman spectrum can be achieved through increasing the number of incident photons or through control of the 
focal volume in which the incident photons interact with  the molecules of interest, with both methods resulting 
in a linearly increased number of captured Raman scattered photon[76]. A greater number of incident photons 
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can be achieved through increasing the laser power or longer acquisition times. The increase in number of 
scattered photons is non-selective with respect to the molecule from which they are scattered, and so these 
factors may not be used to selectively enhance identification of target molecules. The increased number of 
scattered photons results in more stable spectra as a result of effectively sampling more molecules within the 
sample relative to the high frequency noise generated by electronics. A challenge arises in that increasing the 
number of incident photons delivers more energy to the sample which may lead to sample destruction. 
Increased power delivers photons at a greater rate, as compared to increasing acquisition time which provides 
the same rate of photon delivery but over a longer period. Increased power therefore has a greater propensity 
toward sample degradation as the increased photon flux does not allow for the energy to dissipate[72]. This 
may be partially overcome by a pulsed laser sources in which intermittent delivery of photons allows energy 
dissipation in between pulses, or through use of a raster orbiting scanner that moves the laser focus across the 
sample such that it is not focussed on any one point long enough to cause damage[86, 92]. A practical approach 
to selection of laser power and acquisition time is to maximise the laser power without degrading the samples, 
and then find the minimised acquisition time that provides stable Raman spectra. 

In addition to the excitation time (during which light interacts with the sample), consideration may be given to 
the acquisition time (during which scattered photons are captured). Time-gated Raman spectroscopy (TG-
Raman) recognises that Raman scattered photons are emitted on a relatively short timescale as compared to 
fluorescent photons, and as such gating the acquisition time improves the relative number of Raman photons, 
as depicted in Figure 3.5[93]. While TG-Raman does not increase the total number of Raman scattered photons, 
the higher ratio relative to florescent photons improves the Raman signal relative to the background level. 
Importantly the emission time for Raman scattered photons is measured in picoseconds, and so TG-Raman 
requires a pulsed laser, intricate control system and highly sensitive light capture. Kögler et al. demonstrated 
TG-Raman delivered higher resolution spectra of Escherichia coli as compared to traditional Raman 
spectroscopy[94]. 

 

FIGURE 3. 5 TIMING OF RAMAN AND FLUORESCENT EMISSION RELATIVE TO EXCITATION ADAPTED FROM WEI ET AL.[26] 

3.2.2.2 EXCITATION WAVELENGTH AND ULTRAVIOLET RESONANCE RAMAN 
The spectral features are dependent on the excitation wavelength used. If the excitation wavelength is in the 
range of the absorption range of the target molecule, the electron preresonance occurs leading to signal 
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enhancement[45]. This effect occurs over a narrow range, enhancing signal from molecules with adsorption 
within 10 nm of the excitation wavelength and quelling signal outside of this range[95]. Ultraviolet resonance 
Raman (UVRR) is a technique in which the use of UV excitation wavelengths results in electron resonance leading 
to signal enhancement up to 106 times[83, 95]. Additionally, UVRR is not subject to the fluorescence seen visible 
and near infrared wavelengths[76, 92, 96]. The benefits provided by UVRR are contrasted against significant 
limitations: UV laser sources are more expensive as compared to infrared sources; UV photons are higher energy 
(Equation 3.1) and so prone to causing sample damage; and most notably UVRR is not compatible with surface 
enhance Raman spectroscopy whose potential signal enhancement is much greater than that provided by 
UVRR[72, 82]. Rotating stages have been used to avoid photodestruction by UV light.[92]  

When applied to pathogen classification, UVRR enhances the Raman signal primarily of nucleic acids and 
aromatic amino acids. A classification challenge arises in that the enhanced nucleic acids and amino acids are 
not likely to vary largely between species as compared to the cell envelope components that are preferentially 
enhanced by visible and near infrared wavelengths[45, 69, 83, 97]. Prior to the widespread use of SERS, UV 
wavelengths were more prominent in the literature but have now been superseded by visible and near infrared 
wavelengths. An additional potential consideration is that longer wavelengths penetrate deeper into the sample 
with near infrared penetrating up to 5mm, however this is unlikely to provide significant benefit in pathogen 
identification and classification[70, 88]. 

3.2.2.3 FOCAL VOLUME, RASTER ORBITAL SCANNING AND RAMAN MICROSCOPY 
Raman scattering arises non-selectively from the interaction of photons and molecules within the space in which 
the laser is focussed. Therefore, the resulting spectrum is highly contingent on the focal volume. A smaller focal 
volume will contain fewer molecules resulting in Raman spectra with well-defined peaks, while a larger focal 
volume will contain a greater number of molecules resulting in Raman spectra with less well-defined peaks. 
However, the use of smaller focal volumes may result in sampling challenges in which small sampling volumes 
may not contain consistent proportions of target molecules. Two techniques may be employed to utilise small 
volumes while ensuring accurate sampling: raster orbital scanning and Raman microscopy. 

Raster orbital scanning (ROS) rapidly moves a narrowly focused laser beam across a wider area of the sample, 
therein capturing a Raman spectrum form a wider area while maintaining a smaller focal volume. This is 
technique is useful in complex mixtures including suspended pathogens or irregular samples including cultures 
on solid media. A precursor to ROS was first implemented by Jarvis et al., in which a moving stage was used to 
collect 50 spectra across each individual sample and averaged to create a single representative spectrum[96]. 
ROS is now available on most handheld spectrophotometers. 

Raman microscopy combines optical microscopy with Raman spectroscopy, allowing for a narrow focal space to 
be accurately focussed onto a target. Raman microscopes have focal areas as small as 1 µm allowing the 
acquisition of high-resolution spectra from single bacteria[98, 99]. This is in contrast the focal area of 
spectrophotometers is 100 µm or more, and as such spectra arises from multiple bacteria in addition to a 
substantial volume of background media. Raman microscopy has gained greater traction in Raman bacterial 
classification in the published literature as a result of the high-resolution spectra generated[100]. Raman 
microscopy may be better suited to classification of mixed infections as a result of its ability to capture spectra 
from individual bacteria. 

However, Raman microscopy has limitations as compared to plain Raman spectroscopy. Identifying the bacteria 
is time-consuming and cost-inefficient[69, 88]. Technical expertise is required for the user to identify and focus 
the laser on the pathogen, which is introduces inter-user variation[69, 88]. In one study, Mircescu et al. were 
required to bin 30% of spectra because of inadequate peaks resulting from imprecise focussing[101]. 
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Furthermore, Raman microscopy is unable to answer the primary diagnostic question as to whether the samples 
is infected unless the user first identifies the infection. Raman microscopy is similarly unable to provide pathogen 
load quantification. Within samples, sequentially collected spectra of individual microorganism have differing 
spectral features collected using Raman microscopy introducing variation which classification algorithms need 
to account for[69, 83]. This effect is mitigated when using plain Raman spectroscopy due to the inclusion of 
multiple bacteria within the field of focus. Furthermore, the potential role of Raman microscopy for clinical 
identification of bacteria is significantly limited due to the prohibitive cost of Raman microscopes and their large 
physical footprint[88, 100]. 

3.2.3 ANALYSING A SPECTRUM  
A Raman spectrum comprises a large volume of chemical data condensed into a single data vector. Classification 
by direct visual analysis of Raman spectra is rarely possible and as such chemometric techniques are required to 
gain accurate classification. Analysis of spectra follows a process of digital pre-processing, feature creation, 
classification and validation[102]. 

3.2.3.1 SPECTRA DIGITAL PRE-PROCESSING  

 

FIGURE 3. 6 DECOMPOSITION OF SIGNAL AND NOISE INCLUDED IN A RAMAN SPECTRUM.  

Spectra collected sequentially from the same sample, while containing the same chemical data, display 
differences which if uncorrected introduce variability that leads to error when applying classification algorithms. 
These differences arise from noise generated by extraneous light, fluorescence, and the device electronics. Noise 
arises as high frequency noise from the acquisition electronics, low frequency noise from sample fluorescence, 
and cosmic spikes from atmospheric cosmic ray events (Figure 3.6)[103]. High frequency noise and cosmic spikes 
can be removed through smoothing algorithms such as median or Savitzky-Golay filtering.  Low frequency noise 
may be removed by background subtraction methods such as polynomial fitting or iterative restricted least 
squares subtraction. Similarly, Raman spectra acquired sequentially from the same sample demonstrate additive 
and multiplicative shifts which may be removed by normalisation, such as highest peak, defined peak or vector 
normalisation[104-108].  The factors under control in digital pre-processing are summarised in Table 3.3. 
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TABLE 3. 3 FACTORS UNDER CONTROL DURING SPECTRAL DIGITAL PRE-PROCESSING. 

Digital Pre-processing 

Factor Process Strengths/Opportunities  Challenges/ weaknesses 

Background subtraction Reduction of low 
frequency noise through 
subtraction of baseline 

Reduces noise May lose some of the 
target signal 

Smoothing Smoothing of high 
frequency noise and 
cosmic spikes 

Reduces noise May lose some target 
signal 

Normalisation Removes additive and 
multiplicative shifts of 
spectra 

Improves comparability  

3.2.3.1.1 SMOOTHING  
Smoothing algorithms are used to reduce high frequency noise and cosmic spikes. In median filtration each point 
on the spectrum is assigned the median value of a window of surrounding points. Similarly, in Savitsky-Golay 
filtering each point of the spectrum is assigned a value defined by a nth-order polynomial fitted over a bin of 
surrounding points[109]. Both filters have been used for Raman spectrum smoothing in microbiologic studies. 
The major decision for both types of filters is the bin width, with wider bins providing greater smoothing of noise 
but with the potential risk of smoothing off signal. A practical approach is to use the smallest bin width that 
provides adequate smoothing. Savitsky-Golay filtering requires an additional decision of the order of the fitted 
polynomial, with higher order polynomials able to maintain signal but with less smoothing effect[107, 109].  
Median filtering is computationally simpler and less likely to be influenced by the outlying points present in 
cosmic spikes. 

3.2.3.1.2 BACKGROUND SUBTRACTION 
Background correction aims to remove low frequency noise (depicted in Figure 3.6) by subtracting a fitted 
baseline which approximates the low frequency noise, therein bringing the spectral baseline close to zero. The 
most commonly used method is a nth-order polynomial fitted by minimising the squares of the residuals. 
Polynomial fitting has several advantages: it is easily implemented and interpreted. The order of the polynomial 
is the only user input, and as is therefore less amenable to overfitting[110]. The fitted polynomial is a function 
of the entire spectrum, rather than specific points. Polynomial fitting however has some limitations. Fitted 
curves are strongly influenced by outlying spectral points, most importantly those arising from cosmic spikes. As 
such, removal of cosmic spikes prior to polynomial fitting is required. An additional limitation of polynomial 
fitting is Runge’s phenomenon, oscillation of the fitted curve at the edges of the spectrum which is greater with 
increasing polynomial order. This oscillation induces variability at the edges of the spectrum which may 
obfuscate signal in these regions and is of particular importance when using principal component analysis (PCA) 
for feature reduction as components will be inappropriately loaded toward these areas. The effects of Runge’s 
phenomenon can be reduced by using the lowest order polynomial possible, or by truncating the oscillating 
edges after baseline subtraction. 
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Spline interpolation is an alternative means of baseline fitting in which the spectrum to be fitted is divided into 
a number of windows, which are connected by the user selected interpolant points[111]. The fitted baseline 
consists of a number of adjacent windows which are fitted to conform to certain criteria: 

• Each window is fitted to a n-th order polynomial (typically third order) 
• Passes through the interpolant points 
• The first-order derivative at either end of the spectrum is zero (the fitted baseline is level at either end) 
• At interpolating points the first order derivatives of the adjacent fitted windows are equal, resulting in the overall 

baseline being continuous and smooth. 

As spline interpolation fits lower order polynomials over divided windows, it provides a tighter fitting baseline 
as compared to polynomial fitting and it is not susceptible to Runge’s phenomenon. Careful selection of 
interpolants is required as the fitted baseline is extremely sensitive to these points. This may be advantageous 
where the spectral region of interest is known, as placing the interpolating points either side provides a close 
baseline fit to this region. This sensitivity to the interpolating points may however be disadvantageous in two 
cases. Firstly, as the fitted baseline is required to pass through the interpolating points if one of these are set on 
a spectral band which is descriptive of the outcome of interest then informative value of the band may be 
reduced. Alternatively, if an interpolating point is set onto an outlier such as a cosmic spike, then the adjacent 
baseline fitted to this point will poorly reflect the spectral baseline. Furthermore, the need for user-selected 
interpolants daws a risk of overfitting data, which may be mitigated through a priori selection of interpolants 
using pilot or previous data[105, 107]. 

An alternative to baseline subtraction is derivative spectroscopy, in which the derivative of the spectrum is used 
rather than the baseline itself. As the derivative plots the rate of change, derivative spectroscopy intrinsically 
removes the baseline. Derivatives are easily implemented, and as the derivative order is the only user input this 
limits susceptibility to overfitting.  A major disadvantage to derivatives is the propensity to amplify high 
frequency noise, and prior smoothing to remove high frequency noise is therefore required. A further potential 
criticism is derivative spectra are not intuitively interpretable[107, 112]. 

3.2.3.1.3 NORMALISATION  
Raman spectrometry equipment introduces an additive and multiplicative shift such that consecutive spectra 
collected from the same sample can appear different. These shifts may be addressed through normalisation, in 
which the spectrum baseline is shifted down to zero (accounting for the additive shift), after which each band 
by is divided by a normalising factor (therein accounting for the multiplicative shift). A number of options are 
available as a normalising factor. Most used is min-max, or tallest peak, in which the normalising factor is the 
intensity at the highest point of the spectrum. Min-max normalisation stretches the spectrum to lie between 
zero and one[107]. The simplicity of this approach is countered by a number of disadvantages: as the entire 
spectrum is normalised upon a single automatically selected band, the normalised spectrum is highly sensitive 
to the choice of, and value at, this band. Notably, should an inadequately smoothed cosmic spike remain, this is 
likely to be the maximum and the resulting spectrum be normalised upon this noise. Similarly, as the maximum 
band may vary between spectra, these will be normalised upon differing bands leading to unintended variance 
across the spectrum[108]. 

An alternative is defined-peak normalisation in which the normalising factor is the intensity at a chosen peak, 
consistently across all normalised spectra. This method is highly sensitive to the selected peak, and as such the 
chosen peak should ideally have little variance between samples and not be associated with the target as 
unaccounted variance at this peak is extended across the rest of the spectrum during normalisation. Defined-
peak normalisation is particularly advantageous when combined with internal standard, in which the spectrum 
may be normalised by a band arising from an included substance and therefore the spectrum will be 
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proportional to this substance. Defined peak normalisation paired with internal standards may therefore allow 
for quantification of concentration of other substances, including pathogens[107].  

Min-max and highest peak suffer from sensitivity variance at the band selected as a normalising factor. 
Alternative methods use a normalising factor derived from the entire spectrum rather than a single point. The 
two methods employed in the literature are the area under-the-curve (AUC), and vector normalisation. In AUC 
normalisation the area under the curve is calculated by summing the area under all spectral bands. In vector 
normalisation, each spectrum is considered a vector in hyperdimensional space which may be normalised by the 
vector magnitude. Both methods distribute the normalising factor across the entire spectrum, avoiding 
sensitivity on any single band[108]. 

3.2.3.2 DIMENSION REDUCTION/ FEATURE CREATION 
Raman spectra consist of hyperdimensional highly co-linear data. Reducing spectra to a smaller number of 
uncorrelated features has a number of potential benefits. Feature reduction may improve classification accuracy 
through reduction of collinearity and avoiding non-contributory bands. Reducing the number of features is 
frequently more computationally efficient despite the additional analytical process. Working with reduced 
features may be less susceptible to overfitting, therein providing better generalisation. Reduced features may 
be computationally necessary for some learning methods such as linear discriminant analysis, in which having a 
greater number of features leads to a singularity error[113]. The factors under control during feature reduction 
are summarised in Table 3.4. 

Principal component analysis (PCA) is the most commonly applied feature reduction method used in Raman 
analysis. PCA involves transforming the data into a new vector space to create a series of linear principal 
components (PCs) so as to maximise the variation of each component. Each PC contains a greater amount of the 
total variation than the next and are orthogonal to each other. Therefore, transforming the data using PCA 
allows for a small number of features accounting for a large proportion of the dataset variation to be used in 
further analysis. PCA is unsupervised, and as such the variation explained by the principal components arises 
agnostically both from signal (correlated with the class of interest) and the noise (not correlated with the 
outcome of interest). Importantly this means that while the earlier PCs will explain a greater amount of variance, 
these may not best correlate with the class of interest[77, 113-115].  

PCA results in p-1 principal components, where p is the original number of dimensions. For example, applying 
PCA to a set of spectra with 2300 spectral bands will result in 2299 PCs, with each explaining decreasing amounts 
of the total variance. A decision on the number of these PCs passed on further analysis is required. The 
parsimony principal is advocated in which the smallest number of PCs used to provide the greatest classification 
accuracy, typically as defined by the cross-validation accuracy[92, 116]. An alternative method used in the 
published literature is to use the number of PCs explaining a certain amount of the total variance, however as 
there is no standard for this amount this method is susceptible to manipulation and overfitting[113-115]. When 
this method is used, the authors seldom describe how this proportion of total variance explained is decided 
upon. 
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TABLE 3. 4 FACTORS UNDER CONTROL DURING FEATURE REDUCTION 

Feature Reduction 

Factor Process Strengths/Opportunities  Challenges/ weaknesses 

Principal component 
analysis 

Transforms data to a 
new vector space to 
maximise variation 

Reduced features may be 
necessary or may 
improve power 

Assessment of 
component loadings may 
be used to identify the 
bands of spectra 
contributing toward 
classification 

Retains maximum 
variation using minimal 
features 

Maximises variability in 
principal components 
which may not arise from 
signal 

Some signal is lost 

Spectral band ratios Spectrum is divided into 
bands and binned before 
creating ratios. 

Self-normalising Requires further feature 
reduction 

Not widely used 

Data may be lost by 
binning bands together 

Not naturally 
interpretable 

 

Spectral bands ratios such as those used by Kastanos et al. provide an  alternative method for dimensionality 
reduction and feature creation[69]. In this method the spectrum is divided into a number of even windows, and 
the mean of each window is divided by the mean of all other windows to create a new feature set. The authors 
advocate this method as being self-normalising while inherently removing the baseline. The user must decide 
on the window width (and therein the number of windows) to be used. Wider windows risk loss of signal due to 
signal from adjacent bands being combined into a single window. In contrast using narrow windows leads to a 
large number of features. For example, despite advocating spectral band ratios as a dimensionality reduction 
technique, their article used 25cm-1 windows which resulted in a greater number of dimensions after spectral 
band ratios were calculated. Furthermore, converting spectra to a new data structure worsens interpretability 
and impairs mechanistic validation through spectral band assignment.  

3.2.3.3 UNSUPERVISED LEARNING 
Unsupervised learning describes the application of learning algorithms to spectra without prior knowledge of 
the class from which they belong[111]. Unsupervised learning is to directly infer natural clustering of data 
without the guidance of a supervising class. PCA and hierarchical cluster analysis (HCA) are common 



 

 

52 
 

unsupervised learning approaches applied to Raman spectra. Unsupervised learning methods re summarised in 
Table 3.5. 

Unsupervised Machine Learning 

Factor Process Strengths/Opportunities  Challenges/ weaknesses 

Principle component 
analysis 

Transforms data to a 
new vector maximising 
variation 

Reduces features and 
avoids collinearity 

May identify natural 
grouping 

Assessment of 
component loadings can 
identify the spectral 
bands that contribute to 
classification 

Vector space with 
maximal variation may 
not maximise class 
separation, particularly 
where a high degree of 
noise remains 

Hierarchical cluster 
analysis 

Identifies natural 
clustering by proximity 

Intuitive 

Identifies natural clusters 
and sub-clusters 

Does not identify 
contributing bands 

Computationally 
inefficient 

TABLE 3. 5 METHODS FOR UNSUPERVISED LEARNING 

PCA involves the transformation of the data original data into a new vector space consisting of orthogonal 
vectors (PCs), each of which explains a greater amount of the total variance than the next. PCA has a number of 
advantages which make it well suited toward analysis of Raman spectra. PCA is dimensionality reducing, allowing 
hyperdimensional spectra to be reduced to a few descriptive PCs, which may be used for unsupervised 
assessment of clustering or be passed to supervised methods of classification. PCA is mathematically solvable in 
closed form without further user input, and as such is easily implemented and repeatable. PC loadings can be 
back calculated, describing the extent to which bands of the original spectra contribute to each PC[77, 111, 115]. 
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FIGURE 3. 7 SIMPLIFIED DEPICTION OF FEATURE REDUCTION BY PRINCIPAL COMPONENT ANALYSIS. TWO DIMIENSIONAL DATA POINTS 
(X AND Y) CAN BE PROJECTED (DOTTED LINES) TO A SINGLE DIMENTION (GREEN LINE) WHICH MAXIMISES VARIANCE. PCA IS NOT 
CONTINGENT ON THE CLASS OF THE DATA POINTS, REPRESENTED BY RED AND BLUE COLOUR. 

HCA is an unsupervised learning method in spectra are combined into similar clusters, producing a hierarchical 
representation in which clusters at each level through merging the clusters from the levels below. Clusters are 
formed based on a user defined similarity measure such as Euclidean distance (most commonly), Manhattan 
distance or cosine dissimilarity. Clusters may be formed agglomeratively in which similar clusters are recursively 
combined to form clusters above, or divisively in which groups are split to form clusters below. HCA is 
advantageous in its ease of interpretability and depiction using dendrograms. It has the additional advantage 
that unexpected clusters may be identified[101]. They however suffer numerous limitations in spectral analysis: 
HCA is computationally inefficient, requiring recursive calculation of similarities between spectra. While 
demonstrating similarities between spectra, HCA does not provide a means of assessing which bands contribute 
to these similarities, and therefore no mechanistic understanding of the clustering. The need for user defined 
parameters such as similarity measure and clustering mechanism means the results may differ widely dependent 
on user choices[111]. 

3.2.3.3 SUPERVISED LEARNING 
The primary aim of analysis of Raman spectra is frequently to provide a means of identifying the class from which 
the spectrum has arisen. Supervised learning uses spectra of a known class to train algorithms which may then 
classify spectra of unknown class. Methods for supervised learning are summarised in Table 3.6 
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TABLE 3. 6 METHODS FOR SUPERVISED LEARNING 

Supervised Learning 

Factor Process Strengths/Opportunities  Challenges/ weaknesses 

K- nearest neighbours Assigns the class of the K 
nearest neighbouring 
data 

Intuitive Computationally 
inefficient 

Does not generalise well 

Linear Discriminant 
Analysis 

Transforms data to a 
new vector space so as to 
maximize between class 
variance 

Possible with small 
sample set 

Widely used 

Good in set classification 

Multiple classes 

Prone to overfitting 

Requires feature 
reduction 

Support vector 
machines 

Finds maximal class 
separator 

Generalises well 

Does not require feature 
reduction 

Binary classifier (may be 
extended to multiple 
classes) 

Artificial neural 
networks 

Multilayer perceptron 
identifies patterns and 
assigns weights to bands 
in the spectrum to assign 
class 

With proper training 
likely to provide most 
accurate classification 

Black box classification 

Requires large training 
set 

Prone to overfitting 

Computationally heavy 

 

Linear discriminant analysis (LDA), also known as Fisher’s discriminant analysis or discriminant function analysis) 
is the most commonly applied supervised method for Raman spectral classification of bacterial samples. LDA is 
depicted in Figure 3.8. LDA transforms data into a new set of linear discriminants (LDs) that maximise the ratio 
of between group variation to within group variation, which effectively maximises the separation of the classes 
in the new vectors space. [77] The LDs may then be used to identify from which class a spectrum is most likely 
to belong to. PCA is commonly used for dimensionality reduction and feature creation prior to LDA classification. 
This is because the mathematics underlying LDA requires fewer variables than observations, and because LDA 
performs poorly with colinear data[102]. LDA provides accurate classification with relatively little data and is 
therefore frequently preferred for early research. LDA has a further advantage in that it may be possible to back 
calculate the composition of the LDs, providing an understanding of which spectral bands provide the 
classification[117]. LDA however, generalises poorly which may limit its use beyond earlier stage research[111, 
113, 118].  
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FIGURE 3. 8 SIMPLIFIED DEPICTION OF LINEAR DISCRIMINANT ANALYSIS. DATA POINTS IN TWO DIMENSIONS (X AND Y) ARE PROJECTED 
TO A NEW DIMENSION, OR LINEAR DISCRIMINANT (GREEN LINE), WHICH MAXIMISES THE RATIO OF THE BETWEEN GROUP VARIANCE TO 
THE WITHIN GROUP VARIANCE. THE UNKNOWN DATA POINT (STAR) IS ASSIGNED TO THE BLUE CLASS IN THIS DEPICTION. 

Support vector machines (SVMs) have similarly been used for supervised learning of bacterial Raman spectra. 
SVMs are maximal margin classifiers in which data is separated into classes by a hyperplane which provides 
greatest separation of the classes. A two dimensional example is illustrated in Figure 3.9. SVMs have been 
demonstrated to have better generalisability as compared to LDA and as such are garnering greater interest in 
bacterial Raman research. A potential challenge arises in that SVMs require the data be separable by a 
hyperplane. Kernel methods may be employed when data is not separable, or to gain greater classification 
accuracy through a wider separation margin. Kernel methods use the existing data to create additional 
dimensions which provide greater separability of data. A major limitation arises in that SVMs require binary 
classifications, and are therefore not naturally suited to multi-class challenges such as bacterial classification. 
Two potential options are available for multi-class SVMS are one-versus-one and one-versus-all approaches, 
both of which have significant limitations. One-versus-one multi-class SVMs creates multiple SVMs comparing 
each individual class against every other individual class and assigns each spectrum to the class to which they 
are most commonly assigned in all of these SVMs. One-versus-one SVMs are computationally inefficient 
requiring each spectrum be assessed in a number of SVMs. Spectra may fail to be classified in this approach if 
there is disagreement between the SVMs. One-versus-all creates multiple SVMs comparing each individual class 
against all the other classes combined and assigning spectra to the class in which the spectra is furthest from 
the separating hyperplane[111, 119, 120].  
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FIGURE 3. 9 A SIMPLIFIED DEPICTION OF SUPPORT VECTOR MACHINES. DATA IS SEPARATED MY A MAXIMAL MARGIN CLASSIFIER, A LINE 
IN THIS TWO DIMENSIONAL ILLUSTRATION, WHICH BEST SEPARATES THE CLASSES. NEW DATA (STAR) IS ASSIGNED DEPENDENT 
ACCORDING TO WHICH SIDE OF THIS BOUNDARY IT FALLS – BLUE IN THIS CASE. 

Artificial neural networks (ANNs) hold the greatest potential for spectral classification when applied at clinical 
scale. ANNs use multiple layers of perceptrons to identify patterns in spectral data in a process analogous to 
that of neurons. ANNs have several advantages when applied to spectral analysis.  ANNs have the potential to 
identify complex patterns in spectral data. While the traditional approach of digital pre-processing and feature 
creation prior to classification may be used, ANNs may classify spectra without these steps. ANNs are well suited 
to multi-class classification without the need for adaptation such as those required for SVMs. ANNs, however, 
require large amounts of training data and are therefore less favoured in early research where rapid prototyping 
is more important than generalisability[102]. This problem may be reduced by prior feature reduction using 
PCA.[102] A further potential reason ANNs are not preferred for early-stage research is that ANNs do not provide 
a mechanistic understanding of which spectral bands are used for classification[111, 121]. These reasons may 
explain why to date only Goodacre et al. have used ANNs for bacterial classification[102]. 

3.2.3.4 ASSESSING MODEL ACCURACY 
The supervised learning methods applied to spectra are designed to maximise the classification accuracy on the 
data they are trained upon. As such these may be prone to overfitting, in which the algorithms base classification 
upon noise in the training data rather than signal representative of external data[76]. As such, assessing the 
classification accuracy is contingent on assessing algorithm performance on unseen data. Assessing data 
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classification performance is a trade-off between the independence of the test data against the total amount of 
data that needs to be collected[111]. Methods for validation are summarised in Table 3.7. 

TABLE 3. 7 METHODS FOR VALIDATION 

Validation 

Factor Process Strengths/Opportunities  Challenges/ weaknesses 

K-fold cross validation Subsets collected data 
into k-folds, each of 
which is classified using 
algorithms trained on all 
other folds. 

All data is used for 
training 

Data set is not 
independent 

Still allows for some 
overfitting 

Test Set validation A subset is retained for 
testing 

Test set is relatively 
independent 

Not all data is used 

Prospective validation A diagnostic technology 
with trained algorithm is 
assessed using 
prospectively collected 
data 

Test set is truly 
independent 

Time consuming  

 

The most robust assessment of classification performance is provided by previously trained algorithms on newly 
collected independent data. While providing the most robust assessment classification accuracy, this process 
requires the greatest amount of data as sufficient data is required to properly train the algorithm, as well as an 
additional separate amount of data needed to assess the classification performance. As such, independent test 
is reserved for completely developed technologies with previously optimised learning algorithms. While some 
Raman bacterial studies have assessed their technology on independent data none of these had sufficient 
independent testing data to robustly assess classification performance[76]. 

An alternative is to divide collected data into a training and a test set prior training the algorithms which 
maintains a degree of independence. However, as training and testing data is collected simultaneously it is not 
truly independent. Additionally, while it may be more efficient to collect the data simultaneously, sufficient data 
is still required to both train and separately test the learning algorithms[111].  

Crossfold validation is a means of assessing classification performance maintaining some degree of 
independence without requiring collection of a separate test set. In crossfold validation the data is divided into 
k folds. The data in each fold is used as a test set on algorithms trained by all the other k-1 folds combined. As 
such all data is used for both training and testing while still maintaining independence when training algorithms. 
Leave-one-out cross validation (LOOCV) extends this such that each fold contains a single spectrum which is 
classified by algorithms trained on all other spectra. LOOCV retains the maximum possible data for algorithm 
training, and so is commonly used for earlier stage research[111].Importantly, LOOCV performance will always 
appear superior to true classification performance[69, 122]. 
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3.2.3.5 ASSIGNING SPECTRAL BANDS 
The supervised learning methods used for bacterial classification are agnostic with regards to the contents of 
the spectral bands upon which they determine the outputted class. As such assessing the contributions of 
spectral bands is not required for classification. While not necessary for the final classification of spectra, 
assigning and understanding the contributions of spectral bands and linking these to the molecular composition 
of the target is an integral part of Raman discovery and development. Assessing the contributions of spectral 
bands provides a mechanistic understanding of Raman-based classification therein providing a means of both 
forming hypotheses and testing these[76]. Careful assessment of spectral band contributions provides a strong 
counterargument against “black box” criticisms of supervised learning, in which a lack of mechanistic 
understanding underpins criticism of overfitted classification. Caution however needs to be applied as bands 
arising from different biochemical entities may overlap[96, 123]. 

An ideal method for assessing spectral band contribution would provide an accurate quantitative assessment of 
the location of the band, a quantitative strength of the contribution both in total magnitude and relative to noise 
at the spectral band. Methods for spectral band assessment should allow for pairwise comparison between 
groups in addition to assessment of the importance of bands across the whole population. A number of different 
methods have been used in the published literature to assess spectral band contribution. 

Visual assessment of the spectral differences belonging to different classes has been used to assign spectral 
bands in the published literature, despite this method suffering a number of shortcomings. This method is reliant 
on user interpretation and so is subject to confirmation bias. The non-quantitative nature of visual assessment 
is prone to a number of challenges. Firstly, given the highly congested nature of bacterial Raman spectra, most 
notably in the fingerprint region, visual assessment may incorrectly assign or miss spectral bands. Secondly, as 
assignment of peaks is made without consideration of variability, the importance of large peaks in areas of high 
variability may be overestimated, while the importance of small peaks in areas of low variability may be 
underestimated. Finally, without quantification, visual assessment fails to demonstrate the contribution of 
bands relative to each other. 

PC loadings are frequently used to assess the contributions of spectral bands[101, 124]. Through assessing the 
eigenvectors upon which the PCA transformation is performed, a quantitative assessment of the relative 
contribution of spectral bands to the PCs is provided. A potential limitation in this method of band assignment 
arises in that PCA is an unsupervised method, and therefore these loadings reflect spectral bands with greater 
variability which does not necessarily arise from class differences. However, where the classes separate on PCA 
plots it is assumed that these loadings arise from spectral differences between classes. As this only looks at the 
variation across all the spectra, it may underrepresent bands where small, but important, spectral differences 
lie in areas with little variability, or conversely over represent spectral bands where large, but meaningless, 
differences arise from high variation bands[77]. 

This method can be extrapolated to PC-LDA where the successive PC and LD transformations can be back-solved 
to demonstrate the spectral band contributions of the LDs. This has the advantage providing the quantitative 
backing behind a supervised method, and therein a greater degree of certainty the loadings arise from class 
differences rather than uncorrelated variation. The reliability of these spectral band assignments is inherently 
linked to the model fit[117]. 

A final approach is to centre and scale a group of spectra upon a reference group by subtracting the reference’s 
mean at each band and dividing by the variation. The resulting plots give an indication the difference at each 
band relative to the reference variability. This method has a number of advantages for spectral band 
classification: the method is easily implemented and interpretable;  quantitative spectral differences relative to 
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reference spectral variation demonstrates the importance of the difference while ensuring small differences in 
low variation regions are not underrepresented; it allows for global or pairwise comparisons through selection 
of the reference spectra, therein allowing for interrogation of differences between specific classes or groups of 
classes. 

3.2.3.6 A MULTILEVEL APPROACH TO SPECTRAL CLASSIFICATION 
The frequent approach used for classification in which all spectra are assigned a classification from a single 
sample population is likely to lead to worse classification accuracy as small interclass signal is overwhelmed by 
the competing signal of the whole group. This has led to a number of authors employing multi-level classification 
approach in which a series classifications are performed on smaller groups[69, 76, 80, 85, 96]. For example, first 
classifying samples as infected or uninfected, then classifying infected samples as Gram-positive as compared to 
Gram-negative, before species level classification as illustrated in Figure 3.10. This approach is likely to lead to 
better classification as learning algorithms are allowed to focus on specific interclass signal. For example of such 
interclass differences is that described by Manoharan et al. who demonstrated Gram negative pathogens have 
greater intensity of tryptophan peaks[125].  This approach may have particular value when using SVMs for 
classification, where a series of classifications may suit the binary nature of SVMs. 

 

FIGURE 3. 10 DEPICTION OF STANDARD (LEFT) AND MULTILEVEL (RIGHT) CLASSIFICATION APPROACHES 

In the current literature, classification levels are user-defined as a series of questions. A potential pitfall in this 
approach is highlighted by Mircescu et al., whose work demonstrated spectral similarities between Proteus 
species and Gram-positive bacteria arising from chemical similarities in O-antigen and Gram-positive cell wall 
proteoglycan[101]. In such a case, application of a multi-level classification approach may systematically 
misclassify Proteus bacteria as Gram-positives. A potential alternative not yet applied in Raman based 
uropathogen classification is to use a combined unsupervised-supervised multi-level classification approach, in 
which an unsupervised approach such as HCA can be used to assign binary class decisions to be made using a 
supervised approach such as SVMs. 

3.3 SURFACE ENHANCED RAMAN SCATTERING 
The accidental discovery of surface enhanced Raman scattering (SERS) by Fleischman et al. provided a 
substantial improvement in potential for Raman spectroscopic based pathogen identification. Surface 
enhancement arises when the target (such as a pathogen) is placed in close proximity onto a noble metal 
nanostructure. Signal enhancement in the order of 1014  gives SERS the potential to overcome the key limitation 
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of Raman spectroscopy of weak Raman signal levels, while the strong distance dependence provides for selective 
enhancement. As such, SERS is the modality of choice in the majority of Raman-based pathogen research. This 
extreme enhancement and strong distance relationship necessitate a careful understanding of the spatial 
mechanics of SERS to gain the greatest value from its use. As such SERS has been described as “combination of 
Raman spectroscopy and nanotechnology” by Gao et al.[126]. 

3.3.1 MECHANISM OF ACTION 
The substantial enhancement provided by SERS has been attributed to two separate mechanisms: an 
electromagnetic mechanism (EM) and a chemical mechanism (CM). The EM arises as a result of localised surface 
plasmon resonance (LSPR), which occurs when the light interacts with the metal surface generating plasmons 
(oscillations in electron density) leading to collective oscillation. The electromagnetic mechanism generates 
enhancement of up to 105, which strongly dependent on the size and shape of the nanostructure[7, 72]. This 
mechanism is strongly influenced by the distance as depicted in Equation 3.2[77]. The CM is mediated by a 
charge transfer mechanism in which intermolecular charge transfers between the noble metal and target 
molecule allow for collective oscillation and resonance leading to signal enhancement. The chemical mechanism 
generates enhancement in the order of 102[70, 72, 77]. 

𝐼 ∝
𝐸!
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EQUATION 3.2 SERS INTENSITY (I) IS A FUNCTION OF ELECTROMAGNETIC FIELD (E) AND THE DISTANCE BETWEEN ANALYTES AND SERS 
SURFACE (d) 

Practically applied to pathogen identification a number of factors may be controlled to optimise surface 
enhancement. Maximal enhancement is achieved where the frequency of the light is lower than the resonance 
frequency of the target molecule, and as such excitation using high frequency (lower wavelength) light, such as 
UV, are not used for bacterial SERS. The SERS effect decreases exponentially as distance increases and is 
negligible beyond 20nm. As such, while close apposition provides massive signal enhancement, poor apposition 
will provide no benefit and inconsistent application will lead to massive variability making classification 
impossible [7, 69, 72, 80, 97, 98, 123].  

3.3.2 METALS 
While all noble metals may be used, silver and gold are the metals most commonly used in bacterial SERS 
research. Gold and Silver have a number of benefits when applied to bacterial SERS. The enhancement is 
inversely proportional to the difference in frequencies of the metal’s surface plasmons and that of the exciting 
photon[127]. As such, the similarity of gold and silver’s plasmon frequencies to that of visible and near infrared 
light provide for optimal enhancement at the wavelengths used for pathogen identification.  

Silver has a further advantage when applied to pathogen detection provided by its propensity to interact with 
the cell envelope, therein preferentially enhancing the cell envelope[128]. 

3.3.3 NANOSTRUCTURE 
As the SERS enhancement is primarily defined by the strong localised electromagnetic fields which vary on a 
nanometre scale the structure of the of the SERS substrate is vitally important, both in optimising enhancement 
but also in ensuring reproducibility.  The size, shape, and interparticle spacing must be chosen and consistently 
maintained to ensure consistent optimal SERS enhancement[7, 69, 72, 80, 97, 98, 123]. A number of techniques 
are employed to generate SERS substrates including roughened electrodes, colloidal nanoparticles and surface-
confined nanostructures[72]. The SERS effect was first identified using roughened electrodes. These provide 
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moderate enhancement in the order of 106. These are infrequently used in Raman bacterial research owing to 
challenges in maintaining consistent nanostructures as well as ensuring pathogen interaction with the substrate.  

Colloidal nanoparticles are frequently favoured in SERS based pathogen research for a number of reasons: 
Standardised methods allow for nanoparticles of consistent size and structure; these methods can be tuned to 
select a nanoparticle size optimised to interact with the target; nanoparticles suspended in solution are free to 
interact with the target or may be encouraged to preferentially do so using techniques such as immunocapture. 
Challenges with nanoparticles arise in the potential for uneven dispersion or nanoparticle agglomeration, as well 
as chemical instability of nanoparticles in solution[45]. 

Surface nanostructures offer significant potential advantages for SERS based research. A number of techniques 
including photolithography, electron-beam lithography and additive manufacture with subsequent metal 
deposition, offer consistent and minute control of nanostructures specifically designed to interact optimally with 
the target. These surfaces may be functionalised to optimise the interaction of the target with the 
nanostructure[45]. Nanostructured surfaces additionally provide for greater stability and so longer shelf life as 
compared to colloidal nanoparticles[72]. 

3.4 BACTERIAL RAMAN 
3.4.1 BACTERIAL STRUCTURE AND BIOCHEMICAL CONSTITUTION 
An understanding of the structure and chemical composition of bacteria is needed to understand, predict and 
optimise Raman spectroscopy as well as predict and plan SERS enhancement. 

Bacteria are prokaryotic organisms, containing no cell organelles or nucleus. Bacteria vary in shape and are 
substantially smaller than eukaryotic cells, with a typical diameter in the region of 1 µm as compared to 10µm 
and above for eukaryotic cells. Contained within the cytoplasm is a single chromosome of DNA. While unique to 
the bacteria in terms of the genetic information contained this DNA constitutes a miniscule proportion of the 
cell biomass and does not vary substantially in its overall chemical composition from cell-to-cell.  Also contained 
within cytoplasm are the messenger RNA and ribosomes used in protein synthesis. These vary considerably in 
in their constitution, and the proportion of the biomass for which they account, both between cell types but 
also within cells[42, 45]. 

The cytoplasm is enclosed in a cell membrane composed of a phospholipid bilayer. In the absence of 
mitochondria, bacteria make use of this membrane to create the electron gradient needed for respiratory 
phosphorylation. The cell membrane therefore contains an abundance of respiratory enzymes, co-enzymes, 
intermediates and respiratory products such as proteins, cytochrome and adenosine triphosphate (ATP). These 
products are frequently strong Raman scatters leading to distinct Raman spectra. The cell membrane is also 
responsible cell nutrition and structural macromolecule synthesis, therefore containing a higher concentration 
of the enzymes and products associated with these processes[42]. 

External to the cell membrane lies the cell wall, which provides structural support, maintains a biochemical 
microclimate and houses proteins and macromolecules with a diverse array of functions. The cell wall is 
descriptive for the cell type, most notably in the composition responsible for Gram-staining but also in the 
contained macromolecules. The Gram-positive cell well is approximately 90% constituted by a 30-100nm thick 
peptidoglycan layer, a polymer consisting of repeating disaccharide subunits of N-acetyl glucosamine (NAG) and 
N-acetyl muramic acid (NAM) crosslinked by pentapeptide sidechains[44, 46]. The pentapeptide crosslinks are 
unique to bacterial types. Peptidoglycan therefore constitutes a considerable proportion of Gram-positive cell 
walls and is comprised of remarkably consistent repeating molecules which are strong Raman scatterers. This 
peptidoglycan layer therefore represents a significant opportunity to identify bacteria using Raman 
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spectroscopy, in differentiating these from Gram negative bacteria and also in identifying bacterial species. The 
peptidoglycan layer is tethered by lipoteichoic acids which are covalently linked to lipids in the cell 
membrane[42]. 

The cell envelope of Gram-negative bacteria differs compared to Gram-positive bacteria most notably in that 
the peptidoglycan layer constitutes a much smaller proportion being only a few nanometres thick and 
accounting for less than 10% of the envelope biomass. A significantly thinner peptidoglycan layer is possible as 
Gram-negative bacteria have an additional outer membrane. Of note, in contrast to the inner membrane, this 
outer membrane contains glycolipids in addition to phospholipids[129].  Most notable of the glycolipids is 
endotoxin which plays a substantial role in the virulence of these bacteria. This outer membrane is attached to 
the peptidoglycan layer by murein lipoprotein (Braun’s lipoprotein). This is the most abundant protein in Gram-
negative bacteria such as E. coli and consistent in its structure[130]. The outer membrane has imbedded a 
number of transmembrane proteins and antigens. O-antigens are polysaccharides consisting of repeating 
oligosaccharides of 3-5 sugar monomers that extend out of the outer membranes are unique to bacterial 
strains[47]. Some bacteria, such as Klebsiella species, have an additional capsule beyond consisting of 
polysaccharides and polypeptides. These capsules are relatively variable both in their thickness and 
composition[42, 45]. 

