
Imperial College London
Department of Chemistry

Atomistic graph analysis of
protein dimers in disease

Léonie Strömich

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in the Department of Chemistry

at Imperial College London, February 2022



Declaration of Originality

I hereby declare that this Thesis and all work presented within are my own. I confirm that:

• In all cases where my work is based on the work of others, this is clearly stated and

referenced.

• Where I consulted the work of others, I provide clear references.

• Wherever I include work that I have previously submitted as part of a degree at Imperial

College London or at any other institution, it is clearly stated.

• Where my work was in collaboration with others, it is clearly stated which contributions

were made by others and which is my own work.

Léonie Strömich, February 2022

i



Copyright Declaration

The copyright of this Thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that:

you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

ii



Abstract

Proteins are fundamental components of biological processes thus, they are often termed the

molecular machinery of life. They commonly form dimers, in a process that is often essential

for their functionality. Given the ubiquitous nature of protein regulation, many diseases are

based on malfunctioning proteins and inhibiting them by binding to the active site is a widely

chosen approach in drug development. However, due to acquired resistance mechanisms or high

off-target effects, the active site might not always be a viable approach. This work presents an

atomistic, structural investigation of dimeric proteins in the context of major disease processes,

where we provide insights into potential alternative drug targeting approaches.

In this Thesis, novel diffusion-based methods are applied to characterise the intra-structural

connectivity and signalling of protein dimers. The basis of our methods is the description of

proteins as atomistic, energy-weighted graphs, where every atom represents a node, and every

bond or interaction is encoded as a weighted edge. These graphs facilitate the study of con-

nectivity and signal propagation within the protein through diffusion processes on the atom

(node) and bond (edge) space. Two complementary methodologies are applied here, Markov

Transients and bond-to-bond propensities, which have been successfully used in the context

of allosteric site detection, the study of protein-protein interactions and the investigation of

allosteric signalling on an atomistic level. This work explores the extension of these method-

ologies onto protein dimers and presents the investigation of allosteric mechanisms in three

disease-relevant study systems:

1. Estrogen receptor alpha (ERα) is a homodimer and the main driver in breast cancer

(BC) development and progression. Current chemotherapies based on inhibiting ERα

become ineffective when recurrent tumours develop resistance against anti-estrogens. Our

methodologies validate the molecular mechanism in ERα, and we further establish the

prevalent role of the dimer interface in the inhibition process.

2. The main protease (Mpro) of the coronavirus SARS-CoV-2 is essential for virus replication

in an early step of the viral life cycle. Since the beginning of 2020, we have seen this virus

causing a global pandemic of COVID-19, with over 285 million cases of infection and

over 5.5 million deaths by the end of 2021. To aid in combating COVID-19, we predict
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highly connected allosteric hotspots and provide insights into how the disruption of the

obligatory Mpro dimerisation presents a fruitful approach.

3. Cyclin-dependent kinases (CDKs) 4 and 6 are two essential cell cycle regulators that are

often associated with cancer development, and in BC, their inhibition is part of an effective

combinatorial treatment. This work contributes to understanding their activation process

in complex with D-type cyclins and sheds light on the differential inhibitor patterns seen

for CDKs.

By exploring these three systems with atomistic graph analysis, we describe intra-complex

communication essential for activation in all three proteins. We further present implications

for the respective dimer interface connectivities and how they could be a fruitful drug target.

We conclude that ERα, the SARS-CoV-2 Mpro and CDK4/6 can be disrupted over allosteric

mechanisms that include their dimer interfaces. These results provide scope for targeted drug

development and provide a valuable contribution to the ongoing efforts to find efficient treat-

ments for BC and COVID-19.

iv



Acknowledgements

First and foremost, I want to express my gratitude to Sophia. Thank you for the opportunity

to write this Thesis in your group and for guiding me throughout while still supporting me in

following my own ideas. You often knew how to motivate and inspire me when I did not know

myself. Further, I would like to thank Simak for his co-supervision on the estrogen receptor

project and for believing in the power of computational methods. Our discussions were always

fascinating, and your constructive suggestions were very appreciated.

A massive thank you to the former and present members of the Yaliraki group. Our interdis-

ciplinary approach to science made for a beautiful working environment, and I appreciate all

the input you provided. I am especially grateful to have worked with Sophia, Florian and Nan.

Thanks for bouncing ideas back and forth to progress my work and, equally as important, all

the walks, lunches, coffee breaks and Friday drinks. This extends to the fantastic people in the

Chemistry department and particularly the computational office, especially Andrew, Megan,

Sophie and Tamzin. You rock! Francesca and Maeve, I am grateful beyond words that you

share your views and thoughts on literally any topic with me. You inspire me every day.

My thanks also include the Wellcome Trust for providing me with a scholarship that allowed

me to pursue my research for the past four years. And even more importantly, for making me

a part of the best PhD cohort anyone could have ever wished for. Heather, Jonathan, Maddy

and Tara, I could not have done it without you, and I will forever be grateful we met and made

it through this adventure together.

Last but not least, I am grateful for the ones who have been by my side since always and will

be forever: Carina, Martin, my parents, Bernhard and Kerstin, and my sister Leslie. Knowing

that you have my back carried me through, and I cannot thank you enough.

v



Dedication

This Thesis is dedicated to all the women who were part of my journey into and through

academia. Whether you were a mentor or a fellow student, whether you guided me or you

walked alongside me.

You deserve the space.

Sabine, Antonia, Nadine, Andrea, Nina, Sarah, Rebecca, Sarah, Kristin, Andrea, Elke, Susanne,

Annette, Andrea, Katinka, Susi, Kathrin, Sophia, Isabel, Jasmin, Julia, Claudia, Jana, Sophie,

Annika, Jana, Hannah, Sheena, Rita, Steffi, Chloé, Kristin, Sanja, Elli, Jana, Ann-Kathrin,

Zhenni, Heike, Ulrike, Irmgard, Damjana, Rebecca, Kathrin, Dorothea, Lisa, Imme, Cornelia,

Anne, Luisa, Monika, Eva, Julia, Becky, Kathrin, Kristina, Laura, Louisa, Anna, Fidi, Meike,

Mareike, Wenke, Isabelle, Linda, Lea, Eva, Carolin, Julia, Claudia, Marie, Eva, Laura, Jenny,

Claudia, Lisa, Fanny, Katharina, Bianca, Monica, Selina, Amy, Emily, Sarah, Bianca, Simone,

Sabrina, Andrea, Astrid, Elke, Britta, Hannah, Maria, Alessandra, Valentina, Barbara, Qi,

Lina, Aino, Sophia, Sabina, Eva, Natalie, Alessia, Megan, Lisi, Olivia, Sylvia, Sophia, Malica,

Emily, Elodie, Karina, Sofia, Yixuan, Ching Ching, Eunjin, Claudia, Yara, Sophie, Patricia,

Tamzin, Megan, Laura, Stefanie, Polly, Gitu, Vanessa, Aileen, Chloe, Hannah, Kim, Julia,

Astrid, Sophie, Irene, Mikkaela, Shukai, Louise, Anna, Emma, Raya, Milia, Hannah, Michaela,

Heather, Maddy, Tara, Maeve & Francesca.

vi



Contents

Abstract iii

Acknowledgements v

List of Tables xii

List of Figures xiv

List of Abbreviations xvii

1 Introduction 1

1.1 Proteins - the molecular machinery of life . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Proteins in disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Proteins as therapeutic targets . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Protein activity relying on dimerisation . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Interruption of dimerisation as drug targeting approach . . . . . . . . . . 4

1.3 Allostery in proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Allostery as drug targeting approach . . . . . . . . . . . . . . . . . . . . 7

vii



CONTENTS viii

1.4 Computational studies to facilitate drug design . . . . . . . . . . . . . . . . . . 9

1.5 Thesis outline - the study of protein dimers with atomistic graph analysis . . . . 11

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Computational approaches for the study of proteins 14

2.1 Computer-aided drug design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Advances in structure-based drug design . . . . . . . . . . . . . . . . . . 15

2.2 Dimer interaction studies with computational methods . . . . . . . . . . . . . . 16

2.3 Allosteric site discovery with computational methods . . . . . . . . . . . . . . . 19

2.4 Graph theoretical methods to study protein structure and function . . . . . . . 21

2.4.1 Atomistic graph analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Methodology 27

3.1 Atomistic graph analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Data collection and processing . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Atomistic graph construction . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Markov Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.4 Bond-to-bond propensities . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.5 Quantile scoring and site scores . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Development of additional tools for atomistic graph analysis . . . . . . . . . . . 42



CONTENTS ix

3.2.1 Structural features and visualisations . . . . . . . . . . . . . . . . . . . . 42

3.2.2 ProteinLens - a user-friendly interactive webserver . . . . . . . . . . . . 43

4 Estrogen receptor alpha 50

4.1 A nuclear hormone receptor regulating gene expression . . . . . . . . . . . . . . 50

4.1.1 Molecular mode of action of ERα . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 ERα in breast cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Bond-to-bond propensities validate the molecular mechanism of ERα . . . . . . 58

4.2.1 Connectivity towards H12 . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Importance of dimer interface connectivity . . . . . . . . . . . . . . . . . 62

4.3 Signal connectivity in the structural features of the dimer interface . . . . . . . 63

4.4 Conferring resistance in cancer mutations over the dimer interface . . . . . . . . 67

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 The main protease of SARS-CoV-2 74

5.1 A virus causing a global pandemic . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Proteolytic cleavage is essential for viral replication . . . . . . . . . . . . 75

5.1.2 Inhibiting Mpro to tackle COVID-19 . . . . . . . . . . . . . . . . . . . . 79

5.2 Insights into the molecular mechanism of the SARS-CoV-2 Mpro dimer . . . . . 82

5.3 The dimer interface under the regulation of mutations . . . . . . . . . . . . . . 85

5.4 Identification and scoring of putative allosteric sites . . . . . . . . . . . . . . . . 88

5.4.1 Bond-to-bond propensities identify a hotspot in the dimer interface . . . 89



CONTENTS x

5.4.2 Markov transient analysis identifies two more hotspots . . . . . . . . . . 91

5.4.3 Indications for hotspot targetability . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Cyclin-dependent kinases 4 and 6 99

6.1 The cell cycle regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 CDK4/6 - drivers of the G1 phase . . . . . . . . . . . . . . . . . . . . . 100

6.1.2 Structural features of CDK4/6 . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Differences in cyclin binding site are revealed in monomeric CDK2 and 4 . . . . 108

6.3 Signalling and interactions in the CDK4 and D-type cyclin complexes . . . . . . 109

6.3.1 Markov Transients reveal protein-protein interaction sites in CDK4 -

cyclin D complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Bi-directional activity is detected from RXL site . . . . . . . . . . . . . . 116

6.3.3 The CDK4 - cyclin D1 interface shows distinct regions for signal trans-

duction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 The inhibition of CDK6 with cancer therapeutics . . . . . . . . . . . . . . . . . 122

6.4.1 Chemotherapeutics in CDK6 . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.2 Comparison to inhibition in CDK2 . . . . . . . . . . . . . . . . . . . . . 126

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Conclusion 132

7.1 Summary of biological results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Open questions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



7.2.1 Suggested future experiments . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.2 Impact of different inhibitors . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.3 Elucidation of different allosteric mechanisms in proteins . . . . . . . . . 139

7.2.4 In silico mutational analysis . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Methodological Details 142

A.1 Structure details and pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.1.1 Estrogen receptor alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1.2 SARS-CoV-2 Mpro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.1.3 Cyclin-dependent kinase 4 and 6 . . . . . . . . . . . . . . . . . . . . . . 145

A.2 ERα mutations and chemotherapeutics . . . . . . . . . . . . . . . . . . . . . . . 148

B Supplementary Figures 150

C Supplementary Tables 159

D Publication Permissions of Third Parties 175

Bibliography 179

xi



List of Tables

3.1 Web servers to predict allosteric sites and signalling paths. . . . . . . . . . . . . 44

4.1 Top-scoring residues in the ERα dimer interface. . . . . . . . . . . . . . . . . . . 66

4.2 Interface ”bridge” residues in L536R ERα LBD. . . . . . . . . . . . . . . . . . . 71

5.1 Top scoring residues in the Mpro dimer interface. . . . . . . . . . . . . . . . . . . 87

5.2 Allosteric hotspots in Mpro as determined with BBP analysis. . . . . . . . . . . 91

5.3 Allosteric hotspots in Mpro as determined with MT analysis. . . . . . . . . . . . 93

5.4 Active site scoring from small fragments. . . . . . . . . . . . . . . . . . . . . . . 96

6.1 RXL site in cyclin D1 and D3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Average QS of CDK4 - cyclin D1 interface. . . . . . . . . . . . . . . . . . . . . . 120

6.3 Top scoring residues in the CDK4 - cyclin D1 interface. . . . . . . . . . . . . . . 121

A.1 Structural features in ERα LBD dimer interface. . . . . . . . . . . . . . . . . . 144

A.2 Monomeric CDK6 structures with inhibitors. . . . . . . . . . . . . . . . . . . . . 147