The cell membrane and cell wall constitute the cell envelope. The cell envelope of bacteria contains consistent 
repeated structures which make up a substantial proportion of the biomass, are descriptive of bacteria down to 
the strain level, and are strong Raman scatterers. Additionally, as this the most superficial layer, the cell envelope 
will be preferentially enhanced by SERS substrates adjacent to the bacteria. Therefore, cell envelope 
components are likely to dominate Raman spectra used for bacterial identification & classification. 

3.4.2 COMMON RAMAN PEAKS 
Assigning the peaks used for pathogen identification and classification is an important aspect of Raman bacterial 
research, both building on the scientific understanding of Raman-based and providing a mechanistic validation. 
Researchers must optimise the many experimental and analytical factors discussed above to obtain spectra best 
suited toward pathogen identification and classification. As such, the discriminatory peaks of spectra are defined 
by the experimental conditions, and with a diverse array of contributory molecules referenced in the literature 
(Appendix III). 

3.4.3 BACTERIAL SERS 
SERS provides substantial advantages in Raman bacteriologic research in that the significant enhancement may 
overcome weak bacterial signal, fluorescence quenching may limit noise and the strong distance relationship 
may be used to preferentially target specific bacterial areas that are likely to provide better discriminatory 
potential. As such SERS based studies predominate the Raman bacteriologic literature with considerable focus 
placed on SERS optimisation. Application of SERS to bacteria is typically achieved by one of three categories of 
techniques: on/in bacterial nanoparticle formation, nanoparticle colloids and SERS-active surfaces.  

3.4.3.1 ON/IN NANOPARTICLE FORMATION 
Metal nanoparticles are achieved through reduction of a noble metal salt with a suitable reducing agent as 
illustrated in Figure 3.11.  Experimental methods have been developed to localise this reaction in or adjacent to 
the cell membrane. Soaking the bacteria in the reducing agent such as sodium borohydride, after which the 
reducing agents is washed off before soaking the bacteria in a noble metal salt solution such as silver 
nitrate[131]. As the two solutions equilibrate across the cell membrane noble metal nanoparticles are formed 
on the cell wall. On wall formation provides highly resolved spectra dominated by cell wall components.  A 
number of metal salts including silver nitrate and chloroauric acid, paired with a variety of reducing agents such 
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as sodium borohydride hydroxylamine allow for a variety of nanoparticles with varying spectral profiles[86, 101, 
128, 131]. 

Reversing this process, with the bacteria soaked in the noble metal salt prior to suspending in the reductant 
results in formation of the nanoparticles on the cell membrane as opposed to cell wall[132]. As such, the 
resulting spectra are dominated by cell membrane components, notably respiratory co-enzymes such as flavins 
and purines. 

As the nanoparticles are formed directly on the cell envelope, these methods have provided valuable insights 
into SERS-based bacteriologic research. Despite highly resolved spectra the techniques of on/in nanoparticle 
formation have been confined to SERS bacteriologic basic sciences research for a number of reasons: firstly, 
success of these experimental procedures is contingent on strict laboratory control; secondly, the salts and 
reducing agents are unstable requiring fresh preparation; finally, significant delays are required during salt/ 
reductant absorption, washing and subsequent reaction steps making these methods impractical for clinical 
bacteriology. 

 

FIGURE 3. 111 FORMATION OF SERS SUBSTRATE DIRECTLY ON BACTERIAL CELL ENVELOPE INCLUDES a) ALLOWING A REDUCING AGENT 
TO DIFFUSE INTO THE CALL, b) BEFORE WASHING THE REDUCING AGENT OFF, AND THEN c) PLACING BATHING IN A NOBLE METAL SALT 
SOLUTION. THIS CAUSES THE METAL SALT TO REDUCE OUT OF SOLUTION AT THE INTERFACE PROVIDED BY THE CELL ENVELOPE 

3.4.3.2 COLLOIDS 
A frequently used method for bacterial SERS is mixing bacteria suspensions with nanoparticle colloids, as 
illustrated in Figure 3.12. Nanoparticles are most frequently produced through the methods described by 
Leopold & Lendl[133] or that of Lee & Meisel[134]. Both methods may be adapted to produce nanoparticles 
varying in size, shape, size distribution and whether these are capped. Strict control is required to ensure 
consistency of nanoparticle size and shape.[72] Capping refers to coating the nanoparticles with an agent that 
avoids agglomeration, therein stabilising the colloid[135]. Capping agents contribute their own signal to the 
Raman spectrum which may influence classification.[136] 

In the absence of employing methods to ensure adsorption of nanoparticles onto the bacteria, both are 
randomly distributed throughout the mixture. As such, the Raman spectra are dominated by secreted cell 
metabolites, with little representation of cell components [137]. 

The greatest challenge arises in apposing pathogens to nanoparticles[136]. The simplest method to achieve 
nanoparticle interaction with bacteria is time mediated[70, 136, 137]. Silver, and to a lesser extent gold, are 
bactericidal as a result of the metals interacting with the cell membrane[138]. This is a time-dependent process 
affected by the nanoparticle characteristics (smaller size, complex shapes and capping agents), environmental 
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factors (temperature and concentration) and pathogen characteristics (Gram negatives)[136]. As a result of this 
time-dependent interaction, the SERS spectra of colloid-bacterial mixtures vary, initially improving in intensity 
as nanoparticles embed in the membrane, then deteriorating as cells lyse. Optimal SERS was achieved at 
approximately 3 hours. Prolonged exposure may lead to a deterioration in the spectra resulting from the 
bactericidal effect of nanoparticles.[45] 

 

 

FIGURE 3. 122 SERS WITH COLLOIDAL NANOPARTICLES. a) BACTERIA IMMERSED IN COLLOIDAL NANOPARTICLES. b) NOBLE METALS 
NATURALLY INTERACT WITH THE CELL ENVELOPE IN A TIME DEPENDENT MANNER, WITH THE RATE DETERMINED BY FACTORS INCLUDING 
NOBLE METAL, NANOPARTICLE SIZE AND SHA 

A range of more intricate methods have been employed to attain rapid, closer or, in some cases, targeted 
interaction of nanoparticles with the pathogens. This has been achieved using antibody-mediated 
immunocapture as well as aptamers[78, 139, 140]. Depending on the strength and specificity of the binding 
these techniques ensure apposition within the SERS effect range on target pathogens. This provides substantial 
preferential enhancement of pathogens and so is well suited to pathogen identification and identification. A 
potential challenge arises in that the Raman signal of the binding agent is similarly enhanced, although this is 
consistent across spectra and so may be accounted for during analysis. A further potential concern arises in that 
only pathogens onto which nanoparticles bind are enhanced, and so misclassifications will occur for any species 
which do not possess the specific binding site. Finally, functionalisation is a technical process which may not be 
amenable to cost-effective mass production or may limit the stability of nanoparticles. 

3.4.3.3 SERS-ACTIVE SURFACES 
A third approach is to apply the pathogens to a SERS-active substrate, as illustrated in Figure 3.13. Variations in 
the substance and manufacture of the substrate, type of SERS coating and methods for bacterial apposition 
allow for a diverse range of potential SERS-active surfaces that can be fine-tuned for pathogen recognition. SERS 
substrates provide a number of other advantages, including: the substrate may play additional roles, most 
notably in pathogen capture such as in SERS microfluidics; SERS substrates avoid the agglomeration challenge 
of colloids and so may provide better stability; and the SERS substrate also provides a consistent surface which 
may simplify laser focussing. A similar challenge arises to that faced by colloids in that the Raman signal of the 
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substrate is present, although this may be minimised by the choice of substrate and remains consistent and so 
may be accounted for during processing[45, 128]. 

 

FIGURE 3. 133 SERS THROUGH ACTIVE SURFACE INCLUDE a) APPLICATION OF A NANOSTRUCTURED NOBLE METAL SURFACE USING A 
VARIETY OF TECHNIQUES. b) BACTERIA IN SUSPENSION ARE APPLIED TO THE SURFACE BEFORE c) USING TECHNIQUES SUCH AS AIR 
DRYING TO ENSURE APPOSITION OF PATHOGENS TO THE SERS SUBSTRATE 

At its simplest SERS pathogen suspensions are applied to commercially available SERS-slides composed of a glass 
base with a roughened gold or silver layer applied[141]. Additional steps are required to bring the pathogens in 
apposition to the SERS substrate to gain enhancement. Apposition is frequently achieved through simple 
evaporation of the background solution, but a number of more rapid or selective means have been 
demonstrated[45, 128, 142]. 

SERS substrates have been produced through numerous means including lithography, electrospinning, mould 
compression, and additive manufacture. Differing methods have potential strengths and weakness with regards 
to a number of factors including: technical complexity of production process, cost of production, equipment 
required, resolution of the substrate and structural complexity of the substrate[45]. 

A similar variety of techniques are available for application of the SERS coating, including application of 
nanoparticles, embedding of nanoparticles into substrates, thin film deposition using physical vapour 
deposition. Control of these methods allow for application of SERS surfaces with varying characteristics, 
including SERS particle size, and spacing, film thickness and layout[72]. 

3.4.4 PATHOGEN AGGREGATION AND CAPTURE 
Overcoming the weak Raman signal of bacteria and background fluorescence is achieved by physical methods 
falling into two categories. Either through increasing the amount of target biomass within the laser focus, or 
through SERS. Both methods are contingent on maximising the number of pathogens within a chosen space. 
Concentrating pathogens in the focal volume is achieved by a number of methods including culture, evaporation, 
centrifugation, electrostatic capture, dielectrophoresis, immunocapture, optical tweezers, magnetic coupling, 
microfluidics and antibiotic linking[45]. Different methods have strengths and weaknesses with regards to rate 
of capture, ease of implementation, equipment required, user technical experience required, selectivity of 
pathogens[70]  

While circumventing the delay imposed by culture is the single biggest advantage to using Raman spectroscopy 
culture remains a commonly used technique in Raman based pathogen recognition. After passing the lag growth 
phase, pathogens grow exponentially, with bacteria such as E. coli able to double in number every 20 minutes. 
Raman based pathogen studies utilising culture for pathogen enhancement aim to achieve two aims: to either 
assess the dynamic Raman changes across growth phases, or to minimise the time to pathogen detection and 
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classification. In addition to the delay incurred culture-based Raman detection is limited by the overwhelming 
background signal of culture media, although Premasiri et al. have demonstrated that 3 or more successive 
centrifuge and washing cycles are adequate to remove this background signal [143]. 

Filtration has been used in Raman based studies as a rapid means of capturing pathogens directly from biofluids, 
providing near unlimited capacity for pathogen concentration[136, 144-147]. Using filters with different pore 
sizes allows for physical separation of pathogens from eukaryotic cells due to different cell sizes. Additionally, 
filters allow for rapid separation of background signal arising from biofluids by passing through a wash fluid after 
pathogen capture. Filtration is widely used technique within microbiology requiring minimal technical expertise 
and equipment. Lin et al. embedded nanoparticles in mesoporous silica onto which S. aureus were captured for 
Raman analysis[136]. Szymborski et al. captured pathogens onto electrospun polylactic acid filters with a gold 
SERS thin film applied through physical vapour deposition[147]. Dryden et al.  (Please see Sections 6.3 and 
Chapter 7) captured uropathogens onto commercially available membrane filters with enhancement achieved 
by adding silver nanoparticles, and subsequently captured uropathogens directly from phantom urine samples 
onto gold coated filters for a single-step pathogen and Raman capture method for bacterial identification[148]. 
 
Centrifugation is commonly applied during washing steps to remove culture media but has also been used as an 
aggregating method for concentrating biomass for Raman analysis. Differences in pathogen size and density 
allow for differential centrifugation, therein allowing for selective separation of pathogens. Tien et al. used 
differential centrifugation to directly capture pathogens from urine for Raman identification[124]. 

Bacteria are negatively charged and so attracted to positively charged surfaces through electrostatic forces. 
Mircescu et al. used protonated glass slides to capture bacteria prior to forming SERS on the pathogens[101]. 
Yang et al. pegylated SERS slides upon which bacteria were captured directly from culture media and artificial 
urine[149]. This process allowed for rapid separation and Raman analysis direct from biofluids. Prakash et al. 
used positively charged bimetallic nanoparticles to identify bacteria in solution without the need for further 
concentrating steps. [150]  The utility of this method is potentially limited by the fact that proteins and 
eukaryotic are also negatively charged, and as such are also bound to the SERS substrate. 

Bacterial surface charge also underpins work performed by Schroder et al. in which custom built 
dielectrophoresis chips were able to concentrate uropathogens directly from suspension and human urine for 
Raman analysis without the need for SERS enhancement. While this work still required a Raman microscope, the 
relatively large focus diameter of 10-12 µm indicates that user-controlled focussing was simplified as compared 
to works that focused the Raman microscope onto single bacteria[117]. 

Liu et al. demonstrated that nanoparticles functionalised with vancomycin were able to significantly enhance 
susceptible bacteria directly from blood[78]. As this method relies upon the interaction of vancomycin with d-
alanyl-alanine in Gram-positive peptidoglycan, this would not enhance Gram-negative pathogens or vancomycin 
resistant pathogens. It is therefore limited in bacterial identification or classification but could play a potential 
role in antimicrobial sensitivity testing in confirmed Gram-positive samples. 

3.4.5 PREPARATION OF BACTERIAL SAMPLES 
Fine control of many experimental and analytical parameters allows for finetuning of Raman methodology to 
obtain highly resolved spectra, but conversely means any experimental variation will lead to substantial 
differences in the spectra obtained. Similarly, methodology for Raman spectral acquisition needs to be refined 
for the target pathogens of interest. As such, while optimising the parameters of Raman acquisition, 
representative samples with minimal variability are needed. Bacterial suspensions are used as they allow for 
bacteria of known strain, in a consistent growth phase, at a controlled concentration suspended in a known 
background solution. This is in contrast to highly variable clinical samples containing pathogens from varying 
genera, species and serotypes, at a range of bacterial loads, with each sample containing pathogens at different 
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growth phases and in highly variable biofluids. Bacterial suspensions for Raman research are produced culturing 
pathogens to a consistent growth phase, washing off culture media, followed by resuspending in a known 
solution and dilution to a chosen concentration.  

3.4.5.1 CULTURE MEDIUM 
A range of culture media including agars and broths are used in Raman pathogen research including blood agar, 
chocolate agar, brain hear infusion, lysogeny broth, nutrient agar and nutrient broth. The ideal growth media is 
non-selective, allowing for all samples to be produced in a standardised manner[110, 143]. 

3.4.5.2 GROWTH PHASE 
Growth rates of bacterial samples are affected by environmental condition most notably temperature and time. 
Cultured pathogens progress through a series of growth phases: lag phase, log phase, stationary phase and death 
phase, reflected by dynamic changes in cell structure and function[78, 151]. These changes are reflected by 
dynamic Raman changes. Avci et al. demonstrated these dynamic shifts in uropathogens stabilised as bacteria 
moved into the stationary phase from 12 – 24 hours[123]. As such, Raman bacteriologic research is frequently 
performed in the stationary phase so as to minimise within and between sample variability. Infected clinical 
samples contain pathogens in varying growth phases, which are likely to lead to increased spectral variability. 

3.4.5.3 CENTRIFUGE & WASHING 
Culture media and biofluids have significant fluorescent and Raman spectra that may obfuscate pathogen cell 
signal or lead to diagnostic confounding. For example, Premasiri et al. demonstrated Raman spectra of different 
cultured pathogens cluster according to the culture medium used before washing, but after 3 or more centrifuge 
and wash cycles these clustered according to the pathogen present[143]. As such bacterial suspensions are 
washed prior to Raman analysis. As such washing is employed both during production of suspensions. 
Additionally, samples are frequently washed as an additional step in physical processing so as to optimise Raman 
signal. This is of particular value with fluorescing biofluids such as urine.  

3.4.5.4 PATHOGEN LOAD AND SUSPENDING SOLUTION 
Control of pathogen load may be required to reduce between sample variability, to identify limit of detection 
and to ensure suspensions appropriately reflect clinical samples. Gold standard assessment of pathogen load is 
performed using plate counting by the method defined by Miles and Misra[152]. This method is laborious 
entailing serial dilution and culture followed by manual counting, all repeated in triplicate. A further limitation 
when applied to Raman research is the delay required for culture means this method may only confirm the 
pathogen load rather than be used to plan bacterial loads. 

Optical densitometry at 600nm (OD600) is a rapid method for estimating bacterial load and for adjusting cell 
concentration using the suspension turbidity. McFarland demonstrated comparisons of suspensions turbidity 
against standardised solutions of barium sulphate provided a correlate of bacterial load[153]. Turbidity 
assessment provided by OD600 has become the preferred method for microbiology in view it’s speed and 
simplicity. OD600 is preferable to plate counting for Raman research as pathogen load can be adjusted to the 
intended level before Raman assessment. OD600 is a surrogate measure of bacterial load with the correlation 
density and load varying between species as a result of differing cell size and shape[154]. Additionally, variation 
between devices has been demonstrated[154]. Therefore, the optical density meter used requires calibration 
to the chosen bacteria. 

3.4.6 ANTIMICROBIAL SENSITIVITY TESTING 
Gold standard AST using disc diffusion relies on demonstration of phenotypic changes, incurring substantial 
delays while awaiting pathogen culture and subsequent response to antimicrobials[155]. In contrast genotypic 
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AST provides rapid AST through identification of known mutations conferring resistance, however this may not 
accurately correlate with phenotypic sensitivity. Through providing rapid assessment of pathogen metabolic 
profile, Raman spectroscopy is ideally suited to rapid phenotypic AST[124]. Given the tendency for Raman 
pathogen identification to be based upon cell envelope changes, the technology is ideally suited to identify the 
antimicrobial mediated cell envelope degeneration. Raman-based classification has frequently been extended 
to provide antimicrobial sensitivity, with successful differentiation of sensitive pathogens achieved in 20 minutes 
or less[89, 149, 156, 157]. 

3.5 SYSTEMATIC REVIEW OF RAMAN SPECTROSCOPY APPLIED TO UTI DIAGNOSIS 
3.5.1 INTRODUCTION 
Urinary Tract Infection (UTI) is an extremely common bacterial infection in humans leading to an outsized 
disease burden. This burden is exacerbated by limitations in current diagnostics. Screening tests such as urinary 
dipsticks, while rapid, are inaccurate and fail to delineate bacterial species. Gold-standard diagnosis through 
cultivation, while accurate, may take as long as 48 hours. Rapid and accurate bacterial identification stand to 
fundamentally alter UTI management by allow for precision antimicrobial management from the point of 
diagnosis. While developments in microbial metabolic diagnostics including polymerase chain reaction (PCR) 
and mass spectrometry promise to reduce the time to diagnosis, the cost and complexity of these techniques 
make point of care diagnosis unfeasible[5]. 

Raman spectroscopy stands to fill this diagnostic gap by providing immediate speciation though whole organism 
metabolic fingerprinting. The application of Raman spectroscopy to bacterial identification has demonstrated 
success with strain level accuracy, making Raman spectroscopy an excellent candidate technology for point of 
care uropathogen identification. 

This systematic review aims to assess the current published literature on UTI diagnosis using Raman 
spectroscopy: identifying the diagnostic accuracies attained, the techniques used and the progress made toward 
clinical detection of UTIs. 

Research aims: 

• Primary: 
o Describe the diagnostic and classification performance or Raman spectroscopy for urinary 

tract infections. 
• Secondary 

o Describe the samples used in Raman spectroscopic uropathogen research, including the 
details of clinical samples used as well as the techniques and processes used for creating 
suspensions and phantoms. 

o Describe the physical methods employed for pathogen aggregation and capture prior to 
Raman spectral capture. 

o Describe the equipment. techniques and processes used for Raman spectral capture. 
o Describe the digital preprocessing and classification approaches applied to uropathogen 

Raman spectra. 
o Describe the current status of Raman UTI research including barriers to translation towards 

clinical implementation. 

3.5.2 METHODS 
A search strategy was devised with the assistance of Imperial College London librarian. The search was designed 
using a population, intervention, control, outcome approach, with search terms selected to ensure all pertinent 
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studies were captured (Table 3.8). Searches were performed on PUBMED, Embase and Web of Science 
databases ensuring a cross section of clinical, engineering and basic science articles were reviewed. 

 TABLE 3. 8 PICO SEARCH STRATEGY 

PICO Terms 

Population: UTI UTI 

Urin* & infect* 

Cystitis OR pyelonephritis 

Uropathogen 

Urosepsis  

Intervention: Raman Spectroscopy Raman 

SERS 

Comparison None (uninfected controls not necessary) 

Outcome Diagnostic Accuracy 

Classification Accuracy 

 

Studies selection was performed using Covidence software with inclusion and exclusion criteria listed in Table 
3.9 After removal of duplicates the remaining articles were submitted for title and abstract review. The titles 
and abstracts were reviewed independently against inclusion and exclusion criteria by two reviewers, with 
discrepancies resolved by a third independent reviewer. The full text versions were acquired and assessed for 
inclusion by the two independent reviewers with discrepancies resolved by a third reviewer. Papers included 
had data extracted into a Microsoft Excel spreadsheet by two independent reviewers, with discrepancies 
resolved by review and agreement. Metanalysis was not performed due to an anticipated high degree of 
heterogeneity. 

TABLE 3. 9 INCLUSION AND EXCLUSION CRITERIA FOR SYSTEMATIC REVIEW 

Inclusion Exclusion 

Studies assessing the diagnostic and/ or classification 
accuracy of Raman spectroscopy for uropathogens 

General bacteriologic studies not for uropathogen 
recognition 

Intended for UTI diagnosis or uropathogen 
identification 

Non-peer-reviewed publications 

2 or more uropathogens included  
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3.5.3 RESULTS 

 

FIGURE 3. 144 PRISMA DIAGRAM FOR SYSTEMATIC REVIEW OF RAMAN SPECTROSCOPY UTI DIAGNOSTICS 

Searches of Embase, PUBMED and Web of science were performed on the 8th of July 2020, with 562 search 
results included uploaded to Covidence. After removal of 130 duplicates 432 titles and abstracts were reviewed 
by two independent reviewers against inclusion and exclusion criteria. After exclusion of a further 391 studies, 
41 full texts were acquired for review. After exclusion of 27 studies, 14 studies had data extracted (Table 3.10. 
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TABLE 3. 10 PAPERS INCLUDED IN SYSTEMATIC REVIEW 

Author Year Journal Reference 

Avci  2015 Anal Bioanal Chem [123] 

Oliveira 2012 Biomedical optics [110] 

Goodacre  1998 Microbiology SGM [102] 

Jarvisa 2004 Analytical Chemistry [86] 

Jarvisb 2004 FEMS [96] 

Kastanos 2010 Journal of Raman Spectroscopy [156] 

Kloss 2013 Analytical Chemistry [99] 

Mircescu 2014 Anal Bioanal Chem [101] 

Yogesha 2019 Anal Bioanal chem  [158] 

Premasiri 2017 Anal Bioanal chem [159] 

Schrodera 2013 Analytical chemistry  [117] 

Schroderb 2015 Biomicrofluidics  [160] 

Tien 2018 Molecules [124] 

Yang 2018 RSC Publishing [149] 
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Table 3.11 captures the characteristics of the samples in the included studies. The majority of studies utilised bacterial suspensions, with only a few using urine phantoms or 
urine samples[99, 124, 159]. None of the included studies had negative controls, limiting these studies to pathogen classification of positive sample rather than UTI diagnosis. 
Many studies either did not state the number of samples[101, 160], used the same cultures to prepare multiple samples[96, 117], or else it was unclear as to whether the 
number quoted reflected samples or spectra[99]. Escherichia coli was included in all studies with a varying number of other uropathogens. 

TABLE 3. 11 SAMPLE CHARACTERISTICS FROM STUDIES INCLUDED IN SYSTEMATIC REVIEW 

Author 

  

Biofluid  

Studied Sample 
number 

Source EC Ecl EF EFa Esp KP KO PA PV PM SA SE SS SH 

Avci Bacterial 
suspension 

7 Reference strain 1 
 

1 
  

1 
   

1  1 
 

1 1 

Oliveira Bacterial 
Suspension (10 μL) 

38 Clinical Isolates 5 5 
  

5 7 
 

5 
 

6 5 
   

Goodacre  Bacterial 
Suspension 

59 Clinical isolates 17 
   

12 10 
 

10 
 

10 
    

Jarvisa Bacterial 
Suspensions 

21 samples 
with 4 
replicates 
from each 
sample 

Clinical Isolates 5 
   

4 3 2 
  

5 
    

Jarvisb Bacterial 
suspensions 

20 clinical isolates 5 
   

5 4 1 
  

5 
    

Kastanos bacterial 
suspensions 

75 clinical isolates 25 
    

25 
   

25 
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Kloss 
(training set) 

suspensions 
grown in filtered 
urine 

2951 (not 
stated if 
samples or 
spectra) 

Reference Strain 364 
 

441 247 
 

233 
 

248 
 

247 283 234 224 221 

Kloss (test 
set) 

clinical samples 10 clinical Isolates 7 
 

3 
           

Mircescu Bacterial 
Suspension 

Not stated  Reference strain Yes 
        

Yes 
    

Yogesha 
(single 
species) 

Bacterial 
Suspensions 

75 Clinical Isolates 15 
    

15 
  

15 15 15 
   

Yogesha 
(mixed 
samples) 

Bacteria 
suspensions 

20 (2 species) 

30 (3species) 

clinical isolates 50     
         

Premasiri phantom urine 12 strains clinical isolates 6  
 

2  
  

2  
      

2 
 

Schrodera  
(Suspensions) 

Bacterial 
suspensions 

5 culture 
batches. 
Sample 
number not 
stated 

reference strain Yes 
 

Yes 
           

Schrodera  
(Patient 
samples) 

Patient samples 3 Patient samples 2  (300 
spectra 
from 
each) 

1 (with 
300 
spectra) 
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Schroderb 

(suspensions) 
bacterial 
suspensions 

  
Yes 

 
Yes 

           

Tien Patient Samples 108 (97 
single, 7 two , 
4 three 

clinical samples Yes  Yes 
    

Yes 
 

Yes 
     

Yang Bacterial 
Suspensions 

 
Reference strain Yes  

     
Yes  Yes  

    
  

 
EC = Escherichia coli, Ecl = Enterobacter cloacae, EF = Enterococcus faecalis,  Efa = Enterococcus faecium,   Esp = Enterococcus species,  KP = Klebsiella pneumoniae,  KO = Klebsiella oxytoca,  PA = Pseudomonas 
aeruginosa,   PV = Proteus vulgaris, PM = Proteus mirabilis, SA = Staphylococcus aureus, SE = Staphylococcus epidermidis, SS = Staphylococcus saprophyticus, SH = Staphylococcus haemolyticus, Sho = Staphylococcus 
hominis, CF = Citrobacter freundii 
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TABLE 3. 12 SAMPLE PREPARATION FOR SYSTEMATIC REVIEW 

Author 

  

Culture suspension 

Medium Time Temperature Final Solution Centrifuge  
speed 

Centrifuge 
time 

Wash 
Medium 

Wash 
numbe
r 

bacterial load 

Avci Nutrient agar 1h, 6h, 
12h, 24h 

37° 1ml Deionized 
water 

7500 rpm 5 min Deionise
d water 

3 107 (CFU/ml) 

Oliveira Mueller Hinton Agar, 
Blood Agar, CLED Agar 

16-18h 35° +- 2  
 

N/A 
    

Goodacre  Blood agar  16h 37° Saline (0.9%)   
   

Jarvisa Blood Agar  16h 37 ° Saline (0.01M) 
    

ND 

Jarvisb Blood Agar  12 37° distilled water ND ND ND 
 

ND 

Kastanos Mueller Hinton Agar 18 37° PBS NS NS PBS 3 ND 

Kloss preculture on Columbia 
blood agar then Filtered 
urine 

24 37° Deionised 
water 

10000G 5 min PBS 2 
 

Mircescu Luria Broth 3 or 12 h 37° Normal Saline 50000G 5 minutes 
(4 
degrees) 

Normal 
Saline 

2 Not Diluted 

Yogesha Nutrient Agar overnight 37° Sterile Saline 
    

0.5-0.7 McFarland 
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Premasiri volunteer urine  NS (to 
chosen 
OD) 

NS volunteer 
urine 

 
   

OD600 = 0.1 

Schrodera 
(suspensions) 

CASO Agar overnight 37° PBS 11500G 5min PBS 2 0.4-0.5 OD600 (~108 
CFU/ml) 

Schrodera 
(patient urine) 

NA NA NA PBS 
   

1 
 

Schroderb 

(patient 
samples) 

CASO Agar overnight 37°  PBS 11500G 5min PBS 2 OD600 (to 
concentrations of 107, 
2*107. 108 and 2*108 
cells/ml 

Schroderb 
(validation) 

NA NA NA 
 

11500G 5min PBS 2 
 

Tien NA NA NA NA NA NA NA NA NA 

Yang 
(suspensions) 

Luria Broth or artificial 
urine 

6h 37 ° Deionised 
water 

4500 rpm 15min Deionise
d water 

2 105 cells/ml (by flow 
cytometry) 

Yang 
(validation) 

Luria Broth or artificial 
urine 

6h 37 ° original 
culture 
medium (LB 
or artificial 
urine) 

None None None None 
 

NS = not stated, NA = Not applicable, OD = optical density, ND = Not done 
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Table 3.12 summarises sample preparation methods employed by the studies included in the systematic review. Preparation of suspensions typically followed a process of 
biomass expansion through culture pathogen, washing off the culture medium, followed by resuspension to a chosen concentration, although not all steps are included in all 
studies. The studies displayed a wide variation in the methods and reporting for each step. Notably, only a few studies used urine for suspensions[99, 149, 159]. Washing of 
cultured pathogens was frequently not performed, or performed less than 3 times and as such may be confounded by retained culture medium[143]. The pathogen load was 
frequently not controlled[86, 96, 99, 101, 102, 110, 156] or greater than established cut-offs[123, 158-160]. 

TABLE 3. 13 AGGREGATING AND SERS METHODS IN SYSTEMATIC REVIEW 

Author Physical SERS Method 

Avci Airdrying (on CaF2 slide) Silver Nanoparticles (Leopold and Lendl) 

Oliveira Air drying on aluminium foil ND 

Goodacre  ND ND 

Jarvisa  preculture. Spotted on CaF2 slide Nanoparticles Silver nanoparticle colloid  (Lee and Meisel) 

Jarvisb  preculture. Spotted on CaF2 slide ND 

Kastanos preculture. Spotted on CaF2 slide ND 

Kloss air-dried on nickel foil ND 

Mircescu Specially designed positively charged PEGylated slides Silver nanoparticles (Leopold & Lendl) 

Yogesha spotted on quartz cover slip Not done 

Premasiri Differential centrifugation  Gold nanoparticle coated silicone oxide substrate. ~80nm 
nanoparticles 
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Schrodera  
(suspensions) 

Dielectrophoresis to aggregate and restrain pathogens  ND 

Schrodera  

(patient) 

Dielectrophoresis to aggregate and restrain pathogens  ND 

Schroderb 
(suspensions) 

v-cup microfluidic device, with centrifugation. ND 

Schroderb 
(patient) 

Prefiltration 5um filter, wash and centrifugation. V-cup microfluidic device with 
centrifugation. 

ND 

Tien Differential centrifugation (repeated/escalated if Raman resolution low) Cylindrical SERS chip LabGuide Co) 

Yang Specialised pegylated (positively charged) slides.  Silver nanoparticles (Leopold and Lindl) 

ND = Not done 
 
 
Table 3.13 presents the aggregation and SERS methods employed by the articles included in the systematic review. These methods of enhancing Raman signal were frequently 
the core tenet of the research, and as such contain a variety of differing approaches. Surface enhancement was used in 6 of the 14 studies, with most using nanoparticle 
colloids[86, 101, 123, 124, 149, 159]. Aggregation methods fall into broad categories of basic laboratory methods[86, 96, 110, 123, 156, 158], electrostatic forces[101, 117, 
149], or fluid dynamics[124, 159, 160]. The equipment used in the research included in the systematic review are presented in Table 3.14. The equipment specifications vary 
widely, likely tailored to the experimental requirements. Notably, Raman microscopes were used in most studies, with only Kastanos et al. and Tien et al. using 
spectrometers[124, 156]. 
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TABLE 3. 14 RAMAN EQUIPMENT USED IN STUDIES INCLUDED IN SYSTEMATIC REVIEW  

Author 

  

Device Wavelength 

  

Power 

  

Resolution 

  

spectral 
limits 

  

Acquisitio
n time 

  

Scans 
averaged 

  

Raster Orbital 
Scanning/ roaming 
focus 

  

Name Microscope/ 
spectrometer 

Avci  InVia Reflex, 
Renishaw 

Microscope 830 nm 0.3-3 
mW 

NS 
 

10 s 
  

Oliveira  Lambda P1 Spectrometer 830 nm 300 mW 2 cm-1 
 

5 s 10 (total 50 s)  
 

Goodacre   Renishaw Spectroscope 780 nm 3 mW 
 

200-2300 
cm 

10 s 
  

Jarvisa  Renishaw 2000 Microscope 785 nm ~2mW 6.5cm-1 403.73-
986.66 cm 

10 s 50 (taken from 
a grid) 

grid scan  

Jarvisb  Renishaw Microscope 244 nm 0.1mW 8cm-1 780-1910 
cm 

120 s 
 

rotating aluminium 
holder 

Kastanos Enwave Raman 
Analyser 

Spectrometer 785 nm 180mW 4.5cm 300-
2200cm 

60 s 8 
 

Kloss BioParticleExplorer Microscope 532 nm 7mW 10cm-1 70-3319 cm 6-30 s 2 (for spike 
removal) 

 

Mircescu LabRam Horiba Microscope 633 nm 14mW 2cm-1 truncated 
to 650-
1650 cm 

5 s at least 20 
spectra 
obtained for 
each sample 

 



 

 

80 
 

Yogesha Home made Microscope 785 nm NS NS 450-
1800cm 

NS 
  

Premasiri Renishaw Rm2000  Microscope 785 nm 0.45m
W 

0.5cm-1 200-
1800cm 

~10 s 10-20 scans 
taken 

 

Schrodera  CRM300 WITec Microscope 532 nm 15mW 
 

600-1750 
cm 

   

Schroderb  CRM WITec Microscope 532 nm 35mW 
   

133 Multiple V-cups 
sampled 

Tien QEPro Spectrometer 785 nm 20mV 
 

400-2300 
cm 

5 s 
  

Yang LabRam HR Horiba Microscope 633 nm 0.14m
W 

2cm-1 50-2000 cm 10 s 
  

NS = Not stated 
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TABLE 3. 15 SPECTRAL PRE-PROCESSING OF STUDIES INCLUDED IN SYSTEMATIC REVIEW 

Author Smoothing Method Background Subtraction Normalization Additional 

Avci  
 

Cubic spline interpolation (14 
manual points) 

sum of intensity values of each 
spectrum = 1 

 

Oliveira   Polynomial subtraction (7th 
order) 

Peak intensity (1453cm-1) 
 

Goodacre  
    

Jarvisa  Savitsky-Golay (first order,  9 
point window) 

subtraction of a linear baseline min-max normalization median of 36 of 50 spectra were summed 

Jarvis b  Savitsky-Golay (3rd order, 15 
point window) 

   

Kastanos "cosmic spikes removed, no 
filtering done" 

 
 

Mean of 5 independent samples. Spectral band 
ratios with 76 even bands 

Kloss 
 

SNIP clipping vector Spike removal using upper bound spectrum 
algorithm truncation to 3100-2650 & 1750-450 

Mircescu 
 

background subtracted, method 
not stated 

Normalised, method not 
stated 

multiplicate scattering correction 

Yogesha Savitsky-Golay (second order, 
11 point window) 

asymmetric least squares  vector  truncated to 600-1750. Manual removal of cosmic 
spikes. Mean centred 

Premasiri 
 

polynomial fitting 
 

barcode method defined by second derivative sign 
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Schrodera  
 

5th order polynomial fitting vector truncated to 600:1750cm 

Schroderb 
(Suspensions
) 

 
5th order polynomial vector 

 

Schroderb 
(Patients) 

 
extended multiplicative 

  

Tien AccuRam software, processing unclear. 

Yang 
 

Polynomial subtraction (3rd 
order) 

  

Table 3.15 presents the digital pre-processing of spectra in the studies included in the systematic review. A range of digital pre-processing techniques were utilised. The 
variation in techniques reflects the need to tailor the pre-processing to the spectra generated. Reporting was frequently absent or missing information required for replication, 
such as Premasiri et al. reporting subtracting a fitted polynomial without stating the order, or Mircescu et al. reporting normalisation without reporting a normalising 
factor[101, 159]. Two studies utilised manual removal of cosmic spikes[156, 158]. 
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TABLE 3. 16 FEATURE REDUCTION, CLASSIFICATION, AND VALIDATION METHODS IN SYSTEMATIC REVIEW 

Author 

  

Feature Reduction Classification Validation 

Method Features 
assessed 

Feature Number 
Choice 

Method Other 
 

Avci PCA NS % of variance ND 
  

Oliveira PCA NS  variance Weight score (SC), Mahalanobis distance Latent variable 
(LV) 

 

Goodacre  PCA 
  

Discriminant function analysis (DFA) 
using Euclidean distance 

 
 

   ANN (1 hidden layer)   

Jarvisa  PCA varied: 8 
in one 
group 
and 26 in 
another 

Parsimony 
Principle (maximal 
discrimination 
with minimal 
number of PCs) 

DFA (maximising fisher ratio) HCA on DFA 
points 

 

Jarvisb   PCA 
  

DFA HCA on DFA 
points 

 

Kastanos PCA 58 99.99% of 
variance 

LDA 
 

LOO CV 

Klossa  ND NA NA SVM (with linear kernel & cost factor 2) 
 

Independent test set & 10 patient samples 
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Mircescu PCA NA 
 

No classification. Just a PCA plot. Not 
quantified 

  

Yogesha 
 

PCA 6 LOO-CV PLS-DA 
 

Test set 

None 
  

SVM (Radial Kernel function with cost 
function of 1.6 and gamma set to 4.6) 

 
Test set 

Premasiri ND 24 lowest root mean 
squared error 

PLS-DA 
 

cross validation with 27 different  random 
subsets and 21 iterations 

Schrodera  PCA 10 not stated LDA 
 

“independent” set (multiple spectra from each 
training and test samples) 

Schroderb  
   

Not classified 
 

Not quantified 

Tien NA 
  

PCA only presented  
  

Yang ND 
  

Discriminant analysis with Mahalanobis 
distance 

 Training set (12 of 48 retained) 

ND = Not Done, NA = Not Applicable 

Table 3.16 presents the feature reduction, classification and validation methods presented in the articles included in the systematic review. PCA was frequently used for 
feature reduction of spectra[86, 96, 101, 102, 110, 117, 123, 124, 149, 156-158, 160]. The number of reduced features passed for classification varied widely. Similarly, the 
method for the number of features selected varied widely or was not stated. Kastanos et al. passed 58 reduced features despite having only 75 samples[156]. Not all articles 
undertook sample classification. Discriminant analysis was the most frequent classification technique used, with SVMs used in 2 studies[99, 158] and ANN used once[102].  
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TABLE 3. 17 TRAINING AND VALIDATION CLASSIFICATION PERFORMANCE OF STUDIES INCLUDED IN SYSTEMATIC REVIEW 

Author 

  

Group 

  

Training Set Validation 

Accuracy Sensitivity Specificity Accuracy Sensitivity Overall Specificity 

Avci  Not quantified. PCA plots presented with excellent 
separation 

   

Oliveira  83.5% (152/182)  58-100% 87-100% 
   

Goodacre   PC-LDA Not quantified plot of discriminants presented 
   

ANN 74% (25/34)    

Jarvisa Not quantified 
 

  

Jarvisb Not quantified, Discriminant function plot presented 
with excellent separation 

   

Kastanos 94.7% (71/75) 88-100 94-100% Not quantified, 3 of  the LOOCV PCA plots presented 

Kloss Bacterial 
suspensions 

92.1% (2718/2952) 
  

95.1% (489/514) 
  

Patient 
samples 

   
100% (10/10) 100 (10/10) 100% (10/20) 

Mircescu 

2014 

Not quantified 
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Yogesha single 
species, PC-
LDA 

Not quantified, but 
depicted graphically to 
show good separation of 
all bacteria except EC from 
Pmir on first order PC-LDA, 
which were subsequently 
well separated on second 
order PC-LDA 

  96%   

single 
species, 
SVM 

100% 
  

Single species 98.7% 
  

mixed 
samples, 
PC-LDA 

   
90% & 93% for M2 and 
M3 infections 
respectively 

  

mixed 
samples, 
SVM 

   
95% for M2 (one 
misclassified as K. 
pneumoniae). 96% for 
M3 with 1 misclassified 
as K pneumoniae 

  

Premasiri 
 

  95.80% 99.30% 
 

Schrodera Suspensions Not quantified: LD plot shows perfect separation linear discriminant  both on training and testing. 

Patient 
samples 

   
99.8% (899/900) 
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Schroderb Not quantified 
   

Tien Not quantified - PCA plots only presented. Table 1 reports 
a Raman SERS quantification but down not reports 
classification accuracy/ misclassification 

   

Yang Suspensions 93.8% (45/48) 
  

100% (12/12) 100% (12/12) 100% (12/12) 

From 
culture 
media 

100% (48/48) 
  

100% (12/12) 100% (12/12) 100% (12/12) 

PCA = principal component analysis. PC-LDA = principal component – linear discriminant analysis. SVM = support vector machine. M2 = 2 pathogen mixed infection. M3 = 3 pathogen mixed infection. 
 
Table 3.17 presents the results of classification performance. None of the studies included assessed diagnostic (infected versus uninfected) performance, and as such 
accuracies presented refer to pathogen classification accuracies. For this reason, sensitivities and specificities are infrequently presented as these would refer to pathogen 
classification rather than diagnostic performance. Training set accuracies range from 74% to 100%, although not all studies report classification performance (or alternatively 
present them graphically without quantification). Most studies did not present validation results, or on occasion, present these graphically without quantification. The 
reported validation accuracies range from 95.1% to 100%. Frequently validation performance exceeded those presented in training sets[99, 149].
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TABLE 3. 18 SPECTRAL BAND ASSIGNMENTS FROM STUDIES INCLUDED IN SYSTEMATIC REVIEW 

Spectral Band (cm-1) Assignment Reference 

364-474 Carbohydrates [101] 

500-586 Carbohydrates, Glycosidic ring [101] 

518-519 Hypoxanthine, Guanine [149] 

538 COC glycosidic ring deformation (bacteria) [110] 

545 CCC Deformation (Agar) [110] 

562-567 Hypoxanthine, xanthine, Guanine [149] 

624 CC Twisting Tryptophan (Bacteria) [110] 

642-643 Tyrosine [158] 

643 - 688 COO deformation, Guanine [101] 

645 Tyrosine [110] 

655 carboxyl groups [123] 

656-657 Hypoxanthine, xanthine, guanine [149] 

667-668 Guanine [158] 

672 Valine [110] 

676 guanosine [149] 

721 Agar [110] 

721-749 Glycosidic ring, Adenine  [101] 

723 CH2 rocking [99] 

724-725 Adenine [158] 

725-731 hypoxanthine, adenine, guanine AMP [149] 

726 Adenine ring stretch peptidoglycan [110] 

730 adenine [123] 

730 C-N stretching [123] 

730 ring breathing adenine [123] 

742 CC-skeletal deformation of galactose ring (Agar) [110] 

748 DNA [99] 
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748 cytochrome c [99] 

756-757 Tryptophan [158] 

759 Tryptophan [110] 

774 CC-skeletal deformation of galactose ring (Agar) [110] 

780-781 Cytosine, Uracil  [158] 

781 ring breathing mode of cytosine, uracil and thymine [99] 

781 OPO backbone of DNA [99] 

784 cytosine, uracil - ring stretching [110] 

788 PO2 stretching, cytosine and thiamine [160] 

801-819 Tyrosine v(CN)  [101] 

808-809 Tyrosine [158] 

814 COPOC RNA binding [110] 

824-825 Tyrosine (Exposed) [158] 

829 Tyrosine [110] 

830 Breathing Phenylalanine [123] 

846 CC-deformation, OCO wagging, Ch Vibrations (Agar) [110] 

849-852 Tyrosine (Buried) [158] 

850 CH2 Scissoring [123] 

850 Breathing Phenylalanine [123] 

854-857 Guanine [149] 

857 COC-stretching of glycosidic linkages; C-C proline stretches, CCH 
deformation ring breathing of tyrosine, teichuronic acid of Gam positive cell 
wall 

[110] 

875-878 tryptophan ring deformation [158] 

887-896 C-O-C stretching [158] 

890 CCH deformation (Agar) [110] 

907 COC stretching of glycosidic linkages (saccharides) Teichuronic acid of Gram 
positive cell walls 

[110] 

921-953 Ring breathing vibration [101] 

926-933 C_C stretching, alpha helix, COC glycosidic bond [158] 
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930 Saccharides (Agar) [110] 

935 protein extract (culture media) [110] 

935 CC-stretch of protein (culture media) [110] 

938 Amide III - CC stretching. [110] 

951 Phenylalanine, proline (Agar) [110] 

952-954 C-N stretching [158] 

957-960 hypoxanthine, adenine, guanine, guanosine [149] 

966 CCH deformation (Agar) [110] 

1000 phenylalanine [158] 

1001 CH2 Scissoring [123] 

1001 phenylalanine [123] 

1001 pyranose ring [123] 

1004 protein extract (culture media) [110] 

1004 haemoglobin (culture media) [110] 

1004 Phenylalanine -CC skeletal stretching of ring breathing (Agar) [110] 

1004 ring breathing mode of phenyl alanine [99] 

1004 phenylalanine [160] 

1007 Phenylalanine & tyrosine - CC stretching of aromatic ring [110] 

1023 AMP [149] 

1027-1028 C-H in plane [158] 

1030 CH2 Scissoring [123] 

1030-1130 Carbohydrates mainly CC, CO and COH stretching [110] 

1033 Phenylalanine & Proline CH deformation, CO and CC stretching of 
saccharides 

[110] 

1049 CO exocyclic stretching (Agar) [110] 

1077-1078 C_C chain stretching (lipids), CO. CC stretching (carbohydrates) [158] 

1084 COH deformation, CCO Stretching (Agar) [110] 

1091-1098 hypoxanthine [149] 

1093 po2 stretching [160] 
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1093-1097 Carbohydrates (CC, CO, COH deformation) [158] 

1099 Nucleic acid PO2 symmetric stretching; CC and COC skeletal stretching of 
glycosidic linkage of saccharides 

[110] 

1099 phenylalanine [99] 

1099 CN stretching [99] 

1100-1130 carbohydrate (deformation C-C, CO, COH) [101] 

1121-1122 CN, CC & CO stretching [158] 

1127 cytochrome c [99] 

1130 lipid acyl CC skeletal stretching; CO and CC saccharide stretching [110] 

1132 COH sugar deformation (Agar) [110] 

1143-1147 guanosine [149] 

1149-1209 Lipid =C-C= [101] 

1151-1153 CC stretching vibration of polyene chain of carotenoids [158] 

1155  COH deformation (Agar) [110] 

1156 CC-CN protein stretching; CO & CC Saccharides [110] 

1160 Guanine [149] 

1162 Carotenoid CC conjugated stretching [110] 

1166-1168 CC stretching vibrations [158] 

1172 Tyrosine [86] 

1173 Tyrosine CH Wagging; Guanin and Cytosine; fatty acids(stearic acids) [110] 

1205-1206 C-C6H5 stretch, phenylalanine, tryptophan [158] 

1211 Amide III, Tyrosine CC Stretching; phenylalanine, tryptophan [110] 

1226 haemoglobin (culture media) [110] 

1226 Haemoglobin CH stretching (Agar) [110] 

1238-1239 amide III [158] 

1240-1300 Amide III [123] 

1241 amide III [99] 

1241 PO2 stretching asymmetric in DNA bases [99] 

1242-1445 Amide III [101] 
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1247 Guanine, Adenine and Uracil [86] 

1253 Amide III [160] 

1261 amide II CN & NH stretching; thymine and adenine ring breathing; Lipid CH2 
deformation; saccharides 

[110] 

1266-1287  Protein Deformation CH [101] 

1270 Lactose [110] 

1270 Lactose (Agar) [110] 

1274 hypoxanthine, Adenine [149] 

1285 CH2 twisting (Agar) [110] 

1293 Fatty Acid CH2 deformation; cytosine [110] 

1296-1297 CH2 twisting [158] 

1310 CH2-CH3 twisting, waggling and bending in lipids [99] 

1310 cytochrome c [99] 

1316-1319 Guanine, CH deformation [158] 

1320 Amide II CN and NH stretching; protein CH2 and CH3 deformation; Guanine 
Breathing ring 

[110] 

1324 Adenine, Guanine and Tyrosine [86] 

1326-1329 Xanthine, Adenine, AMP [149] 

1333 adenine  

1334 CH2 deformation of proteins [99] 

1334 ring vibrations of guanine and adenine [99] 

1334 tryptophan [99] 

1338-1339 Adenine, CH deformation [158] 

1340 Fatty acid and protein CH2 and CH3 deformation; amide III NH stretching; 
tryptophan CC stretching; adenine and guanine ring breathing 

[110] 

1341 CH2 deformation [160] 

1346-1368 protein (deformation CH), symmetric stretching COO [101] 

1350 CH2 wagging (Agar) [110] 

1376-1374 hypoxanthine, adenine, AMP [149] 

1382 peptidoglycan COO stretching [110] 
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1413 CH deformation (Agar) [110] 

1421 Adenine; guanine; peptidoglycan CO vibration [110] 

1422-1465 Saturated lipids, deformation CH2 [101] 

1425 Guanine, Adenine [86] 

1446 CH2 Scissoring [123] 

1446-1448 CH2 Bending [158] 

1450 protein extract (culture media) [110] 

1450 haemoglobin (culture media) [110] 

1450 protein CH2 & CH3 deformation (Agar)Lipid and protein [110] 

1451 CH2-CH3 deformation [99] 

1453 Lipid and Protein deformation [110] 

1453-1466 hypoxanthine, adenine, guanine [149] 

1469 CH2 deformation(Agar) [110] 

1480-1481 Guanin, Adenine CH deformation [158] 

1521 In phase C=C vibrations of polyene chain of carotenoids [158] 

1523-1543 Ring stretching Vibration [101] 

1524 cytosine [86] 

1525 Carotenoids CC conjugated stretching [110] 

1528-1533 hypoxanthine [149] 

1541 guanine, guanosine [149] 

1550 Amide II [123] 

1550-1551 Tryptophan [158] 

1557 tryptophan; exopolysaccharides [110] 

1562 haemoglobin (culture media) [110] 

1567 haemoglobin CH2 Stretching [110] 

1567 Guanine, Adenine [86] 

1572-1573 exopolysaccharide associated band [158] 

1573 ring vibrations of guanine and adenine [99] 
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1573 Cytochrome C [99] 

1575-1581 hypoxanthine, guanosine [149] 

1578 peptidoglycan CO vibration mode; adenine and guanine ring stretching [110] 

1578 ring stretching of guanine and adenine [160] 

1589-1668 stretching DNA [101] 

1602-1603 phenylalanine [158] 

1606 CC ring vibration of phenylalanine and tyrosine [99] 

1607 tyrosine and tryptophan [86] 

1611 phenylalanine; tyrosine and tryptophan CC ring stretching [110] 

1613-1615 Tyrosine [158] 

1624 haemoglobin (culture media) [110] 

1624 haemoglobin CC asymmetric stretching [110] 

1640-1659 AMP, Adenine [149] 

1644 Amide I CO stretching (Agar) [110] 

1656-1655 Amide I [158] 

1658 amide I [86] 

1660 Amide I Co stretching; lipid CC stretching [110] 

1665 Amide I [99] 

1665 CC alkene stretching [99] 

1665 nucleic acids [99] 

1670 Amide I [123] 

1690-1702 stretching C=C [101] 

1692 hypoxanthine, uric acid [149] 

2935 asymmetric CH2 stretching [99] 

2935 symmetric CH3 stretching [99] 

3059 Olefinic CH stretching [99] 

Table 3.18 presents the spectral band assignments from the studies included in the systematic review. The band 
assignments cover a broad range of Raman shift from 364cm-1 up to 3059 cm-1[99, 101]. The high density of 
biochemical assignments represented across this range reflect the resolution and sensitivity provided by Raman 
spectroscopy. Biochemical assignments range from relatively generic origins such as C-C backbones likely to be 
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present in a range of proteins and carbohydrates, up to specific components such as teichuronic acid from Gram 
positive cell walls[110]. An array of potential biochemical origins are present including nuclear components such 
as DNA, cell membrane components such as cytochrome C, a plethora of cell wall components such as 
peptidoglycan, and extracellular excretions such as AMP. Similarly, a range of non-pathogen originating 
substances are presented by Oliviera et al.[110]. 

3.5.4 DISCUSSION 
With classification accuracies ranging from 75% to 100% in the included studies, Raman spectroscopy 
demonstrates potential to act as an effective UTI diagnostic as defined in Chapter 2[99, 102, 110, 156, 158]. The 
accuracies attained in these studies are comparable with currently implemented diagnostics (such as 
chromogenic culture) as well as those under development (including mass biosensors, multiplex PCR). A 
significant potential advantage of Raman spectroscopy as an effective UTI diagnostic technology is the potential 
to provide classification without prior biomass amplification through culture, therein providing substantial 
improvements in turn-around time. Only a few of the studies included explicitly report the sample turnaround 
time, including Mircescu et al. (under 2 hours)[101], Premasiri et al. (under 1 hour)[159], Schroder et al. 
(approximately 1 hour)[160], Schroder et al. ( a few minutes)[117] . Other studies allude to the time benefits 
gained through using Raman spectroscopy without explicitly quantifying the temporal advantage [99, 124, 149].  

The ideal UTI diagnostic would answer a series of questions: firstly is the sample infected (diagnosis); secondly, 
what is the pathogen(s) (classification); thirdly what is the pathogen load (quantification); finally what is the 
antimicrobial sensitivity profile. None of the studies included in this systematic review included negative 
controls, and as such were unable to address the first question regarding diagnostic performance. Not 
attempting diagnosis is counterintuitive as many of the components identified in the spectral band assignments 
(Table 3.18) are likely to be absent or significantly different in uninfected urine. A potential explanation for this 
failure to address the primary goal of UTI diagnostics is an overreliance on Raman microscopy in Raman based 
UTI research. All but two of the included studies used Raman microscopes rather than spectrometers. Raman 
microscopes require user control to focus the illuminating laser onto the pathogens, and so are limited to 
samples already defined as positive[88, 100, 101, 156]. 

Despite the promise of Raman research achieving uropathogen recognition there is no clinically implemented 
Raman diagnostic nor large published diagnostic clinical trials[83]. Understanding the barriers toward larger 
clinical trials and clinical implementation are key toward planning successful Raman research. Most studies use 
Raman microscopes as the considerably smaller field of focus provides for much higher resolution Raman 
spectra. This benefit is contrasted against the substantial drawbacks of Raman microscopy. Raman microscopy 
relies upon the user locating the pathogen and focussing the Raman laser beam, which requires technical 
expertise and therefore has an inherent user variability. For example, Mircescu et al. had to discard 30% of 
collected spectra because of suboptimal focussing[101]. Raman microscopes are expensive and have a large 
physical footprint, therein limiting their implementation to research centres and potentially large, centralised 
labs only[88, 100, 101, 156]. 

Samples used in the majority of Raman research are not representative of the diversity present in clinical 
samples. Most studies included in the review used only a small number of, typically reference strain, species. 
Raman spectroscopy has demonstrated sensitivity to strain level, and so the multiple strains present in clinical 
samples presents a substantially greater classification challenge. Only one study diluted the pathogen load down 
to the clinically relevant concentration of 105 CFU/ml with all the other studies effectively approaching a 
simplified classification challenge[149]. Similarly, the controlled growth phase simplifies the classification 
challenge by reducing the effect of dynamic cell envelope changes as pathogen move between growth 
phases[123]. Clinical samples frequently contain mixed infections, while most of the studies included only 
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assessed single species infections. While Yogesha et al. validated their results on mixed infection samples they 
counted identification of the included species as a correct classification, in effect doubling or tripling the 
probability of “correct” classification (as evidenced by improving classification performance with more 
species)[158]. Tien et al. attempted to classify mixed infections arising from 11 of their samples using a PCA 
approach, however their gold-standard culture was only able to provide classification for four of these, and as 
PCA is not a supervised approach they were unable to assess classification performance. 

Classification was only assessed on clinical samples in three of the included studies [99, 117, 124]. Schroder et 
al. assessed 900 spectra acquired from 3 patient samples achieving 99.9% accuracy[117]. While this classification 
performance appears promising, originating from only 3 samples implies a high degree of uncertainty in the 
quoted number[117]. Kloss et al. validated their technology on 10 patient samples including 7 Escherichia coli 
and 3 Enterococcus faecalis infections with all ten correctly identified[99]. Tien et al. assessed 108 clinical 
samples presenting SERS spectra from processed and unprocessed spectra of a few pathogen species, as well as 
PCA plots which show separation of species according to antimicrobial sensitivity. However, supervised learning 
was not applied and so the classification performance could not be quantified[124]. 

SERS was used to improve Raman signal in many of the included studies with many of these using colloidal 
nanoparticles[86, 101, 123, 124, 149, 159]. The ability of SERS to provide massive signal enhancement makes 
this central to these studies, however this massive signal enhancement risks inducing massive variability if SERS 
is inconsistently applied particularly in view of the exponentially decreasing enhancement with increased 
distance. This, along with a tendency for nanoparticles to aggregate or corrode may explain why these 
nanoparticles are prepared immediately prior to use in SERS research[70, 125, 136, 161]. Similarly, these 
nanoparticles are produced under strict control to ensure consistency. As a result, technologies reliant on these 
nanoparticles may be challenging to implement clinically. A clinically implementable SERS technology for UTI 
diagnosis would require a stable SERS substrate, which incorporates a mechanism to ensure close and consistent 
apposition to pathogens. 

Many of the studies included present spectra, unsupervised classification figures, or supervised classification 
figures without classification. Presenting results in this manner is susceptible to "cherry-picking" or selective 
interpretation. Spectra plotted without some representation of variation risks interpreting noise as contributory 
peaks. PCA plots and linear discriminant plots are similarly susceptible to overinterpretation. Where supervised 
learning was applied and quantified, discriminant analysis was the most frequently applied technique. However, 
discriminant analysis is prone to overfitting and therefore poor generalisation as compared to techniques such 
as SVMs[122]. Yogesha et al. applied both PC-LDA and SVMs to their dataset, with SVMs providing superior cross 
validation classification accuracies[158]. Similarly, Kloss et al. also used SVMs with excellent validation 
accuracies achieved. The only study to use an ANN was Goodacre et al. who also utilised PC-LDA on this dataset, 
the results of which were unfortunately not quantified. As such, drawing comparisons between PC-LDA and 
ANNs was not possible based on this study. It is likely, however, that the dataset of 34 samples is underpowered 
for an ANN. 

This systematic review captures the vast number of parameters and techniques to be controlled in Raman 
experiments from the point of physical processing, through Raman capture, to digital pre-processing and 
classification. This poses a significant challenge to generalisability as a degree of overfitting or selection bias is 
possible through optimisation of these parameters. It poses a similar challenge to furtherment of Raman 
research as many of the studies in this systematic review contained insufficient data for replication. There is no 
current widely adopted standardised reporting or trial reporting for Raman laboratory-based research. Raman-
based pathogen research would thus benefit from standardised reporting and trial registration. 
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Validation remains a valuable backstop to guard against overfitting, and to a lesser degree, selection bias. 
Independence of the test data is essential, with the greatest robustness provided by prospectively collected test 
data ranging down to leave one out cross validation. Most of the included studies did not perform any validation 
[86, 96, 101, 102, 110, 117, 123]. For example, Kastanos et al. performed LOOCV, however did not quantify their 
results, but rather presented three PCA plots generated from the LOOCV[156]. Independence of data is 
imperative for reliable validation, which was frequently not maintained. In this regard, Schroder et al. trained 
their classification algorithm on 600 spectra derived from only 5 culture batches and validated 600 spectra from 
only 3 samples[160]. While not explicitly stated, the massive number of data points included by Kloss et al. 
implies that these refer to spectra rather than independent samples which are therefore not independent[99]. 

This systematic review demonstrates that Raman spectroscopy has potential to be developed into an effective 
diagnostic technology for urinary tract infections. Numerous studies have achieved excellent classification 
performance in substantially reduced timeframes as compared to currently implemented technologies. Working 
toward a clinically implementable Raman-based UTI diagnostic should focus on rapidly implantable physical 
processing methods with spectra acquired using a handheld spectrometer. Research performed during 
development should focus on samples which adequately reflect clinical sample, with analysis that is both 
replicable and can be validated. 

Numerous challenges arise when performing studies to assess the performance of diagnostics studies. Imperfect 
gold-standard reference tests may influence the published diagnostic performance. Selection bias may influence 
generalizability of results to clinical use. Inconsistent application of diagnostic cutoffs (in the index or reference 
test) may influence comparability of studies and limit generalizability[162]. 

Systematic reviews aim to aim to identify and combine all published information on a topic, and in so doing, 
work towards a more precise understanding thereof[163]. The methodologies employed to assess a topic may 
evolve as a greater scientific understanding is developed, or need to be varied to assess to answer aligned 
research questions. As such, heterogeneity is frequently encountered when performing systematic reviews.  

Quality assessment is an important component of systematic reviews, as biases in the included works influence 
the final result of the review and metanalysis. Quality Assessment of Diagnostic Accuracy Studies (QUADAS) 
were developed in 2003 and revised in 2011 to facilitate systematic reviews of diagnostic technologies[163, 
164]. QUADAS-2 assesses studies by 4 domains including patient selection, the index test, the reference test, as 
well as flow and timing. 

In developing and tailoring a systematic review aimed at describing the diagnostic and classification performance 
of Raman spectroscopy for UTIs substantial heterogeneity was encountered across all four QUADAS-2 domains. 
Samples were prepared or acquired using widely differing methods. While Raman spectroscopy was the 
diagnostic technology for all studies, varying equipment, and parameters as well as the use of SERS means these 
cannot be considered a single type of index test. For most of the included studies, a reference or confirmatory 
test was not used as samples were derived from cultured pathogens. Finally, the multiple processing steps 
involved in these Raman studies indicates substantial flow and timing variability. While the QUADAS-2 guidelines 
were considered during the development of this systematic review, formal assessments of bias and applicability 
were not performed due to the obvious heterogeneity. 

Wide heterogeneity present in this systematic review rendered metanalysis impossible. Nevertheless, a 
systematic review was warranted to demonstrate the successes of Raman spectroscopy in achieving 
uropathogen classification, as well as documenting the methods employed in these studies.  
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The field of Raman spectroscopy would undoubtedly benefit from agreed-upon standards for bacteriologic 
research. Reduced heterogeneity provided by standardized methodology would improve comparability of 
studies, and potentially allow for metanalysis. An additional benefit of standardized methodology would reduce 
the barriers faced in implementing Raman-based research, making this more accessible to a broader range or 
researchers. 

3.6 CONCLUSION 
The strengths provided by Raman spectroscopy position it as a potential effective technology for UTI diagnosis, 
most notably the ability to circumvent the need for biomass expansion allows for rapid recognition, and the 
high-resolution spectra providing for accurate and granular classification. These strengths are evidenced in the 
literature, both applying to UTI and general bacteriologic studies, with excellent classification accuracies 
provided with rapid turnaround times. Raman spectroscopy has the potential to be developed towards meeting 
the other characteristics of an ideal UTI diagnostic as defined in Chapter 2. Specifically, limited physical 
processing and small physical footprint underly the potential to develop a point of care device is which widely 
implementable and useable with minimal training. 

The central challenges to developing a clinically implementable Raman technology for UTI are initially to 
optimise the broad number parameters to gain the greatest signal while minimising noise. This is achieved 
through strict experimental standardisation allowing for systematic interrogation of techniques and parameters 
under control. Core to this is an analytical framework that can address the hypergeometric and colinear data 
with as few samples as possible, therein allowing for rapid prototyping. Successful optimisation of a Raman 
based technology for UTI diagnostics will need to be followed by collection of an extensive dataset able to 
account for the broad variation expected in clinical samples. Additionally, a robust analytical technique that 
makes best use of the larger dataset to provide generalisability will be required. 
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CHAPTER 4: RAMAN SPECTROSCOPY FOR UTI DIAGNOSIS 

4.1 INTRODUCTION 
Research aiming to provide pathogen classification from urine samples and pathogen suspensions using Raman 
spectroscopy follows a broadly standardised approach of sample preparation, physical processing, Raman 
acquisition, spectral digital pre-processing and classification (Figure 4.1). Within each step multiple options each 
with varying parameters leading to a tremendous number of permutations potentially applied to Raman 
research methods. Published research in Raman spectroscopy frequently focuses on the physical processing 
steps, with the description of other methods limited to those necessary for replication.  Adapting these methods 
requires an intricate evaluation of the strength and weaknesses of each permutation. Chapter 4 will 
systematically isolate and interrogate each process so that methods may be optimised for further experimental 
work. Section 4.2 describes methods for consistent preparation of bacterial suspensions. Section 4.3 describes 
the optimisation of parameters during Raman acquisition. Section 4.4 describes the analysis of Raman spectra, 
including methods for digital pre-processing, classification and identification of pertinent spectral bands. 

 

FIGURE 4. 1 SUMMARY METHOD FOR RAMAN RESEARCH ON UTI IDENTIFICATION AND CLASSIFICATION. (a)PREPARED SAMPLES ARE (b) 
PHYSICALLY PROCESSED BEFORE (c) RAMAN ACQUISITION, AFTER WHICH THEY ARE (d) DIGITALLY PRE-PROCESSED (e) BEFORE 
CLASSIFICATION 

Aims: 

• Develop methods for consistent production of samples representative of UTIs which are suitable for 
Raman spectroscopic assessment. 

• Understand the parameters under control when acquiring Raman spectra, developing a standardised 
approach to spectral acquisition. 

• Understand sources of noise in Raman spectra, understanding and applying methods for reducing 
noise. 

• Identify and apply a classification technique suitable to rapid prototyping (low number of samples) on 
complex data (hypergeometric and colinear). 

• Identify a quantitative method for identifying spectral bands contributing to classification. 

4.2 BACTERIAL SUSPENSIONS 
Early-stage Raman microbiology research requires samples whose bacterial type and load are representative of 
clinical samples, while controlling for the variation caused by diverse strains and loads. Representative samples 
are achieved using cultured reference strain pathogens suspended at controlled pathogen load. An additional 
step is required or Raman research to wash residual culture show strong Raman scattering may obscure the 
bacterial signal. Section 4.2 describes the preparation of bacterial suspensions. 
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A reference bank of uropathogens was established and are presented in Table 4.1. Bacteria acquired from NWLH 
Microbiology Laboratory were cultured on Columbia blood Agar for 24 hours at 37 degrees. Bacterial colonies 
were harvested using a sterile disposable 10 µl loop and transferred to a Microbank cryopreservation vial. The 
vials were agitated for 1 minute before aspirating and discarding the supernatant. Microbank vials were stored 
at -70 degrees Celsius. 

TABLE 4. 1 REFERENCE BANK OF UROPATHOGENS 

Uropathogen 

Escherichia coli ATCC25922 

Enterococcus faecalis ATCC29212 

Klebsiella pneumoniae ATCC13883 

Pseudomonas aeruginosa ATCC27853 

Proteus mirabilis NCTC10975 

Streptococcus agalactiae NCTC8181 

Staphylococcus aureus ATCC29213 

Staphylococcus epidermidis ATCC12228 

4.2.1 CULTURE MEDIA & WASHING 

4.2.1.1 INTRODUCTION  
Culture media are composed of a relatively small number of relatively strong Raman scattering 
components[123]. Marotta et al. postulated that classification of bacteria using Raman spectroscopy is dictated 
by Raman scattering from media components rather than that of signal arising from the bacteria[165]. Premasiri 
et al. refuted this claim by demonstrating that while bacterial spectra initially cluster according to the medium 
on which they were cultured, after 3 or more washes they clustered according to bacterial species[143]. Spectra 
from this work were acquired using a Raman microscope, which is able to focus more tightly upon bacteria, and 
has not been confirmed using a handheld spectrometer. 

Hypothesis: Multiple wash and centrifuge cycles remove culture media from bacteria, with classification arising 
from bacterial components. 

Objectives: 

• Demonstrate centrifuge and washing of bacteria allows for classification of bacterial species according 
to Raman spectra acquired using a handheld spectrometer. 

4.2.1.2 METHODS 
Reference strain Escherichia coli, Enterococcus faecalis and Klebsiella pneumoniae, were cultured in 10ml brain 
heart infusion (BHI), Luria broth (LB) and Mueller Hinton Broth (MHB) for 24 hours at 37 degrees Celsius. The 
pathogens in culture media were centrifuged at 3350G for 10 minutes. The supernatant was discarded, and the 
pellet resuspended in 2 ml PBS, which was centrifuged for 1 minute at 8300G. This step was repeated to a total 
of 5 washes. 
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The resulting heavy suspensions were transferred to sterile borosilicate Raman vials. Raman spectra were 
acquired with IDRaman mini 2.0 handheld spectrometer. Spectra were acquired for 10 seconds with 50 mW 
laser power, with an average of 20 spectra for each sample.  

The resulting spectra were smoothed with a Savitsky-Golay filter before baseline subtraction of a 7th order 
polynomial. The spectra were truncated from 500 to 2200cm-1 before vector normalisation. The resulting spectra 
underwent unsupervised classification by PCA. 

4.2.1.3 RESULTS 

 

FIGURE 4. 2 PCA PLOT FOR UROPATHOGENS CULTURED IN DIFFERENT MEDIA AFTER 5 CYCLES OF CENTRIFUGE AND WASHING. THE 
RAMAN SPECTRA CLUSTER ACCORDING TO THE PATHOGENS (RED: E. COLI; GREEN: E. FAECALIS; BLUE: K. PNEUMONIAE), RATHER THAN 
ACCORDING TO THE CULTURE MEDIUM (CIRCLE: BHI; TRIANGLE: LB; SQUARE: MHB), WHICH DEMONSTRATES CLASSIFICATION OCCURS 
BASED ON THE PATHOGEN RATHER THAN THE CULTURE MEDIUM. 

The PCA plot in Figure 4.2 presents unsupervised classification of Raman spectra acquired from different 
uropathogens cultured in common non-selective media. The points are coloured by pathogen with point shape 
according to culture medium. The points can be seen to cluster according to uropathogen, rather than culture 
medium indicating the defining features of the Raman spectra arise from the pathogens. 

4.2.1.4 DISCUSSION 
The results presented here concur with the findings of Premasiri et al., demonstrating multiple centrifuge and 
wash cycles provides for clustering according to pathogen rather than the medium used[143]. This is confirmed 
to be true using a handheld spectrometer rather than the microscope used in previous works. While 3 cycles 
were deemed sufficient by Premasiri et al., this work assessed 5 cycles to provide certainty media would not 
confound analysis.  
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4.2.4 OPTICAL DENSITOMETRY FOR PATHOGEN LOAD 

4.2.4.1 INTRODUCTION 
Early-stage bacteriologic research using Raman spectroscopy frequently relies on optimising and assessing 
technologies using suspensions finely controlled so as to minimise sample variability. Suspensions of reference 
strain pathogens must be consistently controlled to pathogen loads representative of clinical samples. Gold 
standard colony counting using the Miles and Misra method provides accurate colony counting, however it is 
time and resource intensive, requiring serial dilution and manual counting[152]. As this method requires 
microbial culture, it can only be used to establish the pathogen load, rather than control it. OD600 is an 
established method for control of pathogen load, with suspension turbidity correlating with pathogen load[153]. 

Hypothesis: Optical densitometry provides rapid and reliable pathogen load estimation. 

Objectives: 

• Correlate OD600 with pathogen load. 
• Identify an optimal OD600 cut off for further experiments. 

4.2.4.2 METHODS 
Reference strains of Escherichia coli, Enterococcus faecalis and Klebsiella pneumoniae pathogen were used from 
an established reference bank. A single Microbank bead was cultured in 3ml of brain heart infusion at 37° Celsius 
for 24 hours. The cultured suspension was centrifuged at 8300 g, after which the supernatant was discarded and 
the pellet resuspended in 2ml PBS by Vortex mixing. This heavy suspension was diluted in PBS to OD600 ranging 
from 0.01 up to 0.12 measured using a Fisher Scientific Cell Density Meter. For each pathogen, 3 suspensions 
for each OD600 were created, totalling 108 samples. 

For each sample, the pathogen load was established by the method as described by Miles and Misra[152]. Each 
sample underwent 6 serial dilutions. For each single Columbia Blood Agar plate was delineated into 6 sectors 
and 20µl of each serial dilution was pipetted into a sector. The plate was allowed to dry completely, before 
undergoing culture at 37° Celsius for 24 hours. Colonies were counted from the sector in which the largest 
number of non-overlapping colonies could be clearly identified and scaled up by the appropriate dilution factor. 

The gold standard colony count was plotted against optical densitometry, and lines of best fit plotted for each 
pathogen. Linear regression was performed for colony count against OD600, controlling for the pathogen. 

4.2.4.3 RESULTS 
Figure 4.3 presents the plot of gold standard colony counting against OD600 for the three reference pathogens, 
while the results of the linear regression are presented in Table 4.2. Significant correlation was observed 
between optical densitometry and colony count (Pearson’s R = 0.68; p-value <0.001), while the reference 
pathogen had no effect on the correlation. At OD600 of 0.07 the colony count was approximately 108 CFU/ml 
(1.02x107 CFU/ml). 
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FIGURE 4. 3 COLONY COUNT VERSUS OPTICAL DENSITOMETRY AT 600NM FOR REFERENCE PATHOGENS. THE LEAST SQUARES FITTED LINE 
FOR THE E. COLI (RED), E. FAECALIS (GREEN) AND K. PNEUMONIAE (BLUE) WITH STANDARD ERROR PRESENTED AS SHADED REGIONS. 
THE VERTICAL DASHED LINE ILLUSTRATES A WELL SUITED FOR FURTHER RESEARCH WHERE AN OD600 OF 0.07 PROVIDES A CONSISTENT 
PATHOGEN LOAD OF 108 CFU/ML 

TABLE 4. 2 REGRESSION TABLE FOR COLONY COUNT VERSUS OPTICAL DENSITOMTERY.  OD600  IS DEMONSTRATED TO SIGNIFICANTLY 
CORRELATE WITH PATHOGEN LOAD WITH EACH UNIT INCREASE IN O6600 LEADIN TO AN INCREASED PATHOGEN LOAD OF 1.15X109 
CFU/ML. THE TYPE OF PATHOGEN DID NOT SIGNIFCANTLY EFFECT THIS CORRELATION. 

Variable Coefficient p-Value 

Intercept 2.04 *107 0.127 

OD600 1.15* 109 <0.001 

Pathogen E. coli (ref) - - 

E. faecalis -4.39*10 -10 1.00 

K. pneumoniae 7.04*106 0.434 

Adjusted R2 = 0.4516 
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4.2.4.4 DISCUSSION  
Optical densitometry at 600 nm is a suitable method for adjusting and controlling pathogen load in bacterial 
suspensions. Optical densitometry correlated well with gold-standard manual colony counting using the Miles 
and Misra method[152], with the pathogen type having no significant effect on this correlation. An OD600 of 0.07 
approximated a colony count of 108 CFU/ml. Additionally, the plot demonstrated low variability at this OD600. 
Therefore, an OD600 of 0.07 was used in further experiments with adjustment down to the target concentration 
by serial dilution.  

4.3 RAMAN ACQUISITION 
4.3.1 POWER AND ACQUISITION TIME 
The effects of differing laser power and acquisition times on Raman spectra acquired from Rhodamine 6G are 
presented in Figure 4.4. A single sample was created by spotting 250µl of 1mM Rhodamine 6G onto aluminium 
foil and air dried. Spectra were acquired using the IDRaman mini 2.0 handheld spectrometer using the 5 power 
settings (corresponding to 10, 20, 30 40 and 50 mW), and acquisition times of 2, 4, 6, 8, and 10 seconds. Raster 
orbital scanning and reference scan settings were applied to all acquired spectra. The spectra were plotted 
without any digital pre-processing. Inset into each spectrum is a magnification of one of the Raman peaks arising 
from Rhodamine signal. 

While the spectra all clearly demonstrate the same basic spectrum and baseline, there are notable differences 
arising from differing laser power and acquisition times. The absolute value of the baseline and spectral peaks 
increase proportionately to the laser power and acquisition time. The absolute value of the high frequency noise 
remains approximately constant across varying laser power and acquisition times. Therefore, higher laser power 
and acquisition times result in a relative reduction in high frequency noise. Excessively high laser power and 
acquisition lead to saturation of the device’s CCD, which is clearly visible in the spectrum with 10 s acquisition 
and 50mW, and to a lesser extent the spectrum with 10 s acquisition and 40mW power. A practical approach, 
provided photo destruction is not a concern, is to maximise laser power and acquisition. Optimal laser power 
and acquisition time settings are best identified during a pilot in which the maximal laser power is used and 
increasing the acquisition time to identify the point at which CCD saturation occurs. 
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FIGURE 4. 4 RAMAN SPECTRA OF RHODAMINE 6G WITH DIFFERING LASER POWER AND ACQUISITION TIMES.



4.3.2 RASTER ORBITAL SCANNING 

 

FIGURE 4. 5 RAMAN SPECTRUM FOR RHODAMINE 6G WITH RASTER ORBITAL SCANNING ON (RED) AND OFF (GREEN). THE SPECTRUM 
ACQUIRED WITH RASTER ORBITAL SCANNING DEMONSTRATES PEAKS OF GREATER AMPLITUDE AND RESOLUTION. 

Raster orbital scanning (ROS)  is a feature incorporated into handheld spectrometers, in which a narrowed focal 
volume is traversed across the sample, in contrast to holding a larger focal volume stationary[166]. This acts to 
provide higher resolution spectra while still sampling from a representative volume. Figure 4.5 presents the 
Raman spectra of Rhodamine 6G acquired using the IDRaman mini 2.0 handheld spectrometer with the ROS 
function on and off. The spectrum with ROS engaged demonstrates taller and narrower peaks as compared to 
the spectrum without ROS engaged. The ROS feature was used for further works. 

4.3.3 REFERENCE SPECTRUM  
Reference spectrum is a feature incorporated into many Raman spectrometers, in which a background spectrum 
is acquired without the laser powered, and subtracted from the spectrum acquired with the laser engaged. 
Subtraction of a reference spectrum serves to reduce the noise arising from extraneous light and device 
electronics[166]. Figure 4.6 presents Raman spectra acquired from Rhodamine 6G with the IDRaman mini 2.0 
with reference spectrum setting engaged and without reference spectrum engaged. The spectrum without 
reference spectrum setting contains substantially greater noise. As such, the reference spectrum feature was 
used in further works 
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FIGURE 4. 6 RAMAN SPECTRUM FOR RHODAMINE 6G WITH REFERENCE SPECTRUM ON (RED) AND OFF (GREEN). THE SPECTRUM 
ACQUIRED WITH A REFERENCE SPECTRUM DEMONSTRATES LESS HIGH FREQUENCY NOISE. 

4.3.4 FOCAL LENGTH 

4.3.4.1 INTRODUCTION  
Raman spectra may be acquired from the IDRaman mini 2.0 handheld spectrometer using sample vials for liquid 
specimens, or in handheld mode for solid specimens. The spectrometer focuses the laser into a focal volume 
from which the inelastically scattered photons are captured and quantified. The spot size of the IDRaman mini 
2.0 ranges from 0.2 to 2.5 mm dependent on the working distance[166]. 

Hypothesis: In handheld mode spectral amplitude and quality are dependent on focal length. 

Objectives: 

• Demonstrate the effect of focal distance on Raman spectra. 
• Identify the optimal focal length for further experiments. 
• Develop a method for providing consistent focal length. 

4.2.4.2 METHODS 
To control focal distance, a support for the IDRaman mini 2.0 spectrometer was designed in Fusion360 and 3D-
printed (Figure 4.7). Additionally, collars with lengths ranging from 26 to 30 mm in 0.5 mm increments were 3D-
printed to allow for the spectrometer to be held at different focal lengths. 
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FIGURE 4. 7 CAD DESIGN (LEFT) AND 3D-PRINTED HOLDER WITH IDRAMAN (RIGHT) 

Rhodamine 6G was spotted onto aluminium foil and air-dried. Raman spectra were acquired with the IDRaman 
at 785nm wavelength, 10mW laser-power and 5 second acquisition time. A total of 12 spectra were averaged 
for a total acquisition time of 1 minute. Using the 3D printed collars to create differing focal lengths, spectra 
were acquired for all lengths from 26.0mm to 30 mm in 0.5 mm increments. Spectra were plotted unprocessed 
for assessment. 

4.3.4.3 RESULTS 
The plots of the Raman spectra of Rhodamine 6G with increasing collar length are presented in Figure 4.8. The 
amplitude of the spectra is demonstrated to increase with collar length up to 29.5mm before reducing again. 
Additionally, Rhodamine 6G peaks are clearly visible on the spectrum acquired at 29.5 mm collar length, are 
reduced in the adjacent spectra while not discernible with collar lengths below 28.0 mm. 
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FIGURE 4. 8 RAMAN SPECTRA OF RHODAMINE 6G WITH ACQUIRED DIFFERENT COLLAR LENGTHS 

4.3.4.4 DISCUSSION 
The amplitude and quality of Raman spectra are extremely sensitive to focal length (controlled using collars), 
with visible differences seen with increments as small as 0.5mm. A collar length of 29.5mm provided the greatest 
amplitude spectra with clearly discernible peaks and so was selected for further experiments that required the 
handheld spectrometer in point and shoot mode. The 3D-printed spectroscope holder was used to ensure 
consistency of focal length. 

4.4 RAMAN SPECTRAL ANALYSIS 
The multistep process required to classify samples from Raman spectra is described in Section 4.4. Digital uses 
numerous methods to optimise SNR to improve classification. Feature reduction reduces spectra to a smaller 
number of descriptive predictors, before classification sing supervised learning algorithms. An additional step 
which, while not required for classification, is important for mechanistic understanding is identification of 
descriptive spectral bands. 

4.4.1 DATA SET FOR SPECTRAL ANALYSIS 
Datasets were required to demonstrate the effects of pre-processing as well as the outcomes of learning 
algorithms. Samples representing high, medium, and low SNR were pipetted in 2ml borosilicate Raman vials. 
Raman spectra were captured using the IDRaman mini 2.0 handheld spectrometer with laser power set to 
50mW. Acquisition times used were 1, 2.5 and 10 seconds for the high, medium and low samples respectively 
with sufficient spectra acquired to total 200 seconds for each sample. 

The high SNR samples comprised a single strong Raman scattering molecule at controlled concentrations. Ten 
samples each of Rhodamine 6G, crystal violet and 70% ethanol were used. 
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The medium SNR sample comprised three commonly used culture media, therein containing a small number of 
weaker scattering molecules in controlled concentrations.  

The low SNR sample comprises heavy suspensions of three common uropathogens. Bacteria from the reference 
bank were cultured in BHI infusion for 24 hours at 37 degrees Celsius, and subsequently washed a total of 5 
times in PBS. 2 ml of undiluted suspension was transferred to sterile borosilicate Raman vials for Raman 
acquisition. 

4.4.2 DIGITAL PRE-PROCESSING 

 

FIGURE 4. 9 UNPROCESSED RHODAMINE 6G RAMAN SPECTRA DEMONSTRATING DIFFERENT TYPES OF NOISE. THE ORIGINAL SPECTRUM 
IS PLOTTED IN BLUE AND DEMONSTRATES A HIGH DEGREE OF HIGH FREQUENCY NOISE VISIBLE AS A RANDOMLY DISPERSED 
FLUCTUATION ACROSS THE ENTIRE SPECTRUM. A SINGLE COSMIC SPIKE IS DEMONSTRATED BY THE RED ARROW. LOW FREQUENCY NOISE 
VISIBLE AS A SLOW UNDULATING BASELINE IS PRESENTED AS THE GREEN FITTED LINE. 

Raman Spectra contain high resolution chemometric signals present as peaks in spectra, overlaid by competing 
noise arising from numerous sources. Signal is defined as variability in the data associated with the outcome of 
interest, while noise is variability in the data not associated with the outcome of interest. Gaining the greatest 
classification performance is contingent on maximising signal while minimising noise. Therefore, understanding 
the sources of noise and how best to remove them is required. The common types of noise present in Raman 
spectra are illustrated in Figure 4.9. Low frequency noise arises from extraneous light and sample fluorescence. 
High frequency noise arise from device electronics. Cosmic spikes present as massive point deviations from the 
spectrum arising cosmic ray events generated from atmospheric solar activity[103]. Additionally, an additive and 
multiplicative shift arises in spectra, such that successive spectra acquired from the same sample appear 
different. The same spectrum after digital pre-processing with the noise reduced is depicted in Figure 4.10. 
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FIGURE 4. 10 PROCESSED RAMAN SPECTRA OF RHODAMINE 6G WITH NOISE REDUCED 

The mean unprocessed spectra with standard error ribbons in addition to the PCA plots for the high, medium 
and low SNR datasets are illustrated in Figure 4.11. The spectra of the high SNR dataset show visible features 
without the need for further processing, although substantial variation is present in the spectra of the 
Rhodamine 6G (visible as a wide standard error ribbon). These features provide for excellent separation on the 
accompanying PCA plot. 

The spectra of the medium SNR dataset are dominated by fluorescence with minimal spectral features visible. 
Different fluorescence profiles provide for good separation on the accompanying PCA plot. The spectra of the 
low SNR dataset are overwhelmed by a single cosmic spike arising from a Klebsiella pneumoniae sample. There 
is no separation visible on the accompanying PCA plot. 
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FIGURE 4. 11 MEAN SPECTRA, WITH STANDARD ERROR RIBBONS, (LEFT) AND PCA (RIGHT) PLOTS FOR HIGH, MEDIUM AND LOW SNR 
DATASETS WITHOUT PROCESSING (TOP TO BOTTOM). SPECTRA FROM THE HIGH SNR DATASET HAVE VISIBLE FEATURES WHICH PROVIDE 
CLUSTERING AND SEPARATION ON THE PCA PLOT, ALTHOUGH RETAINED BASELINE VARIABILITY IN THE RHODAMINE SPECTRUM IS 
PRESENT AS WIDE ERROR RIBBON. THE MEDIUM SNR SPECTRA ARE DOMINATED BY FLUORESCENCE WITH MINIMAL SPECTRAL FEATURES. 
THE LOW SNR SPECTRA ARE OVERWHELMED BY A COSMIC SPIKE THAT COMPLETELY OBFUSCATES ALL OTHER FLUORESCENCE AND 
SPECTRAL FEATURES. 