C.1 Dimer interface residues in the agonist-bound ERα LBD. . . . . . . . . . . . . . 159

C.2 Dimer interface residues in the antagonist-bound ERα LBD. . . . . . . . . . . . 161

xii



C.3 Dimer interface residues in the SARS-CoV-2 Mpro. . . . . . . . . . . . . . . . . . 163

C.4 Dimer interface residues in the SARS-CoV Mpro. . . . . . . . . . . . . . . . . . . 165

C.5 Allosteric hotspots in the SARS-CoV Mpro as determined with BBP analysis. . . 167

C.6 Allosteric hotspots in the SARS-CoV Mpro as determined with MT analysis. . . 168

C.7 Structural features in CDKs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.8 Dimer interface residues between CDK4 and cyclin D1. . . . . . . . . . . . . . . 171

C.9 Dimer interface residues between CDK4 and cyclin D3. . . . . . . . . . . . . . . 172

C.10 Average QS of CDK4 - cyclin D3 interface. . . . . . . . . . . . . . . . . . . . . . 174

xiii



List of Figures

1.1 Schematic representation of dimeric protein interactions . . . . . . . . . . . . . 5

1.2 Schematic representation of dimerisation disruption. . . . . . . . . . . . . . . . . 6

1.3 Schematic representation of allosteric modulation. . . . . . . . . . . . . . . . . . 8

2.1 Different graph descriptions for proteins. . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Graph construction process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Schematic representation of MT analysis. . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Schematic representation of BBP model. . . . . . . . . . . . . . . . . . . . . . . 37

3.4 The effect of quantile regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Workflow of ProteinLens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Human estrogen receptor alpha and its functional domains. . . . . . . . . . . . . 53

4.2 Agonist and antagonist-bound conformations of the ERα LBD. . . . . . . . . . 54

4.3 Schematic representation of ERα in cancer. . . . . . . . . . . . . . . . . . . . . 55

4.4 MT time steps in ERα LBD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Ligand sourced BBP analysis in agonist and antagonist-bound structures of ERα. 61

xiv



LIST OF FIGURES xv

4.6 H12 sourced BBP analysis in agonist and antagonist-bound structures of ERα. . 63

4.7 Ligand sourced BBP analysis highlights dimer interface in ERα. . . . . . . . . . 64

4.8 The ERα LBD dimer interface and BBP QS results of different features. . . . . 65

4.9 Effect of chemotherapeutics on L536R ERα mutant. . . . . . . . . . . . . . . . . 68

4.10 BBP analysis of the L536R ERα LBD mutant sourced from drug binding sites. . 70

5.1 The coronavirus life cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 The structure of the SARS-CoV-2 Mpro. . . . . . . . . . . . . . . . . . . . . . . 78

5.3 BBP analysis of main protease (Mpro). . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Differences in dimer interface between SARS-CoV-2 and SARS-CoV. . . . . . . 86

5.5 Allosteric hotspots in SARS-CoV-2 Mpro identified with BBP analysis. . . . . . 90

5.6 MT analysis of Mpro and identification of allosteric hotspots. . . . . . . . . . . . 92

5.7 Fragments in proximity to identified allosteric hotspots. . . . . . . . . . . . . . . 95

6.1 The human cell cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Activation pathway of CDK4/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Structural features of CDKs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 MT of monomeric CDK4 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Two CDK4 - cyclin D complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 MT analysis of CDK4 - cyclin D1. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7 BBP analysis of CDK4 - cyclin D1. . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.8 MT analysis predicts PPIs on CDK4 - cyclin D1 complex. . . . . . . . . . . . . 116



6.9 The RXL site as a source in MT analysis. . . . . . . . . . . . . . . . . . . . . . 118

6.10 CDK4 - cyclin D1 and D3 interface. . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11 Two areas of interest in the CDK4 - cyclin D1 dimer interface. . . . . . . . . . . 122

6.12 Three CDK6 inhibitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.13 MT analysis of CDK6 with inhibitors. . . . . . . . . . . . . . . . . . . . . . . . 125

6.14 CDK2 bound to inhibitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.15 MT analysis of CDK2 with inhibitor. . . . . . . . . . . . . . . . . . . . . . . . . 128

A.1 Available structures of CDK4/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 AlphaFold prediction of monomeric CDK4/6 structures. . . . . . . . . . . . . . 147

B.1 AlphaFold prediction of monomeric ERα. . . . . . . . . . . . . . . . . . . . . . . 150

B.2 MT time steps in the antagonist-bound ERα LBD. . . . . . . . . . . . . . . . . 151

B.3 Effect of chemotherapeutics on ERα cancer mutants. . . . . . . . . . . . . . . . 151

B.4 Consistency of allosteric hotspots between SARS-CoV-2 and SARS-CoV. . . . . 152

B.5 Scoring of whole dimer interface in Mpro. . . . . . . . . . . . . . . . . . . . . . . 153

B.6 BBP analysis of monomeric CDK4 and 2. . . . . . . . . . . . . . . . . . . . . . 153

B.7 Residue-wise MT and BBP results in CDK4 and 2. . . . . . . . . . . . . . . . . 154

B.8 MT analysis of CDK4 - cyclin D3. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.9 The RXL site as a source in MT analysis for CDK4 - cyclin D3. . . . . . . . . . 156

B.10 MT analysis of three monomeric CDK structures. . . . . . . . . . . . . . . . . . 157

B.11 BBP analysis of CDK6 with inhibitors. . . . . . . . . . . . . . . . . . . . . . . . 158

xvi



List of Abbreviations

+ssRNA positive sense, single-stranded RNA

AF-1 transcription activation function 1

AF-2 transcription activation function 2

AI artificial intelligence

AP-1 activator protein 1

ASD Allosteric Database

ATP adenosine triphosphate

BagPype Biochemical atomistic graph construction software in Python for proteins

etc

BBP bond-to-bond propensity

BC breast cancer

CADD computer-aided drug design

CAK CDK-activating kinase

CASP Critical Assessment of Structure Prediction

CDK cyclin-dependent kinase

CI confidence interval

Cip CDK interacting protein

COVID-19 coronavirus disease 2019

cryo-EM cryogenic electron microscopy

DBD DNA-binding domain

EBI European Bioinformatics Institute

ENM elastic network model

xvii



List of Abbreviations xviii

ER endoplasmic reticulum
ERα estrogen receptor α

ERβ estrogen receptor β

ERE estrogen response element
EST 17β-estradiol

FAQ frequently asked questions
FDA United States Food and Drug Administration
FIRST Floppy Inclusions and Rigid Substructure Topology

G-loop glycine-rich loop
GNM gaussian network model

H12 helix 12

INK4 inhibitors of CDK4

Kip kinase inhibitory protein
KNF Koshland-Nemethy-Filmer

LBD ligand-binding domain

Mpro main protease
MD molecular dynamics
MERS Middle East respiratory syndrome
MERS-CoV Middle East respiratory syndrome coronavirus
ML machine learning
MT Markov transient
MWC Monod-Wyman-Changeux

NHR nuclear hormone receptor
NMA normal mode analysis
NMR nuclear magnetic resonance
NR nuclear receptor

OHT 4-hydroxytamoxifen

p21 protein 21
p27 protein 27



PDB Protein Data Bank
PIN protein interaction network
PPI protein-protein interaction
pRB retinoblastoma protein
PROTAC proteolysis-targeting chimera

QR quantile regression
QS quantile score
QSAR quantitative structure-activity relationship

RdRp RNA-dependent RNA-polymerase
RMSD root mean square deviation
RMST relaxed minimum spanning tree
RRIN residue-residue interaction network
RSK4 ribosomal protein S6 kinase 4

SARS severe acute respiratory syndrome
SARS-CoV severe acute respiratory syndrome coronavirus
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SASA solvent-accessible surface area
SBSMMA Structure-Based Statistical Mechanical Model of Allostery
SCA statistical coupling analysis
SERCA selective estrogen receptor covalent antagonist
SERD selective estrogen receptor degrader/downregulator
SERM selective estrogen receptor modulator
Sp-1 specificity protein 1
SRC steroid receptor co-activator
SVM support vector machine

TF transcription factor

WHO World Health Organization

xix



Chapter 1

Introduction

1.1 Proteins - the molecular machinery of life

Proteins are involved in almost every task cells fulfil to sustain life. Based on their involvement

across all areas of cellular function, they are often described as the molecular machinery of our

cells. The complement of all proteins in an organism is called the proteome and the interactome

describes how proteins interact to regulate and uphold biological function. The complexity

of interactions between proteins is also mirrored in the scales of interactions within protein

structures. The tertiary structure of proteins is formed by functional units called domains.

Domains are made up of secondary structural elements like α-helices and β-sheets. Another

zoom-in leads to the primary sequence of proteins: a chain of amino acids. These building

blocks of proteins are formed by atoms, their chemical bonds and physical attractions and

repulsions∗. Ultimately, the synergy of these interactions on all scales dictates protein function

and allows to maintain biological processes in an organism [2].

The plethora of roles proteins fulfil in the cellular environment are made possible over three

main mechanistic principles:

• Proteins can bind to small molecules, which modulate their activity. These so-called
∗For further insights into the basic principles of protein shape, structure and function, we refer the interested

reader to Albert’s ”Molecular Biology of the Cell”, Chapter 3 [1].

1
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ligand-modulated proteins are responsible for conferring the effects of small molecules.

Once the respective ligand is bound, the protein shifts into an active conformation trig-

gering downstream effects. An example of a ligand-activated protein is included in Chap-

ter 4. Estrogen receptor α (ERα) binds estradiol hormones and triggers gene expression

in target tissues [3].

• Proteins can catalyse chemical reactions. These proteins are called enzymes, and they

facilitate the turnover of substrates into products [4]. Chapter 5 focuses on an enzyme

of the protease class, which catalyses the reaction needed to break amino acid bonds in

proteins. The Mpro of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is

responsible for the cleavage of viral poly peptides [5].

• Proteins can bind to other proteins. These protein-protein interactions (PPIs) are often

required for communication steps in signalling or metabolic pathways [1]. One prevalent

example is the interactions between different kinase and cyclin proteins which modulate

the cell cycle phases [6]. Chapter 6 focuses on cyclin-dependent kinases (CDKs) 4 and 6,

which interact with D-type cyclins to drive the G1 phase of the cell cycle.

It is worth noting here that these mechanisms are not mutually exclusive. For example, a multi-

enzyme complex is formed by several proteins to allow the enzymatic turnover of substrates,

as seen for the pyruvate dehydrogenase complex in the aerobic metabolism in eukaryotic mi-

tochondria [7]. Similarly, proteins can require two input signals to reach an active state, e.g.

binding of a ligand and a protein partner. This is often seen in receptor proteins [8].

1.1.1 Proteins in disease

We established above that protein-regulated processes are necessary to maintain cellular life.

Consequently, it also follows that the dysregulation of a protein can lead to adverse effects

and sometimes cumulate in a disease phenotype. The mechanisms through which proteins are

implicated in disease are as manifold as their cellular functions. For diseases that can be traced

back to a single protein, it is often point mutations changing a single amino acid residue that
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lead to an altered behaviour. For example, the disease cystic fibrosis occurs when the cystic

fibrosis transmembrane conductor is mutated [9]. The impaired protein can no longer fulfil its

function in calcium transport, and the result is an impaired water transport on epithelial cells

and the build-up of mucus [9].

However, many diseases have a more complicated network of protein signalling that underly

their manifestation. Often it is alterations off PPIs that result in physiological effects of a dis-

ease [10]. Especially in cancer, protein-protein signalling pathways are dysregulated [11]. Further,

Jubb et al. [12] described that mutations in PPI interfaces are linked to a wide range of genetic

diseases and are involved in resistance mechanisms.

1.1.2 Proteins as therapeutic targets

Targeting proteins to overcome a certain disease is a fruitful approach, once a protein target is

identified. The question then is, what is the best way to interact with the protein to recover its

original function? Depending on the molecular mechanism that leads to the disease phenotype,

a recovering interaction can either be inhibitory or activating.

A general approach is to use the wild-type function of the studied protein as a blueprint to

develop targeting strategies. By investigating the natural ligand of a protein, scientists can

develop competitive compounds that bind in a similar fashion but do not allow subsequent

protein activity. These competitive inhibitors often bind at the orthosteric, also termed active

site, of a protein where the natural ligand would also bind. Active sites usually are well-defined

pockets, often located at the core of the protein [4]. Historically, the majority of approved drugs

(∼ 70%) target four types of protein families: protein kinases, ion channels, G-protein coupled

receptors and nuclear hormone receptors [13]. For these protein families the active site binding

modes are well defined.

However, targeting orthosteric sites does come with certain challenges. They are often highly

conserved between proteins that fulfil related functions. Hence, targeting one active site might

lead to off-target effects in other proteins [14]. This low selectivity is especially problematic
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in closely related protein families like kinases [15] or G-protein coupled receptors [16]. Further,

prolonged exposure to drugs binding at active sites often leads to acquired resistance in proteins

to evade inhibition [17]. To overcome these limitations and open a wider chemical search space,

two alternative targeting approaches have gained traction in drug development: disrupting

protein dimerisation and allosteric modulation. They are described below.