4.4.2.1 AVERAGING SCANS 
High frequency noise is present as low amplitude, high frequency disturbances in the spectrum, and cosmic 
spikes presents as infrequently occurring single high amplitude disturbances in the Raman spectrum. High 
frequency noise and cosmic spikes are both randomly distributes in the spectrum, and as such may be reduced 
by taking a mean of multiple spectra of multiple spectra acquired from the same sample. Figure 4.12 presents 
the effects of averaging sequential spectra from a single Rhodamine 6G sample. A single spectrum (top panel) 
demonstrates a high degree of high frequency noise. An average of 10 spectra (middle panel) reduces the high 
frequency noise, however the occurrence of a cosmic spike leads to a substantial spectral abnormality at 
625 cm—1. An average of 50 spectra (bottom panel) demonstrates substantially reduced high frequency noise, 
with the reduction of the amplitude of the cosmic spike.  
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FIGURE 4. 12 EFFECT OF AVERAGING SPECTRA. MEAN (BLACK), AND INDIVIDUAL SPECTRA (MULTIPLE COLOURS) OF 1 (a), 10 (b) AND 
50 (c) SEQUENTIAL SPECTRA ACQUIRED FROM A SINGLE SAMPLE OF RHODAMINE 6G (TOP TO BOTTOM).  A SINGLE SPECTRUM 
DEMONSTRATES A LARGE DEGREE OF HIGH FREQUENCY NOISE. THIS HIGH FREQUENCY NOISE IS REDUCED WHEN 10 SPECTRA ARE 
AVERAGED, HOWEVER A COSMIC SPIKE IS INCLUDED. THE EFFECT OF THE COSMIC SPIKE IS REDUCED WITH THE AVERAGING OF 50 
SPECTRA. 



 

 

 114 

Averaging multiple spectra from an individual sample is an effective method for reducing high frequency noise 
and the effects of cosmic spikes. The benefits provided by averaging spectra are contrasted against the risk of 
photodestruction and practicality of prolonged acquisitions. Applied to Raman pathogen research, within the 
constraints of sample integrity, taking a mean of the highest feasible number of Raman spectra will best improve 
SNR. 

 

 

FIGURE 4. 13 MEAN SPECTRA, WITH STANDARD ERROR RIBBONS, AND PCA PLOTS FOR HIGH, MEDIUM AND LOW SNR DATASETS AFTER 
TAKING AN AVERAGE OF SPECTRA TOTALLING 1 MINUTE ACQUISITION. 

The benefits of averaging spectra are demonstrated in Figure 4.13 which plots the mean spectra with standard 
error ribbons for the high, medium, and low SNR datasets after taking an average of spectra. Averaging spectra 
has little effect on the spectra or dataset for the high SNR dataset. Averaging scans reduces the spectral 
variability in the medium SNR dataset, evidenced by narrower standard error ribbons, leading to an 
improvement in the separation on the accompanying PCA plot. Averaging scans substantially reduces, but does 
not remove the cosmic spike, in the low SNR dataset (evidenced by the reduction in magnitude of the y axis). 
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4.4.2.2 SMOOTHING ALGORITHMS 
Smoothing algorithms are used to reduce high frequency noise and cosmic spikes. Smoothing algorithms pass a 
moving window across the spectrum and apply a smoothing process, most commonly a median or Savitsky-Golay 
filter. 

4.4.2.2.1 MEDIAN FILTERING 

 

FIGURE 4. 14 SMOOTHING WITH MEDIAN FILTERS OF 1 (a), 7 (b), AND 13 CM-1 (c) WINDOWS APPLIED TO RAMAN SPECTRA ACQUIRED 
FROM MUELLER HINTON BROTH 
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The effects of application of a median filter with increasing window size to Raman spectra acquired from Mueller 
Hinton Broth are presented in Figure 4.14. The unfiltered (top panel) demonstrates residual cosmic spikes and 
high frequency noise. Application of a median filter of 7cm-1 window width (middle panel) removes the cosmic 
spikes and reduces high frequency noise. Further widening of filter window to 13 cm-1 shows improved 
smoothing, however with potential loss of signal (inset). 

4.4.2.2.2 SAVITSKY-GOLAY FILTER 

 

FIGURE 4. 15  SMOOTHING WITH SAVITSKY-GOLAY FILTERS OF 1, 9 (A&C), AND 10 (B&D) CM-1 WINDOWS AND 2ND (A&B) AND 3RD (C&D) 
ORDER POLYNOMIALS APPLIED TO RAMAN SPECTRA ACQUIRED FROM MUELLER HINTON BROTH. THE SPECTRA WITHOUT SMOOTHING 
ARE PRESENTED IN THE ENLARGED TOP PANEL. 
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The effects of applying a Savitsky-Golay filters of increasing window size and polynomial order to Raman spectra 
acquired from Mueller Hinton Broth samples is presented in Figure 4.15. Similar to median filters, Savitsky-Golay 
filters provide greater smoothing with widening windows reducing noise at the potential cost of signal. In 
contrast to median filters, control of the polynomial order maintains finer signal. Savitsky-Golay filters are sub-
optimally suited to removal of cosmic spikes. 

 

FIGURE 4. 16 MEAN SPECTRA, WITH STANDARD ERROR RIBBONS, AND PCA PLOTS FOR HIGH (TOP), MEDIUM (MIDDLE), AND LOW 
(BOTTOM) SNR DATASETS AFTER TAKING AN AVERAGE OF SPECTRA TOTALLING 1 MINUTE ACQUISITION AND SMOOTHING WITH A 
MEDIAN FILTER. 

The means spectra with standard error ribbons and PCA plots for the high, medium and low SNR datasets after 
averaging of scans and smoothing with a median filter is presented in Figure 4.16. No substantial changes are 
visible in the high and medium SNR datasets. Effective removal of the cosmic spikes in the low SNR dataset 
provides for visualisation of the spectra, although no separation is seen in the PCA plot.  

4.4.2.3 BACKGROUND SUBTRACTION  
Baseline subtraction is used to remove low frequency noise, through fitting an approximation of the baseline 
and subtracting this from the original spectrum. The fitted baseline may be approximated by least squares fitting 
of a nth order polynomial, or by spline interpolation. 
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4.4.2.3.1 POLYNOMIAL FITTING 
 

 

FIGURE 4. 17 BASELINE SUBTRACTION OF A FITTED 3RD (TOP), 7TH(MIDDLE) AND 19TH (BOTTOM) ORDER POLYNOMIAL APPLIED TO RAMAN 
SPECTRA ACQUIRED FROM ENTEROCOCCUS FAECALIS SAMPLES. LEFT PRESENTS THE ORIGINAL SPECTRUM (RED), FITTED BASELINE 
(GREEN) AND CORRECTED SPECTRUM (BLUE). THE RIGHT PANELS PRESENT THE MEAN CORRECTED SPECTRUM WITH STANDARD ERROR 
RIBBON. 

Figure 4.17 presents the effects of baseline subtraction of a 3rd , 7th and 19th order polynomial, with the left 
panels presenting a single original spectrum (red) with fitted baseline (green) and corrected (blue), while the 
right shows the mean spectrum with standard error ribbons for all Enterococcus faecalis samples. The top 
demonstrates an underfitted baseline with a low order polynomial poorly approximating the baseline. The 
middle panel demonstrates a well fitted baseline with a 7th order polynomial closely approximating the baseline. 
The bottom panel demonstrates an overfitted polynomial tightly fitted to the original spectrum. Runge's 
phenomenon is visible as oscillation induced either end of the spectrum in this panel. 
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4.4.2.3.2 CUBIC SPLINE INTERPOLATION 

 

FIGURE 4. 18 BASELINE SUBTRACTION THROUGH CUBIC SPLINE INTERPOLATION WITH 10 (TOP) AND 20 (MIDDLE) EVENLY DISTRIBUTED 
INTERPOLANTS, AS WELL AS SELECTED (BOTTOM) INTERPOLANTS APPLIED TO RAMAN SPECTRA ACQUIRED FROM ENTEROCOCCUS 
FAECALIS SAMPLES. LEFT PRESENTS THE ORIGINAL SPECTRUM (RED), FITTED BASELINE (GREEN) AND CORRECTED (BLUE), WHILE THE 
RIGHT PANEL DEMONSTRATES THE MEAN SPECTRUM FOR ENTEROCOCCUS FAECALIS SAMPLES  WITH STANDARD ERROR RIBBONS. 

The effect of baseline using cubic spline interpolation applied to Raman spectra acquired from samples 
containing Enterococcus faecalis is presented in Figure 4.18. The spectra were an average of six 10 second 
acquisitions and had been smoothed with a median filter of 9 cm-1 window width. The left presents a single 
original spectrum (red) with fitted baseline (green) and corrected spectrum (blue), while the right presents the 
mean spectrum with standard error ribbons for the Raman spectra acquired from the 10 Enterococcus faecalis 
samples. The top panel demonstrates baseline correction with 10 evenly distributed cubic spline interpolants, 
providing a close baseline fit. The middle panel demonstrates baseline correction with 20 evenly distributed 
cubic spline interpolants, leading to an overfitted baseline. The bottom panel demonstrates baseline correction 
with cubic spline interpolants selected to optimise baseline subtraction, providing a close baseline fit and 
improvement of signal. 
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FIGURE 4. 19 CUBIC SPLINE INTERPOLANT ERRORS. THE TOP PANEL DEMONSTRATES AN UNPROCESSED RHODAMINE 6G WITH 
INTERPOLANTS PLACED TO PROVIDE A WELL FITTED BASELINE (GREEN) LEADING TO A REPRESENTATIVE CORRECTED SPECTRUM (RIGHT). 
IN THE MIDDLE PANEL PLACEMENT OF AN INTERPOLANT ON A COSMIC SPIKES SUBSTANTIALLY ALTERS THE FITTED BASELINE LEADING 
TO AN IMPROPERLY CORRECTED SPECTRUM. IN THE BOTTOM PANEL, PLACEMENT OF AN INTERPOLANT ON A PEAK FROM RHODAMINE 
SIGNAL SUBSTANTIALLY ALTERS THE FITTED BASELINE WHICH OBSCURES THE SIGNAL AND INDUCES LOW FREQUENCY NOISE. 

Baselines fitted by cubic spline interpolation are defined by a small number of interpolants, and as such the 
resulting spectrum is exquisitely sensitive to the selected points. Figure 4.19 demonstrates potential effects of 
poorly placed interpolants, using an unprocessed Raman spectrum acquired from a sample of Rhodamine 6G. 
The top left panel presents the original spectrum (red) with a well fitted cubic spline baseline (green) providing 
a representative corrected spectrum (blue) on the top left panel. The middle panels present the same spectrum 
with an interpolating point placed on a cosmic spike. The fitted baseline deviates substantially from the spectral 
baseline, inducing a large sinusoidal wave in the corrected spectrum. The bottom panels present the same 
spectrum with an interpolating point placed on a signal peak, which results in loss of the peak and induced low 
frequency noise in the surrounding spectral bands. Choice of interpolants needs to be made using pilot data, 
ideally placed at points representative of the baseline, while avoiding areas representing signal. It is imperative 
that high frequency noise and cosmic spikes are smoothed prior to baseline subtraction using spline 
interpolation. 
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FIGURE 4. 20 MEAN SPECTRA, WITH STANDARD ERROR RIBBONS, AND PCA PLOTS FOR HIGH (TOP), MEDIUM (MIDDLE), AND LOW 
(BOTTOM) SNR DATASETS . THE SPECTRA ARE DIGITALLY PROCESSED BY TAKING AN AVERAGE TOTALLING 1 MINUTE ACQUISITION FOR 
EACH SPECTRUM, SMOOTHING WITH A MEDIAN FILTER, AND BASELINE SUBTRACTION OF A 2ND AND 6TH ORDER POLYNOMIAL FOR THE 
HIGH AND MEDIUM SNR DATASETS, AND CUBIC SPLINE INTERPOLATION FOR THE LOW SNR DATASET. THE ACCOMPANYING PCA PLOTS 
ARE PRESENTED ON THE RIGHT. 

Figure 4.20 presents the means spectra with standard error ribbons and PCA plots for the high, medium, and 
low SNR datasets after averaging of scan, smoothing with a median filter and baseline correction. The 
Rhodamine 6G spectra demonstrate lower variation (as compared to the plots without baseline subtraction in 
Figure 4.16), evidenced narrower standard error ribbons, leading to tighter clustering on the PCA plots. The 
medium SNR dataset present the spectra with fluorescence reduce, which in turn results in reduced clustering 
on the PCA plot. The low SNR dataset presents the Raman spectra with an incompletely removed baseline, 
without clustering visible on the PCA. 

4.4.2.4 NORMALISATION 
Sequentially captured Raman spectra from the same sample may vary due to an additive and multiplicative shift 
in the spectra. This may be corrected through normalisation, in which the spectrum is shifted to zero to account 
for the additive shift before dividing by a normalising factor to account for the multiplicative shift. Different 
normalising factors are available including: defined-peak, min-max, vector normalisation and area under the 
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curve (AUC). As spectra are shifted to a zero baseline, normalisation is sensitive to the minimum point. As such, 
truncating the spectrum may improve spectral consistency if the spectrum minimum lies on a spectral extreme. 

Figure 4.22 presents the Raman spectra (with a mean spectrum in black) acquired from samples containing 
crystal violet, pre-processed by averaging of spectra to a total of 60 seconds, smoothed by median filter and 
baseline subtraction of a second order polynomial. The top panel presents the Raman spectra prior to 
normalisation, demonstrating substantial additive and multiplicative shifts, in addition to a deep tail at 2200 – 
2300 cm-1. The middle panel presents the spectra after normalisation by the area AUC, demonstrating reduction 
in the variation caused by the additive and multiplicative shifts. The bottom panel presents the spectra if AUC 
normalisation is performed after truncating the spectrum to from 400 cm-1 to 2200 cm-1, therein removing the 
tail, with further reduces the spectral variability. Truncation prior to baseline subtraction is demonstrated here 
to substantially improve replicability. 

Figure 4.23 demonstrates the effect of applying different normalisation factors to the Raman spectra acquired 
from crystal violet samples. All methods substantially reduce the variation caused by additive and multiplicative 
shifts demonstrated in the top panel of Figure 4.22. The top panel presents min-max normalisation in which the 
normalisation factor is the intensity at the maximum point of the spectrum. This highlights a potential shortfall 
of this method in which the variation in the maximum peak may be normalised across the rest of the spectrum. 
The second panel present normalisation by the peak at 1625 cm-1. This method performs well in these samples 
in which a low variation peak is available to normalise by, however may worsen noise any samples in which there 
is poor consistency at the chosen peak. The third and fourth panels present AUC and vector normalisation 
respectively. These methods normalise by the entire spectrum, avoiding the risk normalising by a point with high 
variation. Vector or AUC normalisation are more reliable on these grounds. 
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FIGURE 4. 21 THE BENEFIT OF TRUNCATION PRIOR TO NORMALISATION DEMONSTRATED BY PLOTS OF RAMAN SPECTRA ACQUIRED 
FROM CRYSTAL VIOLET SAMPLES. WITHOUT NORMALISATION (TOP PANEL) SUBSTANTIAL ADDITIVE AND MULTIPLICATIVE SHIFTS RESULT 
IN THE INDIVIDUAL SPECTRA DISPERSED AWAY FROM THE MEAN SPECTRUM (BLACK). THE SAME SPECTRA AFTER AUC NORMALISATION 
HAVE THESE SHIFTS SIGNIFICANTLY REDUCED (MIDDLE PANEL). THIS IS FURTHER IMPROVED BY TRUNCATION (BOTTOM PANEL) WHICH 
REMOVES THE DEEP TAIL SEEN AT THE RIGHT. 



 

 

 124 

 

FIGURE 4. 22 NORMALISATION BY DIFFERENT NORMALISING FACTORS MIN-MAX, DEFINED PEAKS AT 1625CM-1, AREA UNDER CURVE, 
AND VECTOR NORMALISATION (TOP TO BOTTOM). ALL FACTORS DEMONSTRATE SUBSTANTIAL REDUCTION ON THE SPREAD OF SPECTRA 
SEEN IN THE TOP PANEL OF FIGURE 4.21 
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FIGURE 4. 23 MEAN SPECTRA, WITH STANDARD ERROR RIBBONS, AND PCA PLOTS FOR HIGH (TOP), MEDIUM (MIDDLE), AND LOW 
(BOTTOM) SNR DATASETS AFTER COMPLETE DIGITAL PRE-PROCESSING. PRE-PROCESSING WAS PERFORMED BY FIRST TAKING AN 
AVERAGE OF SPECTRA TOTALLING 1 MINUTE ACQUISITION AND SMOOTHING WITH A MEDIAN FILTER. THEREAFTER, BASELINE 
SUBTRACTION OF A 2ND AND 6TH ORDER POLYNOMIAL FOR THE HIGH AND MEDIUM SNR DATASETS, AND CUBIC SPLINE INTERPOLATION 
FOR THE LOW SNR DATASET WAS PERFORMED BEFORE VECTOR NORMALISATION OF ALL DATASETS. 

Figure 4.23 presents the high, medium and low SNR datasets after completing pre-processing by vector 
normalisation. The spectra of the high SNR dataset demonstrate well defined peaks, and the variability 
previously seen in the Rhodamine spectra is substantially reduced. As such, the PCA plot demonstrates excellent 
clustering and separation. The medium SNR dataset demonstrates reduced variability of the spectra, allowing 
for better visualisation of the small defining peaks above the unresolved baseline. The PCA plot demonstrates 
good clustering and separation with the exception of the overlap of a single BHI sample. This apparent worsening 
of the separation after normalisation may be explained by further reduction in the fluorescence signal.  The high 
SNR dataset demonstrates little visible differences on the spectra, however the PCA plot now demonstrates 
sufficient clustering for a reasonable degree of separation. 

4.4.3 UNSUPERVISED LEARNING 
Unsupervised learning refers to algorithms that identify clusters without prior knowledge of the classes of the 
spectra. These methods may be used to identify natural clustering of spectra. An additional benefit seen in PCA 
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is that of feature reduction, in which each spectrum is reduced to a smaller number of descriptive principal 
components. 

4.4.3.1 PRINCIPAL COMPONENT ANALYSIS 

 

FIGURE 4. 24 UNSUPERVISED LEARNING BY PCA FOR THE PRE-PROCESSED HIGH (TOP), MEDIUM (MIDDLE) AND LOW (BOTTOM) 
DATASETS. COMPONENT PLOTS (LEFT) ARE USED TO VISUALISE CLUSTERING WHILE SCREE PLOTS (RIGHT) VISUALISE THE PROPORTION 
OF VARIABILTY EXPLAINED BY THE PRINICPAL COMPONENTS (RED BARS) AS WELL AS THE CUMMULATIVE VARIABILITY EXPLAINED 
(GREEN LINE). 

Unsupervised learning by PCA for the high medium and low datasets are presented in Figure 4.24. Component 
plots (left) are used to visualise natural clustering of spectra, while scree plots (right) demonstrate the 
proportion of variability explained by each principal component and cumulatively proportion. The high SNR 
dataset demonstrates tight clustering with clear separation of groups on the component plot. A high proportion 
of variation is explained in a few components, with over 99% of variability explained by the first 3 components. 
The medium SNR dataset demonstrates good clustering and separation with minimal overlap. The scree plot is 
still loaded toward the early components with 86% of total variation explained by the first 3 components. The 
low SNR dataset demonstrates some natural clustering in the component plot, but significant overlap in the first 
three components. The scree plot demonstrates the explained variation is more widely disperse with only 38% 
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variation accounted for in the first 3 components. PCA has significant further advantages in that it may be used 
to for feature reduction, and the component loadings (see Figure 4.28 below) may be used to gain a mechanist 
understanding of classification. 

4.4.3.2 HIERARCHICAL CLUSTER ANALYSIS 

 

FIGURE 4. 25 UNSUPERVISED LEARNING BY HIERARCHICAL CLUSTER ANALYSIS 
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HCA achieves natural cluster by iteratively combining similar spectra, defined by the lowest distance between 
data points. Unsupervised learning though HCA applied to the high medium and low datasets is presented in 
Figure 4.25. Where natural clustering occurs (high and medium datasets) the dendrograms intuitively present 
natural clustering in addition to within and between group similarity (presented by branch length). However, 
where clustering is more complex (low SNR dataset), this is misrepresented on the dendrograms, and no 
mechanistic interpretation is provided. HCA does not reduce features. HCA, therefore provides limited value in 
analysis of Raman spectra. 

4.4.4 SUPERVISED LEARNING 
Supervised learning aims to identify the class from which spectra arise using prior knowledge. This entails 
training algorithms using labelled data, before using the trained algorithms to predict the class of spectra whose 
class is not known. 

4.4.4.1 PC-LDA 

 

FIGURE 4. 26 PC-LDA TRAINING (RED) AND LOOCV (GREEN) ACCURACY WITH INCREASING NUMBER OF PRINCIPAL COMPONENTS FOR 
THE LOW SNR DATASET. TRAINING SET CLASSIFICATION ACCURACY CONTINUES TO IMPROVE WITH A GREATER NUMBER OF FEATURES. 
IN CONTRAST LOOCV ACCURACY INITIALLY IMPROVES WITH MORE FEATURES REDUCING, REFLECTING OVERFITTING OF THE DATA IF TOO 
MANY COMPONENTS ARE USED. 

PC-LDA is a powerful supervised learning technique widely applied in Raman bacteriologic research in light of its 
ability to provide classification performance with relatively low number of samples. Initially principal component 
analysis is used to reduce spectra to a smaller number of descriptive variables, which are then used in linear 
discriminant analysis. Feature reduction is necessary as LDA requires fewer predictors than samples. PC-LDA 
performance is sensitive to the number of principal components passed to LDA. Training set accuracy will 
continue to improve with more PCs, however beyond a point this represents overfitting as demonstrated by the 
drop off in leave-one-out cross validation (LOOCV) accuracy beyond a certain number of PCs in Figure 4.26. The 
parsimony principal is advocated with least number of PCs providing the greatest LOOCV accuracy used (5 PCs 
for the low SNR dataset above). 
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FIGURE 4. 27 SUPERVISED LEARNING BY PC-LDA FOR LOW SNR DATASET 

Figure 4.27 presents the plot of the linear discriminants of the PC-LDA for the low SNR dataset. While the points 
are clustered, there remains a degree of overlap. This is reflected in the classification performance in Table 4.3. 
After complete pre-processing and supervised learning performed by PC-LDA spectra were classified with 86% 
accuracy (95% CI: 68.3;96.1%. p-value <0.05). Class sensitivities ranged from 84% to 100%, while specificities 
ranged from 78% to 100%. 
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TABLE 4. 3 PC-LDA CLASSIFICATION PERFORMANCE FOR THE LOW SNR DATASET 

 Reference Pathogen 

Escherichia coli Enterococcus 
faecalis 

Klebsiella 
pneumoniae 

Predicted 
Pathogen 

Escherichia coli 7 0 0 

Enterococcus 
faecalis 

0 9 1 

Klebsiella 
pneumoniae 

2 1 9 

Classification performance 

Overall Accuracy 86.2% (95% CI: 68.3;96.1. p-value<0.05) 

Escherichia coli Sensitivity 100% 

Specificity 78% 

Enterococcus 
faecalis 

Sensitivity 95% 

Specificity 90% 

Klebsiella 
pneumoniae  

Sensitivity 84% 

Specificity 90% 

 

4.4.5 SPECTRA BAND ASSIGNMENT 
Identification of the spectral bands contributing to classification of Raman spectra, while not necessary for 
supervised learning, builds upon the scientific understanding of Raman research and provides a mechanistic 
validation of Raman technologies. Figure 4.28 presents four techniques for identification of contributory 
spectral bands applied to the high, medium and low SNR datasets (left to right). Visual inspection (Top row) may 
be used where spectral features are clearly defined such as in the high SNR dataset, but is limited in more 
complex spectra. Without quantification and without accounting for variability, this method may overestimate 
the importance of features in areas of high variability, or miss small peaks lying in areas of low variation. 
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FIGURE 4. 28 METHODS FOR IDENTIFICATION OF CONTRIBUTORY SPECTRAL BANDS. VISUAL ASSESSMENT (TOP ROW), PRINCIPAL 
COMPONENT LOADING (SECOND ROW), F-STATISTIC PLOTS (THIRD ROW) AND RELATIVE DIFFERENCE (BOTTOM ROW) APPLIED TO HIGH 
(LEFT), MEDIUM (MIDDLE) AND LOW (RIGHT) SNR DATASETS 

Principal component loading (second row) is frequently used for identification of contributory spectral bands, 
by assessing the eigenvectors used to transform the original data to create the principal components. This 
method assumes the classes had separated on PCA. This method suffers from poor interpretability, and plots 
may appear congested even where SNR is high. 

𝑭𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄 =
𝑩𝒆𝒕𝒘𝒆𝒆𝒏	𝒈𝒓𝒐𝒖𝒑	𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏
𝑾𝒊𝒕𝒉𝒊𝒏	𝒈𝒓𝒐𝒖𝒑	𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏  

EQUATION 4.  1 F-STATISTIC EQUATION 

Signal is variability associated with the class of interest, while noise is variability not associated with the class of 
interest. As such a plot of the F statistic used in analysis of variance (ANOVA) (Equation 4.1) provides an 
approximation of the SNR (third row). Interpretation of the F-statistic is contingent on the sample size and 
number of classes, and as such there is no set threshold for a definitive peak. Despite this, F-statistic plots 
provide a rapid and simple method for identifying spectral bands with higher SNR across a study population.  
This may be augmented with pairwise comparisons achieved by centring and scaling each spectrum by spectra 
from a reference group (bottom row). This method provides an easily interpretable visual representation of 
relative difference of spectra accounting for variation. 
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4.5 DISCUSSION 
Raman spectroscopy has demonstrated capability in bacteriologic research ranging from basic science to 
technologies that have potential to be clinically applied[45, 70, 77, 85, 128, 167-169]. Most importantly Raman 
spectroscopy rapidly delivers high resolution spectra, allowing for strain level classification with minimal physical 
processing. This sensitivity is similarly the greatest challenge in Raman spectroscopic research in that minor 
experimental and sample variation leads to disproportionate changes in the acquired spectra. Furthermore, 
pathogen classification using Raman spectroscopy is a multistep process, with each step having multiple 
parameters under control which may have non-linear effects on the Raman spectrum acquired and therefore 
the classification. This results in an extraordinary number of permutations to Raman research. 

An approach to pathogen classification using Raman spectroscopy has therefore been developed to be relatively 
standardised. Samples are physically processed after which experimental technologies are applied typically with 
the intention of concentrating pathogens or reducing sample complexity. Raman spectra are acquired using 
Raman spectrometers, which may be augmented with optical microscopes. The acquired spectra need to be 
digitally pre-processed to optimise SNR. Classification is performed using supervised learning techniques, 
frequently on a reduced number of features. To understand and optimise the experimental controls in each of 
these steps, a strict approach of isolating the parameter and assessing the effects on the spectra has been 
employed in this work. 

4.5.1 BACTERIAL SUSPENSIONS 
As research into Raman spectroscopy evolves the samples assessed typically need to progress in complexity 
from samples containing a low number of reference strain pathogens at controlled concentrations suspended 
in a simple solution, to samples reflective of real-world clinical samples containing different pathogen strains in 
varying concentration suspended in complex media. Development of methods to consistently produce samples 
suitable for Raman assessment was achieved. Bacteria undergo dynamic changes while progressing through 
growth phases which reflect in dynamic changes to the Raman spectra. Dynamic spectra changes settle as 
pathogens enter the stable growth phase and as such uropathogens are cultured in a non-selective media[95, 
123, 137, 170].  

Culture media contain several strong Raman scatterers which may obfuscate bacterial signal, or if different 
media are used, provide classification not based on the pathogen Raman spectra[165]. Multiple cycles of 
centrifuge and washing has previously been demonstrated to remove residual culture medium Raman signal 
acquired using Raman microscope[143]. In this work, 5 centrifuge and wash cycles were demonstrated to culture 
medium signal from Raman spectra acquired using a handheld Raman spectrometer. Figure 4.2 demonstrates 
that after 5 centrifuge and wash cycles pathogens clustered by pathogen rather than culture medium 
demonstrating the Raman signal arises from the pathogens. 

Granular and consistent control of pathogen load in samples is required to contrive samples whose characteristic 
are consistent with clinical samples while still reducing variability. Gold-standard colony counting using the Miles 
and Misra method provides accurate pathogen load counts, but the need for culture limits this to confirmation 
of load rather allowing for control thereof[152]. Optical densitometry is demonstrated here Figure 4.3 & Table 
4.2) to provide a reliable surrogate marker for pathogen load, with an OD600 of 0.07 approximating 108 CFU/ml. 
Subsequent serial dilution provides for clinically relevant cut-offs of 105 CFU/ml, while the choice of diluting 
fluid) provides for complexity ranging from simple suspensions (suspended in PBS or saline) up to phantom urine 
samples (suspended in sterile human urine). 
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4.5.2 RAMAN ACQUISITION 
Numerous controls are available on spectrometers which may be tailored to optimise signal during spectral 
acquisition. Automated acquisition and subtraction of a reference spectrum substantially reduced high 
frequency noise. Activation of the Raster orbital scanning function provided superior Raman spectra with greater 
and more defined peaks. Despite providing superior spectra, these functions are rarely mentioned in Raman 
pathogen research, with only Jarvis et al. describing an analogous[86] feature of averaging multiple scans 
acquired from a grid layout. 

Higher laser power and prolonged acquisition time provide a linear increase in Raman spectral intensity through 
provision of a greater number of photons available for non-elastic scatter. While low frequency noise 
demonstrated a similar linear increase, high frequency noise remained consistent. As such higher power and 
longer acquisition times provided an increase in signal relative to high frequency noise. Therefore, within limits 
of sample photodegradation and time constraints, laser power and acquisition time should be maximised. 

This work demonstrates the exquisite sensitivity of Raman spectra to focal length, with 0.5mm differences 
substantially altering both the amplitude and resolution of acquired spectra. A similar challenge was highlighted 
by Mircescu et al. when 30% of acquired spectra were discarded due to poor focussing[101]. A spectroscope 
holder was thus designed and 3D printed to ensure optimal and consistent focussing at 29.5mm in all further 
work. 

4.5.3 SPECTRAL DIGITAL PRE-PROCESSING 
Noise in Raman spectra arising from several sources poses a significant challenge in Raman spectral analysis. 
Unresolved noise retains variation in data that reduces classification accuracy[104-106]. Noise in Raman spectra 
presents as cosmic spikes and high frequency noise arising from device electronics and low frequency noise 
arising from extraneous light and samples fluorescence. Additionally, an additive and multiplicative shift occurs 
with sequentially collected spectra appearing different while still containing the same signal. High, medium and 
low SNR datasets were created to illustrate the need for adequate digital pre-processing to gain classification 
performance in the low SNR set and similarly how overfitting can reduce classification performance in the high 
SNR set. 

Taking a mean of multiple scans is a frequently employed first step in Raman pre-processing. This work 
demonstrates this is an effective means of reducing both high frequency noise and cosmic spikes. This is because 
both sources of noise are randomly distributed across the spectrum. Averaging spectra is also demonstrated 
here to reduce the additive and multiplicative shift.  Averaging scans has another significant advantage in that 
it is unlikely to influence signal, as it is non-randomly distributed across the spectrum. A potential means of 
further augmenting this method was demonstrated by Jarvis et al., in which the median 36 of the 50 collected 
spectra were averaged [82]. In this way outliers, notably those including cosmic spikes or substantial shifts are 
excluded. 

Smoothing of spectra is performed to reduce high frequency noise and cosmic spikes. Two frequently utilised 
methods include median filtering and Savitsky-Golay filters[105]. Both are demonstrated here to substantially 
reduce high frequency noise. Median filters were demonstrated to be highly effective at cosmic spike removal, 
however rapidly reduced signal with widening windows. In contrast, Savitsky-Golay filters retained better signal 
however demonstrated suboptimal spike removal. Given the pathogen signal in Raman spectra are typically 
relatively low intensity and densely situated within the fingerprint region, superior signal retention by Savitsky-
Golay filters make these the smoothing modality of choice[108].  
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A significant challenge in digital processing of biologic Raman spectra is complex baselines arising from 
competing signal from background. Complex baselines are particularly challenging when using a handheld 
spectrometer rather than a Raman microscope as the larger focal volume incorporates a greater proportion of 
background material. Both the medium and low SNR datasets demonstrate complex baselines. Interestingly 
classification performance of the medium SNR dataset deteriorated following baseline subtraction in the 
medium SNR dataset, indicating that the baseline from fluorescence of the culture media was providing for 
classification. Two frequently employed methods, polynomial subtraction and cubic spline interpolation were 
assessed. 

Subtraction of a fitted polynomial is the most frequently employed method for baseline correction, likely due to 
its relative simplicity[110, 117, 149, 160]. This method is demonstrated to here to perform well in simple 
baselines which may be approximated with low order polynomials. It does not, however, perform well with 
complex baselines where higher order polynomials are required, as these induce artefacts and suffer from 
Runge’s phenomenon (oscillation at the ends of the fitted polynomial). 

Cubic spline interpolation provides for better estimation of complex baselines through user defined interpolants. 
As the baseline is defined by a small number of points, it is extremely sensitive to the selection of these points, 
as demonstrated in Figure 4.18 where interpolants were intentionally placed in areas of signal and noise. Cubic 
spline interpolation is also particularly susceptible to overfitting, in which interpolant may be selected to 
maximise signal in the dataset[105].  Therefore, interpolants need to be selected a priori on pilot data. 

Normalisation is required to account for the additive and multiplicative shift present in Raman spectra, by 
shifting to zero prior to dividing by a normalising factor. Options for normalising factor assessed included min-
max, defined peak, AUC and vector normalisation. Where normalising factors are based on a single band (min-
max, and defined peak) a risk of extending variability (either in amplitude or extent) across the entire spectrum 
is a possibility[171]. Figure 4.22 demonstrated this risk where min-max normalisation led to greater spread of 
spectra acquired form crystal violet samples. Both vector and AUC normalisation normalise by a factor generated 
by the entire spectrum and so perform superiorly[85, 171]. One potential advantage to defined peak 
normalisation not demonstrated here, is where an internal standard may allow for estimation of concentration 
or load. The benefit of truncation to the area of interest prior to normalisation was demonstrated. This is 
particularly valuable when using polynomial subtraction where spectral extremes are likely to have higher 
variability dure to poorer fits in these regions[172]. 

The above digital pre-processing steps are crucial to optimising SNR, and therefore, to gain the greatest 
performance out of further analysis. Each processing step has resounding influence on the final spectrum passed 
forward to analysis, which explains the great diversity in processing approaches. The large number of available 
pre-processing methods available, each with many tuning parameters, generate a massive number of 
permutations to pre-processing. This massive number of permutations risks both overfitting processing to the 
acquired dataset, or over-processing with signal loss. Therefore, a minimalist approach utilising the simplest pre-
processing techniques that works on a pilot dataset should be used[116]. 

4.5.4 UNSUPERVISED LEARNING 
PCA is the most widely used method for unsupervised learning, feature reduction and spectral band 
assignment[114]. The technique has numerous advantages that make it well suited to analysis of Raman spectra. 
PCA is performed in a mathematically closed form, without user defined inputs, leading to good interpretability 
and replicability, as well as providing computational efficiency. PCA is well suited to hypergeometric data, 
substantially reducing a massive number of features to a few descriptive components.  Plots of components 
provide an easily interpretable demonstration of natural cluster (or lack thereof). Scree plots are a good 
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reflection of SNR in datasets (see Figure 4.23)[115]. Reduction of features is required for, or may improve 
performance of, supervised learning algorithms such as LDA[113]. Assessment of PCA eigenvectors (loading) 
may be used for identification of contributory spectral bands. These many benefits must be tempered by a 
recognition that PCA is designed to maximise variation in earlier components, drawing attention to the 
importance of careful pre-processing. 

HCA is presented as an alternative unsupervised learning approach, but is demonstrated to perform poorly on 
the low SNR dataset. Many other reasons deem HCA poorly suited to Raman analysis: user defined inputs 
(agglomerative vs distributive & distance method) reduce interpretability and replicability; HCA is 
computationally cumbersome, particularly with hypergeometric data; HCA does not reduce features, and so 
does not aid in further analysis; and finally where clustering occurs, HCA does not provide insight into which 
spectral bands provide for clustering. 

4.5.5 SUPERVISED LEARNING 
PC-LDA is presented as a suitable method for supervised learning applied to Raman research. Crucial benefits to 
PC-LDA are the ability to efficiently work with hypergeometric data (provided by PCA feature reduction), as well 
as the ability to assess classification performance with a relatively small sample size. PC-LDA further benefits 
from good visual interpretability of discriminant plots[113, 173]. The performance of PC-LDA, both in training 
and validation, is highly sensitive to the number of components passed to LDA. As such a systematic approach 
applying the parsimony principal to LOOCV should be used to select the number of PCs used[116].  

A potential disadvantage to PC-LDA is inferior generalisability as compared to methods such as SVMs and 
ANNs[121]. These methods require considerably larger training datasets as compared to LDA, and so are 
unsuitable for early-stage Raman research which relies upon refinement of techniques with as few samples as 
possible. Furthermore, these methods are susceptible to a black box effect in which little understanding of how 
classification is achieved, and so are poorly suited to further development of early-stage technologies. An 
additional shortcoming of SVMs in particularly is that these are binary classifiers, and while workarounds 
(one-vs-one & one-vs-all) are available these are likely to worsen classification performance when applied to 
multiple class problems (such as pathogen classification)[119]. 

4.5.6 SPECTRAL BAND ASSIGNMENT 
Assignment of the spectral bands providing classification is an integral part of early-stage Raman research, 
providing both a mechanistic validation as well deeper understanding of the technology used. Visual assessment 
and principal component loading plots are frequently used to identify bands, despite being poorly suited. A 
challenge arises when using visual assessments to account for variability at the band. Specifically, the importance 
of small peaks arising in bands of low variability may be underestimated, and conversely the importance of large 
peaks on bands with high variability may be overestimated 

Plots of principal component eigenvectors (loadings) provide a visual representation of the contribution of 
spectral bands in each principal component. Given PCA is unsupervised, assigning bands by this method is 
therefore contingent on class separation within the component. A further challenge is that PC loadings are not 
naturally interpretable. Furthermore, Figure 4.28 demonstrates that even in high SNR datasets the PC loadings 
can be widely dispersed. 

Plots of the F-statistic are proposed here as an intuitive display of the SNR across the dataset. The provide an 
easily interpretable quantitative assessment of the discriminatory value of each band. This may be augmented 
with pairwise comparisons. 
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4.6 CONCLUSION 
Pathogen research, and indeed clinical diagnostics research, using Raman spectroscopy follow a similar broad 
approach of sample preparation, physical processing, Raman acquisition, digital pre-processing, feature 
extraction and classification, with spectral band assignments as an additional step applied to research studies. 
Each step is systematically interrogated here to define a suitable method for Raman research and understand 
the importance of each aspect in achieving the best classification performance.  

A method for producing samples of consistent pathogen type and load is demonstrated. Additionally, control of 
the suspending fluid allows for a simplified challenge using suspensions while developing Raman techniques, 
which may then be progressed to more representative phantom urine samples needed for validation. 

The importance of pre-processing is demonstrated in the series of pre-processing applied to high, medium and 
low SNR datasets. Strengths and weaknesses of frequently used techniques and control parameters are 
demonstrated in applied examples drawn from the datasets. Attention is drawn to the massive number of 
permutations possible during pre-processing, highlighting the value in deciding these a priori using prior or 
preliminary data, to both avoid both overfitting and signal loss.  

PCA is demonstrated to perform multiple important roles is Raman analysis as it is used in unsupervised learning 
as well as for feature reduction prior to supervised learning. It may also play a role in spectral band assignment. 

PC-LDA is identified as the ideal method for early-stage Raman research considering its strength in working with 
low sample numbers in the setting of hypergeometric data. The importance of parsimony in the selection of 
components passed to LDA is highlighted. 

Overall, the work presented in this chapter demonstrates the important parameters to optimise in Raman 
research, particularly in the case of pathogen identification. The experiments performed here were used to 
identify an optimal experimental procedure, which was taken forward to the experiments presented in the 
following chapters. 
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CHAPTER 5: UNENHANCED RAMAN SPECTROSCOPY 

5.1 INTRO 
UTI leads to significant patient morbidity, mortality, and societal costs. Core to this burden of disease is the 
pervasiveness of the condition, affecting 150 million people annually[1, 2]. The staggering number of UTIs, 
translates to a considerable health burden as any sequelae of the conditions is amplified millions of times over. 
This amplification of disease sequelae is extended to the shortcomings of the existing diagnostic paradigm, with 
inaccuracies and diagnostic delays similarly being extended to a multitude of people. The UTI diagnostic 
paradigm is plagued by inaccuracy and delay, with screening tests suffering from poor sensitivity leading to delay 
or overtreatment respectively, while definitive diagnosis incurs such delays that diagnostic value is lost[5]. 

These disease characteristics define the ideal diagnostic for UTIs, specifically that substantially improved 
accuracy is required to reduce both delayed recognitions risking progression to pyelonephritis or sepsis, and 
overtreatment leading to AMR. Additionally, rapid pathogen classification is required to limit the use of 
broad-spectrum antimicrobials, therein reducing development of AMR[174, 175]. 

Raman spectroscopy possesses many of the characteristics required to act as the ideal diagnostic. Most notably, 
Raman spectroscopy can provide instantaneous biochemical phenotyping on a single cell, negating the need for 
prior biomass expansion[89, 176]. Numerous physical and digital techniques may be employed to optimise 
diagnostic and classification performance[104, 107, 171, 172]. 

A major limitation of Raman spectroscopy is weak biologic Raman scattering. SERS is frequently employed to 
overcome this weakness in light of its ability to provide massive signal enhancement. SERS has a limitations that 
warrant interrogating whether pathogen classification may be achieved without requiring SERS, specifically: the 
enhancement provide by SERS is extremely sensitive to the probe characteristics and so strict technical 
production is required to gain consistent enhancement, and SERS enhancement declines exponentially with 
distance requiring close apposition to ensure enhancement but more importantly consistent apposition to avoid 
inducing variation[45].  

Pathogen recognition has been successfully achieved using Raman spectroscopy without surface 
enhancement[89, 90, 95, 96, 99, 102, 110, 117, 142, 151, 156, 160, 176-178]. While this has frequently entailed 
pre-culture, pathogen classification has been achieved without the need for pre-culture[99, 117, 142, 160].  

Hypothesis: Raman spectroscopy can provide rapid UTI diagnosis and bacterial classification without complex 
physical processing or surface enhancement. 

Objectives: 

• Measure and observe the Raman spectra of common uropathogens, identifying descriptive peaks and 
areas of variability. 

• Define the limit of detection for unenhanced Raman spectroscopy to identify uropathogens.  
• Assess the Raman spectrum of urine, with significant peaks and spectral variability. 

5.2 RAMAN SPECTROSCOPY OF CLINICAL URINE SPECIMENS 
5.2.1 INTRODUCTION 
Raman spectroscopy is a powerful chemometric technique which utilises the inelastic scattering of light to 
provide immediate chemical analysis. Raman spectroscopy has been applied to urine samples to provide rapid 
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chemometric urinalysis with success in quantifying common urinary metabolites without the need for complex 
physical processing or surface enhancement [179-182]. McMurdy et al. demonstrated Raman spectroscopy 
could accurately quantify urinary creatinine levels without physical processing of urine[183]. Moreira et al. 
quantified urinary concentrations of urea, creatinine, ketone bodies, phosphate and other nitrogenous in 
healthy volunteers, successfully differentiating levels in physically active participants as compared to sedentary 
participants[180]. Raman urinalysis was extended to clinical assessments by Cassiano et al. who quantified urea 
and creatinine concentrations as a method for chronic kidney disease (CKD) screening, although these 
measurements were acquired from healthy controls only[182]. De Sousa et al. performed Raman urinalysis on 
a patient population at risk of CKD due to concomitant hypertension and diabetes mellitus, quantifying urinary 
urea, creatinine and glucose[179]. The urinary metabolites in these studies provide for relatively simple Raman 
identification as they are strong Raman scatterers and are present in high concentrations. 

Raman urinalysis has similar potential to identify urinary metabolites present in lower concentrations and with 
weaker Raman signal. Guimarāes et al. demonstrated a role for Raman spectroscopy to identify performance 
enhancing drugs in athletes by detecting trace level of ephedrine in urine from healthy controls[184]. Huttanus 
et al. classified urine samples from healthy control, patients with CKD and sufferers of bladder cancer using 
Raman spectroscopy, identifying bladder cancer with 80.4% accuracy[185]. This work also highlighted that 
sensitivity and specificity can be optimised according to clinical need by varying the number of PCs passed to 
the classification algorithm. 

Raman spectroscopy has similarly been used to identify bacteria without the need for surface enhancement, 
complicated pathogen capture methods, or Raman microscopes[95, 96, 102, 110, 176, 177]. Earlier Raman work 
made use of ultraviolet Raman resonance (UVRR) to enhance signal without the SERS or bacterial isolation[95, 
96, 177]. This technique fell out of favour due to superior enhancement provided by SERS. Kastanos et al. 
classified three common uropathogens using a handheld Raman spectrometer with 94% accuracy[156]. Oliviera 
et al. identified successfully classified uropathogens with 83% accuracy[110]. Notably, these successes were 
attained from pathogens suspended in simple fluids and not in urine 

The potential of Raman spectroscopy to identify uropathogens directly from unprocessed urine without SERS 
has not been investigated. 

Hypothesis: Raman spectroscopy can differentiate infected from uninfected clinical samples without physical 
processing. 
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5.2.2 METHODS 

 

FIGURE 5. 1 METHODS FOR RAMAN SPECTROSCOPY OF CLINICAL SAMPLES. ONE HUNDRED CLINICAL SAMPLES WERE TRANSFERRED TO 
RAMAN VIALS FOR RAMAN ACQUISITION WITH THE IDRAMAN SPECTROSCOPE. DIGITAL PRE-PROCESSING WAS PERFORMED WITH THE 
OCEANVIEW DEFAULTS BEFORE ANALYSIS USING SPECTRAL PLOTS AND PCA PLOTS 

5.2.2.1 SAMPLE PREPARATION  
The methods used are summarised in Figure 5.1. One hundred clinical samples were acquired from North West 
London Pathology (NWLP) Microbiology Laboratory. An augmented convenience sample including 100 
consecutive samples with a 1:1 ratio of infected to uninfected controls was used.  Samples were processed 
according to NWLP standard operating procedures, initially screened with a Sysmex flow cytometer before 
plating all cells on chromogenic agar. After plating the samples were stored at 4 degrees Celsius, with all samples 
submitted for Raman analysis within 48 hours. Infected samples were defined as those with greater than 105 
CFU/ml of one or more pathogens. 

For Raman spectral capture urine samples were vortex mixed before pipetting 2ml into sterile borosilicate 
Raman vials. Raman spectra were captured using the IDRaman mini 2.0 handheld spectrometer with laser 
wavelength of 785 nm and power set 10 mW and a single acquisition of 8 seconds. 

5.2.2.2 SPECTRAL ACQUISITION AND ANALYSIS 
Spectra were captured and pre-processed using Oceanview software[166]. Analysis of processed spectra was 
performed using scripts developed in R programming language. Mean spectra with standard deviation ribbons 
were plotted for infected and uninfected controls. Unsupervised learning was performed using hierarchical 
cluster analysis and principal component analysis.  
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5.2.3 RESULTS 

 

FIGURE 5. 2 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR INFECTED (RED) AND UNINFECTED (GREEN) CLINICAL URINE SAMPLES. 
PEAKS ARISING FROM COMMON URINARY METABOLITES ARE EMPHASISED WITH VERTICAL DASHED LINES. THE SPECTRA DEMONSTRATE 
A HIGH DEGREE OF VARIABILITY DEPICTED BY WIDE STANDARD ERROR RIBBON PLOTS. 

The unenhanced Raman spectra were acquired from 100 clinical comprised evenly of infected and uninfected 
samples. The mean spectra for infected and uninfected clinical urine samples are presented in Figure 5.2. 
Spectral variability is demonstrated by the standard error ribbon plots overlaid on the mean spectra for infected 
and uninfected samples. Notable peaks were identified by visual inspection and are assigned to likely origins in 
Table 5.1. 

TABLE 5. 1 SPECTRAL BAND ASSIGNMENT FOR RAMAN PEAKS IN CLINICAL URINE SAMPLES 

Raman Shift (cm-1) Band assignment Reference 

681 Creatinine [180] 

848 Creatinine [180, 182] 

1006 Urea (NCN Stretching) [180, 182] 

1159 Urea (NH2 Rocking) [180, 182] 

1650 Water (HOH bending) [180] 

Natural clustering of infected and uninfected samples was assessed with unsupervised learning through principal 
component analysis. The biplot of the first two principal components is presented in Figure 5.3. 
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FIGURE 5. 3 PCA BIPLOT OF FIRST TWO PRINCIPAL COMPONENTS FOR CLINICAL URINE SAMPLES 

5.2.3 DISCUSSION 
In this work Raman spectroscopy was unable to differentiate infected clinical samples from uninfected clinical 
samples. This work demonstrates the substantial challenge of identifying uropathogens in clinical urine samples.  

The spectra of both infected and uninfected samples (Figure 5.2) are dominated by 681, 848, 1006 and 
1159 cm-1, consistent with creatine and urea peaks demonstrated in other works. Smaller peaks reported in 
other works including 527 cm-1 (urea), 587 cm-1 (urea), 605 cm-1 (creatinine), 880 cm-1 (nitrogenous compounds), 
907 cm-1 (creatinine, hydroxybutyrate, and acetoacetate), 983 cm-1 (phosphate), 1050 cm-1 (hydroxybutyrate 
and ketone bodies), 1079 cm-1 (amines), 1344 cm-1 (hydroxybutyrate), 1420 cm-1 (creatinine, acetoacetate, and 
1456 cm-1 (hydroxybutyrate)[180]. It is likely these contribute to the substantial variation seen in both plots 
(ribbons).  

This extreme variation is also likely to have completely obfuscated the weaker Raman signal from uropathogens, 
providing an explanation for the poor separation in the PCA plot (Figure 5.3). In addition to this, clinical samples 
are likely to have a range of uropathogen species and strains in varying concentrations[8], although certain cell 
components such as peptidoglycan would be expected to be present in all uropathogens[46].  

Impaired classification using these spectra may potentially be attributed to suboptimal digital pre-processing 
and analysis. This is visible as retained high frequency noise across both sets of spectra Figure 5.2. A limitation 
of this study is that pre-processing was performed using the OceanView software accompanying the handheld 
spectrometer. Where successful discrimination of uropathogens have been achieved without SERS or complex 
physical processing, this has been done with careful pre-processing[96, 102, 110, 156, 176, 177]. 

This work emphasises the need for physical processing steps, not only to capture and aggregate pathogens, but 
importantly to separate these from urine to avoid fluorescence and competing signal. Numerous techniques 
including differential centrifugation, filtration and evaporation may be used for pathogen aggregation and 
separation from urine[186]. 
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5.3 BACTERIAL RAMAN SPECTRA 
5.3.1 INTRODUCTION 
Raman spectroscopy has considerable benefits as a technique for pathogen identification and classification, 
notably the ability to provide classification without the need for biomass expansion provides for rapid pathogen 
identification[7, 76]. Numerous studies have performed bacterial identification and classification using Raman 
spectroscopy however most of these studies are augmented using SERS[69, 80, 82-84, 86, 88, 90, 96, 97, 102, 
110, 123, 124, 149, 156, 157, 159-161, 169, 176-178, 187, 188]. The tremendous signal enhancement provided 
by SERS offset by some challenges that need to be accounted for: SERS substrates may be technically challenging 
to produce; the stability of SERS substrates needs to be considered; and importantly the strong distance 
relationship of enhancement necessitates close apposition, failing which massive variation is induced[7, 72, 80]. 
Pathogen classification in these studies is mediated by a number of cell components (Table 5.2) 

Achieving pathogen classification without requiring surface enhancement may therefore may counterintuitively 
provide less complexity in Raman mediated pathogen classification. Raman spectroscopic pathogen 
classification without SERS has been achieved or the need for complex aggregation methods ([90, 96, 99, 102, 
110, 117, 156, 160, 176-178, 189]. Many of these studies did however work with cultured pathogens. 

UVRR was used to provide signal enhancement in earlier studies[96, 176, 177]. UVRR provides for enhancement 
of chemical components whose vibrational frequency is similar to the excitation frequency, typically nucleosides 
and aromatic amines[177]. Additionally, less fluorescence is seen with UVRR[96, 177]. UVRR has certain 
limitations, including a higher cost for the lasers[82]. Photons of ultraviolet wavelengths have higher energy, 
and so methods are required to reduce photodestruction, such as a revolving samples stage[96]. A potential 
further drawback of UVRR is that the narrow region of enhancement means learning is based on relatively few 
chemical components and so may not generalise well. Dalterio et al. used a 242 nm wavelength laser and 
achieved high resolution spectra with visible difference for multiple pathogens. Classification performance was 
not quantified.[177]. Jarvis et al. acquired Raman spectra from 20 clinical isolates of four different uropathogens. 
Similarly high-resolution spectra which provided excellent clustering and separation on PC-DFA.[96] 

Harz et al. achieved classification accuracy of 95.7% for 5 common meningitis pathogens using a Raman 
microscope, both from culture suspension and clinical samples with physical pre-processing limited to simple 
airdrying after spotting on a silica chip[178]. While the work did not involve complex physical processing or 
preculture, it did use a Raman microscope rather than a handheld spectrometer. Raman microscopes 
significantly improve spectral quality as a result of the narrow focal volume (down to 1 µm), effectively excluding 
background signal. Raman microscopes are however expensive, and require technical expertise to focus on 
pathogens[69, 88, 100]. 

Oliviera et al. achieved 83.5% accuracy classifying of 7 different reference strain uropathogens, with physical 
processing limited to spotting and airdrying on aluminium foil[110]. Kastanos et al. achieved 94% classification 
accuracy for 3 common uropathogens from clinical isolates using a handheld spectrometer[69, 156]. The isolates 
were suspended in PBS in Raman vials, with no further physical processing performed[156]. The pathogen load 
is, however, not stated in this work, and so may not be reflective of clinical samples. These two papers 
demonstrate pathogens can be accurately classified without complex physical processing, SERS or Raman 
microscopes. 
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TABLE 5. 2 SPECTRAL BAND ASSIGNMENTS FROM PUBLISHED WORKS ATTEMPTING PATHOGEN CLASSIFICATION WITHOUT PHYSICAL 
PROCESSING, SERS OR RAMAN MICROSCOPY 

Paper Band (cm-1) Assignment reference 

Jarvis et al. 1172 Tyrosine [96] 

Jarvis et al. 1247 Guanine, adenine uracil [96] 

Jarvis et al. 1324 Adenine, guanine Tyrosine [96] 

Jarvis et al. 1475 Guanine, adenine [96] 

Jarvis et al. 1524 cytosine [96] 

Jarvis et al. 1567 Guanine and adenine [96] 

Jarvis et al. 1607 Tyrosine, Tryptophan [96] 

Oliviera et al. 538 Glycosidic ring deformation [110] 

Oliviera et al. 624 Tryptophan [110] 

Oliviera et al. 645 Tyrosine [110] 

Oliviera et al. 672 Valine [110] 

Oliviera et al. 726 Adenine, peptidoglycan [110] 

Oliviera et al. 759 Tryptophan [110] 

Oliviera et al. 784 Cytosine [110] 

Oliviera et al. 814 RNA binding [110] 

Oliviera et al. 829 Tyrosine [110] 

Oliviera et al. 857 Saccharides, protein, teichuronic acid [110] 

 

Hypothesis: Uropathogens have distinct Raman spectra that may be used for bacterial classification. 

Objectives: 

• Capture the Raman spectra for common uropathogens using reference strain bacteria. 
• Describe the contributory peaks of uropathogen Raman spectra. 
• Assess the classification performance of unenhanced Raman spectroscopy on uropathogens. 
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5.3.2 METHODS 

 

FIGURE 5. 4 METHODS FOR RAMAN ASSESSMENT OF CONCENTRATED SUSPENSIONS. SAMPLE WERE PREPARED BY CULTURE OF 
REFERENCE STRAIN PATHOGENS SUBSEQUENTLY CENTRIFUGED AND WASHED 5 TIMES. THE SUSPENSIONS WERE TRANSFERRED 
UNPROCESSED TO RAMAN VIALS FOR RAMAN ACQUISITION USING THE IDRAMAN SPECTROMETER. THE SPECTRA WERE PRE-PROCESSED 
BY SAVITSKY-GOLAY FILTERING, POLYNOMIAL SUBTRACTION AND VECTOR NORMALISATION. SPECTRA WERE PLOTTED AND ANALYSED 
USING PC-LDA 

5.3.2.1 SAMPLE PREPARATION 
The methods employed are summarised in Figure 5.4. For each uropathogen 10 samples were prepared for 
Raman assessment. To prepare a sample, a single bead from the established reference bank was transferred 
from a Microbank cryopreservation vial into 10 ml of brain-hart infusion broth and cultured for 24 hours at 37 
degrees Celsius. The culture broth was then vortex mixed and subsequently centrifuged at 3350 g for 10 minutes. 
The supernatant was discarded, and the bacterial pellet resuspended in 2 ml of PBS by Vortex mixing. This 
suspension was then centrifuged at 8300 g for 1 minute. The supernatant was discarded, and the bacterial pellet 
resuspended in 2ml PBS by Vortex mixing. This centrifuge and washing process was repeated a total of 5 times. 
The resulting heavy suspension was not further diluted. 

5.3.2.2 SPECTRAL ACQUISITION AND ANALYSIS  
The suspension was transferred to a sterile borosilicate Raman vial for spectral acquisition. Spectra were 
captured using the IDRaman mini 2.0 handheld Raman spectrometer with a laser wavelength of 785 nm and 
power of 50mW with acquisition time of 10 seconds. An average of 18 spectra, totalling 3 minutes acquisition, 
was captured for each sample. 

Pre-processing and spectral analysis were performed using scripts developed in R programming language. 
Spectra were smoothed with a 3rd order Savitsky-Golay filter over 19 cm-1 moving window. Baseline correction 
was achieved by subtraction of a 9th order polynomial before truncation to 600-2000cm-1. The spectra were 
vector normalised. Mean spectra with standard deviations were plotted for each pathogen. PC-LDA was used 
for supervised learning, with the number of components selected by parsimonious LOOCV. For assessment of 
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spectral peaks contributing to bacterial classification all spectra were centred and scaled using all other species, 
with plots of the mean and standard deviation. 

5.3.3 RESULTS 

5.3.3.1 RAMAN SPECTRA OF UROPATHOGENS 
The mean Raman spectra of the reference strain uropathogens are plotted in Figure 5.5, with spectral variability 
demonstrated by standard error ribbon plots.  The spectra demonstrate a significant baseline incompletely 
accounted during pre-processing, as evidenced by consistent broad peaks. Despite incomplete baseline removal 
during pre-processing, the spectra demonstrate clear narrow deviations from the baseline which vary between 
uropathogen species. Notably, the very narrow standard error ribbons indicate consistency of Raman spectra 
within species. 

 

FIGURE 5. 5 RAMAN SPECTRA OF REFERENCE STRAIN PATHOGENS IN SUSPENSION 
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FIGURE 5. 6 PCA PLOT OF ALL BACTERIAL SUSPENSIONS 

5.3.3.2 SPECTRAL CLASSIFICATION 
Unsupervised learning was performed using PCA. Figure 5.6 presents the PCA plot of the first 3 principal 
components with all suspensions included. This PCA plot demonstrates a degree of clustering of the Raman 
spectra by uropathogen. However, the relatively high number of different uropathogens included results in 
cluster overlap. Limiting the number different uropathogens included in PCA assessment (Figure 5.7) allows for 
easier visualisation of clusters. 

 

FIGURE 5. 7 PCA PLOT INCLUDING A LIMITED NUMBER OF PATHOGENS 
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Supervised learning was performed through PC-LDA. Figure 5.8 plots the first 3 linear discriminants for the 
Raman spectra of the reference pathogen suspensions. Table 5.3 demonstrates the classification of the 
suspensions, while Table 5.4 summarises the classification performance. 

 

FIGURE 5. 8 PC-LDA PLOT FOR BACTERIAL SUSPENSIONS 

TABLE 5. 3 SUSPENSION PC-LDA CLASSIFICATION 

 Predicted 

Actual  E. coli E. 
faecalis 

K. 
pneumoniae 

P. 
aeruginosa 

P. 
mirabilis 

S. 
agalactiae 

S. aureus S. 
epidermidis 

E. coli 10 0 0 0 0 0 0 0 

E. faecalis 0 10 0 0 0 0 0 0 

K. 
pneumoniae 

0 0 10 0 0 0 0 0 

P. 
aeruginosa 

0 0 0 9 0 0 0 1 

P. mirabilis 0 0 0 0 8 0 0 0 

S. 
agalactiae 

0 0 0 0 0 10 0 0 

S. aureus 0 0 0 0 1 0 10 0 

S. 
epidermidis 

0 0 0 1 1 0 0 9 

The PC-LDA plot demonstrates clustering of the pathogens by their Raman spectra, however similarly to the PCA 
plot, the relatively high number of different pathogens included leads to some apparent overlap of the clusters. 
Quantitatively, the pathogen spectra are classified with 95.0% (95% CI: 87.7-96.6%; p-value <0.001) overall 
accuracy, with no pathogen having less than 80% classification accuracy. 
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TABLE 5. 4 PERFORMANCE OF PC-LDA CLASSIFICATION 

 Accuracy Sensitivity Specificity 

Total 95.0% (95%CI: 87.7-96.6%; p-value <0.001)   

E. coli 100% 100% 100% 

E. faecalis 100% 100% 100% 

K. pneumoniae 100% 100% 100% 

P. aeruginosa 90% 98.6% 95.0% 

P. mirabilis 80% 100% 80% 

S. agalactiae 100% 100% 100% 

S. aureus 100% 98.6% 100% 

S. epidermidis 90% 97.1% 90% 

 

5.3.3.3 SPECTRAL BAND ASSIGNMENT 
Pairwise comparison, by centring and scaling each uropathogen strain referenced against all other strains, was 
used to assess spectra differences. These centred and scaled spectra are plotted in Figure 5.9 with standard 
error ribbons. Dashed lines indicate where individual bands are significantly different with 95% confidence. 
These plots demonstrate that within this set, all pairwise comparisons can be differentiated by one or more 
peaks. The point of greatest relative difference for each comparison is presented in Table 5.5, with putative 
band assignments.



 

 
FIGURE 5. 9 PAIRWISE COMPARISON OF UROPATHOGEN SPECTRA PERFORMED BY CENTRING AND SCALING SPECTRA 



 

TABLE 5. 5 SPECTRAL BAND ASSIGNMENT FOR PEAKS OF MAXIMAL DIFFERENCE IDENTIFIED IN REFERENCE STRAIN PATHOGENS 

Reference 
Bacteria 

Bacteria Raman 
Peak 

Relative 
difference 

Band assignment Reference 

E. coli A faecalis 812 3.1 RNA Binding [110] 
K. pneumoniae 1253 3.2 Amide III [117] 
S epidermidis  974 5.1 Protein backbone [190] 
P. aeruginosa  974 4.7 Protein backbone [190] 
P. mirabilis 1288 14.1 Cytosine, Nucleic acids [190] 
S. agalactiae 1288 13.7 Cytosine, Nucleic acids [190] 
S. aureus 1288 15.3 Cytosine, Nucleic acids [190] 

E. faecalis 
 

E. coli 1453 4.5 Lipid and Protein - CH2 
&CH3 deformation  

[99, 110] 

K. pneumoniae 1453 6.5 Lipid and Protein - CH2 
&CH3 deformation  

[99, 110] 

S. epidermidis  1453 4.4 Lipid and Protein - CH2 
&CH3 deformation  

[99, 110] 

P. aeruginosa  1666 3 Amide I, Alkene 
stretching, Nucleic acids  

[99, 190] 

P. mirabilis 1453 13.1 Lipid and Protein - CH2 
&CH3 deformation  

[99, 110] 

S. agalactiae 1453 8.2 Lipid and Protein - CH2 
&CH3 deformation  

[99, 110] 

S. aureus 1396 9.5 C=O stretching [190] 
K. pneumoniae 
 

E. coli 1400 2.2 Amino acids (Glutamic 
and aspartic acid) 

[190] 

E. faecalis 1400 2.8 Amino acids (Glutamic 
and aspartic acid) 

[190] 

S. epidermidis  1126 3.1 Cytochrome C, 
Disaccharides 

[99, 190] 

P. aeruginosa  1147 4.9 Guanosine, carotenoids [149, 190] 
P. mirabilis 1385 9 CH3 [149, 190] 
S. agalactiae 1293 8.6 Cytosine, Nucleic acids [110, 190] 
S. aureus 1148 10.6 Guanosine, carotenoids [149, 190] 

S. epidermidis E. coli 1516 5.3 Cytosine, Carotenoids [158, 190] 
E. faecalis 1516 4.2 Cytosine, Carotenoids [158, 190] 
K. pneumoniae 1133 3.7 Lipids, Saccharides, 

phospholipid, 
cytochrome C 

[110, 158, 
190] 

P. aeruginosa  1515 2.9 Cytosine, Carotenoids [158, 190] 
P. mirabilis 1401 7.7 Amino acids (Glutamic 

and aspartic acid) 
[190] 

S. agalactiae 1291 7.4 Cytosine, Nucleic acids [110, 190] 
S. aureus 1401 8.9 Amino acids (Glutamic 

and aspartic acid) 
[190] 

P. aeruginosa  E. coli 859 4.3 Proline, Tyrosine, 
phosphate 

[110, 190] 

E. faecalis 859 4.4 Proline, Tyrosine, 
phosphate 

[110, 190] 

K. pneumoniae 859 4 Proline, Tyrosine, 
phosphate 

[110, 190] 
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S. epidermidis  1508 3.2 Cytosine, Adenine [190] 
P. mirabilis 1293 7.6 Cytosine, Nucleic acids [110, 190] 
S. agalactiae 1294 8 Cytosine, Nucleic acids [110, 190] 
S. aureus 1294 8.4 Cytosine, Nucleic acids [110, 190] 

P. mirabilis E. coli 1350 5.2 Protein deformation [101] 
E. faecalis 1734 5 Lipids [190] 
K. pneumoniae 1734 5.8 Lipids [190] 
S. epidermidis  1351 4.7 Protein deformation [101] 
P. aeruginosa  1734 4.9 Lipids [190] 
S. agalactiae 1119 2.1 Ribose, carbohydrates [101, 190] 
S. aureus 763 2 Tryptophan [110, 190] 

S. agalactiae 
 

E. coli 1301 10.6 Lipids [99, 190] 
E. faecalis 1604 8.6 Phenylalanine, Tyrosine, 

Tryptophan 
[96, 99, 
158] 

K. pneumoniae 1301 12.1 Lipids [99, 190] 
S. epidermidis  1301 8.3 Lipids [99, 190] 
P. aeruginosa  1301 7.7 Lipids [99, 190] 
P. mirabilis 1503 2.9 Cytosine, Adenine [190] 
S. aureus 1503 3.8 Cytosine, Adenine [190] 

S. aureus E. coli 1301 9 Lipids [99, 190] 
E. faecalis 1305 7.7 Lipids [99, 190] 
K. pneumoniae 1301 10.1 Lipids [99, 190] 
S. epidermidis  1298 7.4 Lipids [99, 190] 
P. aeruginosa  1305 7.4 Lipids [99, 190] 
P. mirabilis 793 2.7 Cytosine, Thiamine [117] 
S. agalactiae 1400 2.5 Amino acids (Glutamic 

and aspartic acid) 
[190] 

 
5.3.4 DISCUSSION 
Uropathogens are demonstrated in this work to have unique Raman spectra which may be used for pathogen 
identification and classification. The 7 reference strain uropathogens were classified with 95.0% accuracy. This 
is comparable with other published work that attempted pathogen classification using Raman spectroscopy 
without complex physical processing, SERS enhancement or the use of Raman microscopy[96, 110, 156].  

Kastanos et al. achieved 94% classification of 3 common uropathogens, and with a similar sized dataset (75 
samples as compared to 70 in this work)[156]. Given the fewer number of classes it would have been expected 
their work may have delivered superior accuracy. Their work used a novel, and not widely adopted, method of 
spectra band ratios to process the spectra, which may explain the classification performance. Unfortunately, 
this method does not generate spectra or spectral band assignments, limiting comparability[156]. 

Oliviera  et al. achieved 83.5% classification accuracy from 7 different uropathogens[110]. The sample set was 
considerably smaller (38 samples) and used clinical isolates which may explain the lower classification accuracy 
seen here. Despite the use of clinical isolates in their study, many of the spectral bands used for classification 
were the same here and in their work, therein providing a mechanistic validation[110]. 

Notably, the contributory spectral bands seen in the work by Jarvis et al. played little role in the classification 
seen in this work[96]. This is explained by enhancing effect of UVRR, leading to the dominance in their spectra 
of bands associated with nucleosides and aromatic amino acids. Without enhancement through UVRR, the 
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spectra in this work arise indiscriminately from the entire pathogen (and surrounding solution), and so the 
descriptive peaks arise from a broader range of components[96]. 

This demonstrates a challenge of spectral band assignment for pathogens, particularly when using handheld 
spectrometers and without the benefit of enhancement through SERS or UVRR. Raman spectroscopy is a 
high-resolution technique, and while each biologic component will have a unique Raman spectrum, the final 
spectrum is the sum of these overlapping spectra. This may explain the many components identified to have 
contributed to pathogen classification. This challenge is amplified by the used of spectrometers which have 
lower spectral resolution (IDRaman has a resolution of 12cm-1 as compared to many microscopes that have a 
resolution of 2cm-1 [166]). Similarly, enhancement through SERS or UVRR is likely to allow classification to be 
based on few, more descriptive chemical components (such as cell envelope components). The dispersion of 
significant bands seen in this work, explains both the lack of grossly visible spectral peaks on the mean Raman 
spectra, as well as the need for supervised learning methods to gain classification. 

The use of heavy suspensions in this experimental work, and in other published works, provide for a relatively 
simplified classification challenge as the weak biologic signal is overcome by the increased pathogen load. 
Nonetheless, demonstrating the descriptive potential of these Raman spectra is relevant, for multiple reasons: 
It confirms Raman spectroscopy is technology that may be applied to pathogen classification and identification; 
the considerably lower pathogen load of clinical samples may be circumvented by methods to capture and 
aggregate them, ranging from simple methods such as centrifugation or evaporation to considerably more 
complex approaches including optical tweezer or dielectrophoresis; and finally understanding the descriptive 
bands here may allow for more targeted analysis of bands with higher SNR, to improve classification 
performance. 

5.4 PROLONGED ACQUISITION TIME RAMAN SPECTRA FOR CLASSIFICATION  
5.4.1 INTRODUCTION 
Uropathogens are demonstrated to have unique Raman spectra that allows for classification. Demonstrating 
this, however, has most frequently been achieved through preculture to massively expand biomass, therein 
delivering considerable signal enhancement relative to that expected in unprocessed clinical samples. A crucial 
strength of Raman spectroscopy however lies in its ability to acquire definitive spectra without then need for 
prior biomass expansion[7, 76]. Multiple studies have achieved uropathogen classification using technologies 
not reliant on preculture. Gaining this accurate classification in these studies was contingent on employing a 
diverse set of technologies to capture and aggregate the uropathogens.  

Schroder et al. achieved 100% classification accuracy in training set of Escherichia coli and Enterococcus faecalis 
spectra and over 99% accuracy on spectra from 3 patients [117]. While limit of detection is not interrogated, the 
technology was validated on clinical samples. Pathogen aggregation was achieved using a dielectrophoresis chip 
that used the electrostatic forces to aggregate the negatively charged pathogens in the centre. Raman spectra 
were acquired with a Raman microscope[117]. 

In other work, Schroder et al. captured Escherichia coli and Enterococcus faecalis from suspension and captured 
spectra similar to those acquired using their dielectrophoresis chip[160] . Supervised learning was not performed 
and so classification and limit of detection were not interrogated. Aggregation was achieved with a microfluidic 
chip that used centrifugal force to capture pathogens ahead of Raman acquisition using a Raman microscope. 
The authors report these chips can simultaneously process 4 samples and are amenable to mass 
production[160]. 
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Pahlow et al. achieved 90% classification of amongst 5 different bacterial species which are known to cause UTIs 
[142]. A limit of detection of 5x103 CFU/ml was achieved. Pathogen aggregation was achieved through 
immunocapture: antibodies against lipopolysaccharide and lipoteichoic acid (for Gram negative and positive 
bacteria) were immobilised onto specialised aluminium chips [142]. Pathogen suspensions were incubated on 
the chip for 10 minutes before washing with PBS. Raman spectra were captured with a Raman microscope[142].  

Kloss et al. achieved 92% classification accuracy amongst 11 different reference uropathogen species, and 
correctly identified 10 out of 10 clinical isolates of Escherichia coli and Enterococcus faecalis [99]. A limit of 
detection of 103 CFU/ml was reported. Pathogen aggregation was performed, without specialized equipment, 
by centrifuge and washing in PBS before air drying on nickel foil [99]. Raman spectra were acquired using a 
Raman microscope[99]. 

While the earlier work performed by Schroder et al. may appear too complex for mass adoption, these other 
works use physical processing technologies that are either widely available or amenable to mass production[99, 
117, 142, 160]. Central to all these technologies, however, is the use of a Raman microscope for spectral 
acquisition. Raman microscopes have a significant benefit in that focal volumes as low as 1 cubic µm may be 
used, effectively excluding competing and background signal. However, their cost and large physical footprint 
limit their feasibility for clinical use[88, 100]. 

None of the published work has assessed the potential of Raman spectrometry to identify and classify 
uropathogens without the aid of microscopy or SERS at clinically relevant concentrations. Attempting pathogen 
recognition under these constraints requires cognisance that considerably lower pathogen loads will provide 
significantly lower SNR, and so further physical processing may be required to increase concentrations or 
improve pathogen signal. Increased acquisition time was demonstrated in Section 4.2 to improve SNR by 
reducing cosmic spikes and high frequency noise.  

Hypothesis: Prolonged acquisition during Raman spectra acquisition of uropathogen suspensions will allow for 
diagnosis and classification at clinically relevant concentrations. 

Objectives: 

• Describe the diagnostic and classification performance of unenhanced Raman spectroscopy on 
pathogens in suspension at clinically relevant concentrations (105CFU/ml). 

• Identify if prolonged acquisition of Raman spectra from uropathogens at clinically relevant 
concentrations improved diagnostic and classification accuracy. 

• Identify if augmentation through higher pathogen loads or targeted analysis can improve diagnostic 
performance.  
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5.4.2 METHODS 

 

FIGURE 5. 10 METHODS FOR PROLONGED RAMAN ACQUISITION STUDY. 45 SAMPLES INCLUDED 30 REFERENCE STRAIN PATHOGENS AND 
15 NEGATIVE CONTROLS. PATHOGENS WERE CULTURED IN BHI, THEN CENTRIFUGED AND WASHED 5 TIMES, BEFORE DILUTION BY OD600 
AND SERIAL DILUTION IN SALINE TO VARYING PATHOGEN LOADS. SAMPLES WERE TRANSFERRED TO RAMAN VIALS. SPECTRA WERE 
ACQUIRED WITH THE IDRAMAN IN 30 SECOND INCREMENTS UP TO 15 MINUTES. SPECTRA WERE PRE-PROCESSED BY SAVITSKY-GOLAY 
FILTERING, POLYNOMIAL SUBTRACTION AND VECTOR NORMALISATION. ANALYSIS FOR ALL COMBINATIONS OF PATHOGEN LOADS AND 
ACQUISITION TIMES INCLUDED SPECTRAL PLOTS, PCA AND PC-LDA. 

5.4.2.1 SAMPLE PREPARATION 
The methods employed are summarised in Figure 5.10. The study population consisted of 10 samples each of 3 
reference strain uropathogens in addition to 15 negative controls. For each sample, a single Microbank bead 
from the reference bank was cultured in 3ml of brain-heart infusion broth for 24 hours at 37 degrees. The culture 
broth with uropathogens was vortex mixed and 2 ml transferred to a sterile centrifuge tube. The resulting 
suspension was centrifuged at 8300 g for 5 minutes, after which the supernatant was discarded, and the 
remaining pellet resuspended in 0.85% saline by Vortex mixing. The centrifuge and washing process was 
repeated a total of 5 times. The resulting suspension was diluted by OD600 to a concentration of 108 CFU/ml, and 
then serially diluted such that each sample yielded suspensions of 107, 105 and 103 CFU/ml. 

5.4.2.2 SPECTRAL ACQUISITION AND ANALYSIS 
Raman spectra were acquired from each bacterial load of all samples. Two millilitres of the suspension were 
transferred to a sterile borosilicate Raman vial for spectral capture. Raman acquisition with the IDRaman mini 
2.0 handheld Raman spectrometer with 10mW power and acquisition time of 20 seconds. A total of 45 spectra 
were acquired from each bacterial load of each sample for a total of 15 minutes acquisition (i.e., sum of 45 
spectra of 20 second acquisition time for each spectrum). To assess the effect of prolonged acquisition time, 
each had a sum of 3, 15, 30 and 45 spectra representing 1 minute, 5 minute, 10 minute and 15 minute 
acquisitions. 

Pre-processing and analysis of spectra was performed using scripts developed in R programming language. 
Spectra were smoothed using a 3rd order Savitsky-Golay filter across 19 cm-1 windows. The smoothed window 
was baseline corrected through the subtraction of a 5th order polynomial and truncated to 600-2000 cm-1. Mean 
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spectra, with standard deviations, for infected and uninfected controls were plotted as well as for each species. 
Supervised learning was performed using PC-LDA allowing for assessment of diagnostic and classification 
performance. In order assess the spectral peaks contributing to diagnosis, infected samples were centred and 
scaled on uninfected controls and the mean plotted along with standard deviation. Similarly, for pairwise 
comparison, each uropathogen species was centred and scaled by each other uropathogen species and the 
mean plotted along with the standard deviation. 

5.4.3 RESULTS 

5.4.3.1 SPECTRA AND PCA PLOTS 
The average spectra, with standard error ribbons, for infected (bacterial load 105CFU/ml) and uninfected, in 
addition to the plots when PCA is applied to these spectra are presented in Figure 5.11. Similarly, the mean 
spectra with standard error ribbon for pathogens in infected (105 CFU/ml) in addition to the PCA plots applied 
to these spectra are presented in Figure 5.12. The spectra demonstrate a consistent high noise background with 
consistent peaks. No peaks differentiating infected from uninfected samples are visible, leading to near 
complete overlap of the PCA points irrespective of acquisition time in Figure 5.12. The width of the standard 
error ribbons are substantially narrower for 60 and 300 second acquisition times as compared to 600 and 900 
seconds acquisition times. Less variation, as evidenced by the narrower error ribbons, leads to tighter clustering 
of the PCA points for longer acquisition times, but does not provide for separation of infected from uninfected 
samples.  

Similar features are seen in Figure 5.12, in which the Raman spectra for pathogens demonstrate a consistent 
high noise background across pathogens, with no differentiating peaks visible. The PCA plots provide no 
clustering and substantial overlap according to pathogen irrespective of acquisition time. 
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FIGURE 5. 11 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR INFECTED AND UNINFECTED SAMPLES (LEFT), AND PCA PLOTS WHEN 
APPLIED INFECTED AND UNINFECTED SPECTRA (RIGHT) WITH INCREASING ACQUISITION TIME. 
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FIGURE 5. 12 MEAN SPECTRA, WITH STANDARD ERROR RIBBONS (LEFT), AND PCA PLOTS (RIGHT) FOR INFECTED (105 CFU/ML) WITH 
INCREASING ACQUISITION TIME. 

5.4.3.2 DIAGNOSTIC AND CLASSIFICATION PERFORMANCE 
The diagnostic and classification performance achieved though PC-LDA are quantified in Table 5.6 and depicted 
in Figure 5.13. The number of components passed to LDA was selected by LOOCV for diagnostic accuracy. The 
diagnostic and classification accuracy improved as acquisition time was extended from 1 minute to 5 minutes, 
with no further improvement thereafter. With a 5-minute acquisition diagnostic accuracy was 74.1%, with 
classification accuracy of 86.2%. While these values may appear higher, the diagnostic accuracy was, in fact, only 
marginally better than random assignment.  
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TABLE 5. 6 PC-LDA DIAGNOSTIC AND CLASSIFICATION ACCURACY BY ACQUISITION TIME 

Acquisition time Diagnostic accuracy 
(%) 

Classification 
accuracy (%) 

Principal 
components  

Variability 
explained 

60 55.2 (41.5; 68.3) 58.6 (38.9; 76.5) 3 83.1% 

300 74.1 (61.0; 84.7) 86.2 (68.3; 96.1) 19 99.7% 

600 62.1 (48.4; 74.5) 86.2 (68.3; 96.1) 13 99.4% 

900 62.5 (48.6; 75.8) 89.3 (71.8; 97.3) 13 99.5% 

 

FIGURE 5. 13 PC-LDA DIAGNOSTIC (RED) AND CLASSIFICATION (BLUE) ACCURACY PLOTTED AGAINST ACQUISITION TIME. 

5.4.3.3 POST HOC ANALYSIS: INCREASED PATHOGEN LOAD AND TARGETED ANALYSIS. 
Pathogen load could feasibly be improved in a clinical setting with widely implemented methods. Analysis was 
performed with a pathogen load of 107 CFU/ml to assess if unenhanced Raman spectroscopy can identify 
pathogens at this level with the optimal acquisition time of 5 minutes. This diagnostic and classification 
performance are presented in Table 5.7, with the PC-LDA plot for classification depicted in Figure 5.14. 
Diagnostic and classification accuracy improve marginally with a higher pathogen load; however, this 
improvement is non-significant and does not provide meaningful identification of infected samples nor 
pathogen classification. 
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TABLE 5. 7 PC-LDA DIAGNOSTIC AND CLASSIFICATION PERFORMANCE WITH RAISED PATHOGEN LOAD (107 CFU/ML) 

Diagnostic Accuracy 63.4 (50.1; 76.0) 

Sensitivity 58.6% 

Specificity 69.0% 

Classification Accuracy 69.2% (48.2; 85.7%) 

 

 

FIGURE 5. 14 PC-LDA PLOT FOR UROPATHOGEN CLASSIFICATION USING UNENHANCED RMAN SPECTROSCOPY ON UROPATHOGEN LOAD 
OF 107 CFU/ML 

Additional techniques, both physical and digital are available to target analysis at spectral bands expected to 
have higher SNR, therein avoiding the noise arising from other area of the spectrum. A final step of analysis 
limited PC-LDA to spectral bands identified in Section 5.3 as descriptive for the three uropathogens. Significance 
is defined here as an F-statistic value below a threshold with a =0.05. Result of this analysis are presented in 
Table 5.8. 

TABLE 5. 8 PC-LDA DIAGNOSTIC AND CLASSIFICATION ACCURACY WITH ANALYSIS TARGETED AT SPECTRAL BANDS IDENTIFIED AS 
SIGNIFICANT IN SECTION 5.3. 

Diagnostic Accuracy 53.5 (39.9; 67.7) 

Sensitivity 51.8% 

Specificity 55.2% 

Classification Accuracy 51.7% (32.5; 70.6%) 
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5.4.4 DISCUSSION 
Raman spectroscopy with prolonged acquisition times did not provide adequate diagnostic or classification 
performance at clinically relevant concentrations. Diagnostic accuracy was limited to 74.1%, only marginally 
better than random assignments. This diagnostic performance is inferior to currently implemented diagnostics 
such as urinalysis or flow cytometry[191, 192]. Prolonging acquisition time did improve diagnostic and 
classification accuracy when increased from 1 to 5 minutes, but no further improvements in accuracy were 
observed. This was in keeping with methods section 4.3 whish had demonstrated a reduction in high frequency 
noise and cosmic spikes initially, but with diminishing gains. 

This contrasts with published works by Kloss et al., Schroder et al. and Pahlow et al.[99, 117, 142, 160]. These 
authors all demonstrated high resolution spectra with visible differences leading to excellent classification 
performance up to 92%. The crucial difference differentiating these studies is the use of Raman microscopes for 
spectra acquisition. A Raman microscope was not used in this study as it defies the aim of this thesis, to deliver 
a technology with potential to provide rapid, cost-effective UTI diagnosis with pathogen classification at the 
point of care. The advantage of Raman microscopes provided by a significantly smaller focal volume is offset by 
numerous limitations: firstly, the cost and physical footprint of these would limit use to central laboratories at 
best; secondly, focussing on pathogens requires technical expertise and methods to capture and aggregate 
pathogens; finally, as spectral acquisition is contingent on user-defined focussing on pathogens microscopes are 
limited to classification and not diagnosis[88, 100]. 

Furthermore, the classification performance of these works may be overstated. The reported datasets indicate 
that numerous spectra were acquired from each sample and treated as independent data points in analysis. This 
is particularly stark in Schroder et al., where 600 spectra were acquired from each sample[117]. The supervised 
learning techniques applied to these spectra assume the data points are independent[111]. Therefore, the 
classification seen may arise from idiosyncrasies in the samples, rather than from pathogen Raman signal. 

To firmly interrogate the hypothesis that Raman spectroscopy without SERS can achieve uropathogen 
classification, two further post hoc analyses were reported in this chapter. Classification performance was 
assessed with higher pathogen loads of 107 CFU/ml, a 100 times greater pathogen load than established cut-off. 
This analysis was performed under the assumption that, if successful, samples may be concentrated using widely 
implemented techniques including centrifugation, evaporation, or filtration[186]. Diagnostic accuracy with 
higher pathogen loads of 64.1% did not differ significantly from those of standard pathogen loads, nor random 
assignment. This would indicate, at these pathogen loads, the Raman signal from the pathogen is too weak to 
provide meaningful diagnosis. 

The second post-hoc analysis was predicated on the premise that any bacterial Raman signal is overwhelmed by 
noise arising across the spectrum. Targeting identified in Section 5.3 to have higher signal levels. Should this 
method have been successful it could have been extended to other work digitally, or preferably be performed 
using optical band-pass filters or liquid crystal tuneable filters. Diagnostic accuracy in this analysis was 53.5%, a 
reduction as compared to assessment of the entire spectrum. This would indicate this Raman signal in these 
areas was too weak with the lower pathogen load. 

A limitation of this work is that no efforts were made to aggregate pathogens to increase signal. Aggregation 
methods including dielectrophoresis, optical tweezers and immunocapture were used in the published works as 
these are Raman microscopy requires this aggregation and capture for proper focussing[117, 142]. While many 
of these methods are unlikely to be cost-effective and feasible in a clinical setting, more implementable methods 
for pathogen capture such as centrifugation or filtration have been studied[124, 144-147]. These methods may 
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be sufficient to concentrate pathogen to a level above the limit of detection for unenhanced Raman 
spectroscopy without microscopy. 