1.2 Protein activity relying on dimerisation

As discussed above, proteins often function together with interaction partners. In the simplest

form of a PPI, two proteins come together to form a dimeric assembly, as shown in Figure 1.1.

Dimers can either be formed by two different proteins (= heterodimer, Fig. 1.1A) or by two

copies of the same protein chain (= homodimer, Fig. 1.1B). For many dimers the interaction

between the proteins is essential for functionality as seen in nuclear receptors [18] and in the cell

cycle [19].

1.2.1 Interruption of dimerisation as drug targeting approach

Given a protein for which dimerisation is essential, the disruption of this process would mean

inhibition can be achieved. This concept opens up an avenue for alternative drug targeting that

does not involve the active site. Dimer interactions can be understood as a specific PPI class

which exclusively involves two proteins. Homodimeric interfaces can be further distinguished

and they tend to be larger and show less polarity than PPI interfaces formed between two

different protein partners [20]. The study of PPIs, in general, has attracted more and more

attention for drug design as they are fundamentally involved in many biological processes [21],

and these concepts can be extended onto dimeric complexes.

To this end, two routes of inhibitory molecules are thinkable, as schematically shown in Fig-

ure 1.2. The dimerisation process can be disrupted when another agent binds with a higher

affinity towards the monomer than the actual binding partner. This can either be a small
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Figure 1.1: Schematic representation of dimeric protein interactions. Monomeric
proteins come together to form active protein complexes, as indicated by a glow around the
structure. These can be two different proteins for a heterodimeric assembly (A) or two copies
of the same protein for a homodimeric complex (B).∗

molecule inhibitor or a larger peptide molecule.

In the case of a small molecule inhibitor, a localised binding event would occupy an area essential

for dimerisation [22,23], thereby preventing the assembly of the complex and thus activity (Fig. 1.2

left). A requirement for this approach would be to identify the specific residues in the interface

that form a targetable and structurally-important area [24].

Another approach would be to develop larger molecules that mimic a PPI at the dimer in-

terface [25] (Fig. 1.2 right). The design of these molecules is often given by the structure of

the dimer interface itself: by replicating helices of the binding partner but engineering higher

affinities, a blueprint is laid out. These peptide inhibitors offer the advantage of high specificity

for their target as they can be modelled over a larger area, leading to fewer off-target effects [26].

∗Created with biorender.com

www.biorender.com
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Figure 1.2: Schematic representation of dimerisation disruption. A dimeric protein
with the two monomeric halves shown in blue and green and a glow indicating protein activity.
The dimerisation can be disrupted by a small molecule or a peptide binding at the dimer
interface.∗

1.3 Allostery in proteins

Another concept that allows alternative drug targeting is allostery. The term has been coined

as early as 1961 [27] and describes the modulation of a protein at sites distal from the active

site. Since then, different models of allostery have been developed to describe the functional

modulation of proteins by distal effectors. The original descriptions of allostery were based

on conformational changes based on cooperative binding of molecules. The Monod-Wyman-

Changeux (MWC) model [28] considers a concerted conformational shift of the protein in two

states, from inactive to active. In contrast, the Koshland-Nemethy-Filmer (KNF) model [29]

∗Created with biorender.com

www.biorender.com
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states that allosteric binding leads to a sequential subunit transition to the active state. Almost

20 years later, Cooper and Dryden [30] proposed a dynamic-driven model of allostery that did

not rely on conformational changes but entropy contributions that confer allosteric effects.

The next step was the move towards conformational ensembles that represent the multiple

states of a protein and where allosteric regulation based on perturbations leads to a population

shift between two main states [31–33]. In the same year the population shift model was proposed,

a structure view of allostery included the notion that the allostericity of a protein is encoded

in its structure over intra-molecular paths [34,35]. In more recent years, there was a further

extension towards an ensemble view of allostery [36,37] that explains proteins as existing in an

ensemble of states in an energy landscape that is remodelled by perturbations like ligand-

binding or protein interactions. Tsai and Nussinov [38] offered a unified view that includes the

aspects of thermodynamics in two-state models, the free energy landscapes of ensembles and

the structural aspects.

Coming back to the three different mechanisms that constitute protein function: ligand-

mediated activity, enzymatic catalysis and protein-protein interactions (Sec. 1.1); allosteric

mechanisms are mostly ligand-mediated. A molecule binds at a site distant from the active site

and modulates protein activity. However, under the ensemble view, this concept can also be

extended to PPIs, as the binding of a protein partner can lead to a conformational change that

leads to activity.

1.3.1 Allostery as drug targeting approach

The concepts of allostery open up another alternative drug targeting approach that comes

with a range of advantages. Allosteric drugs can provide a higher selectivity as allosteric sites

are less conserved than active sites, and further, they allow both up and down regulating

of protein function (reviewed in Wenthur et al. [17]). The potential of allosteric drugs is vast

as protein function is fine-tuned by allosteric effects over a variety of mechanisms [38] and the

number of proteins confirmed to be regulated by allostery is ever growing. It is further proposed
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that the views of allostery as described above would also theoretically allow all proteins to be

allosterically modulated [39].

Allosteric drug targeting is a concept that can apply to all assemblies of proteins, whether they

are in monomeric or oligomeric form. Figure 1.3 is a schematic of the concepts of allosteric

modulation in a protein dimer. Considering a homodimeric protein that contains one active

and one allosteric site per monomer, in a symmetric modulation both allosteric sites would be

Figure 1.3: Schematic representation of allosteric modulation of a dimeric protein.
A dimeric protein with two monomeric halves shown in blue and green. Two binding sites per
monomer are shown: the active site as an octagon and an allosteric site as a circle. Binding at
the active site can result in inhibition (orange) or activation (yellow). Activity of the dimer is
indicated by a glow around the protein.∗

∗Created with biorender.com

www.biorender.com
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occupied to lead to protein activity or inhibition∗. However, for multimeric complexes, often a

multi-state model of allosteric modulation is observed where the binding at one monomer can

change the binding affinities for other subunits. These cooperative effects have, for example,

been described for hemoglobin [40] and aspartate carbamoyltransferase [41]. Generally speaking,

allosteric modulation means the binding of a molecule can either lead to inhibition or activation,

and thus a variety of disease mechanisms could be targeted.

Furthermore, Gunasekaran et al. [39] suggested that allosteric effects can regulate all proteins

once we discover the triggering points. However, allosteric discovery has often been serendipi-

tous or requires time and resource-intensive high-throughput screens [42]. Hence, computational

approaches can aid in efficiently elucidating allostericity in proteins, as discussed further in

Section 2.3.

Lastly, we need to point out that these two alternative targeting approaches at dimer interfaces

and allosteric sites are not mutually exclusive. On the contrary, it can be fruitful to apply these

concepts together to tackle interrelated problems. For example, allosteric sites at a distance

from the dimerisation interface could be used to overcome the ”undruggable” features of a

large interface [43]. Vice versa, protein-protein interactions can be understood as a form of

allosteric regulation, meaning the input over interface-binding peptides could lead to allosteric

modulation of the protein activity [44].

1.4 Computational studies to facilitate drug design

We outlined above that targeting proteins to treat or overcome diseases is a fruitful endeavour.

For many diseases, the in-depth study of the molecular mechanism will have identified a suitable

protein target. In the next step, the aim is to identify an appropriate approach to interact with

the target. Traditionally, the screening for active biomolecules against a given target and the

following optimisation steps have been time and resource-intensive [45]. A considerable reduction

in time and money can be expected if the number of biomolecules that have to be explored
∗For the purpose of illustrating allosteric modulation, we chose to show a symmetric modulation in Figure 1.3

rather than a more complicated multi-state mechanism that can vary between proteins.
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experimentally is narrowed down to promising lead compounds. This is where computational

methods come in. They can present a time and resource-saving shortcut to identify, model and

develop bioactive compounds against certain targets or even identify new targetable proteins [46].

The computational methods that can provide biologically meaningful insights are plentiful and

are summarised in more detail in Chapter 2. They all have in common that they aim to

provide biologically relevant insights and point the drug design process in the right direction

in an efficient manner.

The era we live in sees major methodological advances on a regular basis. On the level of

data availability, it is the advancement of methods for structure determination [47] and the

subsequent deposition of more, and often also structurally more complex, proteins in the Pro-

tein Data Bank (PDB)∗, [48]. In the area of computational advancements, we are seeing a

continuous growth of artificial intelligence (AI) for drug discovery. One of these scientific

breakthroughs was recently achieved by AlphaFold, a deep learning-based structure prediction

tool that achieved the highest predication accuracy in the 2020 Critical Assessment of Struc-

ture Prediction (CASP) competition [49]. In a collaboration with the European Bioinformatics

Institute (EBI), AlphaFold predictions were made publicly available for the proteomes of 21

organisms†. The integration of AI into modelling approaches, advances in computational rep-

resentations of physicochemical properties and the sheer increase in computational power drive

the field towards computer-driven drug design [50]. But it is also the increase in international

data sharing, open access initiatives and scientific collaborations facilitated by computational

means that speed up scientific discoveries.

∗With over 600 depositions in January 2022 alone, the PDB now contains over 186000 structures:
www.rcsb.org/stats/growth/growth-released-structures

†Available at: alphafold.ebi.ac.uk

https://www.rcsb.org/stats/growth/growth-released-structures
https://alphafold.ebi.ac.uk
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1.5 Thesis outline - the study of protein dimers with

atomistic graph analysis

The work contained in this thesis constitutes an application of computational methods based on

graph theory to three protein systems in the context of diseases. We∗ aimed to provide insights

into activation mechanisms and alternative targeting approaches on a molecular level. Indeed,

we showed that dimer interactions are essential in the mechanisms of the studied proteins, and

we were able to deduce which interactions can be target points for drug design. This work

highlights strategies that allow to overcome future drug resistance and broadens the range of

targeting approaches by including allosteric signalling and dimer interfaces.

Chapter 2 constitutes an introduction to the field of computer-aided drug design (CADD) which

describes the power of computational approaches for the purpose of combating diseases. We

put a particular focus on targeting approaches that are distal from the active site. Two main

approaches are discussed in detail here: the prediction of allosteric sites for allosteric modu-

lation of proteins and the study of dimer interfaces. We further discuss the graph theoretical

methodologies that were developed in our group in the context of computational methods to

study protein structures and highlight some advantages of our approach.

The methodologies that find application in this work are introduced in Chapter 3. We provide

procedural details on how protein structures are translated into atomistic graphs and summarise

the different bond and interaction types that are encoded in these protein graphs. We further

introduce Markov transient and bond-to-bond propensity analysis as two methodologies that

can be used to explore fast and strong connectivity within graphs and provide mathematical

details for both. The Chapter also details how we post-process the obtained data to allow quan-

titative insights and scoring of residues and sites of interest. Finally, we describe ProteinLens,

a web server that makes our atomistic graph analysis available to the community in the form

of a user-friendly web application [51].
∗This thesis is largely written in the first-person plural to stylistically reflect that research is always influ-

enced and supported by the work of previous and current members of a group. However, as laid out in the
Declaration of Originality, all work was done by the author except for where it is clearly stated otherwise.
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In Chapter 4, we demonstrate the first application of our atomistic graph analysis on ERα. The

homodimeric protein modulates the cellular response to estrogens by initiating gene expression.

ERα is also one of the most studied proteins in the context of breast cancer, the leading type

of cancer in women worldwide [52]. We use bond-to-bond propensity analysis to validate the

molecular mechanism of the ERα ligand-binding domain (LBD). We further study the dimer

interface of the ERα LBD in agonist and antagonist-bound conformation and highlight impor-

tant structural features. Finally, this Chapter explores how our methodology can contribute to

reveal mechanisms of chemotherapeutic resistance observed in cancer mutations of the protein.

Chapter 5 goes on to explore another homodimeric protein in the context of a highly relevant

disease: coronavirus disease 2019 (COVID-19). The underlying agent is SARS-CoV-2, and Mpro

is one of the most important drug targets in the virus. Mpro is a proteolytically active protein

that cuts the viral polyproteins and is essential for viral replication. We describe the role of

the dimer interface in conferring activity of the protein and how mutated residues regulate

it on a molecular level. Using Markov transient and bond-to-bond propensity analyses, we

identify four putative allosteric hotspots and explore their targetability with small fragments.

This Chapter demonstrates how atomistic graph analysis can aid in identifying target points

for drug development in a time-sensitive setting.

Chapter 6 sees the application of our analysis on a less studied system which allows us to

explore the predictive power of our approach. The heterodimeric complexes of CDK4/6 with

D-type cyclins are essential cell cycle regulators and their dysregulation is implicated in can-

cer growth [53]. We provide insights into the multi-factorial activation mechanism of CDK4 in

complexes with D-type cyclins. Markov transient and bond-to-bond propensity analyses reveal

the interplay of different activation signals in a complementary manner. Our atomistic graph

analysis also sheds light on different communication paths in the dimer interface of this het-

erodimeric system. We further explore the applicability of our methods to study differential

effects of chemotherapeutics and present the first indications of diverging inhibition mechanisms

in CDK6 and CDK2.
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1.6 Publications

ProteinLens, the web server described in Chapter 3 has been published in the 2021 web server

issue of Nucleic Acids Research. The author of this Thesis holds co-first authorship of the paper

with the title ”ProteinLens: a web-based application for the analysis of allosteric signalling on

atomistic graphs of biomolecules” [51] (Mersmann, S.F.; Strömich, L.; Song, F.J.; Wu, N.;

Vianello, F.; Barahona, M. & Yaliraki, S.N.).