5.5 CONCLUSION 
Uropathogens are demonstrated to have unique Raman spectra allowing for accurate classification. When 
applied to concentrated suspensions Raman spectroscopy classification accuracy of 7 common reference 
uropathogenic strains approaches 95%. Spectral bands contributing to classification were attributed to a wide 
range of cellular components, in keeping with previous published work. 

Extending the diagnostic challenge to suspensions with a clinically relevant pathogen load of 105 CFU/ml 
emphasises the challenge of weak biologic Raman signal. Diagnostic accuracy was little better than random 
assignment, even failing to improve with post hoc analysis to assess whether increasing the pathogen load 100 
fold or targeting analysis to spectral bands demonstrated to be significant.  

Raman spectra of clinical urine samples was interrogated, demonstrating a large degree of variability across the 
entire spectrum with large peaks associated with common urine constituents such urea and creatinine.   

When combined these findings indicate that while uropathogens have unique Raman spectra with the potential 
for rapid identification and classification, additional techniques are required to achieve this at clinically relevant 
concentrations. Achieving classification at clinically relevant concentrations may possibly be achieved through 
SERS or physical pre-processing to capture and aggregate uropathogens. Similarly, physical pre-processing is 
required to separate pathogens from urine to avoid the overwhelming fluorescence and competing signal. 
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CHAPTER 6: SURFACE ENHANCED RAMAN SPECTROSCOPY USING 

NANOPARTICLES 

6.1 INTRODUCTION 
UTIs contribute a substantial burden of disease which is primarily mediated by the massive rate at which UTIs 
occur[1, 2, 8, 10]. This burden of disease is exacerbated by an outdated diagnostic approach characterised by 
inaccuracy and delay[5]. A new UTI diagnostic paradigm built upon a novel diagnostic technology can 
substantially reduce the burden of disease by delivering accurate diagnostic information when and where it has 
the greatest impact: at the bedside. Therefore, the ideal diagnostic technology for UTIs would aim to deliver 
accurate diagnosis with precise pathogen classification at the point of care. 

Raman spectroscopy is uniquely suited to form the basis of an ideal UTI diagnostic in light of its ability to identify 
pathogens without prior biomass expansion[7, 76]. This is achieved through rapid biochemical fingerprinting 
provided by the detection and analysis of inelastically scattered light[71]. While uropathogens are demonstrated 
to have unique Raman spectra that provide classification, weak biologic Raman scattering from pathogens is 
overwhelmed by background noise. As such, methods to physically aggregate and capture pathogens while 
separating them from urine are required prior to Raman acquisition[186]. Similarly, techniques to enhance the 
pathogen signal to allow for precise pathogen recognition at clinically relevant concentrations. 

SERS may overcome the challenge of weak biologic Raman scattering by providing signal enhancement of up to 
1014 times[72]. SERS has additional benefits when applied to pathogen recognition in that the signal 
enhancement is fluorescence quenching[70, 72, 82, 88, 123, 167]. Importantly, enhancement is selective, 
mediated an inverse and exponential relationship with the distance between the target and SERS substrate[7, 
69, 72, 80, 85, 123]. The practical implication of this relationship is that biochemical entities held within a few 
nanometres of the substrate are massively enhanced, while those outside 20 nm have negligible enhancement. 
This is of tremendous value when applied to pathogens, in which the bulk of the descriptive biomass is 
incorporated in the cell envelope which comprises the most superficial few nanometres of the cell. As such 
closely and consistently applied SERS substrates will selectively and massively enhance the most descriptive 
components of pathogens. 

SERS substrates may be applied to pathogens using one of three methods. Firstly, the SERS substrate may be 
formed directly on, or in, the cell envelope by reducing a noble metal salt in the pathogen suspension. While 
delivering highly resolved spectra, this method is limited to laboratory-based research owing to the need for 
reagents and technical processes.  In the second approach, pathogens may be applied directly to a SERS surface. 
A challenge exists in getting close apposition of pathogens to these SERS surfaces. In the final approach, 
suspended pathogens may be mixed with colloidal nanoparticles[72, 97, 167]. 

SERS using colloidal nanoparticles has a substantial advantage in that silver and gold naturally interact with the 
pathogen cell envelope, and as such the SERS enhancement is selectively targeted to the cell envelope. This 
occurs in a time dependent fashion which is dependent on numerous nanoparticle characteristics including the 
noble metal, size, shape and presence of capping agents[70, 88, 136]. Hence, a great deal of versatility is 
provided by the control of the nanoparticle characteristics, which may then be optimised to acquire the best 
SERS spectra. This may be further optimised using physical methods to concentrate the pathogens and therefore 
increase the interaction of pathogens with the SERS substrates[186]. 

Hypothesis: Colloidal nanoparticles provide sufficient Raman signal enhancement to allow for identification and 
classification of uropathogens at clinically relevant concentrations. 
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Objectives: 

• Investigate the SERS spectra of common uropathogens enhanced with colloidal nanoparticles. 
• Identify the optimal nanoparticle metal and size for uropathogens SERS acquisition. 
• Identify a rapid method for pathogen aggregation and capture to improve pathogen–nanoparticle 

interaction. 
• Describe the performance of colloidal nanoparticle mediated SERS for uropathogen identification and 

classification. 

6.2 SERS SPECTRA OF COMMON UROPATHOGENS USING VARYING NANOPARTICLES 
6.2.1 INTRODUCTION 
Overcoming the challenges posed by weak biologic Raman scattering is best achieved using SERS[82, 88, 123, 
156]. The tremendous surface enhancement provided by SERS is additionally benefited by a strong selectivity 
mediated by an inversely and exponential distance relationship[7, 69, 72, 80, 85, 123]. As such, SERS substrates 
consistently to pathogens will massively enhance signal arising from the cell envelope where many of the 
defining chemical features arrive. 

Compared to other methods, SERS using colloidal nanoparticles has an important benefit in the ability to work 
directly with solutions without pathogen aggregation or capture (although these are frequently performed).  
Cognizance must however be given to the fact that without methods to achieve pathogen apposition the 
nanoparticles are randomly distributed throughout the suspension and so the benefit is selective enhancement 
is lost[193]. Apposition to pathogens is most frequently achieved through the intrinsic interaction of metals with 
bacterial cell envelopes. This nanoparticle – envelope interaction is time dependent and so making use of this 
incurs a delay. Similarly, the time dependent spectral changes necessitate special attention to avoid inducing 
variation. This interaction is also dependent on multiple factors notably nanoparticle characteristics including 
metal, size, shape, and capping agents amongst others[70, 88]. Additional caution needs to be exercised as the 
cell envelope interaction is bactericidal, and so prolonged mixing will lead to cell death inducing spectral 
variability. For these reasons, where nanoparticles are used in Raman bacterial experiments they are commonly 
freshly produced and evaluated. 

Colloidal SERS nanoparticles have been assessed in a number of published works: Nordstrom et al. attempted a 
simple method of classification by mixing of colloidal nanoparticles with bacterial suspensions at a range of 
pathogen loads [157].Three different strains of Escherichia coli, Klebsiella pneumoniae and Proteus Mirabilis 
were assessed. Nanoparticles were produced by the method of Lee and Meisel, combined with the bacterial 
suspension and airdried before acquisition with a Raman spectrometer [134, 157].The authors claim the 
bacterial load quantification and antimicrobial sensitivity identification [157]. While supervised learning using 
PC-LDA is reported in the methods section the classification performance is not reported in the results[157]. 

Kahraman et al. assessed the SERS spectra of bacteria after simple mixing with nanoparticles [88]. Silver 
nanoparticles were produced by the methods of Lee and Meisel as well as Creighton before mixing with 
suspensions of Escherichia coli. The differing methods of nanoparticles result in nanoparticles with different 
charge characteristics. The resulting mixture was spotted onto slides before airdrying over 15-30 minutes, before 
Raman acquisition with a Raman microscope. While the nanoparticles produced by the method of Creighton 
[194] appeared to interact more with the cell envelope, the reproducibility of those produced by the method of 
Lee and Meisel produced more repeatable spectra. The results demonstrates that the strong enhancement 
provided by SERS can negatively affect spectra by inducing variation when inconsistently applied[88]. 
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Sengupta et al. acquired SERS spectra from bacterial suspensions mixed with silver colloidal nanoparticles. While 
successful classification of suspensions of Escherichia coli, Pseudomonas aeruginosa and Salmonella 
Typhimurium, the authors demonstrated the sensitivity of nanoparticle interaction to a number of colloidal and 
environmental factors including pH, pathogen load, colloidal concertation[195]. 

Avci et al. assessed the SERS spectra of common uropathogens enhanced with nanoparticles attempting to 
identify the minimum incubation time at which SERS can reliably identify pathogens [123]. Silver nanoparticles 
were created using the method described by Leopold and Lendl. Seven common uropathogens were cultivated 
for times ranging from 1 to 24 hours before suspension and mixing with nanoparticles. The 
bacteria-nanoparticles mixtures were spotted on slides and airdried prior to Raman acquisition with a Raman 
microscope. Uropathogens were accurately identified after only on hour of cultivation, although extremely 
dynamic changes were noted for all pathogens which settled as the stationary growth phase was achieved[123].  

While pathogen apposition may be achieved using time dependent interaction of nanoparticles with the cell 
envelope the delay required may be unfeasible for clinical application. Naja et al. utilised antibody mediated 
immunocapture to achieve rapid apposition of nanoparticles to bacteria[139]. Nanoparticles were produced by 
the method of Lee and Meisel[134]  before binding to protein A (a cell surface protein of Staphylococcus aureus) 
and then to antibodies to Escherichia coli. The antibody nanoparticles ensured rapid apposition to E. coli and 
good selectivity against a comparator bacterium. A limitation of immunocaptured nanoparticles in this work 
when applied to bacterial classification arises in that the specificity makes this unfeasible to broader 
classification challenges. This limitation may be avoided by the use of less specific antibodies such as those 
against teichuronic acid or lipopolysaccharide[139]. 

The challenges of random distribution of nanoparticles or time dependent variability of colloidal mixing may be 
circumvented by prior capture before addition of nanoparticles. Mircescu et al. used positively charged 
pegylated slides to electrostatically capture uropathogens, which are negatively charged, prior to washing and 
addition of nanoparticles[101]. The nanoparticles were produced by the method of Leopold and Lendl. Spectra 
were captured using a Raman microscope. Strain level uropathogen recognition was achieved. The sensitivity of 
their method was demonstrated by the ability to differentiate strains with and without O-antigen present[101]. 
A practicality overlooked by these researchers which may limit further translation is the plethora of competing 
negatively charged urinary components which would compete for slide apposition.  

In all these works, SERS enhancement was achieved using laboratory produced nanoparticles. While well 
developed and standardise methods are available for nanoparticle production, these methods are time 
consuming, technically challenging and may lead to variability on nanoparticle characteristics. Using 
commercially available nanoparticles will reduce these challenges.  

Hypothesis: Addition of colloidal metal nanoparticles to uropathogen suspensions provides Raman spectral 
enhancement, therein improving classification performance. 

Objectives: 

• Assess the classification performance achieved from SERS spectra of common uropathogens using 
commercially available colloidal nanoparticles. 

• Demonstrate the effects of varying the nanoparticle size and noble metal on the SERS spectra. 
• Assess if delayed acquisition improves classification performance through time mediated nanoparticle 

interaction with pathogens. 
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6.2.2 METHODS 

 

FIGURE 6. 1 METHODS FOR SERS SUSPENSIONS. SAMPLES WERE PREPARED BY CULTURE OF 3 REFERENCE STRAIN PATHOGENS WHICH 
UNDERWENT 5 CENTRIFUGE AND WASH CYCLES. THE SUSPENSIONS WERE TRANSFERRED TO RAMAN VIALS BEFORE ADDITION OF SERS 
NANOPARTICLES (10, 40 AND 100NM GOLD AND SILVER). SPECTRA WERE ACQUIRED WITH IDRAMAN SPECTROSCOPE. THESE SPECTRA 
WERE PRE-PROCESSED BY SAVITSKY-GOLAY FILTERING, POLYNOMIAL SUBTRACTION AND VECTOR NORMALISATION. SPECTRA WERE 
ANALYSED WITH SPECTRAL PLOTS, PCA AND PC-LDA 

The methods employed are summarised in Figure 6.1. This study consisted of assessment 6 different colloidal 
nanoparticles on 3 differing reference strain pathogen suspensions, with 5 replicates of each. 

6.2.2.1 SAMPLE PREPARATION AND SERS  
Suspensions of Escherichia coli ATCC25922, Enterococcus faecalis ATCC29212 and Klebsiella pneumoniae 
ATCC13883 were created using the established reference bank (Section 4.2). For each sample, a single 
microbank bead was inoculated into 10 ml of brain-heart infusion broth and cultured at 37 degrees Celsius for 
24 hours. Thereafter, the broth-pathogen suspension was vortex mixed and centrifuged at 3350 g for 10 
minutes. The supernatant was discarded, and the bacterial pellet resuspended in 2 ml of PBS by vortex mixing. 
The suspension was centrifuged at 8300 g for 1 minute, after which the supernatant was discarded, and the 
pellet resuspended. This centrifuge and wash process was repeated a total of 5 times to remove residual culture 
media. 

On the final resuspension 750 µl of colloidal nanoparticle in addition to 1.5 ml of PBS before resuspension by 
Vortex mixing. Colloidal nanoparticles were purchased from Sigma-Aldrich and included 10 nm, 40 nm, and 
100 nm nanoparticles of both gold and silver. The pathogen-colloid suspension was transferred to sterile 
borosilicate Raman vial for spectral acquisition. 

6.2.2.2 SPECTRAL ACQUISITION AND ANALYSIS 
Raman spectra were acquired immediately, and again after 30 minutes and 1-hour. Raman spectra were 
acquired with the IDRaman mini 2.0 handheld Raman spectrometer, with laser wavelength of 785 nm, power 
set to 50 mW and acquisition time of 10 seconds.  A mean of 6 spectra were averaged for a total acquisition 
time of 1 minute. 
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All processing and analysis were performed using scripts developed in R programming language. Spectra were 
smoothed using a Savitsky-Golay filter with a 3rd order polynomial over a 19 cm-1 moving window. The baseline 
was corrected through subtraction of a fitted 9th order polynomial.  Spectra were truncated from 600 cm-1 to 
2000 cm-1 to include the fingerprint region before vector normalisation. 

Mean spectra with standard deviations were plotted for the uropathogens with all 6 different nanoparticle types 
demonstrating the signal provided by different nanoparticles. Spectral differences between uropathogens were 
highlighted by plotting individual pathogens centred and scaled on other uropathogen spectra. PCA biplots were 
created for unsupervised classification of pathogen spectra for each nanoparticle and delay combination. PC-
LDA was used for supervised classification of pathogen spectra for each combination of colloidal nanoparticles 
and acquisition delay. 

6.2.3 RESULTS 
Figure 6.2 depicts the mean SERS spectra with standard error ribbons of the reference strain spectra enhanced 
by different nanoparticles, and with increasing delay before spectral acquisition. The spectra are dominated by 
a residual baseline incompletely removed during pre-processing. Despite the prominent baseline, differentiating 
spectral peaks are visible as smaller deviations from the baseline. These differentiating peaks are highlighted in 
Figures 6.3-6.5, in which uropathogen spectra are centred and scaled by spectra from another uropathogen 
species as a reference. These spectra demonstrate where uropathogen spectra differ greatest relative to the 
local variability. These plots present all combinations of colloidal nanoparticles and acquisition delays. Horizontal 
dashed lines indicate boundaries where differences are significant at a = 0.05. The point with greatest relative 
difference for each mean spectrum is emphasised by the dashed vertical line and listed in the accompanying 
tables (Tables 6.1 – 6.3).  All plots demonstrate several significantly differing peaks with the potential to 
contribute toward bacterial classification. These peaks vary dependent on the colloidal nanoparticle and 
acquisition delay. 
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FIGURE 6. 2 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR REFERENCE UROPATHOGENS (RED: ESCHERICHIA COLI; GREEN: 
ENTEROCOCCUS FAECALIS; BLUE: KLEBSIELLA PNEUMONIAE) ENHANCED WITH DIFFERENT COLLOIDAL NANOPARTICLES AND WITH 
DELAYED ACQUISITION.  
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FIGURE 6. 3 ESCHERICHIA COLI SPECTRA CENTRED AND SCALED ON ENTEROCOCCUS FAECALIS SPECTRA ENHANCED BY DIFFERENT 
COLLOIDAL NANOPARTICLES WITH INCREASING DELAY BEFORE SPECTRAL ACQUISITION. HORIZONTAL DASHED LINES DELINEATE THE 
BORDERS AT WHICH DIFFERENCE ARE STATISTICALLY SIGNIFICANT AT a = 0.05. VERTICAL DASHED LINES INDICATE THE POINT OF 
MAXIMAL RELATIVE DIFFERENCE, ALTHOUGH ALL PLOTS DEMONSTRATE MULTIPLE SIGNIFICANT BANDS 

Figure 6.3 demonstrates plots of mean spectra (with standard error ribbons) from Escherichia coli suspensions, 
centred and scaled by spectra acquired from Enterococcus faecalis suspensions. The band at which the greatest 
relative difference between Escherichia coli samples and Enterococcus faecalis samples are emphasised by the 
vertical dashed line and listed in Table 6.1 along with potential band assignments. 
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TABLE 6. 1 SPECTRAL BAND ASSIGNMENTS FOR ESCHERICHIA COLI SAMPLE CENTRED AND SCALED ON ENTEROCOCCUS FAECALIS SAMPLES 

Colloidal 
nanoparticles 

Acquisition 
Delay (minutes) 

Maximal 
difference peak 
(cm-1) 

Band assignment Reference 

Silver 10 nm 0 1612 Tyrosine, phenylalanine, 
and tryptophan 

[110, 158] 

30 1135 Cytochrome C, 
saccharides 

[99, 110] 

60 1712 Aspartic and glutamic 
acid 

[190] 

Silver 40 nm 0 1574 Exopolysaccharides, 
cytochrome C, 
peptidoglycan 

[99, 110, 158] 

30 604 Cholesterol [190] 

60 1032 Phenylalanine and 
proline 

[110] 

Silver 100 nm 0 959 Carotenoid [190] 

30 1565 Exopolysaccharide [110] 

60 759 Tryptophan  [110] 

Gold 10 nm 0 1578 Peptidoglycan [110] 

30 629 Tryptophan [110] 

60 1695 C=C stretching [101] 

Gold 40 nm 0 1080 Carbohydrates [158] 

30 1497 C=C stretching [190] 

60 1235 Amide III [123, 158] 

Gold 100 nm 0 1029 Carbohydrates, 
Saccharides 

[110] 

30 1292 CH2 Twisting [158] 

60 1506 Carotenoids [158] 
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FIGURE 6. 4 ENTEROCOCCUS FAECALIS SPECTRA CENTRED AND SCALED ON KLEBSIELLA PNEUMONIAE SPECTRA ENHANCED BY DIFFERENT 
COLLOIDAL NANOPARTICLES WITH INCREASING DELAY BEFORE SPECTRAL ACQUISITION. HORIZONTAL DASHED LINES DELINEATE THE 
BORDERS AT WHICH DIFFERENCE ARE STATISTICALLY SIGNIFICANT AT a = 0.05. VERTICAL DASHED LINES INDICATE THE POINT OF 
MAXIMAL RELATIVE DIFFERENCE, ALTHOUGH ALL PLOTS DEMONSTRATE MULTIPLE AREAS SIGNIFICANT BANDS 

Figure 6.4 demonstrates plots of mean spectra (with standard error ribbons) from Enterococcus faecalis 
suspensions, centred and scaled by spectra acquired from Klebsiella pneumoniae suspensions. The bands at 
which the greatest relative difference between Enterococcus faecalis and Klebsiella pneumoniae samples are 
emphasised by the vertical dashed line and listed in Table 6.2 along with potential band assignments. 
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TABLE 6. 2 SPECTRAL BAND ASSIGNMENTS FOR ENTEROCOCCUS FAECALIS SPECTRA CENTRED AND SCALED ON KLEBSIELLA PNEUMONIAE 
SAMPLES. 

Colloidal 
nanoparticles 

Acquisition Delay 
(minutes) 

Maximal difference 
peak (cm-1) 

Band Assignment  Reference  

Silver 10 nm 0 1656 Amide I [110, 117, 158] 

30 835 Phenylalanine [123] 

60 737 C-C stretch,  

DNA, AMP 

[149, 161, 190] 

Silver 40 nm 0 1884 C=C stretching [101] 

30 1602 Phenylalanine [99, 158] 

60 1238 Amide III [158] 

Silver 100 nm 0 799 Tyrosine [101, 158] 

30 635 Tyrosine [158] 

60 635 Tyrosine [158] 

Gold 10 nm 0 1863 C=C stretching [101] 

30 829 Tyrosine [110] 

60 961 Hypoxanthine, 
guanine, adenine 

[149] 

Gold 40 nm 0 1081 Carbohydrates [158] 

30 1135 Saccharides, AMP [110, 149] 

60 968 Lipids [190] 

Gold 100 nm 0 610 Tryptophan [110] 

30 1391 CH Rocking [190] 

60 1380 Peptidoglycan [110] 
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FIGURE 6. 5 KLEBSIELLA PNEUMONIAE SPECTRA CENTRED AND SCALED ON ESCHERICHIA COLI SPECTRA, ENHANCED BY DIFFERENT 
COLLOIDAL NANOPARTICLES WITH INCREASING DELAY BEFORE SPECTRAL ACQUISITION. HORIZONTAL DASHED LINES DELINEATE THE 
BORDERS AT WHICH DIFFERENCE ARE STATISTICALLY SIGNIFICANT AT a = 0.05. VERTICAL DASHED LINES INDICATE THE POINT OF 
MAXIMAL RELATIVE DIFFERENCE, ALTHOUGH ALL PLOTS DEMONSTRATE MULTIPLE AREAS SIGNIFICANT BANDS 

Figure 6.5 demonstrates plots of mean spectra (with standard error ribbons) from Klebsiella pneumoniae 
suspensions, centred and scaled by spectra acquired from Escherichia coli suspensions. The band at which the 
greatest relative difference between Klebsiella pneumoniae and Escherichia coli are emphasised by the vertical 
dashed line and listed in Table 6.3 along with potential band assignments. 
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TABLE 6. 3 SPECTRAL BAND ASSIGNMENT FOR KLEBSIELLA PNEUMONIAE SAMPLES CENTRED AND SCALED ON ESCEHRICHIA COLI SAMPLES 

Colloidal 
nanoparticles 

Acquisition Delay 
(minutes) 

Maximal difference 
peak (cm-1) 

Band Assignment Reference  

Silver 10 nm 0 1208 Tyrosine, 
Phenylalanine, 
tryptophan, 
amide III 

[110, 158] 

30 1975 C=C stretching [101] 

60 1920 C=C stretching [101] 

Silver 40 nm 0 1661 Amide I, Lipids [99, 110] 

30 1424 Lipids  [110] 

60 1720 Esters [190] 

Silver 100 nm 0 1100 Carbohydrates [101] 

30 696 Cholesterol [190] 

60 1421 Lipids [101] 

Gold 10 nm 0 1377 Hypoxanthine, 
adenine 

[149] 

30 834 Phenylalanine [123] 

60 1238 Amide III [123, 158] 

Gold 40 nm 0 1896 Esters [190] 

30 896 Glycosidic ring of 
saccharides 

[110] 

60 719 Glycosidic ring [101] 

Gold 100 nm 0 1600 Phenylalanine, 
tyrosine, 
tryptophan 

[96, 99, 158] 

30 1893 Esters [190] 

60 1740 Esters [190] 
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FIGURE 6. 6 PCA PLOTS FOR UNSUPERVISED CLASSIFICATION OF UROPATHOGEN SERS SPECTRA (RED: ESCHERICHIA COLI; GREEN: 
ENTEROCOCCUS FAECALIS; BLUE: KLEBSIELLA PNEUMONIAE) WITH DIFFERENT COLLOIDAL NANOPARTICLES AND INCREASING DELAY 
BEFORE SPECTRAL ACQUISITION 

Figure 6.6 depicts the first 3 principal components of the uropathogen spectra for each combination. All plots 
demonstrate overlap of component points, likely reflective of the incompletely resolved baseline. Varying 
degrees of clustering by pathogen are seen reflecting differences in the within class variability. 
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FIGURE 6. 7 PC-LDA PLOTS FOR SUPERVISED CLASSIFICATION OF SERS SPECTRA WITH DIFFERENT COLLOIDAL NANOPARTICLES AND 
INCREASING DELAY BEFORE SPECTRAL ACQUISITION 

Figure 6.7 present plots of the first two linear discriminants from the PC-LDA classification. The spectra 
differences highlighted in Figures 6.3-6.5 provide for clustering and separation of spectra allowing for 
classification. Classification accuracies are presented in Table 6.4. The classification accuracies in Table 6.4 are 
reflected in the degree of clustering and separation in the LDA plots of Figure 6.7. 
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TABLE 6. 4 PC-LDA PATHOGEN CLASSIFICATION PERFORMANCE FOR DIFFERENT COMBINATION OF COLLOIDAL NANOPARTICLE AND 
DELAYS 

Colloidal Nanoparticle Delay (minutes) 

0 30 60 

Silver 10 nm  100% 100% 93.3% 

Silver 40 nm 100% 66.7% 100% 

Silver 100 nm 100% 73.3% 73.3% 

Gold 10 nm 80.0% 66.7% 100% 

Gold 40 nm 60.0% 80.0% 100% 

Gold 100 nm 100.0% 71.4% 100% 

 

6.2.4 DISCUSSION 
SERS enhancement using commercially available nanoparticles achieved excellent classification performance of 
uropathogens. In these small samples perfect classification was achieved with many combinations of 
nanoparticles and delays. 

These results appear to favour some nanoparticle size and metal combinations, with silver generally performing 
better than gold nanoparticles. This is unsurprising given the greater enhancement provided by silver as 
compared to gold[45]. With 10 nm nanoparticles appearing to provide the most consistent classification across 
time. The small individual sample sizes however do not allow for definitive identification nanoparticle type 
providing the greatest enhancement. 

Time dependent interaction of nanoparticles with pathogens was assessed through repeated acquisition over 
multiple time points for each sample. An interesting phenomenon is that the best performance for most colloidal 
nanoparticles were achieved immediately or after an hour delay, with performance impaired at 30 minutes. This 
is also reflected in the scaled spectral plots which are flattened with wider uncertainty ribbons at 30 minutes 
compared to 0 and 60 minutes. A likely explanation is that variation is induced by dynamic interaction of 
nanoparticles with the pathogens at 30 minutes which stabilises at 60 minutes. The use of heavy suspensions in 
this work may have limited the benefit provided to delayed acquisition. 

While good classification performance was achieved with the majority of combinations of nanoparticles and 
delays, there are some instances of poor classification as low as 60%. While this may be reflective of the small 
sample size, other factors may play a role in misclassification. Sengupta et al. noted the interaction of 
nanoparticles is affected by environment conditions such as pH, pathogen load and even the pathogen[195]. 
These potential limitations of SERS using nanoparticles require either investigation and strict control or methods 
to nullify their effects. Aggregation and capture of pathogens is likely to limit the effects that suspension 
characteristics is likely to have[70, 88]. 

A number of descriptive spectral bands are present for all nanoparticle and delay combinations, with all the 
difference plots (Figures 6.3 to 6.5) showing statistically significant peaks which are aligned with other published 
works[96, 99, 101, 110, 117, 123, 149, 158, 190]. When contrasting the spectral band assignments here against 
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those produced by unenhanced Raman spectroscopy (Section 5.3) some notable differences are evident. A 
greater preponderance of chemical entities arising from the cell envelope, including peptidoglycan, amino acids 
and saccharides, as compared to a more dispersed array of chemical entities seen with unenhanced Raman 
spectroscopy, which included nucleotides and non-specific entities such as carbon backbones. Given these 
entities, assignments are present both at the 0 minute and 60-minute acquisition delays, which indicates these 
assignments are not a result of the time dependent reaction but more likely the SERS distance mediated 
selectivity[7, 69, 72, 80, 85, 123]. 

A substantial limitation of this work is the small sample size in each pathogenic sub-population assessed. This 
highlights one of the broader challenges of Raman research, in that multiple experimental parameters combine 
to from large experimental permutations. To assess 5 samples each of three uropathogens for enhanced with 
six different colloidal nanoparticles produces 90 permutations. Given each sample preparation and Raman 
acquisition required hours, these small individual sample groups require a disproportionately large amount of 
time.  

In conclusion, this work demonstrates that compared to unenhanced Raman spectroscopy, there are substantial 
benefits provided by SERS for pathogen classification. Despite small sample sizes the enhancement provided for 
superior classification as compared to the earlier study using unenhanced Raman spectroscopy (Section 5.3). 
While no nanoparticle type was demonstrated to be significantly more enhancing than another, these results 
did favour silver nanoparticles. Finally, while this work is in line with published work that increased time provides 
for improved classification accuracy, the initial dynamism while this occurs can induce variability leading to 
worse performance. As such, it may be of more value to immediately acquire spectra than to wait for this 
interaction to settle. 

6.3 PATHOGEN CAPTURE AND IDENTIFICATION THROUGH A COMBINATION OF VACUUM 

FILTRATION AND SILVER NANOPARTICLES.  
6.3.1 INTRODUCTION 
SERS using nanoparticles is demonstrated in Section 6.2 to provide significant enhancement of uropathogens 
potentially overcoming weak biologic Raman scattering allowing for pathogen identification at clinically relevant 
concentrations. With sufficiently concentrated pathogen loads SERS enhancement is achieved without requiring 
an acquisition delay to allow for nanoparticles to interact with pathogens. A range of methods for pathogen 
aggregation and capture may be employed in conjunction colloidal nanoparticle mediated SERS[186].  

Kahraman et al. developed a convective assembly which created a monolayer of cells from bacterial suspensions 
mixed with colloidal nanoparticles [161]. Nanoparticles were prepared by the method of Lee and Meisel before 
mixing with pathogens suspended to pathogen loads in the order of 1010 CFU/ml. The mixed suspension was 
spotted on a slide, over which an additional held slide at a 24° angle was run to create the monolayer. The slide 
was rapidly airdried before Raman acquisition with a Raman microscope[161]. While valuable when combined 
with Raman microscopy, this method will be disadvantageous when using a spectrometer due to dispersion of 
pathogens. 

Yang et al. utilised a specially developed, positively-charged slide to electrostatically capture negatively charged 
uropathogens prior to SERS acquisition [149]. Nanoparticles were produced by the method of Leopold and Lendl 
[196]. Colloidal nanoparticles were incubated with uropathogens before pipetting onto the pegylated slides and 
washing before Raman spectra were acquired with a Raman microscope. The authors investigated multiple 
experimental variations including mixing rate, incubation time and incubation temperature on the resulting SERS 
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intensity demonstrating the nanoparticle varied substantially with these parameters. Using the optimised 
setting strain level discrimination was achieved[149]. 

Vacuum filtration is a rapid means of bacterial capture that may be implemented with widely available 
equipment. Gao et al. used membrane filters to capture bacteria before adding a Raman reporter, 
mercaptophenylboronic acid, known to interact with peptidoglycan from Gram positive cell walls[140]. Gold 
nanoparticles were applied to the membrane filter. Both Polyvinylidene fluoride (PVDF) and nitrocellulose 
membrane filters were assessed, with nitrocellulose preferred due to lower retained mercaptophenylboronic 
acid. Raman spectra were acquired by Raman mapping[140]. 

Nylon membrane filters were used by Cho et al. in a multistep method for bacterial aggregation and capture 
prior to spectral acquisition [144]. Rather than using conventional SERS spectra, a Raman reporter, 
mercaptobenzoic acid was used to identify a limited range of pathogens, without classification. A limit of 
detection of 10CFU/ml was achieved[144]. 

Chen et al. embedded gold nanoparticles into nylon membrane filters to produce a hotspot rich surface for 
acquisition of SERS spectra of protein complexes [197]. The filters are intended to produce an extensive SERS 
surface with multiple hotspots rather than to preform vacuum filtration, and as such, the authors do not 
interrogate whether this SERS substrate would withstand the physical forces caused by vacuum, filtration. The 
authors highlight the sensitivity of the substrate to particle size and assembly time and the resulting effect on 
SERS enhancement[197]. 

Filters created through electrospinning were investigated by Szymborski et al. as a method for bacterial capture 
while acting as a SERS substrate [147]. A range of filter materials were used including polylactic acid (PLA), PVDF, 
and nylon, with no preferred material reported. The authors report being able to detect a range of bacteria using 
Raman microscopy without quantifying classification performance[198]. The authors also report being able to 
identify circulating tumour cells with the same methods[199]. 

Applying SERS spectroscopy to pathogen using nanoparticles is a feasible method for pathogen identification. 
Physical methods to aggregate and capture pathogens improves pathogen-nanoparticle apposition leading 
improved SERS signal. While a number of physical capture methods exist, membrane filtration offers advantages 
of rapidity and ease of implementation. SERS with nanoparticles combined with vacuum filtration has not been 
applied to UTI diagnosis, and the optimal material for such an application has not been established. 

Hypothesis: Vacuum filtration can be used to capture pathogens from suspension, therein aggregating 
pathogens and allowing for close application of SERS nanoparticles. 

Objectives: 

• Assess the diagnosis and classification performance provided by combining vacuum filtration with 
nanoparticle-based SERS. 

• Identify the filter material with the lowest background Raman signal to be used for further SERS 
filtration-based experiments.  

• Investigate the SERS spectra of uropathogens captured on vacuum filters, and enhanced with silver 
nanoparticles. 
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6.3.2 METHODS 

6.3.2.1 PRELIMINARY WORK - ESTABLISHING THE OPTIMAL FILTER MATERIAL 
Four different materials commonly used for membrane filtration were assessed, including polysulphone, nylon, 
mixed cellulose and polyvinylidene fluoride (PVDF). Five samples of each filter material were prepared by 
vacuum filtering 30ml of sterile 0.85% saline before airdrying. Raman spectra were acquired from the filters 
using the IDRaman mini 2.0 handheld spectrometer, mounted in a 3D printed custom designed stand to provide 
consistent focal length.  The laser power was set to 10 mW with spectra acquired over 10 seconds. A mean of 
30 spectra were acquired from each sample for a total acquisition time of 5 minutes. 

Spectra were smoothed using a Savitsky-Golay filter with a 3rd order polynomial across moving 25 cm-1 windows. 
The baseline subtraction of a 2nd order polynomial before vector normalisation. Mean spectra, with standard 
error ribbons of each filter material was plotted for visual assessment. 

6.3.2.2 SAMPLE PREPARATION, VACUUM FILTRATION AND SERS 
 

 

FIGURE 6. 8 METHODS FOR SERS WITH PVDF MEMBRANE FILTERS. SAMPLES WERE PREPARED BY CULTURING REFERENCE STRAIN 
PATHOGENS WHICH WERE CENTRIFUGED AND WASHED 5 TIMES BEFORE CONTROLLING PATHOGEN LOAD BY OD600 AND SERIAL DILUTION 
IN SALINE. THE SAMPLES WERE VACUUM FILTERED USING PVDF MEMBRANE FILTERS BEFORE PIPETTING ON SILVER NANOPARTICLES. 
SERS SPECTRA WERE ACQUIRED WITH THE IDRAMAN IN THE 3D-PRINTED HOLDER. SPECTRA WERE DIGITALLY PRE-PROCESSED BY 
SAVITSKY-GOLAY FILTERING, POLYNOMIAL SUBTRACTION AND VECTOR NORMALISATION. THESE WERE ANALYSED BY PLOTTING 
SPECTRA, PCA AND PC-LDA. 

The methods utilised are summarised in Figure 6.8.  60 bacterial suspensions were created for SERS assessment 
in addition to 20 negative controls consisting of uninoculated 0.85% saline solution. Suspensions of Escherichia 
coli ATCC25922, Enterococcus faecalis ATCC29212 and Klebsiella pneumoniae ATCC13883 were created using 
the established research bank. A single microbead was cultured in 3 ml brain heart infusion for 24 hours at 37 
degrees. After Vortex mixing, the suspension was transferred to a 2ml centrifuge cuvette and centrifuged at 
8300 g for 1 minute. The supernatant was discarded, and the bacterial pellet resuspended in 0.85% saline. This 
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centrifuge and wash process was repeated a total of 5 times. The concentration of the bacterial suspension was 
adjusted by OD600 and serial dilution to a final concentration of 105 CFU/ml. 

The resulting suspension was vacuum filtered through a 47 mm diameter, 0.45 µm pore size sterile PVDF 
membrane filter. The membrane filter was removed from the vacuum filter, and 200 µl of 40 nm silver 
nanoparticle colloid pipetted on the centre of the membrane filter. Filters were then airdried, before transfer 
for Raman spectral capture. 

6.3.2.3 SPECTRAL ACQUISITION AND ANALYSIS 
Raman spectra were acquired using the IDRaman mini 2.0 spectrometer mounted in the 3D-printed mount. 
Spectra were acquired with 10 mW laser power and 10 second acquisition time. A total of 30 spectra were 
collected from each sample for 5 minutes total acquisition time. 

Spectra were pre-processed and analysed using scripts developed in R programming language. Spectra were 
smoothed using a Savitsky-Golay filter with a 3rd order polynomial over a moving 19 cm-1 window. The baseline 
was corrected by subtraction of a 13th order polynomial. Spectra were truncated from 600 am-1 to 2000 cm-1 
before vector normalisation. 

Mean spectra with standard deviation were plotted for infected suspensions as well as uninfected control in 
addition to those of the uropathogens. To facilitate identification of spectral bands differentiating samples, 
infected samples were centred and scaled using uninfected controls as a reference. Similarly, pairwise 
comparison of uropathogens was facilitated by centring and scaling each uropathogen referenced by each other 
uropathogen. Assessment of diagnostic and classification performance was achieved using PC-LDA for 
supervised learning. 

6.3.4 RESULTS 

6.3.4.1 OPTIMAL FILTER MATERIAL 

 

FIGURE 6. 9 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR FOUR COMMONLY USED MEMBRANE MATERIALS. 
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Figure 6.9 presents the mean Raman spectra of four common material used as laboratory membrane filters. The 
chemical structures of the material monomers are inset for reference. The Raman spectra for polysulphone, 
nylon and mixed cellulose all demonstrate complex baselines dominated by well-defined peaks arising from the 
complex chemical structures. In contrast, the PVDF spectrum has a relatively simple baseline with small peaks 
at 750 cm-1 and 1430 cm-1 arising from the polymer carbon backbone. PVDF filters were, therefore, used for 
future experiments. 

6.3.4.2 SPECTRAL PLOTS, PCA AND DIAGNOSIS OF INFECTED VERSUS UNINFECTED SAMPLES 
 

 

 

FIGURE 6. 10 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR INFECTED (RED) AND UNINFECTED CONTROL SAMPLES (GREEN). 
FILTERS WITH CAPTURED UROPATHOGENS HAD SPECTRA ACQUIRED USING THE IDRAMAN MINI 2.0 HANDHELD SPECTROMETER WITH 
10MW LASER POWER AND 10 SECOND ACQUISITION TIME. THE RESULTING SPECTRA WERE DIGITALLY PRE-PROCESSED USING A 
SAVITSKY-GOLAY FILTER BEFORE SUBTRACTION OF A 3RD ORDER POLYNOMIAL AND VECTOR NORMALISATION. 

Figure 6.10 presents the mean Raman spectra with standard error ribbons for samples vacuum filtered through 
PVDF membrane filters and enhanced using 40 nm silver colloidal nanoparticles. The spectra retain the two large 
peaks arising from the PVDF membrane filter at 750cm-1 and 1430 cm-1, in addition to a residual baseline 
incompletely removed during pre-processing.  A number of discriminatory peaks, visible as deviations from the 
baseline are visible in the spectra. The wider standard error ribbon of infected samples as compared to 
uninfected controls indicates a higher degree of variability in these samples, potentially arising from difference 
in pathogen contributions to spectra. The differences are emphasised in Figure 6.11 in which infected samples 
are centred and scaled using uninfected controls as a reference. 
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FIGURE 6. 11 MEAN RAMAN SPECTRUM WITH STANDARD ERROR RIBBONS FOR INFECTED SAMPLES, CENTRED AND SCALED ON NEGATIVE 
CONTROLS. HORIZONTAL DASHED LINED DELINEATE THE BORDER AT WHICH DIFFERENCES ARE STATISTICALLY SIGNIFICANT AT a = 0.05. 
VERTICAL DASHED LINES DEPICT THE PEAKS OF MAXIMUM DIFFERENCE. 

Figure 6.11 presents the mean Raman spectrum, with standard error ribbons for infected samples centred and 
scaled on negative control spectra. Horizontal lines delineate the boundary where differences are significant at 
a = 0.05. Discriminatory bands at which infected spectra differ significantly from those of uninfected controls 
are indicated by vertical dashed lines and listed in Table 6.5. 

TABLE 6. 5 SPECTRAL BAND ASSIGNMENTS FOR INFECTED SAMPLES. 

Spectral band Band assignment References 

737 cm-1 C-N Stretching, Ring breathing 
adenine  

[123] 

770 cm-1 Tryptophan [158] 

895 cm-1 C-C backbone [190] 

1054 cm-1 Protein C-O and C-N stretching [190] 

1255 cm-1 Amide III [117] 

1508 cm-1 Adenosine, cytosine, N-H bending [190] 

1555 cm-1 Tryptophan, exopolysaccharides [110] 

6.3.4.3 DIAGNOSTIC AND CLASSIFICATION PERFORMANCE 
Table 6.6 quantifies the diagnostic performance provided by Raman spectroscopy of samples vacuum filtered 
onto PVDF membrane filters and enhanced with 40 nm silver colloidal nanoparticles. Infected samples were 
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diagnosed with 85% accuracy (95% CI 73.4% ; 92.9%, p-value: 0.045), while sensitivity and specificity were 93.3% 
and 60% respectively. 

TABLE 6. 6 DIAGNOSTIC PERFORMANCE OF PC-LDA CLASSIFICATION FOR OF INFECTED VERSUS UNINFECTED CONTROLS. 

 Reference class 

Uninfected control Infected  

Predicted class Uninfected controls 9 3 

Infected 6 42 

Diagnostic performance 

Accuracy 85% (95% CI: 73.4-92.9%; p-value: 0.045) 

Sensitivity 93.3% 

Specificity 60.0% 

 

 

FIGURE 6. 12 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR REFERENCE PATHOGENS (RED: ESCHERICHIA COLI; GREEN: 
ENTEROCOCCUS FAECALIS; BLUE: KLEBSIELLA PNEUMONIAE) CAPTURED ON PVDF MEMBRANE FILTERS AND ENHANCED WITH 40 NM 
SILVER COLLOIDAL NANOPARTICLES 

6.3.4.3 SPECTRAL PLOTS, PCA AND CLASSIFICATION OF UROPATHOGENS 
Figure 6.12 presents the mean spectra with standard error ribbons for pathogens captured on PVDF membrane 
filters and enhanced with 40 nm colloidal silver nanoparticles. There are no visible differences in the spectra 
which may provide for pathogen classification.  
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FIGURE 6. 13 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR UROPATHOGENS CENTRED AND SCALED BY OTHER UROPATHOGEN 
SPECTRA. HORIZONTAL DASHED LINED DELINEATE THE BORDER AT WHICH DIFFERENCES ARE STATISTICALLY SIGNIFICANT AT a = 0.05. 

Figure 6.13 depicts pairwise comparison of pathogen spectra by centring and scaling each pathogen group by 
all other individual pathogen groups. Boundaries at which bands will differ significantly at a = 0.05 are indicated 
by dashed horizontal lines. These plots confirm that within these study samples, there are no individual bands 
which exhibit statistically significant differences between species. 

 

FIGURE 6. 14 PLOT OF THE FIRST 3 PRINCIPAL COMPONENTS FOR SPECTRA OF UROPATHOGENS (RED: ESCHERICHIA COLI; GREEN: 
ENTEROCOCCUS FAECALIS; BLUE: KLEBSIELLA PNEUMONIAE) CAPTURED ON PVDF MEMBRANE FILTERS AND ENHANCED THROUGH WITH 
40 NM SILVER COLLOIDAL NANOPARTICLES 



 

 

 185 

Figure 6.14 presents unsupervised classification of pathogen spectra using PCA. This plot of the first 3 principal 
components demonstrates no natural grouping by uropathogen spectra, with near complete overlap of the 
component groups. 

 

FIGURE 6. 15 PC-LDA PLOT FOR SUPERVISED CLASSIFICATION OF UROPATHOGEN SPECTRA (RED: ESCHERICHIA COLI; GREEN: 
ENTEROCOCCUS FAECALIS; BLUE: KLEBSIELLA PNEUMONIAE). 

Figure 6.15 presents a plot of supervised learning through PC-LDA classification and is quantified in Table 6.7. 
The PC-LDA plot demonstrates poor clustering and minimal separation of spectra. Pathogen species were 
classified with 73.3% (95% CI: 58.0; 85.4%, p-Value >0.05) accuracy. This low classification performance is 
reflective of the plots in Figure 6.13, in which no spectral bands differed significantly between species.  

TABLE 6. 7 PC-LDA CLASSIFICATION OF UROPATHOGEN SPECIES 

 Reference 

Escherichia coli Enterococcus 
faecalis 

Klebsiella 
pneumoniae 

Predicted Escherichia coli 13 3 3 

Enterococcus 
faecalis 

2 10 2 

Klebsiella 
pneumoniae 

0 2 10 

Classification performance 

Accuracy 73.3% (95% CI:58.0% - 85.4%; p-value >0.05) 
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6.3.5 DISCUSSION 
SERS using colloidal nanoparticles is a suitable method for improving pathogen Raman signal therein allowing 
for pathogen identification and classification. This is best paired with physical methods to aggregate and capture 
pathogens to aid apposition of pathogens to nanoparticles[186]. In this work, combining vacuum filtration with 
colloidal nanoparticle-mediated SERS provides for sufficient signal enhancement to allow for diagnosis of 
infected samples, although insufficient to provide reliable classification. 

Vacuum filtration has been combined with SERS in numerous published research works attempting to identify a 
range of biologic and chemical entities[126, 144-147, 197, 199-201]. In these works, the filters appear to have 
fulfilled the dual role of physical separation as well as increasing the surface area on which surface enhancement 
can take place. Filter materials including cellulose, polylactic acid, nylon and PVDF have been employed without 
reviewing the Raman spectra of the materials, and therefore providing an understanding of which material is 
best suited to the intended purpose[126, 144, 145, 147, 198]. When applied to pathogen detection, the ideal 
filter will provide for physical capture of pathogens without contributing competing Raman signal. In this work, 
the Raman spectra of four commonly utilised membrane filter materials was assessed, including methylcellulose, 
polysulphone, nylon and PVDF. The Raman spectrum of PVDF contributed significantly less Raman signal as 
compared to spectra acquired from other filter materials.  

The chemical structure of PVDF consists of carbon backbone with alternating hydrogenation and fluorination. 
As such, the only Raman contribution is that of the carbon backbone, which is common to many biologic 
compounds and so is unlikely to contribute significantly to differentiation of pathogens. In contrast, the chemical 
structures of the other materials assessed were consisted of complex monomers composed of benzene rings, 
ester, and amide bonds amongst others. Therefore, these demonstrated complex Raman spectra, with large 
peaks likely to obfuscate pathogen Raman signal. PVDF was therefore selected as the optimal material for 
vacuum filtration prior for SERS acquisition in further experiments. 

Diagnosis of infected samples was achieved with 85% accuracy (95% CI: 73.4-92.9%; p-value: 0.045), which 
exceeds that of currently implemented screening technologies such as urinalysis[4, 51, 191, 202]. Drawing on 
comparisons with other published Raman based pathogen detection draws a similar challenge to that seen in 
earlier experimental work in that an overreliance on Raman microscopy means many of these works do not 
include negative controls. While the works by Cho et al.[145]  as well as Gao et al.[145]  did contain negative 
controls, identification was based on labelled SERS, in which a strong Raman scatterer was bound to the 
pathogen of interest. This technique is well suited to their intended application of food contamination detection 
which requires identification of infected sample, with less emphasis on pathogen identification. Classification 
performance was not quantified in these works, with results presented as spectra only[144, 145]. Nevertheless, 
both works confirm vacuum filtration can be used for physically aggregate and capture pathogens and present 
these for Raman acquisition. 

In this chapter, classification of uropathogens in infected samples was performed with 73.3% accuracy (95% CI: 
58.0% - 85.4%; p-value >0.05), which is inferior to other classification technologies such as PCR and mass 
spectrometry. This performance is similarly inferior to other attempts at pathogen classification using colloidal 
SERS. Yang et al. had only a single misclassification amongst 48 spectra acquired from uropathogens 
electrostatically captured from and enhanced with silver nanoparticles[149]. This excellent classification 
performance must be tempered by the fact that spectra were acquired with a Raman microscope, and an 
unaddressed limitation that the physical capture using electrostatics forces is unlikely to work in urine given the 
myriad of competing negatively charged components. While not quantified, Kahraman et al. achieved clear 
excellent quality spectra from two pathogens captured from suspension and enhanced with colloidal silver 
nanoparticles[161]. The excellent performance of their technology once again must be tempered by the fact 
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that spectra were acquired using a Raman microscope, and the high pathogen load of 1010 CFU/ml. Nevertheless, 
the diagnostic performance in this work is in agreement with the classification performance in these published 
works in that enhancement using colloidal nanoparticles can substantially improve pathogen Raman signal. 

While the combination of SERS and vacuum filtration achieved diagnosis of infected samples, it did not provide 
pathogen classification comparable with other published work. This is likely because spectra were acquired in 
this experimental work using a handheld spectrometer in contrast to the Raman microscopes used in other 
published work. The decision to use a handheld spectrometer was made in light of the minimal scope for 
development of a microscope-based technology towards a clinically implementable technology.  

Additionally, surface enhancement provided by colloidal nanoparticles, while important improving the signal for 
pathogen detection may inadvertently induced noise that worsens classification performance. The SERS effect 
is inversely and exponentially proportional to the distance between the target and SERS substrate, and as such 
any variation in nanoparticle apposition while induce a disproportionate amount of spectral noise. Nanoparticles 
are prone to variable apposition because pathogens are nonuniformly distributed in solution, and because 
nanoparticles are prone to agglomerate when physical conditions vary (such as in bacterial suspensions)[70, 
136]. 

This phenomenon may explain the relatively generic nature of the contributing components identified in the 
spectral band analysis in Table 6.5, with the chemical components not being specific to any cellular structure or 
particular pathogen.  As such, these widely existing chemical entities may be sufficient to differentiate infected 
from uninfected samples, but not to differentiate between pathogens. 

Combined, these results demonstrate that combing vacuum filtration with SERS using colloidal nanoparticles 
provides sufficient signal enhancement for diagnosis of infected samples at clinically relevant concentrations of 
105 cfu/ml without identifying the causative uropathogen. Improving the SERS signal stability is likely to further 
improve classification performance to allow for classification of pathogens at clinically relevant concentrations. 

6.4 CONCLUSION 
Uropathogens have unique SERS spectra acquired using colloidal nanoparticles providing for accurate 
classification. The signal enhancement provided by colloidal nanoparticles, when augmented by pathogen 
aggregation through vacuum filtration, allows for identification of infected samples with accuracy greater than 
that of currently implemented screening technologies such as urinalysis.   

The experimental work in Chapter 6 extends the current understanding of SERS using colloidal nanoparticles by 
demonstrating that classification may be achieved using a low-cost handheld spectrometer rather than the 
Raman microscopes used in published literature. Furthermore, while vacuum filtration has been proposed in the 
published literature as a means of pathogen capture, this work presents the first robust assessment of filter 
materials tailored to Raman analysis[144-147, 198, 201]. 

Analysis of SERS spectra of uropathogen suspensions enhanced using a variety of commercially acquired 
colloidal nanoparticles demonstrates the substantial signal enhancement provides for classification with 
accuracy up to 100%. Analysis of the spectral bands indicates classification arises from recognition of the cell 
envelope components identified in other published works on SERS mediated uropathogen identification[128, 
137]. While no specific nanoparticle size was demonstrated to provide superior classification in this work, silver 
outperformed gold nanoparticles which is in keeping with previous works[45]. The inability to demonstrate a 
preferred nanoparticle size is likely reflective of the small group sample sizes dictated by the large number of 
experimental permutations assessed. These small group sample sizes along with the excellent classification 
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performance may also explain the failure to demonstrate a trend of improved classification performance with 
longer acquisition delays. 

The assessment of diagnostic and classification performance of SERS using colloidal nanoparticles was extended 
to suspensions of clinically relevant concentrations. Vacuum filtration was identified as a means of rapidly 
aggregating and capturing uropathogens direct from suspension prior to SERS acquisition. While filters have 
been paired SERS acquisition in the published literature, this has typically been as a means of providing a large 
SERS area, rather than a means of pathogen capture. As such, no robust assessment of filter material as applied 
to Raman analysis of captured pathogens is available in the published literature. An assessment of four common 
filter materials here demonstrates PVDF contributes minimal competing Raman signal due to its simple chemical 
structure. 

Combining vacuum filtration for pathogen capture with enhancement using silver nanoparticles achieved 
identification of infected samples with 85% accuracy. This is greater than published accuracy of widely adopted 
screening technologies such as urinalysis[4, 51]. Assessment of the contributing spectra bands demonstrated 
enhancement of nonspecific biochemical entities likely to be widely present in bacteria rather than those likely 
to be species specific. This is reflected by the failure to provide pathogen classification. This indicates that while 
the enhancement is sufficient to allow for identification of infected samples, it is insufficient to provide for 
classification of the causative pathogen. 

The suboptimal enhancement provided by SERS nanoparticles may be explained by variability in the proximity 
of the SERS substrate to the pathogens. Colloidal nanoparticles may agglomerate in response to environmental 
factors including solution ionicity, pH and temperature, with greater agglomeration seen with smaller 
nanoparticle size[203, 204]. In addition to the risk of agglomeration affecting uniform dispersion of 
nanoparticles, environmental factors similarly alter the interaction of these nanoparticles with pathogens. 
Higher agglomeration seen with increased ionicity, lower pH and larger particles is demonstrated to reduce the 
interaction of nanoparticles with Escherichia coli[205]. While these risks may be mitigated through careful 
environmental control, the highly variable nature of urine and ability of pathogens to influence their 
environment warrants investigation of alternative SERS methods. 

In summation combining vacuum filtration with SERS provides Raman signal enhancement allowing for 
detection of infected samples at clinically relevant concentrations. Attaining greater SERS stability is required to 
deliver classification performance required for clinical application. As such, Chapter 7 will apply a SERS substrate 
directly to PVDF filters to achieve greater stability of the pathogen SERS. 
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CHAPTER 7: GOLD NANOCOATED SERS-ACTIVE FILTERS 

7.1 INTRODUCTION 
UTIs are demonstrated in Chapter 2 to be one of the most common bacterial infections leading to a substantial 
patient morbidity and mortality in addition to massive societal costs[1, 2, 8, 10, 206]. The current diagnostic 
approach, characterised by inaccuracy and delay, exacerbates this burden disease[5, 51]. A new diagnostic 
paradigm underpinned by a novel technology could reduce the burden of disease caused by UTIs. The ideal 
technology for this purpose would deliver rapid and accurate diagnosis with pathogen classification, therein 
allowing for precision antimicrobial management from the outset. 

As described in Chapter 3, Raman spectroscopy is uniquely suited to performing this role, specifically through 
its ability to deliver info highly resolved information rich spectra without requiring prior biomass expansion[7, 
76, 82, 88, 123, 156]. Uropathogens are demonstrated in Chapter 5 to have unique Raman spectra allowing for 
strain level classification, however, a significant challenge arises in that weak biologic Raman scattering is 
overwhelmed by urine fluorescence. As such, methods are required to physically aggregate and capture 
pathogens as well as separate these from urine[186]. Additionally, techniques to enhance pathogen Raman 
signal such as SERS are required.  

Vacuum filtration is a microbiologic technique employed to rapidly concentrate pathogens using low-cost and 
widely available equipment. PVDF filters are demonstrated in Chapter 6 to contribute minimal competing Raman 
signal[207]. A potential challenge arises in applying vacuum filtration to capture pathogens, in that urine 
contains other particulate matter such as cells and casts. Fortunately, eukaryotic cells are an order of magnitude 
larger than pathogens (greater than 10 µm as compared to 1µm), and as such dual filtration can be used to 
separate them, therein ensuring only the targeted pathogen are on the final filter[55]. 

SERS may be used to overcome weak biologic Raman scattering through delivery of massive signal 
enhancement[82, 88, 123, 156]. Additionally, SERS enhancement is strongly dependent on the distance between 
the SERS substrate and target, and as such enhancement can be targeted[7, 69, 72, 80, 85, 123]. This is of 
particular benefit when applied to pathogen detection as the majority of pathogen’s definitive biomass is 
incorporated into the cell envelope which makes up the most superficial aspect of the cell, and so a close and 
consistently applied SERS substrate will massively and selectively enhance this biomass. 

While the application of SERS using colloidal nanoparticles has the potential advantage in that these naturally 
interact with the pathogen cell envelope, the sensitivity of nanoparticles to environmental conditions may result 
in variability in this interaction.[70, 88, 136]. Alternatively, applying pathogens to a SERS-active surface may 
avoid the challenges of variable nanoparticle interaction[70]. At its simplest, pathogen suspensions may be 
applied to glass slides with roughened noble metal surfaces[141]. Improved enhancement, or greater 
functionality, may however be gained through application to a surface tailored to a specific purpose. This 
provides great versatility in the material and structure of the surface, as well as the method of application of the 
SERS substrate. Gold and silver have been applied to materials such as glass slides, silicon wafers, mesoporous 
silica and filters using methods including thermal evaporation, electrodeposition, and physical vapour deposition 
(PVD)[78, 98, 136, 208-212].  

Application of a SERS surface to membrane filters may improve the performance SERS stability as compared to 
the nanoparticles used in Chapter 6. These SERS-active filters will perform as a multifunctional component 
capable of capturing and aggregating pathogens, separating them from urine, and providing a SERS-active 
surface. 
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Hypothesis: SERS-active filter membranes can provide UTI diagnosis with pathogen classification, through 
aggregation and capture of pathogens, separation of urine and enhancement of Raman signal. 

Objectives: 

• Identify and optimise a method for applying a SERS surface to PVDF membrane filters. 
• Develop a dual filtration method capable of rapid pathogen capture with separation from urine. 
• Investigate the SERS spectra of uropathogens captured on SES active filters. 
• Assess the diagnostic and classification performance of SERS -active filters. 

7.2 DIAGNOSIS OF PHANTOM URINE INFECTIONS USING SERS-ACTIVE FILTERS 
7.2.1 INTRODUCTION 
The central challenge to developing a Raman-based technology for UTI diagnosis with uropathogen classification 
arises in that weak biologic scattering from pathogens is overwhelmed by competing signal and fluorescence 
from urine. A SERS-active filter can overcome these challenges by simultaneously performing multiple roles: 
firstly, the filter can rapidly concentrate and capture pathogens from a large volume of urine; secondly, 
pathogens can be separated from urine by subsequently passing a washing solvent over the filter; finally, the 
filter can act as a SERS surface, therein providing signal enhancement. 

Filters have been used as used as SERS substrates in a number of published works. Lin et al. created 
custom-made filters by embedding gold nanoparticles in mesoporous silica, which was then compressed into a 
filter structure using a stainless-steel mould[136]. These filters were used primarily as a SERS surface rather than 
a filter, as pathogen suspensions were simply spotted instead of filtered through. Nevertheless, highly resolved 
spectra from Staphylococcus aureus suspensions on the filters were acquired using a Raman microscope. The 
authors highlight the signal enhancement was strongly dependent on the interparticle spacing of the gold 
particles[136]. 

Wigginton et al. applied a gold coating to polycarbonate membrane filters as a method of fluorescence 
quenching, prior to SERS using immunobound gold nanoparticles for the detection of Giardia cysts[146]. Raman 
mapping was used to identify and quantify cysts with 95% recovery[146]. 

Kaminska et al. created SERS-active filters creating electrospun polylactic acid mats onto which a 40 nm gold 
and silver nanolayer was applied by sputtered PVD[199]. These SERS-active filters were used to directly capture 
circulating tumour cells from blood phantoms prior to Raman acquisition using a Raman microscope. The 
authors identified circulating cervical cancer, prostatic cancer and leucocytes (control) with 98% sensitivity[199]. 

Szymborski et al. produced similar electrospun mats with a 90 nm gold nanocoating for capture of pathogens 
from biofluids prior to Raman acquisition with a Raman microscope[147]. Differing filter materials along with 3 
gold nanocoating thicknesses were assessed, with the authors not identifying a superior material type but did 
report greatest enhancement with 90 and 200 nm thickness. The authors report highly resolved spectra for 
Escherichia coli and Staphylococcus aureus captured from various fluids including saline, apple juice and urine. 
Classification performance in these fluids was not quantified. Similarly, the processing of the urine is not 
described with regards to separation of other particulates (cells and casts), nor washing of fluorescent urine 
components [147].  

PVD is a widely employed technique for application of thin films. The process of PVD entails vaporisation of a 
target, such as gold, by bombarding it with a plasma. The vapourised gold is directed onto a substrate by a high 
voltage electric field. PVD has numerous advantages including the ability to closely control an evenly applied 
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and high purity nanolayer down to a few nanometres thickness. The process does not require the high 
temperatures used in chemical vapour deposition avoiding destruction of the substrate. Furthermore, the need 
to establish a vacuum provides an additional benefit in the removal of impurities[213, 214]. 

Prior to this work, no published works have developed a SERS-active filter through application of a gold 
nanolayer to commercially acquired membrane filters[148]. Where gold has been applied to electrospun fibres, 
the gold thickness is inadequately optimised. Where SERS-active filters have been assessed, spectra were 
acquired with a Raman microscope, which limits further translation, and is not amenable to assessment of 
negative controls. Diagnostic and classification performance had not been quantified. 

Hypothesis: Application of a SERS nanostructure to membrane filters will provide a rapid means of pathogen 
capture and separation from urine, while providing Raman signal enhancement. SERS-active membrane filters, 
therefore, can provide rapid pathogen identification and classification directly from phantom urine samples. 

Objectives:  

• Identify the gold nano-thickness providing optimal Enhancement of SERS signal from membrane filters. 
• Develop a system for rapid urine sample processing, allowing for rapid pathogen capture and 

segregation from urine, in addition to Raman spectral capture. 
• Describe the SERS spectra of reference strain uropathogens captured from phantom urine on SERS-

active filters. 
• Describe the diagnostic and classification performance of SERS-active filters for infected phantom UTI 

samples. 

7.2.2 METHODS 

7.2.2.1 OPTIMISATION OF GOLD NANOCOATING THICKNESS 
To fabricate SERS-active filters a gold nanocoating were applied to PVDF membrane filters by PVD using a Korvus 
Hex thin film deposition system. PVDF filters were selected as they were demonstrated in Chapter 6 to have 
simple Raman background with minimal variability. The PVDF filters were loaded onto the 4-inch rotating stage, 
and a vacuum of 10-5 Bar established in the chamber. A DC magnetron source with potential difference of 600 
V, and current of 0.15 mA established a plasma using argon with flow rate of 20 standard cubic centimetres per 
minute (sccm). The plasma bombarded a 2-inch gold target, leading to sputtered physical deposition at a rate of 
approximately 30 Angstroms per second. The exact gold nanocoating thickness applied was controlled using 
quartz crystal monitoring (QCM). In addition to unsputtered controls, gold nanocoatings of 2.5, 5.0, 7.5, 10.0, 
12.5, 15.0, 20.0, 25.0, 50.0, 100.0 and 150.0 nm were applied to PVDF membranes for assessment. 

Rhodamine 6G (R6G), a Raman dye with a well described Raman spectrum was used to assess enhancement 
provided by filters with different gold thicknesses. A 1 µM solution was created by dissolving R6G in sterile 
deionised water and 100 µl was pipetted onto the centre of each filter and allowed to air dry before Raman 
acquisition. For each filter sputter thickness, 12 replicates for were assessed. 

Raman spectra were acquired using the IDRaman mini 2.0 handheld spectrometer loaded into the 3D-printed 
mount (designed in Section 4.3.4). The laser power was set to 10 mW at 785 nm. Acquisition time was set to 5 
seconds, with 5 averages taken for each sample.  

Spectra were pre-processed and analysed using scripts developed in R programming language. Spectra were 
smoothed using a Savitsky-Golay filter of 3rd order polynomial over moving 19cm-1 windows, and baseline 
corrected through subtraction of 7th order polynomial. Mean spectra of the R6G on each filter were plotted. 
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Intensities for important R6G peaks were plotted against gold nanocoating thickness. Enhancement factors at 
the common R6G peaks were calculated as the ratio of the Raman intensity at the defined peak in the coated 
filters as compared to uncoated controls.  

7.2.2.2 DEVELOPMENT OF A HIGH THROUGHPUT DUAL FILTRATION SYSTEM 
Development and assessment of a Raman-based technology for UTI diagnosis requires assessment of many 
samples to train learning algorithms and overcome spectral variability. Major bottlenecks were encountered 
which make standard laboratory vacuum filtration equipment unsuitable for further evaluation. Firstly, the stage 
of the Korvus Hex deposition has sufficient surface area to hold only four 47 mm diameter membrane filters 
(which is the diameter of the commercially available filters used in these experiments). The total time taken for 
a single thin film deposition was approximately an hour. Therefore, smaller diameter filters were required so 
that single thin film deposition could prepare a reasonable number of filters. Secondly, vacuum filtration 
equipment needs to be autoclaved between samples to avoid contamination. As such, a large number of vacuum 
filtration sets would be required to process and assess a reasonable number of samples. The size and cost of the 
vacuum filtration sets however, meant this approach would have been impractical. Finally, dual filtration was 
required for clinical samples to remove larger particulate matter such as epithelial cells and urinary casts. This 
dual filtration would require two vacuum filtration sets to process a single sample. 

As such, an insert was developed for the vacuum filtration apparatus that met the following constraints: 

1. Compatible with existing vacuum filtration equipment, so as to make use of the existing vacuum pump 
and waste collection available in the laboratory. 

2. Reduce the membrane filter diameter from 47 mm to 10mm or less. 
3. Be compatible with standard steam autoclave (121 degrees Celsius, at 15 psi pressure). 
4. Allow for dual filtration, with a 5 µm filter for removal of large particles before capture of pathogens 

onto a 0.45 µm pore size, SERS-active filter. 

7.2.2.3 PREPARATION OF PHANTOM UTI SAMPLES 
The methods employed are summarised in Figure 7.1. Phantom urine samples were created by inoculating 
cultured reference strain uropathogens into sterile human volunteer urine. Ninety samples were prepared 
including 30 uninfected controls and 60 infected samples including 20 each of Escherichia coli ATCC25922, 
Enterococcus faecalis ATCC29212 and Klebsiella pneumoniae ATCC13883. To create an infected phantom urine 
a single bead from the Microbank reference bank was inoculated into 3 ml brain heart infusion and cultured for 
24 hours at 37 degrees Celsius. The pathogen laden culture medium was Vortex mixed and transferred to a 2 ml 
centrifuge tube. After centrifuging at 8300 g for 1 minute the supernatant was discarded and the bacteria 
resuspended in 2 ml of PBS by Vortex mixing. This centrifuge and wash process was repeated a total of 5 times 
to remove all culture medium. The resulting heavy suspension was diluted in PBS to an  OD600 of 0.07 (equivalent 
of 108 CFU/ml) and subsequently underwent serial dilution in urine from healthy volunteers to a final 
concentration of 105 CFU/ml. Prior to inoculation, urine from healthy volunteers had been sterilised by vacuum 
filtration through 0.22 µm pore size filter to avoid contamination. This sample preparation process culminated 
in 30 ml of urine with 105 CFU/ml of reference strain uropathogen, equivalent to a standard infected urine 
sample. 
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FIGURE 7. 1 METHODS FOR PHANTOM URINE SERS STUDY. PHANTOM URINE SAMPLES WERE PREPARED BY CULTURING REFERENCE 
STRAIN PATHOGENS WHICH THEN UNDERWENT 5 CENTRIFUGE AND WASHES. THE PATHOGEN LOAD WAS CONTROLLED BY OD600 BEFORE 
SERIAL DILUTION IN STERILE HUMAN URINE. THE SAMPLES WERE VACUUM FILTERED ONTO SERS-ACTIVE MEMBRANE FILTERS. SERS 
SPECTRA WERE ACQUIRED WITH THE IDRAMAN IN THE 3D-PRINTED HOLDER. THE SPECTRA WERE DIGITALLY PRE-PROCESSED WITH 
SAVITSKY-GOLAY FILTERING, POLYNOMIAL SUBTRACTION AND VECTOR NORMALISATION. SPECTRA WERE ANALYSED WITH SPECTRAL 
PLOTS, PCA AND PC-LDA. 

7.2.2.4 PHYSICAL PROCESSING AND SERS SPECTRAL ACQUISITION 
Samples were physically processed by vacuum filtration of 30 ml of phantom urine onto SERS-active membranes. 
Excess urine was removed by subsequent vacuum filtration of 10 ml of PBS through the SERS-active membrane. 
The SERS-active membrane was removed from the vacuum filter and air-dried prior to Raman capture. 

Raman spectra were captured from the SERS-active filters using the IDRaman mini 2.0 handheld spectrometer 
mounted in the 3D printed holder. Spectra were acquired with a 785 nm laser set to 50 mW power with an 
acquisition time of 3 seconds per spectrum. Each sample had an average of 60 spectra, for a total acquisition 
time of 3 minutes.  

7.2.2.5 SPECTRAL DIGITAL PRE-PROCESSING AND ANALYSIS 
Spectra were pre-processed and analysed using scripts developed in R programming language. High frequency 
noise and cosmic spikes are removed by smoothing using a Savitsky-Golay filter with 3rd order polynomial across 
a moving 19 cm-1 window. Baseline correction was achieved through cubic spline interpolation, using interpolant 
points selected a priori. Spectra were truncated to 500 to 2200 cm-1 to capture signal from the fingerprint region 
while avoiding excessive noise. Spectra were vector normalised. 

Mean spectra with standard error ribbons were plotted for infected and uninfected phantom urine samples, and 
additionally mean spectra with standard error plots were prepared for the reference uropathogens. In order to 
highlight spectra differences leading to diagnosis, infected samples were centred and scaled using negative 
sample spectra. Similarly, pairwise comparison of spectral differences providing classification was achieved by 
centring and scaling each pathogen, using each other pathogen as a reference. Diagnostic and classification 
performance was assessed using PC-LDA. 
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7.2.3 RESULTS 

7.2.3.1 OPTIMISATION OF GOLD NANOCOATING THICKNESS 
Figure 7.2 presents photos and scanning electron micrographs (SEMs) of PVDF filters with different sputter 
thicknesses applied. The photographs demonstrate visibly increasing gold as the sputter thickness increases. The 
SEMs show increasing number and size of gold deposits on the PVDF filters with increasing sputter thicknesses, 
ultimately coalescing to form gold coated fibres in the membrane filters. 

Figure 7.3 presents the mean spectra of R6G on PVDF filters with different gold sputter thicknesses. Substantial 
enhancement of the R6G spectrum is demonstrated on all gold coated filters with the sharp well-defined peaks 
well above the baseline. The spectrum for 50 nm sputter thickness demonstrates the tallest, most well-defined 
peaks. The characteristic peaks for R6G are emphasised by vertical dashed lines. The intensity at these points 
are plotted against increasing sputter thickness in Figure 7.4 and tabulated in Table 7.1.  Figure 7.4 demonstrates 
all gold coating thicknesses provide significantly higher peaks than unsputtered controls. This enhancement 
increases with sputter thickness to a maximum at 50 nm before a slight reduction in enhancement thereafter. 
Given the greatest signal enhancement, 50 nm gold coated PVDF filter were used for further experiments. 

TABLE 7. 1 INTENSITY OF R6G PEAKS FOR DIFFERENT GOLD NANOLAYER THICKNESSES 

Sputter 
thickness 
(nm) 

Intensity at peaks 

1188 cm-1 1311 cm-1 1360 cm-1 1511 cm-1 

Xanthene ring 
deformation, C-H 
Bending, N-H 
Bending. 

Xanthene Ring 
Bending, N-H Bend 
CH2 Wagging. 

Xanthene ring 
stretching, C-H 
Bending 

Xanthene ring 
stretching, C-N 
stretching  

2.5 538 662 870 867 

5 1130 1307 1787 2052 

7.5 1569 1853 2492 2750 

10 1438 1670 2240 2530 

12.5 1713 2047 2756 2910 

15 1532 1842 2445 2630 

20 1532 1859 2473 2648 

25 1496 1839 2443 2633 

50 1961 2487 3358 3658 

100 1274 1718 2370 2598 

150 1060 1543 206 2168 
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FIGURE 7. 2 PHOTOGRAPHS AND SCANNING ELECTRON MICROGRAPHS OF PVDF FILTERS WITH DIFFERING SPUTTER THICKNESSES 
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FIGURE 7. 3 MEAN SERS SPECTRA FOR R6G ON PVDF FILTERS WITH DIFFERENT GOLD THICKNESS LAYERS. 
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 FIGURE 7. 4 PLOT OF MEAN INTENSITY AGAINST GOLD SPUTTER THICKNESS FOR PROMINENT R6G PEAKS 

7.2.3.2 DESIGN AND PRODUCTION OF A DUAL FILTRATION SYSTEM 
The dual filtration system was parametrically designed in Fusion360 (Figure 7.5) design software. The design 
consists of 2 levels to hold the differing pore size filters. Each level consists of two parts, the lower part housing 
the filter and interfacing with the container below, while the upper part acts as receiving container for the urine. 
Between each layer a slot is available for a high temperature nitrile O-ring to create an airtight seal. 

The dual filtration insert was 3D printed on a Formlabs 2, stereolithography printer using high temperature resin. 
The 3D printed parts were washed for 15 minutes in isopropyl alcohol to remove excess resin, before curing the 
printed parts under UV light at 60 degrees Celsius for one hour. The build supports were removed and the 
completed parts smoothed. The parts were rinsed in deionised water and sterilised in a benchtop autoclave 
prior to use. In comparison, parts printed with fused deposition printer materials such as polylactic acid and 
polyethylene terephthalate warped when undergoing steam sterilisation. 
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FIGURE 7. 5 THE DUAL FILTRATION VACUUM FILTER INSERT. A) RENDERING OF THE PARAMETRICALLY DESIGNED FUSION360 MODEL. B) 
INSERT 3D PRINTED WITH FORMLABS STL PRINTER USING HIGH TEMPERATURE RESIN. C) INSERT BASEPLATE FITTED ONTO A 
COMMERCIALLY AVAILABLE VACUUM FILTRATION SET WITH A 10 MM SERS-ACITVE FILTER IN PLACE. D) FILTRATION INSERT ENCLOSED 
IN COMMERCIALLY AVAILLABLE VACUUM FILTER SET. 

7.2.2.3 DIAGNOSIS OF INFECTED VS UNINFECTED SAMPLES 
Figure 7.6 presents the mean spectra with standard error ribbons for spectra from infected phantom urine and 
uninfected controls vacuum filtered onto SERS-active filters. Even with the low, clinically relevant concentrations 
used here, the spectra are visibly different in a number of areas, indicated by vertical dashed lines. These 
differences are emphasised in Figure 7.7 which presents the mean spectrum with standard error ribbons for 
infected samples centred and scaled on the spectra of uninfected controls. The same spectra bands are indicated 
by the vertical dashed lines. Table 7.2 provides biochemical assignments for these bands. 
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FIGURE 7. 6 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR INFECTED (RED) AND UNINFECTED (GREEN) CONTROLS OF PHANTOM 
URINE SAMPLES VACUUM FILTERED THROUGH SERS-ACTIVE MEMBRANE FILTERS. VERTICAL DASHED LINES DELINEATE BANDS AT WHICH 
SPECTRA DIFFER SIGNIFICANTLY (SEE FIGURE 7.7 AND TABLE 7.2) 

 

 

FIGURE 7. 7 MEAN SPECTRUM WITH STANDARD ERROR RIBBONS FOR INFECTED SPECTRA CENTRED AND SCALED ON UNINFECTED 
SPECTRA FOR SAMPLES VACUUM FILTERED THROUGH SERS-ACTIVE MEMBRANE FILTERS. VERTICAL DASHED LINES DELINEATE  SPECTRAL 
BANDS WHERE PEAKS DIFFER SIGNIFICANTLY (SEE TABLE 7.2 FOR BIOCHEMICAL ASSIGNMENTS) 
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TABLE 7. 2 SPECTRAL BAND ASSIGNMENT FOR PEAKS DIFFERENTIATING INFECTED SAMPLES FROM UNINFECTED CONTROLS 

Raman shift (cm-1) Band assignment Reference  

730 Adenine, peptidoglycan [110, 123] 

855 Tyrosine, Phenylalanine, glycosidic 
linkages 

[110, 123, 158] 

1000 Phenylalanine, carotene [99, 110, 117, 123, 136] 

1235 Amide III [123, 158] 

1350 Protein [101] 

1375 Hypoxanthine, Adenine, AMP, 
peptidoglycan 

[110, 149] 

1460 Hypoxanthine, adenine, guanine [149] 

1490 Guanine, Adenine [158] 

1618 Tyrosine [158] 

1745 Phospholipid, triglycerides [190] 

 

FIGURE 7. 8 PCA PLOT FOR INFECTED (RED) AND UNINFECTED CONTROL (GREEN) SPECTRA OF SAMPLES VACUUM FILTERED THROUGH 
SERS-ACTIVE MEMBRANES 

Figure 7.8 presents unsupervised classification through PCA. Visualisation of the first three principal components 
demonstrates the infected and uninfected samples naturally cluster together. A greater degree of spread is 
notable within the infected samples, representative of the higher degree of variability seen when capturing 
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spectra from different species.  Application of supervised learning through PC-LDA provides diagnostic accuracy 
of 93.2% (95%CI: 85.9%; 97.5%. p-value <0.05) for identification of infected and uninfected samples (Table 7.3). 
Sensitivity and specificity were 94.9% and 90.0% respectively (Table 7.3). 

TABLE 7. 3 PC-LDA DIAGNOSTIC PERFORMANCE FOR RAMAN SPECTRA FROM SAMPLES VACUUM FILTERED ONTO SERS-MEMBRANES 

 Reference Pathogen 

Uninfected control Infected  

Predicted pathogen Uninfected control 27 3 

Infected  3 56 

Diagnostic performance 

Accuracy 93.2% (95% CI: 85.9; 97.5%. p-value: <0.05) 

Cohen’s kappa 0.85 

Sensitivity 94.9% 

Specificity 90% 

7.2.3.4 CLASSIFICATION OF PATHOGEN SPECIES WITHIN INFECTED SAMPLES 
Figure 7.9 presents the mean spectra with standard error ribbons for the three reference pathogen spectra 
vacuum filtered onto SERS-active membranes. A number of the peaks contributing to differentiating infected 
from uninfected controls remain visibly different between uropathogen. Differences between pathogen spectra 
are emphasised in Figure 7.10, with the same peaks highlighted by vertical dashed lines. All pathogens 
demonstrate bands significantly different from other pathogens providing for classification of uropathogens 
using the SERS spectra. 

 

FIGURE 7. 9 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR THREE REFERENCE STRAIN PATHOGENS VACUUM FILTERED ONTO 
SERS-ACTIVE MEMBRANE FILTERS. VERTICAL DASHED LINES DELINEATE BANDS WHERE SPECTRA DIFFER (SEE FIGURE 7.10) 
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FIGURE 7. 10 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR REFERENCE UROPATHOGENS CENTRED AND SCALED BY ALL OTHER 
REFERENCE UROPATHOGENS. HORIZONTAL DASHED LINES DELINEATE THE BORDER AT WHICH DIFFERENCES ARE SIGNIFICANT AT a = 
0.05). VERTICAL DASHED LINES IDENTIFY BANDS AT WHICH SPECTRA DIFFER. 

 

FIGURE 7. 11 PCA PLOT FOR SERS SPECTRA OF UROPATHOGENS (RED: E. COLI, GREEN: E . FAECALIS AND BLUE: K. PNEUMONIAE) VACUUM 
FILTERED ONTO SERS-ACTIVE MEMBRANE FILTERS 

Figure 7.11 presents unsupervised classification of pathogens through PCA. Visualisation of the first three 
principal components demonstrates the spectra naturally cluster according to pathogen species, although some 
overlap is visible in the first three principal components. 
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FIGURE 7. 12 PC-LDA PLOT FOR CLASSIFICATION OFSPECTRA FROM UROPATHOGENS (RED: E. COLI, GREEN: E. FAECALIS AND BLUE: K. 
PNEUMONIAE) VACCUM FILTERED ONTO SERS-ACTIVE FILTERS 

PC-LDA was applied for supervised classification of pathogens using Raman spectra acquired after vacuum 
filtration through SERS-active filters (Figure 7.12). Pathogen classification performance is summarised in Table 
7.4. Spectra were classified with 91.7% accuracy (95% CI: 83.5;98.1. p-value<0.05). Sensitivity and specificity for 
pathogen groups were all above 90%. 
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TABLE 7. 4 CLASSIFICATION OF UROPATHOGENS VACUUM FILTERED ONTO SERS-ACTIVE-MEMBRANE FILTERS 

 Reference Pathogen 

Escherichia coli Enterococcus 
faecalis 

Klebsiella 
pneumoniae 

Predicted 
Pathogen 

Escherichia coli 17 0 0 

Enterococcus 
faecalis 

2 19 1 

Klebsiella 
pneumoniae 

0 1 19 

Classification performance 

Overall Accuracy 91.7% (95% CI: 83.5;98.1. p-value<0.05) 

Cohen’s Kappa 0.90 

Escherichia coli Sensitivity 90% 

Specificity 100% 

Enterococcus 
faecalis 

Sensitivity 95% 

Specificity 95% 

Klebsiella 
pneumoniae  

Sensitivity 95% 

Specificity 97% 

 

7.2.5 DISCUSSION 
SERS-active filters created by applying a 50 nm gold nanolayer to PVDF membrane filters rapidly captured 
pathogens from phantom urine samples and provided signal enhancement, therein achieving accurate diagnosis 
of infected samples, and simultaneously providing accurate pathogen classification. The time taken from sample 
to classification, including physical processing, Raman acquisition and analysis, was less than 15 minutes per 
sample. 

Assessing the diagnostic and classification performance of SERS-active filters was contingent on two pieces of 
preliminary work. Firstly, the optimal sputter thickness was identified, with 50 nm thickness providing greater 
enhancement of the main Rhodamine 6G peaks than both thicker and thinner gold nanocoatings. These results 
are in contrast to the work by Szymborski et al., in which assessment of 3 thicknesses demonstrated 90 and 200 
nm nanolayer thicknesses to provide enhancement equal to each other, and superior to 30 nm thickness[147]. 
The considerably larger number of thicknesses assessed in this work provides a greater granularity, and 
therefore more robust assessment of enhancement provided. Therefore, 50 nm thickness was used in further 
works rather than the 90 nm recommended by Szymborski et al.[147]. 

The second piece of preliminary work developed an insert for the vacuum flask used to pass urine samples 
through SERS-active filters. Assessing classification performance is contingent on assessing a representative 
number of samples. A challenge arises in that applying a 50 nm gold nanolayer through PVD takes approximately 
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1 hour, primarily resulting from the time taken to establish a vacuum in the Korvus Hex deposition system. As 
the 4-inch stage of the Korvus can hold a maximum of 4 filters (with 47 mm diameter), this would translate into 
an excessively long time to produce a sufficient number of SERS-active filters to perform this study. An insert 
was designed in Fusion360 CAD software and 3D oriented with high temperature resistant resin, which reduced 
the filter diameters from 47mm to 10 mm. This allowed over 40 filters to be produced during a single 
nanocoating application. The insert provided multiple other advantages: reducing the filter diameter 
concentrated the pathogens into a 22 times smaller area; the inserts were printed with high temperature resin 
and so were autoclavable; finally, the design included an upper layer which allows for a second larger pore-size 
filter to be used for dual filtration in future work. 

Diagnostic accuracy (i.e., classification of infected vs uninfected samples) of 93.2 % was achieved in this work 
with sensitivity and specificity of 94.9 and 90% respectively. This diagnostic accuracy achieved here is superior 
to that of currently employed screening technologies such as urinalysis[4, 53, 191]. Direct comparison against 
other Raman-based technologies for uropathogen identification is not possible, as other published works have 
not included negative controls. This demonstrates a significant advantage of this work, afforded by the use of a 
handheld Raman spectrometer rather than Raman microscopes used in other works. This is of particular 
importance given the information of greatest value is afforded by rapid and accurate diagnosis rather than early 
pathogen classification. Spectral differences are demonstrated between infected and uninfected controls, as 
well as between pathogens. 

Classification accuracy (i.e. identification of pathogen species within infected samples) of 91.7% is comparable 
to gold standard M, C&S and other classification technologies including mass spectrometry and PCR[5, 56, 215, 
216]. The SERS-active filters developed here, however, have distinct advantages over these established 
technologies. Most notably, the 15-minute sample-to-result turn around provided by SERS-active filters is 
significantly better than the hours or days required by these established technologies[5]. Similarly, with no 
reagents and requiring widely available equipment, SERS-active filters are amenable to development into a 
point-of-care test, therein reducing turnaround time and logistical considerations. Finally, the equipment used 
here is considerably cheaper than that of these competitor technologies. 

The classification performance achieved here is comparable with other published Raman research into 
uropathogen classification, with reported classification performances ranging from 83.5% to 100%[99, 110, 117, 
149, 156, 158]. Some salient differences however differentiate these works. Firstly, only Kloss et al., Schroder at 
al. and Yang et al. tested their technologies on pathogens in urine, rather than pathogen suspensions[99, 117, 
149]. Secondly, all but two of these published works used a Raman microscope rather than a spectrometer, and 
as such SERS-active filters combined with a handheld spectrometer (used in this study) suggest greater promise 
of a clinically implementable solution[110, 156].  

Use of phantom urine samples is the primary limitation of this work. Composed of reference strain pathogens 
suspended at closely controlled pathogen loads in sterile urine, phantom urine samples were chosen to reduce 
samples variability during validation. Reference strain pathogens, in consistent stable growth phase and at 
controlled concentrations represent considerably less variation in Raman spectra as compared to that of clinical 
pathogens[101, 123, 137, 151, 170, 211]. Similarly, the single organism phantom samples may not accurately 
reflect the complexity of mixed infections frequently encountered in clinical samples.[87] The true diagnostic 
and classification performance may differ when challenged with the greater variability seen with clinical 
samples. Nevertheless, the results here warrant further investigation. As such, the diagnostic and classification 
performance of SERS-active filters requires assessment on clinical samples. 
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7.3 DIAGNOSTIC PERFORMANCE OF SERS-ACTIVE MEMBRANE FILTERS ON CLINICAL 

SAMPLES. 
7.3.1 INTRODUCTION 
Raman spectroscopy has the potential to act as an ideal diagnostic technology for UTIs. The ability to deliver 
highly resolved, information rich chemometric data without prior biomass expansion has potential to provide 
rapid and accurate UTI diagnosis with pathogen classification[45, 69, 70, 82, 88, 123, 156, 167]. Weak Raman 
scattering from uropathogens may however be overwhelmed by competing signal and fluorescence from urine. 
Despite numerous published works having developed methods capable of delivering highly resolved 
uropathogen Raman spectra with the ability to provide classification, few have assessed the performance of 
their technologies on clinical urine samples. 