The benchmarking study of bond-to-bond propensities mentioned in Chapters 2 and 3 has been

published in Patterns as ”Prediction of allosteric sites and signaling: Insights from benchmark-

ing datasets” [54] (Wu, N., Strömich, L. & Yaliraki, S.N.).

The work in Chapter 4 has been drafted as a manuscript for submission to the Journal of Molec-

ular Biology with the title ”Molecular mechanisms in estrogen receptor alpha using atomistic

graph analysis” (Strömich, L.; Ali, S. & Yaliraki, S.N.).

The work in Chapter 5 has been submitted to the Journal of Molecular Biology as a pa-

per titled ”Allosteric hotspots in the main protease of SARS-CoV-2” (Strömich, L.; Wu,

N.; Barahona, M. & Yaliraki, S.N.). The paper can be accessed as a preprint [55] with DOI:

10.1101/2020.11.06.369439.

https://doi.org/10.1101/2020.11.06.369439


Chapter 2

Computational approaches for the

study of proteins

2.1 Computer-aided drug design

The pharmaceutical drug discovery process is lengthy and resource intensive. The average time

for a drug from discovery to market is 12.5 years and costs around 1.15 billion GBP∗. To provide

a time and resource short cut in the process, computational analyses have long been integrated

into the pipeline [57]. Computer-aided drug design (CADD)† describes the scientific field that

combines computational chemistry with structure-based methods to facilitate a rational drug

discovery process.

Traditionally, CADD has been understood as a way to identify compounds that are active

against a certain target (= ”hit”) and further optimise these molecules until they become a

”lead” compound against the target. To identify ”hit” molecules, the field distinguishes be-

tween ligand-based and structure-based virtual screening approaches [58]. In ligand-based virtual

screenings, molecules of known activity are classified based on chemical features and molecular
∗The Pharmaceutical Journal by the Royal Pharmaceutical Society collated this data for the British pharma-

ceutical industry [56]: pharmaceutical-journal.com/article/feature/drug-development-the-journey-of-a-medicine-
from-lab-to-shelf

†The term drug design is used for the individual steps and applications of the process, while drug discovery
describes the development of a drug from beginning to end.
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descriptors to develop quantitative structure-activity relationship (QSAR) models [59]. These

machine learning (ML) approaches can then be used to predict which compounds in a large

compound library would be active against a given target.

In a structure-based approach, a virtual screening would mean the docking of compound libraries

into the three-dimensional structure of the protein target. The work by Kitchen et al. [60] re-

viewed docking approaches that simulate the binding event of a ligand to a protein structure,

try to determine the best binding pose and predict binding affinities. In the context of CADD,

this would encompass determining the binding pose for large numbers of compounds and rank-

ing them by a docking score that can predict binding affinities. Docking is a widely applied

technique in virtual screenings because it rapidly narrows down the search space [60]. However,

it is not without pitfalls as it is highly reliant on well-curated input data and chosen parameters

and results need to be treated with caution [61,62].

In further steps of the drug discovery pipeline, only the top-scoring compounds would be

optimised to identify ”lead” compounds. These optimisation approaches can see the application

of further docking experiments as well as QSAR models or detailed molecular dynamics (MD)

simulations. The latter models the dynamics of biomolecular structures by simulating the

forces between interacting atoms over time. MD techniques can predict energies of target-

ligand interactions and are widely applied to optimise binding affinities [63].

Ultimately, it is a combined approach of ligand-based and structure-based methods that lead to

success in drug discovery and the above-described methods are often applied at various stages

of the pipeline [57].

2.1.1 Advances in structure-based drug design

It is important to acknowledge that all structure-based drug design methods are reliant on the

quality of the underlying structural data. However, the past decade has seen major advances

in structure determination techniques that improved data quality and quantity [64]. Previously,

structures deposited in the PDB were mainly determined with X-ray crystallography and nu-
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clear magnetic resonance (NMR), but we now see an increase of structure determination with

cryogenic electron microscopy (cryo-EM) [64]. The technique has contributed to the field by fa-

cilitating the determination of larger and more complex biomolecules at continuously increasing

resolution [65].

Furthermore, the advances in ML algorithms like deep learning led to an increase in structure

predictions [66]. The most notable development in that field is AlphaFold [49] which predicted

unsolved structures for 21 organisms and allows the study of disease systems that have been

inaccessible before as no structural data was available. Utilising computational approaches

provides flexibility that allows reacting quickly to new threats as seen for COVID-19 in the

past two years [67]. Given the rapid advancements in the computational fields of structural

biology as well as ML methods for drug design, we can presume that CADD will continue to

be a driving force in drug discovery [50].

In a traditional sense, the CADD technologies are used to find and optimise a drug that binds

to the active site of a target protein. However, active or orthosteric site targeting can be

challenging for closely related proteins with structurally similar binding sites as it might be

difficult to find a compound that binds selectively to only one target protein. Low selectivity of

a drug leads to off-target effects, which are a leading cause of, for example, cancer drugs failing

at later stages in pharmaceutical development [68]. In the context of this work, we explore CADD

to reach beyond the active site and discuss two subfields that focus on alternative targeting

approaches distal from the active site.

2.2 Dimer interaction studies with computational meth-

ods

In Section 1.2.1, we introduced the concept of interrupting the dimerisation process for protein

inhibition. We here aim to provide an overview of how computational approaches can aid in

discovering how to predict and target dimers.
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Although some work has been done exclusively on the level of dimer interfaces, the much larger

body of work is in the realm of general protein-protein interaction (PPI) studies. The largest

application of computational PPI drug design is in the prediction of PPIs and determining the

networks of protein communication. An excellent review of the computational approaches for

PPI prediction can be found in Keskin et al. [69]. These methodologies can broadly be cate-

gorised by the data that is processed as an input: genomic information is used in methods like

gene/domain fusion [70] or gene co-expression [71], whereas many ML algorithms use amino acid

sequence information [72–74]. Lu et al. [75] also acknowledged the importance of incorporating

structural data when predicting PPI networks which continues to be a fruitful approach in

light of the continuously growing structural resources in the PDB. Information on PPIs that

is obtained from predictions or experiments is collated in a range of publicly accessible reposi-

tories [69]. STRING is one PPI database that integrates experimental and predictive data and

finds frequent application [76].

The integration of structural data further allows predicting the PPI interface on an atomistic

level for which Laddach et al. [77] proposed a detailed workflow. Given two proteins of inter-

est that interact with each other, the interface can either be found in structurally annotated

databases or has to be predicted using different approaches [77]. One widely used methodology

is PDBePisa, which evaluates biological assemblies if a solved structure is available [78]. Another

large class of methodologies that are based on structural input data revolve around protein-

protein docking, as reviewed by Vakser [79]. Further methods for the characterisation of PPI

interfaces make use of ML algorithms that use structural descriptors [80] or MD which allows

to model how two protein partners come together in a stable conformation [81]. All of these

methodologies aim to provide knowledge of the PPI interface which is needed to then develop

strategies to target the interface interaction for drug discovery.

Once an interface has been defined, the next step in the drug discovery pipeline would be

to elucidate a mechanism to disrupt the interface. Traditionally, PPIs have been considered

”undruggable” due to their large, shallow surface that does not show deep sub-pockets for

molecule binding [22,23]. To overcome these limitations, two approaches are thinkable: targeting

the interface with small molecules at residue clusters relevant for the binding affinity of the



Chapter 2. Computational approaches for the study of proteins 18

protein complex or developing larger peptide inhibitors that mimic the binding of the protein

partner (Fig. 1.2.1). For both approaches, computational methods can be applied to provide

insights that facilitate a rational drug design process.

The first approach has its basis in a body of work that has revealed that PPI interfaces have

different regions, and some, often more conserved, residues contribute to the binding energy

more significantly than others (reviewed in Moreira et al. [82]). Identifying these ”hot spots”

of energetically critical residues would allow targeting the interface at a much smaller region

which might be more suitable for a small molecule. One experimental approach is to use sys-

tematic alanine mutations of each position in the interface and study the effect on binding en-

ergies [83]. However, these alanisation scans are resource-intensive and unsuitable for large-scale

data screens; thus, computational methodologies are used (reviewed in Morrow and Zhang [84]).

The methods range from in silico mutational scans [85,86], over knowledge-based approaches that

incorporate physical properties at the residue level [87–89], to MD simulations [90,91]. Ultimately,

these methodologies aim to predict which residues are the most likely to contribute to a binding

event, and thus might constitute an anchor point for an effective inhibitory molecule.

Another approach for disrupting the dimerisation process would be to design peptides that bind

at the interface and thus block the binding of the protein partner. To this end, computational

approaches can be used in two ways: identification of a binding pose for the peptide on the

interface, and the computational peptide design for a given target. The work by N. London and

colleagues extended the above mentioned concepts of residue ”hot spots” in the interface to ”hot

segments”, which would be best targeted by peptides [92,93]. Another possibility is the above-

mentioned docking technique, which can be extended from identifying PPI interfaces [79] onto

protein-peptide interfaces. If the protein-peptide docking is done ab initio (without a narrowed

search space), it is computationally intensive as the whole surface area of a protein would need

to be considered. However, if the docking is guided towards a pre-defined PPI interface, peptide

docking can be applied to identify inhibitory peptides [94]. Finally, computational methodologies

find application in designing peptides against known targets where a blueprint is given by

the surface structure of the binding partner [92,95,96]. Further, computational approaches can

then be used to predict binding affinity and optimise the peptide inhibitor. Chakraborty
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et al. [97] demonstrated this workflow for a peptide binding to the homodimeric ERα and later

demonstrated its inhibitory potential [98].

2.3 Allosteric site discovery with computational meth-

ods

Going hand-in-hand with the ongoing search for a unifying model for allostericity in biomolecules

is the development of computational methodologies to study allosteric processes. Given that

the allosteric effect in proteins can be conferred over different mechanisms, it is difficult to

develop a universally applicable prediction tool. This is mirrored by the range of computa-

tional methodologies that have been developed to study and predict allosteric behaviour, as

summarised in excellent reviews over the past decade [99–101].

The newfound relevance of allosteric effects for drug design and the increase in computational

power has led to the rise of computational methods to predict allosteric sites, which can be

broadly classified into the following areas:

• Allosteric effects are often regulated over conserved residues, and coupling between al-

losteric and orthosteric sites might be encoded in co-evolution patterns [102]. Statistical

coupling analysis (SCA) [103] is based on these ideas and predicts allosteric sites from

multiple protein sequence alignments [104,105].

• Based on the idea that allosteric and orthosteric sites have distinct characteristics, ML

approaches extract these and other structural and physicochemical features to determine

allosteric sites. Successful allosteric site prediction ML algorithms have been proposed

based on support vector machine (SVM) [106], random forest models [107], or Naive Bayes

classifiers and artificial neural networks [108]. These approaches can predict allosteric sites

with decent success rates. However, they do not allow studying of the underlying allosteric

mechanism that describes the effect of a distant binding event on the active site.
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• Another set of methodologies are based on structural data of a protein and aim to describe

the dynamic properties of allosteric effects. A large class of these methodologies are based

on MD to model the dynamics of protein allostery. MD tools are often used to describe

allosteric communication paths in proteins but have also been used to deduce allosteric

sites that can be used for protein inhibition [109]. However, all-atom MD approaches are

still computationally heavy and thus can not cover the allosteric effects that might occur

on larger scales in the protein. To elevate the computational burden, coarse-grained

models which investigate proteins on the residue level are more suitable. One example

would be elastic network models (ENMs) of proteins for which the dynamics are described

with normal mode analysis (NMA). These methods have successfully been applied to

predict allosteric sites with decent predictive accuracy up to 65 % [110,111]. Other allosteric

site prediction methods have been proposed, which reflect the dynamics of allosteric

proteins by simulating protein ensembles on which they studied the effect of a perturbation

that could mimic a binding event [112,113].

• Many methodologies developed over the years can not be counted exclusively to one of

the above-described classes but are rather integrated approaches of several methodologies

(reviewed in Amamuddy et al. [114]). For example, Song et al. [115] proposed the combina-

tion of NMA with a previously developed structure-based ML algorithm [106] for allosteric

site prediction. Another example of integrated approaches is a group of methods that

study the correlation between orthosteric and allosteric sites based on results from MD

or ENM simulations [116–118]. Xie et al. [119] recently introduced CorrSite2.0 that calculates

correlations between pockets on the protein surface from ENM results and achieved 90 %

prediction accuracy in allosteric proteins.