Kloss et al. were the first to assessed Raman classification of uropathogens in clinical samples[99]. An SVM 
classifier was trained on reference uropathogens cultured in sterile urine. Physical processing was limited to two 
cycles of centrifuge and washing before airdrying on nickel foil. Raman spectra were acquired from single cells 
using a Raman microscope. The same physical processing was applied to 10 infected clinical samples including 7 
Escherichia coli and 3 Enterococcus faecalis and subsequently classified using the trained SVM. All 10 samples 
were correctly classified[99]. This work demonstrates the extraordinary power of Raman microscopy, with 
accurate classification achieved from spectra acquired from single pathogens with minimal processing. Not 
described however, is the time and technical skill required to focus the Raman microscopes on single pathogens. 

Schroder et al. developed a dielectrophoresis chip that concentrated pathogens in the centre, therein reducing 
the challenge of focussing the Raman microscope on singe bacteria[117]. The technology was assessed using 
Escherichia coli and Enterococcus faecalis samples. An LDA classifier was trained on 600 spectra acquired from 
5 batches of reference strain pathogens from each of the bacteria. Subsequently they tested their technology 
on three patient samples processed with a single centrifuge and wash. Each patient sample had 300 spectra 
acquired and assessed, with only 1 of 900 misclassified[117]. While this classification is excellent it is called to 
question given this work neglects that fact that data points need to be independent during validation[111]. 
While the classification performance achieved in both works is encouraging, the small number of patient 
samples and pathogens assessed limit the generalisability of these results beyond proof of principal. 

Tien et al. assessed the SERS spectra from 108 clinical samples with pathogens including Escherichia coli, 
Enterococcus faecalis, Proteus mirabilis, Pseudomonas aeruginosa and Citrobacter freundii[124]. The 
uropathogens were concentrated through centrifugation prior to acquisition of SERS spectra using cylindrical 
Raman chips. The Raman equipment used for spectral acquisition is not documented, and as such, it is unclear 
whether a spectrometer or microscope was used[124]. The authors report identifying samples with single 
species, although the classification performance is not clearly documented. Despite the large number of 
samples, this work adds little to the Raman knowledge base. None of these published works included negative 
controls, and so were unable to assess diagnostic performance[99, 124, 160]. 

SERS-active filters achieved excellent diagnostic and classification accuracy on phantom urine samples. A pilot 
study to assess the performance on clinical samples is required prior to a full clinical trial of the technology. 

Hypothesis: SERS-active filters can provide rapid UTI diagnosis with pathogen classification directly from clinical 
urine samples. 
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Objectives:  

• Investigate the SERS spectra of clinical pathogens captured using SERS-active filters. 
• Assess the diagnostic and classification performance provided by SERS-active filters for UTIs using 

clinical samples. 

7.3.2 METHODS 

7.3.2.1 CLINICAL SAMPLES 

 

FIGURE 7. 13 METHODS FOR CLINICAL ASSESSMENT OF-SERS-ACTIVE FILTERS. 100 CLINICAL SAMPLES UNDERWENT PHYSICAL 
PROCESSING BY DUAL FILTRATION ONTO SERS-ACTIVE FILTERS. SERS SPECTRA WERE ACQUIRED WITH THE IDRAMAN IN THE 3D-PRINTED 
HOLDER. SPECTRA WERE DIGITALLY PRE-PROCESSED WITH SAVITSKY-GOLAY FILTERING, POLYNOMIAL SUBTRACTION AND VECTOR 
NORMALISATION BEFORE ANALYSIS WITH SPECTRAL PLOTS PCA AND PC-LDA. 

The methods used are summarised in Figure 7.13. One hundred Clinical samples were acquired from Northwest 
London Pathology (NWLP) Microbiology Laboratory. Samples were processed according to NWLP stand 
operating procedures, with all samples screened using a Sysmex UF4000 flow cytometer and cultured on 
chromogenic agar. Positive (infected) samples were defined as those greater than or equal to 105 CFU/ml of one 
or more uropathogens. An augmented convenience sample set was acquired with consecutive samples at a ratio 
of 1:1 infected to infected to uninfected samples. After clinical processing, all samples were stored at 4 degrees 
Celsius, and were processed for SERS analysis within 72hours of collection. Infected samples included in this 
study included Escherichia coli, Enterococci, Group B Streptococci, Proteus species and mixed infection. 

7.3.2.2 DUAL FILTRATION AND SERS SPECTRAL ACQUISITION 
Samples were processed using the 3D printed dual filtration vacuum filter insert. A 10 mm diameter SERS-active 
0.45 µm PVDF filter with a 50 nm gold nanocoating was loaded into the lower level, while the upper level had a 
25mm diameter, 5 µm pore size PVDF filter. 10 ml of urine was vacuum filtered through the dual filtration 
system, followed by 5 ml of PBS to wash of residual urine. The upper 5 µm filter was discarded, while the lower 
SERS-active filter was air-dried before Raman spectral capture. 
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7.3.2.3 SPECTRAL DIGITAL PRE-PROCESSING AND ANALYSIS 
Raman spectra were acquired using the IDRaman mini 2.0 handheld spectrometer loaded into the 3D printed 
mount. Spectra were acquired with laser wavelength of 785 nm and laser power set to 50 mW. Spectra were 
acquired for 2 seconds, with 60 scans averaged for a total acquisition time of 2 minutes. 

Spectra were processed and analysed with scripts developed in R programming language. Mean spectra with 
standard error ribbons were plotted for infected and uninfected samples, as well as for the specific 
uropathogens. Diagnostic and classification performance were assessed using supervised learning through 
PC-LDA. To assess the diagnostic contribution of spectra bands to infected samples were centred and scaled by 
negative samples. Similarly, pairwise assessment of the contribution of spectra bands to classification single 
species infected samples were centred and scaled by other single species infected samples. 

7.3.3 RESULTS 

7.3.3.1 SATURATED SPECTRA 
On visual assessment of the unprocessed spectra, 7 spectra were identified to have saturated the CCD leading 
to corrupted spectra (Figure 7.14). The samples from which the saturated spectra originated contained several 
infected and uninfected samples with different pathogens and collected on different days. In all cases the 
IDRaman had undergone calibration (Table 7.5). The CCD saturated when greater than 50000 intensity units 
were present. The 7 saturated spectra were removed from further analysis, leaving spectra from 93 samples. 

 

FIGURE 7. 14 RAMAN SPECTRA DEMONSTRATING CCD SATURATION. 
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TABLE 7. 5 SAMPLE CHARACTERISTICS FOR SATURATED SPECTRA. 

Sample Pathogen Collection Date Device calibration 

SAT_1 None 21/05/2021 Completed 

SAT_2 None 21/05/2021 Completed 

SAT_3 None 11/06/2021 Completed 

SAT_4 Group B Streptococcus 11/06/2021 Completed 

SAT_5 None 18/06/2021 Completed 

SAT_6 Enterococcus species 18/06/2021 Completed 

SAT_7 Enterococcus species 18/06/2021 Completed 

7.2.3.2 DIAGNOSIS OF INFECTED VS UNINFECTED CLINICAL SAMPLES 

 

FIGURE 7. 15 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR INFECTED AND UNINFECTED CLINICAL SAMPLES VACUUM FILTERED 
THROUGH SERS-ACTIVE MEMBRANE FILTERS. NO SPECTRAL DIFFERENCES ARE VISIBLE, WHILE WIDE STANDARD ERROR RIBBONS 
INDICATE A HIGH DEGREE OF SPECTRA VARIABILITY IN BOTH INFECTED AND UNINFECTED SAMPLES 

Figure 7.15 presents the mean spectra, with standard error ribbons, for infected and uninfected clinical samples 
vacuum filtered through SERS-active membrane filters. On visual examination there are no discernible 
differences between the spectra of infected and uninfected samples. The plot also demonstrates relatively wide 
standard error ribbons representative of a high degree of spectral variability. 
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FIGURE 7. 16 MEAN SPECTRUM WITH STANDARD ERROR RIBBON FOR INFECTED CLINICAL SAMPLES CENTRED AND SCALED ON SPECTRA 
FROM UNINFECTED CLINICAL SAMPLES VACUUM FILTERED ONTO SERS-ACTIVE MEMBRANES. HORIZONTAL DASHED LINES DELINEATE 
THE BORDER AT WHICH DIFFERENCES WOULD BE SIGNIFICANT AT a = 0.05 

Figure 7.16 presents the mean spectrum with standard error ribbons for infected clinical samples centred and 
scaled on uninfected clinical samples. The spectra plot provides a depiction of the spectral differences relative 
to the local variability. Horizontal dashed lines delineate the bound where bands differ significantly with 
a	= 0.05. This plot demonstrates no peaks at which spectra acquired from infected differ significantly from those 
of spectra acquired from uninfected samples. 

Figure 7.17 presents unsupervised learning through PCA of spectra acquired from samples vacuum filtered onto 
SERS-active membranes. The plot of the first 3 principal components demonstrates widely dispersed points with 
no natural clustering nor visible separation according to infection status. 
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FIGURE 7. 17 PCA PLOT FOR UNSUPERVISED CLASSIFICATION OF INFECTED AND UNINFECTED SAMPLES VACUUM FILTERED THROUGH 
SERS-ACTIVE MEMBRANES 

TABLE 7. 6 DIAGNOSTIC PERFORMANCE OF RAMAN SPECTROSCOPY WITH SERS-ACTIVE MEMBRANES ON CLINICAL SAMPLES 

 Reference Pathogen 

Uninfected control Infected  

Predicted pathogen Uninfected control 25 16 

Infected  20 32 

Diagnostic performance 

Accuracy 61.3% (95% CI: 50.6- 71.2%; p-value: 0.61) 

Cohen’s kappa 0.22 

Sensitivity 66.7% 

Specificity 55.6% 

The results of supervised learning through PC-LDA are presented in Table 7.6. The diagnostic performance had 
an accuracy of 61.3% (95% CI: 50.6-71.2%. p-value 0.61). The diagnostic sensitivity and specificity were 66.7% 
and 55.6% respectively. 
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7.3.3.3 CLASSIFICATION OF UROPATHOGENS IN CLINICAL SAMPLES 

 

FIGURE 7. 18 MEAN SPECTRA WITH STANDARD ERROR RIBBONS FOR PATHOGENS FROM CLINICAL URINE SAMPLES VACUUM FILTERED 
ONTO SERS-ACTIVE MEMBRANES. NO DIFFERENCES ARE VISIBLE IN THE SPECTRA, WHILE WIDE STANDARD ERROR RIBBONS INDICATE A 
HIGH DEGREE OF SPECTRAL VARIABILITY. 

Figure 7.18 presents the mean spectra with standard error ribbons acquired from clinical samples vacuum 
filtered through SERS-active membrane filters. No discernible differences are visible on the plotted spectra. 
Relatively wide standard error ribbons indicate a high degree of within group spectral variability.   

Figure 7.19 present pairwise comparisons of spectra acquired from clinical samples vacuum filtered through 
SERS-active membranes. Horizontal lines delineate the boundary at which point differences are statistically 
significant at a = 0.05. With the exception of the spectra referenced on Proteus spectra, none of the spectra 
demonstrate statistically significant peaks. The peaks arising from the Proteus spectra may reflect outliers in the 
small number of samples (n=3). 



 

FIGURE 7. 19 MEAN SPECTRUM WITH STANDARD ERROR RIBBON OF ALL PATHOGEN SPECTRA CENTRED AND SCALED BY ALL OTHER PATHOGEN SPECTRA. HORIZONTAL DASHED LINES DELINEAT THE BORDER AT 
WHICH DIFFERENCE WOULD BE  SIGNIFICANT AT  a  = 0.05. NO SIGNIFANT PEAKS ARE PRESENT WHILE WIDE STANDARD ERROR RIBBONS INDICATE A HIGH DEGREE OF SPECTRAL VARIABILITY.



 

FIGURE 7. 20 PCA PLOT FOR SPECTRA ACQUIRED FROM INFECTED CLINICAL SAMPLES VACUUM FILTERED THROUGH SERS-ACTIVE FILTERS 

Figure 7.20 presents unsupervised learning using PCA for spectra acquired from infected clinical samples vacuum 
filtered onto SERS-active membranes. The plot of the first three principal components demonstrates no natural 
clustering or separation by pathogen type. 

 

 

FIGURE 7. 21 PC-LDA CLASSIFICATION OF SPECTRA ACQUIRED FROM CLINICAL UROPATHOGENS ON SERS-ACTIVE MEMBRANES. MIXED 
SAMPLES WERE EXCLUDED FROM THE ANALYSIS IN LIGHT OF THE INCREASED COMPLEXITY OF MIXED ORGANISM SAMPLES WHILE 
PROTEUS SPECIES WERE EXCLUDED IN LIGHT OF SMALL SAMPLE NUMBERS. 
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Figure 7.21 presents supervised learning through PC-LDA for spectra acquired from infected clinical samples 
vacuum filtered onto SERS-active membrane filters. Mixed infection samples were excluded from analysis due 
to the challenges of multi-organism classification as well as the potential for a correct classification appearing 
incorrect. Proteus species samples were excluded due to the small number of samples available for analysis 
(n=3).  Samples were classified with 64.7% (95% CI: 46.5;80.25. p-value 0.37) accuracy (Table 7.7). The high 
number of misclassifications led to species level sensitivities ranging from 20 to 84%, with specificities ranging 
from 53 to 97%. 

 

TABLE 7. 7 PC-LDA CLASSIFICATION OF SPECTRA ACQUIRED FROM CLINICAL UROPATHOGENS. 

 Reference Pathogen 

Escherichia coli Enterococcus 
species 

Group B Strep 

Predicted 
Pathogen 

Escherichia coli 5 3 1 

Enterococcus 
species 

4 16 3 

Group B 
streptococci 

1 0 1 

Classification performance 

Overall Accuracy 64.7% (95% CI: 46.5-80.25%; p-value 0.37) 

Cohen’s Kappa 0.34 

Escherichia coli Sensitivity 50% 

Specificity 83% 

Enterococcus 
species 

Sensitivity 84% 

Specificity 53% 

Group B 
Streptococci   

Sensitivity 20% 

Specificity 97% 

 

7.3.5 DISCUSSION 
Accurate diagnosis of UTIs with pathogen classification was not achieved using SERS-active filters in this pilot 
study. 

The diagnostic accuracy of 61.3% (95% CI: 50.6-71.2%. p-value 0.61) is not statistically different to random 
assignment. The diagnostic performance here is inferior to current screening technologies such as urinalysis. 
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Similarly, the classification performance of 64.7% (95% CI: 46.5-80.25%; p-value 0.37) was not statistically better 
than random assignment and is inferior to currently implemented classification technologies. 

Kloss et al. and Schroder et al. both achieved perfect classification of clinical samples in their published works[99, 
117]. Direct comparison however is challenging, both because the small number of samples assessed in these 
studies limits generalisability, and more importantly spectra were acquired with a Raman microscope. The use 
of a Raman microscope in these works has the advantage of much higher resolution spectra afforded by the 
narrow focal volume, but with the disadvantage of limited room for clinical translation given the cost, physical 
footprint and technical expertise required to for Raman microscopes[88, 100, 101]. 

While SERS-active filter did not achieve sufficient signal for diagnosis and classification, there appears to be 
similar signal to that seen in the earlier work using phantom urine samples. The spectral plots of infected and 
uninfected samples (Figures 7.6 and 7.15) demonstrate similar peaks however large degree of variability 
evidenced by the wide standard error ribbons. This is more clearly presented in the relative difference plots 
(Figures 7.7 and 7.16 which display similar form which has been flattened during scaling by the considerable 
variability present in the uninfected samples. 

Understanding the factors that lead to this variability is important for planning further research and potentially 
improving the technology. Pathogens used in earlier works were controlled to minimise variability by using a 
single reference strain for each species, control the growth phase of the pathogen, and control of the pathogen 
load. Clinical samples vary with regards to all these factors.  Clinical samples represent an array of uropathogen 
strains. Raman spectroscopy has been demonstrated to provide sensitive classification down to strain level, and 
similarly misclassification may be attributed to components such as O-antigens[101]. Clinical samples contain 
pathogens across the spectrum of growth phases. As pathogens progress through the growth cycle the cell 
envelope undergoes dynamic changes to fulfil the different metabolic requirements. These dynamic changes 
are reflected by changes in the Raman spectra[123, 151]. 

UTI samples are frequently polymicrobial. These mixed infections have important clinical ramifications, and as 
such are important to diagnose. Mixed infections present a substantial classification challenge to Raman 
spectroscopy[87]. The Raman spectrum is composed of the sum of the peaks arising from the Raman scattered 
photons[217]. While achieving classification of infected samples should be possible, pathogen classification is 
likely to be highly challenging. 

Experimental parameters of the phantoms study were used in this study to avoid overfitting, however these 
parameters led to 7 saturated spectra. Review of the sample did not reveal a pattern, as these included both 
negative and positive samples, with multiple pathogens and on different days. The device was calibrated for all 
samples. Reduced power or acquisition time will avoid this in future work. 

A representative assessment of the diagnostic and classification performance of this technology will require a 
larger study population. This study may be optimised in a few ways. In the first instance, sampling could be 
optimised using augmented sampling to provide equal numbers of infected and uninfected sample. Potentially 
augmented sampling could limit positive samples to two uropathogens, again with an even split. Even numbers, 
while not truly representative maximises statistical efficiency of the study[218]. The gold standard comparator 
can be reconsidered, as while culture provides definitive diagnosis of infection, the classification provided by 
chromogenic agar provides broad classification to uropathogen groups[6]. The ideal gold standard comparator 
would provide granular strain-level classification, allowing for identification of possible sources of 
misclassification. Finally, the larger sample size will allow for a SVM classifier to be used. Using the findings here 
the sample size required to assess whether SERS-active filters can diagnose UTIs with 85% sensitivity and 
specificity is 392 samples (See appendix). 
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In addition to optimising the structure of a clinical trial to better characterise the diagnostic and classification 
performance of the SERS technology, the technology may too be optimised to improve this performance. Most 
notably, a more up-to-date handheld spectrometer than the IDRaman mini 2.0 may be used. Newer handheld 
spectrometers offer a smaller focal volume, therein allowing the uropathogens to constitute a greater 
proportion of this volume which is likely to improve the SNR. To make best use of this smaller focal volume 
changes, an autofocus may developed to ensure this is properly focussed on the pathogens. Finally, a newer 
spectrometer is likely to have a more sensitive CCD which will improve spectral resolution. 

7.4 CONCLUSION 
Uropathogens have unique Raman spectra, that potentially allow for Raman spectroscopy to fulfil the role of an 
ideal diagnostic technology for UTIs. Fulfilling this role, however, is dependent on methods to physically capture 
and concentrate pathogens and enhance the Raman signal. Membrane filters paired with SERS enhancement 
provided signal using colloidal nanoparticles in Chapter 6 allowed for identification of infected samples, however 
spectral variability did not allow for classification of uropathogens in infected samples. It was postulated 
nanoparticles may have induced variable enhancement through inconsistent application[98]. 

SERS-active filters were developed with the intention of providing more consistent enhancement, and therein 
better classification. PVDF membrane filters identified in Chapter 6 as contributing minimal competing signal 
had a gold nanolayer applied through PVD. PVD was used  due to its ability to apply a high purity gold coating 
with extremely fine control of the nanocoating thickness[213, 214]. The optimal thickness providing the greatest 
signal enhancement was identified as 50 nm. 

A vacuum flask insert was also developed that reduced the filter diameter from 47mm to 10 mm. This was 
primarily to allow for more efficient filter production but provided additional roles of concentrating the 
pathogens into a smaller area, as well as allowing for dual filtration. 

The diagnostic and classification performance were validated using phantom urine samples. Diagnostic accuracy 
of 93.2% exceeds that of currently implemented screening technologies, while the classification accuracy 91.7% 
is comparable to gold standard culture and emerging technologies such as mass spectrometry[5, 56, 215, 216, 
219]. 

Following on from this success, a pilot was performed attempting diagnosis and classification of clinical samples 
using SERS-active filters. While SERS-active filters were unable to identify infected samples, the pilot 
demonstrated a similar signal to that seen in the phantoms. In future work, the findings of the pilot clinical study 
will be used to guide further development and improvement of the Raman acquisition system as well as inform 
the design of a representative clinical trial. 
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CHAPTER 8: CONCLUSION 

8.1 SYNOPSIS OF THE COMPLETED WORK 
The considerable disease burden caused by UTIs is severely exacerbated by an outdated diagnostic paradigm 
characterised by inaccuracy and diagnostic delay. A new UTI diagnostic paradigm was proposed by Davenport 
et al. in which accurate recognition of infected samples is provided near the point of care, with pathogen 
classification and AST following in the hours thereafter[5]. This paradigm likely falls short too, as it fails to deliver 
the diagnostic information required for precision antimicrobial therapy to be prescribed at the correct time and 
place. An ideal diagnostic technology upon which a new diagnostic paradigm can be built would deliver accurate 
UTI diagnosis with pathogen classification at the point of care therein allowing precision antimicrobial therapy 
to be tailored from the outset. 

Raman spectroscopy has potential to perform as a suitable technology to achieve rapid and accurate UTI 
diagnosis with pathogen classification. The sensitivity of Raman spectroscopy allows for strain level pathogen 
classification without prior biomass expansion through cultivation, with minimal physical processing or reagents. 
As such, Raman spectroscopy is amenable to development into a point-of-care device. Handheld Raman 
spectrometers in particular have additional benefits in their small physical footprint and relatively low cost. 

This thesis proves the hypothesis that Raman spectroscopy can provide rapid and accurate UTI diagnosis with 
pathogen classification, using a compact handheld device suitable for use at the point of care. In so doing, it 
takes the first steps in the development of a diagnostic technology that may reduce the burden of disease caused 
by UTIs. 

The narrative review of Chapter 2 demonstrates that the immense burden of disease caused by UTI is 
attributable to the massive rate at which UTIs occur. Implicit to this massive extent of disease, is that deficiencies 
in the diagnostic approach are similarly amplified by the massive rate the tests are required. A simple 
extrapolation would indicate that if urinary Dipstix are used for screening for the 150 million UTIs occurring each 
year, then the 80% sensitivity would lead to 30 million false negatives that incur diagnostic delays. While this is 
likely to be an oversimplification the point remains that staggering numbers of UTIs require a better diagnostic 
paradigm than currently implemented. Chapter 2 applies the unique epidemiologic and clinical characteristics 
of UTIs to define the ideal diagnostic that prioritises rapid and accurate diagnosis with pathogen classification. 

Raman spectroscopy is identified in Chapter 3 as a suitable technology to fulfil the requirements of an ideal UTI 
diagnostic technology. Most importantly, its ability to provide highly resolved spectra without prior biomass 
expansion through cultivation underlies potential to be adapted to a point-of-care diagnostic. The state of the 
art of Raman based UTI diagnosis is addressed in the systematic review, demonstrating Raman spectroscopy’s 
undoubtable ability to provide rapid uropathogen identification. Barriers to translation are also highlighted in 
the review, most notably an overreliance on powerful, yet clinically unfeasible, Raman microscopes. 

Having established Raman spectroscopy as a technology with potential to provide rapid uropathogen 
identification Chapter 3 also highlights the massive number of parameters under control and the extraordinary 
sensitivity to these. Systematic isolation and interrogation of these parameters was used in Chapter 4 to develop 
a robust method that allowed for rapid evaluation of the Raman-based technologies employed in the 
subsequent experimental work. 

Concentrated suspensions demonstrate unique Raman spectra allowing for accurate classification in Chapter 5. 
These spectra also demonstrate some substantial challenges with using handheld Raman spectroscopes: the 
relatively large focal volume and lower resolution result in relatively small peaks with a retained baseline. 
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Nonetheless, cross-validated supervised learning achieved excellent classification accuracy of 95% Extending 
this to clinically relevant concentrations demonstrates the weak biologic signal of pathogens is insufficient for 
classification, even when augmented by extended acquisition time, increased concentration and targeted 
analysis. Additional experimental work demonstrates the extreme spectral variation of unprocessed clinical 
urine samples. Combined, these findings confirm uropathogens have descriptive Raman spectra, however 
utilising Raman spectra for clinical diagnosis will require capture and separation of the pathogens and 
enhancement of the spectra. 

The massive signal enhancement provided by SERS makes this the logical modality for achieving sufficient 
pathogen Raman signal enhancement for clinical diagnosis. The SERS spectra acquired from uropathogen 
suspensions using gold and silver nanoparticles of differing size were assessed in Chapter 6. Successful 
differentiation using SERS nanoparticles despite low sample numbers prompted an extension to an assessment 
at clinically relevant concentration. To maximise the likelihood of success, the uropathogens were first rapidly 
aggregated using vacuum filtration, a widely utilised microbiologic technique. Preliminary work demonstrated 
PVDF membrane filters to contribute minimal competing signal. Combining vacuum filtration with SERS 
enhancement provided by colloidal nanoparticles demonstrated acceptable diagnosis of infected samples, 
although suboptimal classification of the aetiologic uropathogen. The suboptimal classification performance is 
postulated to result from colloidal nanoparticles where consistent apposition cannot be ensured. 

SERS-active membrane filters created by application of a gold-nanolayer to PVDF membrane filters using 
sputtered PVD were postulated to overcome the challenges of nanoparticles as agglomeration does not occur 
and pathogen apposition can be ensured by simple airdrying.  An optimal gold nanolayer of 50 nm was 
established in Chapter 7, before validation of the SERS-active membrane filters using phantom urine samples. 
Excellent diagnostic and classification performance of 93.2% and 91.7% respectively were achieved. To assess 
clinical samples, a dual filtration device was developed to separate urine particulate matter before uropathogen 
capture on the SERS-active membranes. Using this device, a clinical pilot of 100 samples was performed, which, 
although underpowered to assess diagnostic performance provided valuable insights used to inform future work 
(see below). 

This thesis has demonstrated that the significant burden of disease caused by UTIs and exacerbated by 
suboptimal diagnostic technologies may be ameliorated by Raman spectroscopy. Having demonstrated 
uropathogens have unique Raman spectra with classification potential, a method was sought to develop a 
technology that could provide rapid and accurate diagnosis at clinically relevant concentrations using a low-cost 
handheld Raman spectrometer. This culminated in the development and validation of SERS-active filters, 
capable of providing accurate diagnosis and classification direct from urine samples in minutes. 

The most notable limitation of this work is the reliance on strictly controlled laboratory specimens of reference 
strain pathogens. Substantial methodologic work was undertaken to ensure that while the samples contained 
pathogens representative of UTIs, all other variation from bacterial load to pathogen stain and background 
solution was minimised. This is an important and necessary step while developing a Raman based technology as 
the researcher cannot be left to wonder if spectral variability (and ensuing misclassification) arises from the 
samples or from the technology. Nevertheless, reliance on these contrived samples remains a substantial barrier 
to furtherment of a Raman-based diagnostic technology for UTI diagnosis as the massive variation arising from 
multiple strains of multiple species at different pathogen loads poses a stepwise challenge in classification. 
Theoretically, once a technology is delivering consistent Raman spectra from pathogens overcoming the 
variation arising from clinical samples is a matter of acquiring a sufficiently large dataset. 

Carefully controlled, cultured reference strain uropathogens were used for the majority of the studies included 
in this thesis. The requirement for a paired gold standard testing was therein obviated as the uropathogen was 
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already known. The final study evaluating the performance of the SERS active filters on clinical samples was an 
exception, in which chromogenic urine culture was used as a gold standard reference test. Urine culture is the 
established gold standard diagnostic test for UTIs, however it has several limitations as a research reference 
standard[220].  

The bladder was considered a sterile compartment until the development of highly sensitive molecular 
techniques has led to the recognition of the urinary microbiome[221, 222]. The urine, in fact, contains a wide 
range of organisms which are commensal in the urinary tract. While these organisms are non-cultivable on 
standard culture, they may be recognized by a novel diagnostic technology leading to an incorrectly defined 
false positive[54]. The recognition of commensal organism demonstrates further value to rapid and granular 
classification. A diagnostic test need not only identify whether a urine sample contains microbe but whether the 
microbe has the potential to cause disease. 

Urine culture as a reference standard may be limited in providing reference classification. The laborious 
processes required for granular strain level classification are costly and time consuming. These processes may 
be reduced to limit costs, however at the expense of precision of classification. Pairing culture with mass 
spectrometry provides more granular classification without laborious processes to isolate and identify 
pathogens, however, is still reliant on successful cultivation of the microbes[58].  

Composite reference standards are an eloquent mechanism for overcoming the shortcomings of any one 
reference test. An understanding of the relative strengths and weaknesses of reference diagnostics allows these 
to be combined to avoid bias arising from the reference[223, 224]. Applied to UTIs the reference test could 
combine mass spectrometry with PCR to provide granular classification with the potential to identify commensal 
organisms. 

Ultimately, the performance of diagnostics needs to be assessed on clinical outcomes including such as 
resolution, progression and recurrence. Evermore granular diagnostics will warrant a reevaluation of the UTI 
paradigm linking specific microbes, both pathogenic and commensal, to specific outcomes such that the 
diagnostics can empower precision management.  

Another potential limitation of this work is the use of PC-LDA for classification. PC-LDA suffers from inferior 
generalisability when compared to other supervised learning techniques such as SVM and ANNs. These 
supervised learning methods however require substantially larger training data and so are not feasible for the 
rapid prototyping required during development.  Overfitting was reduced as much as possible through LOOCV 
of the number of components passed to LDA. 

A similar argument of overfitting may be levelled against acquisition parameters and digital pre-processing 
where the massive parameter permutations could be adjusted to fit the data. This pitfall was avoided through 
the extensive methodologic work in Chapter 4 which allowed for a priori selection of these parameters on pilot 
data. Nevertheless, the deep understanding of these parameters was developed over the entire time course, 
and so some of the earlier works in Chapter 5 required post hoc revision of the pre-processing steps to 
adequately demonstrate the performance of the technology. 

Estimating sample sizes for clinical studies is an important aspect of planning clinical research. Selecting an 
appropriate sample size is required to accurately address a research question while avoiding the harms of 
collecting excess data. These harms may include exposing patients to valueless testing, or subjecting them to 
inappropriate testing[225]. 
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A thorough understanding of type I and type II error and it’s and how these apply to the planned research are 
required. Type I error occurs when the null hypothesis is incorrectly rejected, and the alternative hypothesis is 
accepted. Applied to exploratory research assessing the diagnostic capabilities of a Raman based technology, 
the occurrence of type I error will lead the researcher to incorrectly conclude the technology has diagnostic 
capabilities. In this case the technology is likely to be subjected to further research which is likely to fail, therein 
consuming resources[226]. 

In contrast, type II error occurs when a null hypothesis is incorrectly accepted, and the alternative hypothesis is 
rejected. Applied to exploratory research assessing the diagnostic capabilities of a Raman-based diagnostic 
technology, the occurrence of a type II error will lead the researcher to incorrectly conclude a technology does 
not have diagnostic capability. In this case, the researcher is likely to discontinue a line of research into a 
technology with potential diagnostic capabilities.[226] 

In exploratory research, where the aim is to identify research lines of potential value, type II error is more costly. 
Type I errors are less costly as these will be corrected in subsequent studies when the null hypothesis is accepted, 
and research lines are correctly discontinued. It is therefore preferable to overpower these exploratory studies 
by including increased numbers of samples. 

In addition to the risk of type I and II errors, sample size estimation is determined by estimates of precision and 
variance as well as a clinically relevant endpoint. A challenge arises in exploratory research in that estimates of 
precision and variance are not known[226]. The challenge caused by the absence of precision and variance 
estimates is particularly stark in Raman research as small experimental variation leads to massive changes in 
classification performance. Therefore, performance estimates from earlier studies cannot be used as reliable 
estimates of precision and variance in subsequent studies. 

A final challenge arises in using machine learning algorithms with cross validation to assess diagnostic 
performance. Using machine learning with cross validation means the data are not used only to assess the 
diagnostic performance, but also define the diagnostic performance.  Therefore, there is no closed form solution 
for sample size estimation when using machine learning with cross validation[227]. Similarly, performing pilots 
to inform precision and variance estimates was not feasible as the estimates or precision and variance are 
influenced by the pilot size therein not reflecting the precision and variance that would be attained in an 
adequately sized study 

In light of the exploratory nature of the studies as well as cross-validated PC-LDA, it was not possible to perform 
sample size estimation for the experimental work in this thesis. Rather interim analyses informed decisions to 
terminate or proceed with further data collection. A limitation of this work, therefore, is a substantial risk of 
selection bias in these works. While the concordance of the results of subsequent studies may somewhat 
mitigate the risk of selection bias, the veracity of these results cannot be relied upon in isolation and without 
more comprehensive assessment.  

Future work should therefore provide a robust assessment of the diagnostic performance of the Raman-based 
diagnostic using independent data. Sample size estimates for the independent test set may be performed using 
the training set cross-validation performance to estimate the precision and variance. 

Despite these limitations, the work presented in this thesis demonstrates the potential of SERS combined with 
vacuum filtration for point-of-care diagnosis of UTIs. As discussed in the following section, future work will aim 
to further develop this approach to improve the diagnostic and classification capabilities, therein moving it 
toward a clinically implementable technology. 
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8.2 STATE OF DEVELOPMENT AND FUTURE WORK 
The work presented in this PhD has demonstrated the potential of Raman spectroscopy (deployed via the 
combination of SERS and vacuum filtration) to provide point-of-care diagnosis of UTI, including pathogen 
classification. Nonetheless, further work is required to develop this technique towards a clinically 
implementable technology. 

In Section 2.4 a minimum viable technology which may substantially improve the UTI paradigm was identified 
as one that delivers low-cost accurate diagnosis of UTIs at the point of care, with specificity having important 
value for community acquired UTIs which account for the majority of cases. Additional benefit is provided by 
accurate microbial classification and a digitalisation of results. 

While rapid AST and pathogen load quantification will undoubtedly deliver benefits as the improved diagnostics 
empower precision management, this is secondary to the primary research targets. Nevertheless, it is an 
important benefit where a potential route toward delivering AST and load quantification is possible. 

The key attribute of a UTI diagnostic is to be able to deliver accurate differentiation of infected from uninfected 
samples, with improved specificity being of value in uncomplicated community acquired UTIs. SERS-active filters 
differentiated infected from uninfected samples with 93.2% accuracy in phantom urine samples, providing 90% 
specificity. Achieving accurate diagnosis on phantom urine infections samples provides an excellent proof of 
concept for the technology. Attempted extension beyond proof of principal to clinical samples demonstrated 
the size of the challenge placed by the complexity of clinical pathogens. 

Rapid turnaround was identified as a key attribute. The time taken from sample to result was achieved in 
minutes using the SERS-active filters. The current state of the technology required laboratory equipment which 
is amenable to development into a medical device. Further development toward a medical device may further 
improve the turnaround time by reducing the number of steps involved. 

In the current early stage of development, SERS-active filters were used for UTI diagnosis in a laboratory setting. 
The widely employed techniques utilised in these processes are however amenable to development, and as 
such, the technology may be further developed to meet this key requirement. 

The epidemiologic characteristics of UTI necessitate a diagnostic be low-cost. The SERS-active filters, which 
constitute the main consumable cost were produced at a low-cost. In the research setting the preparation a 
single SERS-active filter cost a few pennies. Importantly, the PVD process is used on industrial scale in other 
sectors (e.g. chip manufacture, jewelry, industrial hardware), and so is amenable to scaling with cost reduction. 
Handheld Raman spectrometers cost thousands of pounds, which as a single capital expense may be offset by 
the high incidence and therefore high usage of these devices. 

Pathogen identification was identified as a secondary, but highly important attribute for a UTI diagnostic. 
Pathogen classification accuracy of 91.7% was achieved in phantom urine samples, demonstrating proof of 
principle. Importantly, the same spectrum is used for diagnosis is classification, and as such no further processing 
time is incurred. Variation in clinical pathogens highlight the requirement for substantially larger training sets. 
An additional secondary benefit arises in that the spectra are digitally collected and processed, and therefore 
the results may be stored in a database for secondary research or disease surveillance. 

In summary, this work has delivered a technology with a proof of principle capabilities in line with a minimum 
viable product for UTI diagnosis. Large scale research is required to develop the training sets required for clinical 
samples, and in so doing demonstrating the diagnostic performance. The technology is amenable to further 
development required to deliver a clinically implementable medical device. 
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TABLE 8. 1 STATE OF TECHNOLOGY AND FUTURE REQUIREMENTS TOWARD PREDEFINED FUNCTIONAL REQUIREMENT SPECIFICATION 

Attribute State of the technology Future development required 

Key attributes 

Accurate differentiation of 
infected from uninfected samples 

Proof of principle achieved with 
93.2% accuracy in phantom urine 
samples using SERS-active filters 

Large clinical trial to assess the 
diagnostic performance in clinical 
samples 

Rapid Sample to result achieved in 
minutes 

 

Low cost SERS-active filters produced for 
pennies. 

Amenable to mass production 
with likely further cost 
improvements 

Point of care Sample processing performed 
using widely-available laboratory 
equipment amenable to 

Development toward a standalone 
medical device 

Secondary attributes 

Uropathogen classification Proof of principle achieved with 
91.7% accuracy in phantom urine 
samples using SERS-active filters 

Large clinical trial to assess the 
diagnostic performance in clinical 
samples 

Digital results Results are digital  

 

An appropriately powered clinical assessment of SERS-active filters is warranted. A challenge of Raman research 
for UTI diagnosis arises in that the extreme sensitivity of Raman spectra to technical and experimental parameter 
means that any change to these parameters limits the use of data collected prior to the change. As such, prior 
to initiation of a clinical trial the technology needs to be as close to fully optimised as feasible.  

The IDRaman mini 2.0 used in this thesis is a low-cost handheld spectrometer first produced in 2013[166]. By 
way of comparison a more up to date, similarly priced handheld spectrometer the Metrohm Mira P may be used. 
Both spectrometers have a 100mW excitation power 785 nm laser source. The spectra resolution of the Mira P 
is 8-10 cm-1 as compared to 12-14 cm-1 on the IDRaman. The smallest attainable spot size on the Mira P is 
0.042 mm as compared to 0.2 mm on the IDRaman. Spot size (controlled using focal length) was demonstrated 
in Chapter 4 to provide a non-linear improvement in amplitude and quality of spectra. As such these two 
features alone should provide spectra with higher resolution and considerably higher signal-to-noise ratio, 
therein allowing for better classification. 

In this thesis a spectrometer support was designed and 3D-printed to ensure consistent focal length and spot 
size. However, with the quality of the spectra demonstrated to vary substantially with as small as 0.5 mm 
differences, it is likely an autofocus will ensure greatest spectral intensity and resolution. This may be simply 
implemented with a moving sample stage that finds the maximal intensity as defined by AUC before starting the 
spectral acquisition. This would be of particular value should a spectrometer such as the Mira P be used, in which 
gaining the greatest benefit from the smaller spot size is contingent on accurate focussing. 
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The commercially available 0.45 µm PVDF filters used to create SERS-active filters are intended for sample 
sterilisation or pathogen isolation rather than spectral acquisition. The randomly arranged PVDF fibres, lead to 
some variation of gold deposition and apposition to pathogens. A preliminary specific-to-purpose has been 
designed using Fusion360 CAD and a prototype 3D printed using a Nanoscribe 3D printer (Figure 8.1). The design 
consists of uniformly repeating filter pore units parametrically designed to allow fine tuning to optimally appose 
pathogens to the SERS gold layer. Further work is required to optimise the design parameters, and compare the 
enhancement against the current PVDF membrane filters. However, a custom filter designed specifically for 
pathogen measurements will have the potential to improve signal levels, and hence classification in future 
experiments in which SERS-active filters are used. 

 

FIGURE 8. 1 A RATIONALLY DESIGNED FILTER. A CAD MODEL OF UNIFORMLY REPEATING UNITS PARAMETRICALLY DESIGNED FILTER 
PORES TO MAXIMISE PATHOGEN-SERS APPOSITION (LEFT PANEL). A SEM OF A NANOSCALE 3D-PRINTED FILTER USING A NANOSCRIBE 3D 
PRINTER (RIGHT PANEL). 

Once optimised the performance of the Raman UTI diagnostic needs to be assessed, with several important 
considerations informed by the learnings of this thesis.   

M, C&S is the established gold standard for clinical UTI diagnosis, however this may be suboptimal as a gold 
standard comparator. The primary outcome is likely to be infection defined as growth equal to or greater than 
105 CFU/ml, for which M, C&S is ideal. A similarly important outcome however is the classification performance, 
for which standard culture is less appropriate. The high resolution of Raman spectra allows for much more 
granular classification than provided for by standard culture, which may lead to what appears as 
misclassification. An example of this is demonstrated by Mircescu et al., where variations in O-antigens between 
strains led to misclassifications between E. coli and P. mirabilis[101]. A more appropriate gold standard 
comparator for classification performance may be PCR or mas spec. An additional consideration is that M, C&S 
correlates poorly with clinical outcomes, because of both asymptomatic bacteriuria leading to false positives 
and non-cultivable bacteria leading to false negatives. PCR has been demonstrated to correlate better with 
clinical outcomes. 

PC-LDA was used for supervised learning in this thesis to allow for rapid assessment of classification performance 
with few samples. Supervised learning provided by SVMs or ANNs provide better generalisability, while ANNs 
are likely to require less pre-processing (and so retain greater signal). A substantially larger study population is 
required, both to overcome the variability anticipated in clinical samples, and to train these algorithms. 
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8.3 EXPANDING HORIZONS 
Raman spectroscopy is uniquely suited to rapid phenotypic antimicrobial sensitivity testing (AST). Pathogen 
classification using Raman spectroscopy, and SERS in particular, is achieved through recognition of cell envelope 
components. The effects of antimicrobials are typically first evident in the cell envelope as this is where the 
majority of metabolism takes place. As such, chemometric evidence of antimicrobial efficacy typically precedes 
visual evidence. Theoretically, any Raman technology able to classify pathogens should similarly be able to 
differentiate antimicrobial resistant species from sensitive ones. Indeed, Raman AST has been demonstrated in 
a number of works[89, 156]. AST using SERS-active filters should therefore be interrogated in future work. 

The processes that underpin SERS-active filters are not unique to urine, but rather can be applied to any biofluid 
at risk of infection. The diagnostic and classification performance of SERS-active filters should be assessed on 
biofluids including blood and cerebrospinal fluid. This may be contingent on additional physical processing, such 
as differential centrifugation of blood to separate eukaryotic cells from pathogens. 

8.4 CONCLUSION 
In summary, Raman spectroscopy is uniquely suited to alleviating the burden of disease caused UTIs in light of 
its ability to overcome the shortcomings of current diagnostic technologies. Specifically, the ability to achieve 
high resolution spectra without the need for prior biomass expansion allows for rapid and accurate classification. 
This thesis progressed to develop technology that may overcome both weak biologic Raman scattering from 
pathogens and the substantial noise present in urine. SERS-active filters are validated as a feasible technology 
to underpin a point of care diagnostic for UTIs. Future work will now seek to further develop this technique 
toward a clinically implementable solution.  
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APPENDIXES 

SAMPLE SIZE CALCULATION FOR FUTURE CLINICAL WORK 
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nse = Study sample size required for sensitivity 

nsp = study sample size required for specificity 

z = Z cumulative (at a = 0.05) 

prev = prevalence 

d = marginal error rate 
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R- SCRIPT 
R code available at: https://github.com/simon-dryden/UTI-POCT-code 
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