To facilitate the study of allosteric proteins, the Allosteric Database (ASD) has been developed

to record experimentally confirmed allosteric proteins and their modulators [120–123]. The struc-

tural information contained in ASD also allows to assess the predictive power of algorithms

for allosteric site detection. To compare the prediction accuracy between different tools, two

benchmarking datasets have been curated. ASBench [124] and CASBench [125] contain a wealth
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of allosteric proteins and record information on allosteric and orthosteric ligands∗. To further

the progress in the field of allosteric modulator discovery, some of the above-described methods

have been developed as publicly accessible web servers. Section 3.2.2 provides more details on

available web applications and introduces ProteinLens, a web server developed in our group [51]

based on graph theoretical methods to predict protein allostery.

2.4 Graph theoretical methods to study protein struc-

ture and function

Graphs or networks† have been introduced on all levels of biological complexity, and we will

briefly summarise the different scales in protein studies towards atomistic resolution as shown

in Figure 2.1.

For a graph at the whole protein level, each node represents a protein. These protein interaction

networks (PINs) are often used to encode the interactome to describe the network of PPIs

(Fig. 2.1A). These PINs can hold information on the physical interactions and the functional

linkage between proteins and they can be established for biologically diverse contexts, i.e. the

interactions in different organisms [126] or the proteins involved in a metabolic pathway [127].

PINs have found applications in revealing signalling cascades in diseases [128] as well as in drug

discovery [129].

The next finer-grained level is occupied by graphs built from interacting protein chains or

domains [130] (Fig. 2.1B) which are, for example, used to allow the classification of assemblies

in the PDB [131]. Another class of protein graphs that resides between protein and residue-level

granularity is constituted from secondary structure elements like α-helices and β-sheets [132].

These graphs aim to elucidate the topology of proteins and are collated in the Protein Topology

Graph Library [133,134]. Applications of these graphs are primarily in the realm of structural
∗We recently published a benchmarking study of our methodologies which incorporates ASBench and Cas-

Bench [54].
†The terms graph and networks are used interchangeably in literature, but for the level of atomistic resolution

(which is at the heart of this work) the term graph is more common.
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Figure 2.1: Overview of graph descriptions of proteins structures. A) Protein-protein
interaction networks record the communication between different proteins. B) Domain net-
works are established from protein chains and domain data. C) On the next level, a protein
graph can be described by a residue-residue interaction network. D) The most detailed de-
scription are atomistic graphs which are built by considering each all atoms in the structure
and connecting them by edges that represent bonds and interactions.∗

protein classification as reviewed by Koch and Schäfer [135].

The next zoom-in step brings us to the residue level where protein graphs are constructed by

using every residue as a node (Fig. 2.1C). Edges of the residue-residue interaction networks

(RRINs)† are inferred by different approaches. In the simplest form, RRINs are built by using

distance cutoffs between Cα atoms of residues [136]. Others deduce contacts from atom inter-

actions between residue pairs and weight the edges accordingly [137,138]. Ribeiro and Ortiz [139]

found that incorporating energetic weights into RRINs is essential to correctly represent signal

propagation in the protein. It has also been a commonly used approach to deduce residue-

residue interactions from MD or ENM simulations and thus encode a dynamical aspect in

the RRINs [140]. Compared to graphs on the atom level, RRINs still record fewer interactions

and are hence considered coarse-grained. Nonetheless, they are widely applied to study pro-

tein dynamics to answer biological questions. Pacini et al. [141] constructed protein graphs on

the residue level and found that the neighbourhood of each node explained protein dynamics.

Brinda et al. [142] and Del Sol and O’Meara [143] studied dimeric proteins as RRINs and identi-

fied interface ”hot spot” residues, which ties in with the scope of CADD in targeting dimeric
†In literature, RRINs are also termed protein contact networks or amino acid networks.
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interfaces as discussed in Section 2.2.

RRINs are also an important ingredient for the study of protein allostericity. One understanding

of allostery is rooted in the notion that every protein has pre-existing intrinsic pathways encoded

in its residue network. Allosteric signals are transmitted through these paths depending on

where the modulator binds on the protein surface [35]. By describing proteins as connected

residues, it is possible to study allosteric communication and identify signalling paths within

the proteins [144]. Popular approaches to study allosteric communication paths in proteins are

rooted in Monte Carlo algorithms [145], NMA of ENM [146] or the Structure-Based Statistical

Mechanical Model of Allostery (SBSMMA) [147]. Finally, we encounter atomistic protein graphs

on the most fine-grained level of detail obtained from structural data (Fig. 2.1D).

2.4.1 Atomistic graph analysis

Atomistic protein graphs are built by considering each atom in the protein as a node and

defining edges between them. Edge definition on an atomistic level lends itself to the logical

step of assigning weights based on naturally occurring physical interactions and chemical bonds

and their respective energy contributions. Similarly to what Ribeiro and Ortiz [139] found on

the RRIN level, this can be assumed to be advantageous to model the real-life physicochemical

energies within a protein. Work by Sen et al. [148] constructed ENMs on several scales of

resolution and found support for the importance of atomistic detail in dynamic modelling.

Amor et al. [149] showed that atomistic detail is required to detect allosteric sites and identify

trigger interactions and bonds.

Jacobs et al. [150] and Thorpe et al. [151] introduced the earliest approach to model proteins as

atomistic graphs, built into the Floppy Inclusions and Rigid Substructure Topology (FIRST)

program. One motivation was to study dynamics in proteins over ”floppy” and ”rigid” modes

while being computationally less expensive than classic MD simulations at the time. FIRST

constructs a graph from covalent bonds, hydrogen bonds, salt bridges and hydrophobic inter-

actions and can be used to study protein flexibility and folding [151,152]. A large body of work
†Created with biorender.com

www.biorender.com
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that incorporates the FIRST algorithm is presented by the group of H. Gohlke. Over the years

the group studied protein thermostability [153], flexibility [154] and allosteric signalling [155,156] at

atomistic resolution. Another work that built an atomistic protein graph was presented by

Veloso et al. [157] in which they identified biologically significant residue clusters in myoglobins.

The work of our group is situated in the realm of atomistic protein graphs that capture physic-

ochemical properties of proteins with high accuracy. Originally based on the highly efficient

FIRST algorithm described above, we construct protein graphs at atomistic resolution to study

protein function. The graph construction and edge weighting process was first described by

Delmotte et al. [158] and was refined over the years [149,159,160] to include more interaction types

as described in Section 3.1.2.

We apply graph theoretical methods to model diffusion processes on these atomistic graphs to

determine biological function. Two main approaches have been developed over the years and

applied in the context of intra-molecular protein communication. Markov transient analysis is

applied on the node-space of the graph which in proteins means it provides a measure for how

fast each atom in the protein is reached by a signal originating at a chosen source, e.g. the

active site. The method is based on the idea of a random walker in a network where the bond

energies in the weighted graph represent the transition possibilities as described in detail in

Section 3.1.3. This method has successfully been used to reveal allosteric sites and pathways

in caspase-1 [159] and aided in drug repurposing against allosteric sites in ribosomal protein S6

kinase 4 (RSK4) [161].

Another measure called bond-to-bond propensity models the effect of a perturbation at defined

source edges on every other edge of the network. Translated onto proteins, this describes

the connectivity of a source site, i.e. a ligand, with any other bond in the protein and has

been found to discover allosteric sites [149]. The successful prediction of allosteric sites was

initially confirmed for 19 out of 20 proteins [149] but has recently been extended onto two large

benchmarking sets: ASBench [124] and CASBench [125]. We were able to predict allosteric sites

for 127 of 146 proteins (407 of 432 structures) with six statistical measures that highlight

different aspects of allosteric binding [54]. Bond-to-bond propensities have also been an effective
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approach to studying the cooperativity of the allosteric effect in multimeric proteins [162]. In a

recent study, the methodology was extended to predicting PPI sites as another form of protein

modulation at distal sites [163].

Our methods are based on sparse matrix descriptions and together with algorithmic advance-

ments, this leads to computationally inexpensive methods that retain atomistic details of pro-

tein function. Prompted by the computational efficiency, we recently made our methodologies

available to the community in the form of a user-friendly, interactive web server called Protein-

Lens∗, [51]. The web application allows to construct atomistic graphs of biomolecules and run

Markov transient and bond-to-bond propensity analyses. ProteinLens provides the results in

intuitive visualisations that can be accessed interactively. The user is thus able to investigate a

protein of choice and discover allosteric properties like signalling paths, residues, and hotspots.

Section 3.2.2 provides a detailed description of the web server and its functionalities.

2.5 Conclusions

Two main factors contribute to the increasing importance of integrating computational ap-

proaches into drug discovery. Evolving experimental approaches lead to an influx of data

amounts that can only be analysed to full potential by computational means. Further, in-

creasing computational power, as well as ML advances, allow exploring the high-dimensional

chemical search space in silico [50]. CADD ranges from identifying viable target proteins [164]

to designing high-affinity compounds against them [57]. One commonly utilised drug discovery

approach is to design drugs against the orthosteric site of a target protein which can have

downfalls regarding selectivity and potency in structurally related protein families [17]. To over-

come the limitations of active site inhibition, PPI interfaces and allosteric sites are proposed

as distant effectors of protein activity [21,165].

Especially for these alternative targeting approaches, computational guidance is of the essence

as they tend to be less studied and often serendipitously detected [165]. In the context of this
∗Accessible at: proteinlens.io

www.proteinlens.io
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work, we highlight two alternative targeting mechanisms by investigating the dimer interface

in dimeric proteins and studying protein allostery. Section 2.2 provided an overview of how

computational methods can be exploited to study PPI interfaces and the design of inhibitors

that target these interactions in dimeric proteins [23]. In Section 2.3, we summarised computa-

tional approaches detecting allosteric sites that can be used to modulate protein activity with

small molecules [165].

Section 2.4 provides a detailed explanation of how graphs are used to study protein function

and dynamics on different scales, introducing PPI networks, domain and structural feature

networks and RRINs. The latter find wide application in the modelling of communication within

proteins and have been used to find important residues in dimeric protein interfaces [142] and

allosteric signalling [144]. On the most fine-grained level of protein graph modelling, we introduce

atomistic protein graphs for which each node represents an atom and bonds or interactions can

be represented as weighted edges [151].

The work in our group revolves around modelling biomolecules as atomistic protein graphs,

which are constructed from three-dimensional structural data [158,160]. Markov transient and

bond-to-bond propensity analyses are two approaches to study diffusion processes on these

graphs that can be related to biological function. In several studies by our group, the atomistic

graph analyses were primarily used to detect allosteric pathways and sites in small [149,159] and

large protein datasets [54]. The approach has also been extended to study allostery in large

multimeric protein assemblies [162] and predict PPI interfaces [163].

Chapters 4, 5 and 6 demonstrate how the information provided by atomistic graph analyses

is used to study protein systems relevant to disease contexts. We apply Markov transient and

bond-to-bond propensity analyses to shed light on molecular mechanisms and elucidate how

protein activation is achieved. Furthermore, we show how these approaches can be utilised

to discover residues and sites used for alternative targeting approaches for protein inhibition.

Chapter 3 provides a more detailed explanation of the underlying methodologies and mathe-

matical concepts. Further, it contains a description of ProteinLens, an interactive web server

to study allosteric effects in proteins [51].
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Methodology

Our approach to studying biologically relevant concepts like allostery and protein-protein inter-

action signalling is based on structural information. The underlying idea is that the biological

function of proteins is encoded in their three dimensional structure which allows long and

short-range physical interactions to occur. To facilitate an investigation of structural data with

computational means we make use of atomistic graphs which are a computationally efficient

representation. All atoms in the protein are represented as nodes and all bonds or interactions

as edges in the graph. The weighting of these edges is rooted in chemical and physical knowl-

edge of bond and interaction energies and hence our protein graphs retain physicochemical

information. We further apply methodologies that are based on graph diffusion processes and

reveal fast and strong connectivities within the protein that are biologically meaningful. The

following Sections elaborate on these concepts and highlight key features.

3.1 Atomistic graph analysis

3.1.1 Data collection and processing

All structural data was downloaded from the Protein Data Bank (PDB) in .pdb file format [48].

Files had to be pre-processed to ensure the right biomolecule was contained, to consider struc-

27
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turally important water molecules, and to clean ambiguous side-chain confirmations. Detailed

descriptions of the structures used for each study system and of our data processing workflow

can be found in Appendix A.1.

3.1.2 Atomistic graph construction

As described above, our approach to investigate biological concepts is underpinned by com-

putationally efficient graph representations of biomolecular structures, constructured from the

cartesian coordinates that are stored in .pdb files obtained from the PDB [48]. The graph con-

struction process for biomolecules has been developed in our group, and is described by S.

Meliga [166] and A. Delmotte [167]. It has further been detailed in Delmotte et al. [158], Amor

et al. [159] and by B. Amor [168].

On the atomistic level, constructing a protein graph G means to represent every atom as a

node or vertex V and every bond or interaction between the atoms as an edge E. Thus we

obtain a graph object G(V,E) which represents the atomistic protein structure (Fig. 2.1D). By

weighting the edges, we can then capture physicochemical properties of the protein like hydrogen

bond strength and the hydrophobic effect [158,169]. Figure 3.1 illustrates the graph construction

process. Firstly, structural data is downloaded from the PDB [48] and pre-processed (details

are given in App. A.1). This processing can include the addition of hydrogen atoms with a

command line tool called Reduce∗, [170].

The next step is the edge detection, which was originally performed using the Floppy Inclusions

and Rigid Substructure Topology (FIRST) algorithm [150,171]. The command line tool FIRST

detects edges over distance cut-offs and chemical knowledge constraints. Finally, these edges are

weighted according to bond or interaction energy. The following Sections provide an overview

of all bonds and interactions that are detected and how the weights are assigned.

∗Available at: github.com/rlabduke/reduce

https://github.com/rlabduke/reduce
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Figure 3.1: Graph construction process. A) The graph construction process, using
the structure of the SARS-CoV-2 Mpro (PDB id: 6Y2E [5]). After the atomic coordinates are
obtained from the PDB [48], hydrogen atoms are added using the command line tool Reduce [170].
In the next step, atoms are defined as nodes in the graph and edges are detected. These edges
are then weighted according to the bond or interaction type they represent. For the given
structure covalent and hydrogen bonds as well as salt bridges and hydrophobic interactions
were detected and are coloured as indicated. B) Graphs can be described as a set of matrices
where the adjacency matrix An×n indicates which nodes n are connected. The weight matrix
Wm×m stores the interaction energy of all edges m on the diagonal. Adapted from Strömich
et al. [55].

An updated graph construction

During the course of this Thesis, a new graph construction workflow was developed and released,

to include new features and allow its incorporation into a single Python package. This new tool,
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called Biochemical atomistic graph construction software in Python for proteins etc (BagPype)

was developed in Song et al. [160] and finds further elaboration by F. Song [169]. BagPype was

developed in Python [172], a hugely popular programming language in the community. BagPype

refines the way edges were detected previously by FIRST and incorporates a range of distance

constraints and chemically relevant characteristics [160].

Another change from the previous graph construction is the elaborate detection and weighting

of hydrophobic interactions as discussed in detail by F. Song [169]. This extension aims to model

the hydrophobic effect on proteins which is a many-body effect [173] and as such cannot be

described by a single edge in the graph. BagPype uses a set of constraints to find potential

hydrophobic interactions between atoms, weights them according to the hydrophobic potential

of mean force [173] and then uses the relaxed minimum spanning tree (RMST) method [174] to

sparsify the sub-graph. The sparsification step is included to reflect the hydrophobic many-

body effect, whilst lowering graph complexity and preventing overly connected regions of the

graph [169].

Furthermore, BagPype incorporates π − π stacking interactions as well as DNA backbone

interactions to describe the physicochemical synergies that occur in DNA strands. The detection

of DNA interactions is partly based on previous work by Delmotte [167], and BagPype extends on

that by allowing the construction of atomistic graphs for structures that contain both, proteins

and DNA. This extension of the graph construction means that an even larger part of the PDB

is accessible with our methodology.

In this work, we used the original graph construction based on FIRST for Chapter 4 and the

updated tool BagPype for Chapters 5 and 6. The different projects presented in these chapters

are self-contained entities and individual results are not directly compared across chapters.

Hence, we do not believe the switch in graph construction methodology has an impact on the

statements that are concluded from our results.
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Weighted edges

The bond and interaction types that are included in our graph construction are listed below.

Generally speaking, the algorithm determines which edges an atom can form by investigating

the neighbourhood of each atom. The spatial coordinates that are found in the .pdb files allow

the definition of distances and geometric criteria between atom pairs, which we use to inform

bond/interaction types.∗

• Covalent bonds are detected according to distance constraints and are weighted with

empirical bond dissociation energies [175].

• Hydrogen bonds can be formed between pairs of donor and acceptor atoms that share

electrostatic attractions over a proton. Their detection is based on distance and angle

constraints between the atoms. The so found hydrogen bonds are then weighted according

to the Mayo potential [176,177].

• Salt bridges can be considered as charged hydrogen bonds as they occur between pos-

itively and negatively charged atoms. Hence, their weight is determined by a modified

Mayo potential [176] as applied in FIRST [150].

• Hydrophobic interactions model a many-body hydrophobic effect in the protein and

their detection differs between graph construction processes as described above. The

previous graph construction based on FIRST [150] assigns hydrophobic tethers between

C-C and C-S atom pairs based on proximity if their van der Waals’ radii are within

2 Å. BagPype extends on these constraints with a general distance cutoff of 9 Å to later

sparsify the weighted hydrophobic edges using the RMST method [174]. Both approaches

assign weights by applying the hydrophobic potential of mean force [173]. But where the

previous process included only two values corresponding to the valleys in the potential,

BagPype uses the continuous potential to assign bond energies.

∗For completeness, the full list of edge types that are encoded by BagPype is given here. However, for the
protein structures in this work, only the following bond types are detected: covalent bonds, hydrogen bonds,
salt bridges and hydrophobic interactions.
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• Electrostatic interactions are often especially important between small molecules like

ligands and the main protein chains. We get information on these interactions from the

LINK entries in PDB files and weight them according to a Coulomb potential as defined

by Gilson and Honig [178], where atom charges are obtained from the OPLS-AA force

field [179].

• π-π stacking interactions are found between two aromatic rings and play an important

role in DNA structural stability. The edges are assigned using an energetic threshold and

weighted by combining van der Waals and electrostatic contributions as modelled by

Hunter and Sanders [180] and Warshel et al. [181].

• DNA backbone interactions are modelled via edges placed between consecutive nu-

cleotides and are weighted as electrostatic interactions between the phosphate groups as

described in detail in Delmotte [167].

Protein graphs

Following the workflow described above, we obtain a protein graph G(V,E) with a set of nodes

V and edges E which represent the atoms and bonds/interactions, respectively. These protein

graphs can be represented as a set of matrices with n nodes and m edges that contain relevant

information.

• The adjacency matrix A is an n×n matrix with entries indicating whether two nodes are

connected in the graph (aij = 1) or not (aij = 0). For a protein graph, the adjacency ma-

trix indicates whether two atoms are connected as determined in the graph construction

process (Fig. 3.1B). The adjacency matrix can also be weighted as Aw where the entries

are wij if two nodes are connected and 0 otherwise.

• The weight matrix W is an m × m diagonal matrix where the entries contain the edge

weights which represent bond and interaction energies for a protein graph (Fig. 3.1B).

This makes the weight matrix the protein equivalent to the conductance matrix G for

electrical grids defined by Schaub et al. [182].
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• The incidence matrix Bn×m provides information on which edge correlates with which

node. If a node i is incident on an edge b, Bbi is recorded as 1 and otherwise as 0.

• The degree matrix Dn×n is a diagonal matrix that describes the degree of each node in

the graph. The degree is the number of all edges attached to a node.

• The combinatorial Laplacian matrix Ln×n is a matrix to describe protein graph dynam-

ics [137,183] and is defined as L = D−A. For the weighted adjacency matrix Aw it follows:

L =


−wij, i ̸= j.∑
j

wij, i = j.
(3.1)

Representing biomolecules as graphs that can be described with matrices is advantageous as

matrices are mathematically efficient objects that allow for a lowered computational cost.

Additionally, due to the primarily local nature of bonds and interactions within proteins,

our protein matrices are sparse, which also decreases algorithmic running time. Our group

further draws from graph theoretical concepts to model biological processes on graphs of

biomolecules [149,158,159,162,163,166,168,184–188]. Two of these methodologies that find application in

this work for the purpose of studying protein systems in disease are described in more detail

below.

3.1.3 Markov Transients

The analysis of graphs with Markov processes allows us to assess the dynamics of a system

across all scales, represented by different Markov times. This approach can be applied in an

unsupervised manner to detect communities in graphs and understand their intrinsic structure

and organisation [184,185]. In the case of protein graphs, these concepts revealed that community

organisation within proteins is found on multiple scales and protein dynamics are governed by

an interplay of partitions across these scales [158,186,188]. Leading on from there, Amor et al. [159]

explored the application of Markovian random processes starting from a pre-defined source.
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This random walk on a protein graph has been found to be able to reveal allosteric sites and

pathways in caspase-1 [159] and ribosomal protein S6 kinase 4 (RSK4) [161].

Figure 3.2 provides a schematic of the so-called Markov transient (MT) analysis and shows how

a random walker would be sourced on a protein from e.g. the atoms in an active site. For every

Markov time step t the random walk can be described as:

pt+1 = ptT (3.2)

Here T is the Markov transient matrix and every entry Tij is the probability for the random

walk to transition from node i to node j in one time step. The vector pt gives the probabilities

of the current state at each node at a given time step. This process allows the modelling of

signal propagation through a protein where the weights of bonds or interactions are encoded

in the Markov transient matrix as T = D−1Aw.

Figure 3.2: Schematic representation of Markov transient analysis. Representation
of a protein graph with several nodes connected by different edges. At t0 (A) the probability is
equally distributed over the source nodes. The Markovian random process on the graph leads
to the time evolution of the probability of each node which eventually reaches a stationary
value (B). The t1/2 time until the stationary distribution π is reached presents a measure for
the connectivity between a source (green) and a target (yellow).∗

∗Created with biorender.com

www.biorender.com
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When we take into consideration that a dynamical process on the protein graph can be described

by a combinatorial Laplacian, we can substitute the Markov transient matrix from 3.2 with −L

as such:

ṗ(t) = −ptL (3.3)

This equation can then be solved as:

p(t) = p0 exp(−tL) (3.4)

The probability distribution p(t) for any given time point t can then be calculated based on

the initial probability distribution p0. As schematically shown in Figure 3.2A, p0 is defined as

a uniform probability distribution over all source nodes:

p(0) =

0 · · ·

psource
0︷ ︸︸ ︷

1

NS

· · · 1

NS

· · ·
ptarget
0︷ ︸︸ ︷

0 · · · 0 · · · 0

 (3.5)

where the number of source nodes is given by NS. The signal propagation between the source

and any given target can be monitored by the change in probability at the target nodes:

p(t) =
(
· · · [psource

t ] · · ·
[
ptarget
t

]
· · ·

)
(3.6)

When the Markov time t tends to infinity, the probability vector pt converges to the stationary

distribution π of the random walk (Fig. 3.2B). Amor et al. [159] introduced a measure of speed

for the random walk started at a source towards a target by considering half the time steps it

takes to reach the stationary probability value in any given target node i.

t
(i)
1/2 = arg min

t

[
p
(i)
t ≥ π(i)

2

]
(3.7)

This characteristic transient time t1/2 provides a measure for how connected every atom in the
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protein is to the source site. The t1/2 of a residue is then calculated as the average over all

atoms in a residue. MT analysis provides us with a measure for intra-protein communication

and highlights atoms and residues that are particularly fast reached by a signal propagation

from a site of interest.

3.1.4 Bond-to-bond propensities

Another method is called bond-to-bond propensity (BBP) analysis and is based on the idea of a

perturbation at a source edge and how this affects any other edge in a network. First developed

for the general application in networks like power grids or traffic flow networks by Schaub

et al. [182], Amor et al. [149] extended the concept onto protein graphs. In proteins, bond-to-bond

propensities provide a measure for how strongly coupled the source bonds (e.g. within an active

site) are to any other bond. Previous studies have leveraged BBP analysis to identify allosteric

sites in known allosteric proteins [149] and to investigate allostery in multimeric complexes [162]

and protein-protein interactions [163]. Wu et al. [54] recently published a large BBP benchmarking

study in two allosteric benchmarking sets (ASBench [124] and CASBench [125]) where we found

a combined prediction accuracy of 87 % in 146 proteins. Figure 3.3 provides a schematic

visualisation of the BBP concept and we here summarise the details of the methodology as

developed in Schaub et al. [182] and Amor et al. [149] and further described by B. Amor [168].

The approach is defined on the edge space of a graph where the transfer matrix Mm×m describes

a discrete Green’s function that quantifies how a perturbation at edge i would instantaneously

affect any other edge j [182]. Amor et al. [149] then established that in proteins the transfer matrix

M can be defined by

M =
1

2
WBTL†B (3.8)

with W , BT , L∗ and B being the graph matrices defined in Section 3.1.2, which describe
∗Importantly, the full pseudo-inverse of the Laplacian L† does not need to be solved in Equation 3.8. Instead,

a sparse linear system containing the combinatorial graph Laplacian can be solved which allows the approach
to run in almost linear time. With a running time of O(E log2 (N)) dependent on the number of edges E and
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relevant protein properties.

Figure 3.3: Schematic representation of BBP model. The protein (blue) is described as
a graph where atoms are nodes connected by edges that represent bonds or interactions. The
instantaneous effect of bond fluctuations at a source (green) on a target (yellow) is calculated
on the edge space.∗

For the purpose of representing protein graphs, we can now deduce that the off-diagonal entries

Mb1b2 reflect how a perturbation at bond b2 is affecting a bond b1. Given the incorporation of

the weight matrix W , the perturbation effect is weighted by the strength of bond b1 meaning

perturbing a stronger bond is considered to be more important.

To answer biologically relevant questions, we are only interested in slices of M which represent

the impact of meaningful source bonds on the rest of the protein. Hence, we obtain for the

propensity of any bond b the combined effect of all source bonds:

Πb =
∑

b′∈ source

|Mbb′ | (3.9)

nodes N , BBP analysis is applicable to large protein structures and complexes [149].
∗Created with biorender.com

www.biorender.com
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Importantly, this sum only considers weak bonds in the source and the protein object as these

weak bonding patterns are known to drive intra-protein communication. A. Delmotte [167] and

B. Amor [168] extensively studied the impact of covalent and non-covalent bonds by randomising

edges in the graph, the results of which supported the focus on non-covalent bonds.

Throughout this work, our results are based on the detailed propensity calculations at the bond

level. We further introduce a measure of connectivity to the source for every residue in the

protein by calculating the residue propensity as the sum over the bond propensities of all bonds

in a residue R:

ΠR =
∑
b∈R

Πb (3.10)

BBP analysis allows us to the investigate the instantaneous effect of a perturbation at a given

source and highlights bonds and residues that are particularly strongly connected to a site of

interest.

3.1.5 Quantile scoring and site scores

Due to the nature of interactions within proteins, which is largely defined by local chemi-

cal bonds and interactions, we obtain sparse protein graphs. This means that we observe a

data pattern that is dependent on the distance from the source in our analysis. For Markov

Transients, we observe a general increase of t1/2 values with distance from the source, while

bond-to-bond propensities decline the further away an edge is from the source. To account for

this distance bias, we use a technique called quantile regression (QR) [189].

Quantile regression

Whereas standard least squares regression estimates a model for the mean of samples, QR is

based on estimating models for conditional quantile functions. This allows highlighting atoms

and bonds that are in the tails of the distribution rather than in the mean and thus are of
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more interest in our analysis [168]. Further, the quantile functions can reflect non-normal data

distributions like the ones we see for Markov transient (MT) and BBP values. Given the

exponential decay of BBP values over distance (Fig. 3.4B), we use a linear function of the

logarithm when fitting the model. For Markov Transients, we use cubic splines as they allow

more flexibility to fit the model to the distribution of t1/2 values (Fig. 3.4A). Further details

on the QR process are described by B. Amor [168] and in Amor et al. [149] for MT and BBP

analyses, respectively.

Figure 3.4 provides example distributions of MT and BBP values across a given protein graph.

As can be seen in the figure, atoms X and Y share the same t1/2 value, and bonds E and F

share the same Πb value. Thus, if distance was not taken into account, they would rank equally

in terms of connectivity to the source site. However, atom Y and bond F are further away

from the source in comparison to atom X and bond E. Considering their similar values while

at a greater distance, we can deduce atom Y and bond F must be more impacted by the source

site signal. Hence, QR is applied to rank each atom or bond in relation to all other bonds at

a similar distance. The resulting quantile score (QS) of each atom or bond provides us with

a quantitative measure of their signalling significance from 0 to 1. We further extend the QR

workflow onto the residue level in both MT and BBP analyses.

By incorporating this ranking step which accounts for the distance bias in the data, we can

identify areas and residues that are significantly correlated with a source site. These high

scoring residues can be understood as biologically meaningful in the context of proteins as they

represent distant sites that have the potential to exhibit an impact on the source.

Site scoring and structural bootstrap

To further characterise areas of high connectivity we score them by calculating the average

residue QS across multiple residues as:

pR,site =
1

NR,site

∑
R∈ site

pR (3.11)



Chapter 3. Methodology 40

Figure 3.4: The effect of quantile regression for MT and BBP analyses. A) left:
Shown are t1/2 values over distance from the source for each atom (in grey). Highlighted in green
are two atoms X and Y with similar t1/2 values but different distances from the source. Right:
Quantile regression assigns a QS between zero (blue) to 1 (red) to each atom to assess which
ones are significantly more connected to the active site. B) A similar approach is performed
on the propensity values of each bond/interaction in the protein. Two bonds E and F are
highlighted that have a similar propensity values Πb but different distances from the source.
The 95th, 90th, 80th and 70th quantiles are indicated with dotted lines in both panels.

This can be applied to score previously known areas of interest, like allosteric sites or protein-

protein interaction sites, or other relevant structural features.

By applying a structural bootstrap we can assess the significance of a scored site against the

rest of the protein as described in detail in Amor et al. [149]. We sample 1000 random surrogate

sites of the same residue number and size as the site of interest. For each surrogate site we

calculate the average QS pR,surr and then average across the ensemble E of 1000 surrogate sites
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to obtain:

⟨pR,surr⟩E =
1

1000

∑
surr∈E

pR,surr (3.12)

This average of averages can be compared to the average QS of a site of interest. To provide

statistical significance, we apply a bootstrap with 10000 resamples with replacement [190] to the

ensemble values to calculate a 95 % confidence interval (CI).

3.1.6 Conclusion

Atomistic graph analysis serves as a workflow to analyse biomolecular structures with the aim

to uncover allosteric effects and intra-molecular communication. The workflow was developed

and refined over the last decade [149,158,159,167,168] and has since been proven an effective tool

in protein systems [161–163]. The two methodologies used here, MT and BBP analyses, are

of complementary nature and highlight different aspects of communication within proteins

by providing measures for fast and strong connectivity, respectively. This Thesis sees the

application of atomistic graph analysis to three protein dimers in the context of disease in

Chapters 4, 5 and 6.

The following Sections describe methodological additions to the workflow that were used in

this Thesis. We further introduce the web server ProteinLens which was recently deployed and

published [51] to provide the public with a tool to study protein allostery with atomistic graph

analysis.
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3.2 Development of additional tools for atomistic graph

analysis

3.2.1 Structural features and visualisations

PyMol [191] was used throughout this work to investigate protein structures in 3D and visualise

results. This graphic interface implements a multitude of visualisation techniques and allows

for custom scripts. These custom scripts were used to map QS results onto protein structures

and highlight high scoring residues.

Definition of protein-protein interfaces

One of the aims of this work is to explore the interface that is formed between monomeric

protein chains in a dimeric assembly. To investigate the connectivity within and towards these

dimer interfaces we need to have a definition of their location and which residues are involved

in the formation. For this purpose, we used PDBePisa∗, an online tool that can be used to

explore macromolecular interfaces [78]. We provided PDBePisa with the pre-processed protein

structures in .pdb format. From these crystalline states the tool infers a list of residues that

are at the interface by considering the area that becomes inaccessible if two protein chains are

brought into contact [192]. PDBePisa further detects whether interface residues form bonds, in

which case it distinguishes between hydrogen bonds, salt bridges, disulphide bonds and covalent

links.

Solvent accessible surface area

Our methodologies enable us to detect residues and hotspots in a protein that show allosteric

potential. For the definition of allosteric hotspots, we provide an indication of how buried or

accessible the residues in the hotspot are. We find the residue wise solvent-accessible surface

∗Accessible at ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver

https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
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area (SASA) using the get_area function in PyMol [191] with default settings: a dot density of

2 and a solvent radius of 1.4.

3.2.2 ProteinLens - a user-friendly interactive webserver

The implementation of the web server in Django was coded in large parts by S.

Mersmann, the concept, general structure and website texting were led by the

author of this Thesis. ProteinLens can be accessed at proteinlens.io.

The methodologies in previous Sections have been shown to effectively predict allosteric sites

and signalling pathways. Further evidence of their predictive power has been provided in

small [149] and in large datasets [54]. Additionally, a wide portfolio of biological systems has been

described through atomistic graph analysis: from small proteins [149,159] to large complexes [162],

in the setting of allergenicity [186] to drug repurposing in cancer [161]. Hence, we consider it our

responsibility to provide easy access to these versatile methodologies to allow community usage

for further scientific explorations of allosteric signalling and site detection. We implemented our

atomistic graph analysis pipeline in an interactive web server, incorporating the two methods

Markov Transients and bond-to-bond propensities. The only requirement for the user is to

provide source residues and a PDB id of a structure of interest. The web server then provides

complementary insights into the speed and strength of communication within the structure

which allows to study the allosteric effect in the system. Another major advantage of our

methodology is the computational efficiency as described in more detail above. This means

the user can obtain the results for their structure within minutes∗. We put a particular focus

on user-friendliness and an intuitive presentation of the results. ProteinLens provides fully

interactive 3D visualisations which can be screenshotted, and all data can be downloaded. We

further allow the user to score sites of interest to assess the significance of a found hotspot.

∗An overview of running times for proteins of different sizes can be found in the frequently asked questions
(FAQ) page of ProteinLens: proteinlens.io/webserver/faq

https://proteinlens.io/webserver/
https://proteinlens.io/webserver/faq
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Web applications for the prediction of allosteric sites and pathways

Allostery is a ubiquitous concept in protein regulation [35] and using allosteric principles for tar-

geting proteins is a fruitful approach. Allosteric sites allow more selective and robust targeting

of disease-causing proteins especially for members of large protein families [17] as described in

Section 1.3.1. However, the experimental discovery of allosterically regulated proteins is often a

product of chance or requires high-throughput screenings [165]. Computational approaches allow

for a faster exploration and prediction of protein allostery, ushering in a new era for allosteric

discovery. To benefit the wider community, some of these approaches have been released in the

form of publicly accessible∗ web servers as listed in Table 3.1. Mostly, these web servers either

focus on allosteric site, pathway, or functional residue prediction.

Table 3.1: Web servers to predict allosteric sites and signalling paths.

Type Name Link Methodology

Allosteric
sites

AllosMod [116] modbase.compbio.ucsf.edu/allosmod MD
AlloSite [106]/
AlloSitePro [115]

mdl.shsmu.edu.cn/AST/Allosite NMA & ML

CorrSite 2.0 [119] within CavityPlus [197]:
pkumdl.cn:8000/cavityplus

GNM

PASSer [198] passer.smu.edu ML

Allosteric
signalling

MCPath [145] safir.prc.boun.edu.tr/clbet_server Monte Carlo path
simulations

Dynomics [146] dyn.life.nthu.edu.tw/oENM ENM
AlloSigMA
2 [199]

allosigma.bii.a-star.edu.sg/home SBSMMA

Workflow of ProteinLens

ProteinLens presents an all-encompassing tool to study atomistic communication pathways

and connectivity within single protein chains as well as at the scale of protein multimers. The

underlying theoretical methods are computationally inexpensive because they rely on sparse

matrices as described in Sections 3.1.2 and 3.1.4. This makes them well suited to be deployed

within an interactive web application. Figure 3.5 provides a summary of the whole workflow

on the website which the user can follow. At each step the user can provide input in an easily
∗Further web servers in the field have been described but are currently partly or fully inaccessible: PARS [193],

SPACER [194], STRESS [195], OHM [196].

https://modbase.compbio.ucsf.edu/allosmod/
http://mdl.shsmu.edu.cn/AST/Allosite/index.jsp
http://www.pkumdl.cn:8000/cavityplus/index.php
https://passer.smu.edu
http://safir.prc.boun.edu.tr/clbet_server/index.html
https://dyn.life.nthu.edu.tw/oENM/
http://allosigma.bii.a-star.edu.sg/home/
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accessible and interactive way. The following Sections provide a short overview of each web

server step and describe the insights that can be gained.

Input

The input to ProteinLens is structural files of biomolecules which can either be sourced directly

from the PDB with their respective identifier or uploaded by the user. BagPype was built into

ProteinLens for constructing atomistic graphs [160]. As discussed in Section 3.1.2, BagPype can

process DNA molecules in PDB structures and further provides a range of useful options. These

options provide flexibility to the user in terms of stripping certain entries from the PDB file,

choosing how to handle NMR models and processing multimeric proteins. The settings provided

by the user are taken into consideration when converting the input structural data into atomistic

graph representations [160]. After successful processing of the structure, the user is automatically

forwarded to the next page which presents a quick summary of the constructed graph. The

page summarises the main features of the graph, like the number of nodes (atoms) and edges

(bond/interactions). At this stage, the user also receives feedback on the graph’s connectivity

as a connected graph∗ is required for our methodologies. If the graph is disconnected, the user

can choose which subset of the graph to use for the rest of the analysis.

Computational settings

The next step in the ProteinLens workflow is the calculation of bond-to-bond propensities [149]

and Markov transients [159] on the biomolecular graph. To do so the user must provide the

source residues, either as a list of residue numbers or by choosing a ligand that was identified

in a protein chain (Fig. 3.5B). In the most common use case for ProteinLens, a source could be

chosen to be the active site ligand or binding site residues. The web server’s results would then

indicate which parts of the protein exhibit a functional connectivity to the active site. Finally,

the user can choose which methodology to run. By default, both BBP and MT analyses will

be performed.

∗In a connected graph, every node is in contact with at least one other node over at least one edge.
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Figure 3.5: Workflow of ProteinLens. A) The user can choose to retrieve a PDB entry
or upload a .pdb file. The user can then choose which biomolecule to consider for graph
construction and advanced options allow to strip certain atoms or ligands. B) After the graph
is constructed, the user has to specify which residues to choose as a source. ProteinLens
features a dropdown menu for all ligands that were detected in each chain or the user can
specify residue numbers. The user can then choose which methodology to run. C) The results
are presented in interactive, complementary visualisations that highlight different elements of
allosteric communication. ProteinLens also provides a scoring panel where the significance of
residues or sites of interest can be assessed. Adapted from Mersmann et al. [51].
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Results

The final page to which the user is redirected presents the results of the analyses. The user

is provided with a summary of the structure and the settings they chose and can then toggle

out a variety of different panes. ProteinLens provides complementary result visualisations that

highlight different aspects of the results, allowing to detect different allosteric features.

The hotspots view can be accessed for both BBP and MT results. In an interactive 3D-

viewer, the chosen structure is coloured according to quantile score results (Fig. 3.5C left). For

this panel, ProteinLens also provides an interactive plot of the data distribution which is fully

linked to the structure viewer. This visualisation allows identifying areas of the protein that

are hotspots in our analysis and hence hold potential for allosteric regulation.

The relevant residues view is also available for results from both methodologies. This

visualisation highlights residues that are above a certain QS threshold which can be interactively

set by the user. These high scoring residues are highlighted on the 3D structure (Fig. 3.5C

middle) and on the interactive data distribution plot that is provided for this panel. This

visualisation allows the user to investigate relevant residues that contribute to the allosteric

behaviour of the protein.

The scoring panel provides the option to score a site of interest in the context of bond-to-

bond propensities. The user can provide residues that belong to a functionally relevant site like

a known allosteric site. ProteinLens will then score this site and randomly sample surrogate

sites to allow a comparison to the score of a random site. Details on this structural bootstrap

approach are provided in Section 3.1.5.

The random walker visualises the MT time steps that underly the t1/2 calculations. Each

atom in the interactive structure is coloured by the probability of the random walker being

at this node at a time step t (Fig. 3.5C right). With a user-controlled slider, the probability

propagation at different time steps can be shown, allowing the user to investigate signalling

paths within the structure.

All panels provide the option to take screenshots of the results and the structures in a chosen
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orientation. Further, the user is provided with the option to download all raw data and results

with one click.

Implementation

ProteinLens is coded in Python [172] and incorporates the methodologies of our group as de-

scribed above. The web server was built using Django (v.3.1) [200] with an SQLite database

in the back. The front-facing design is coded with Bootstrap (v.4.3.1)∗ and visualisations are

based on the D3.js library† and the NGL viewer [201]. The initial structure and scaffold of the

backend were set up by the author of this work. The bulk of the coding and the integration of

the visualisation tools was done by S. Mersmann.

Documentation

ProteinLens features a detailed tutorial‡ of the whole analysis workflow. Furthermore, each

panel on the website is linked out to the relevant section in the tutorial for easy access to

further information. Many concepts are also explained by providing information boxes which

can be accessed by hovering over particular terms. If the user wishes to learn more about the

underlying methodology, they can do so by accessing the extensive background§ page. We also

provide a page with FAQ¶ for the purpose of troubleshooting.

Conclusion

Taken together, the features of ProteinLens allow the community to explore allosteric signalling

in their own case studies within minutes and in an intuitive manner. The underlying method-

ologies have been benchmarked and used across a variety of study systems. We are confident

that this will be a valuable contribution to the field of protein allostery.

∗Accessible at: getbootstrap.com/docs/4.3/getting-started/introduction/
†Accessible at: d3js.org
‡Accessible at: proteinlens.io/webserver/tutorial
§Accessible at: proteinlens.io/webserver/background
¶Accessible at: proteinlens.io/webserver/faq

https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://d3js.org
https://proteinlens.io/webserver/tutorial
https://proteinlens.io/webserver/background
https://proteinlens.io/webserver/faq
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The publication in Nucleic Acids Research also contained a small case study on human glucok-

inase where we demonstrate how the web server can be used to analyse a protein with a known

allosteric site [51]. We recovered the allosteric site with bond-to-bond propensities and exempli-

fied how the scoring functionality in ProteinLens can be used. In the following Chapters we

analyse more complex and less studied systems and demonstrate how atomistic graph analysis

can provide valuable insights and contribute to our understanding of these systems in disease.



Chapter 4

Estrogen receptor alpha

This Chapter builds on work done by L. Strömich [202], and some of these results

are shortly summarised here. Where this is the case, we clearly indicate how

this current work is an extension and goes beyond what was previously found.

Parts of this Chapter were motivated by experimental results obtained by our

collaborators Fui Lai and Simak Ali, and this is clearly indicated throughout.

This Chapter presents our atomistic graph analysis of estrogen receptor α (ERα). This first

study system demonstrated the validity of our approaches for the study of molecular mecha-

nisms in dimeric proteins. We discuss the results of bond-to-bond propensity (BBP) analysis

in the system from different biologically relevant source sites and how this methodology can

aid in determining specific residues that are involved in dimer interface signalling.

4.1 A nuclear hormone receptor regulating gene expres-

sion

One of the major roles of proteins in our cells is the regulation of gene expression which ranges

from DNA remodelling to transcription initiation [203]. Proteins that induce transcription are

50
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often known as transcription factors (TFs), and they are unified by their ability to bind to DNA

and initiate gene expression [204]. One of the largest TF families are nuclear receptors (NRs)

which are involved in most biological processes and regulate gene expression in all tissues

in our body [205]. The NR mode of action roughly follows this pattern: binding of a ligand

molecule promotes localisation into the nucleus where the receptor binds to DNA. NRs are

active as monomers, homodimers and heterodimers and they often recruit co-activators to

regulate gene expression. Natural ligands of NRs are small lipophilic molecules that range from

thyroid/steroid/retinoid hormones∗ to molecules that are involved in lipid metabolism [18].

Two members of the classic hormone NRs are estrogen receptor α (ERα) and estrogen receptor

β (ERβ), which bind to estrogen steroid hormones [206]. ERα (also known as ER1 or Esr1) was

identified as receptor for the modulation of estrogen signalling in the 1960s and was one of

the first known ligand-activated TFs [207,208]. The second member of nuclear estrogen receptors

was identified three decades later in 1996 and termed ERβ or ER2/Esr2 [209]. The two ERs

bind estrogens and anti-estrogens but diverge in their binding modes, physiological effects and

tissue specificity (reviewed in Jia et al. [210]). The focus of this work is on ERα, as it is widely

described and studied as the primary driver of breast cancer (BC) development and progression,

as discussed below.

4.1.1 Molecular mode of action of ERα

ERα has a variety of functions in estrogen-targeted tissues, and its three main roles are cat-

egorised by the cell compartments that ERα is active in (reviewed in Yasar et al. [3]). At the

plasma membrane, ERα interacts with G proteins to trigger kinase signalling cascades that me-

diate a rapid response to estradiol signals [211]. Secondly, ERα is found in mitochondria where

it regulates gene expression of mitochondrial TFs [212]. Lastly, ERα is found in the nucleus,

where it fulfils its most important role: initiating gene transcription [3]. This transcription ini-

tiation can happen in a direct manner by binding to an estrogen response element (ERE) on

DNA [213] or indirectly by recruiting and assembling other TFs [3]. Once ERα binds directly to
∗NRs binding to hormones are called nuclear hormone receptor (NHR).
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an ERE, further co-factors like p160 regulators and histone modulating proteins are recruited

and allow the transcription activation of an extensive array of human genes [214,215]. For the

indirect genomic mechanism, also known as ERE-independent genomic mechanism, ERα is

responsible for activating TFs like activator protein 1 (AP-1) [216] and specificity protein 1 (Sp-

1) [217]. These TFs bind to their own response elements, further increasing the number of genes

that are under regulation of estrogen signalling through ERα. Crucial for either transcription

activation mechanism is the formation of ERα homodimers [218–220], as mutations that impact

dimerisation render the protein defective [221]. This essential dimerisation is also observed for

the ERα signalling pathways at the cell membrane and within mitochondria [3].

Structural features of ERα

From a structural perspective, ERα follows the general pattern seen for NHRs, as shown in

Figure 4.1. The receptors are modular proteins where different domains are fulfilling distinct

functions. The N-terminal region is intrinsically disordered but important in conferring tran-

scription activation function 1 (AF-1) [222]. AF-1 of ERα is dependent on interactions with the

protein C-terminus and involved in binding co-activator proteins [223,224]. The DNA-binding do-

main (DBD) (highlighted in red in Fig. 4.1A) is the part of the protein that interacts directly

with DNA by binding to the ERE [213]. Connected to the DBD over a hinge region is the hor-

mone or ligand-binding domain (LBD) (shown in orange in Fig. 4.1A), which mainly consists

of 12 α helices that are oriented in a three-layered antiparallel fold. The hydrophobic ligand-

binding cavity that forms within this fold can be occupied by small lipophilic molecules [225],

such as estradiol, which is shown in Figure 4.1B and C. Most structures available for ERα are of

the LBD only and show the protein in the unbound apo state or bound to estrogens as well as

anti-estrogens. All of these structures are deposited as dimers, as the dimerisation is essential

for function and is regulated by ligand binding events [226].

Unfortunately, to this date there is no full-length structure of estrogen receptors available

which can be explained by the assumption that the DBD and LBD are connected by disor-

dered regions, making structure determination a challenging task∗. However, there are some
∗For an AlphaFold prediction [49] that confirms large disordered loops in the full-length monomeric ERα,
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Figure 4.1: Human estrogen receptor alpha and its functional domains. A) A
schematic overview of the full-length ERα. The functional domains are indicated with the
DNA binding domain in red and the hormone or ligand-binding domain in orange. C) The
structure of the LBD bound to the natural ligand estradiol (B, pink) with the two monomer
halves shown in blue and green (PDB id: 1G50 [227]).

structures available of full-length NHRs that provide insights into the allosteric couplings of

the distinct domains [228]. The structures of the heterodimeric PPAR-RXR complex (PDB id:

3E00/3DZU/3DZY [229]), the homodimeric HNF-4α (PDB id: 4IQR [230]), the heterodimeric

RXR-LXR complex (PDB id: 4NQA [231]) and the heterodimeric RARβ-RXRα complex (PBD

id: 5UAN [232]) are all solved bound to DNA and reveal the quaternary structures of nuclear

receptors. Although the structures have large gaps in the inter-domain loop regions, they allow

deducing how the domains are oriented towards each other and suggest allosteric signalling

through domain interactions (reviewed in Rastinejad et al. [228]).

Ligand binding triggers activation function-2

The natural ligands of ERα are estrogens, the most potent one of which is 17β-estradiol

(EST) [233]. Upon binding of estrogen hormones like EST to the LBD, the highly dynamic

helix 12 (H12) moves over the ligand-binding site and forms a co-activator binding groove to-

gether with parts of helices three, four and five [219]. This so-called agonist-bound conformation

of the LBD is essential for co-activator assembly, also known as transcription activation func-

tion 2 (AF-2) of ERα [225]. For example, co-activators of the p160 steroid receptor co-activator

see Figure B.1.
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(SRC) family present an LXXLL∗ motif that allows them to occupy the binding groove in

the agonist-bound structure of ERα [234]. The structural rearrangement of H12 that underlies

the activity of the agonist-bound conformation, also plays a major role in the inhibition of

ERα when bound to anti-estrogens. When anti-estrogens like tamoxifen or raloxifen bind to

the LBD, H12 itself localises into the above-mentioned groove with its L540-L541-E542-M543-L544

motif [219,235]. In this antagonist-bound conformation, no co-factors can assemble, and AF-2

of ERα is inhibited. Figure 4.2 provides a visual comparison of the agonist (to EST) and

antagonist-bound (to 4-hydroxytamoxifen (OHT)) conformations of the LBD of ERα. The

most striking difference is the localisation of H12, as highlighted in orange.

Figure 4.2: Agonist and antagonist-bound conformations of the ERα ligand-
binding domain. Shown are the agonist (PDB id: 1G50 [227]) and antagonist-bound (PDB id:
3ERT [235]) conformations of the ERα LBD. The two dimer halves are shown in blue and green.
The bound ligands in pink are 17β-estradiol (EST) and 4-hydroxytamoxifen (OHT). H12 is
highlighted in orange in the two different conformations.

4.1.2 ERα in breast cancer

Apart from having a wide range of essential physiological functions [233], estrogen signalling

also plays a vital role in the development of malignancies in the respective target tissues. One

tissue under control by estrogen receptors is the human mammary gland, where a misbalance in

exposure to ER mediated signalling can lead to the formation of BC tumours [236]. Although BC
∗L - leucine, X - any amino acid
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is a highly diverse disease in phenotype [237] and genotype [238], most tumours (70 - 80 %) express

ERα. The roles of ERα in BC development and progression are complex and have been reviewed

extensively [239,240]. Figure 4.3A provides a simplified summary of the role of ERα in BC,

focusing on the structural mechanism. The binding of natural ligands like estradiol stimulates

AF-2 by complexing H12 into an agonist-bound conformation that allows co-activator assembly

and promotes transcription initiation. If there is too much exposure to this agonistic signal,

gene expression is overstimulated, leading to enhanced cell growth and tumour formation.

Figure 4.3: Schematic representation of the structural features of ERα LBD and
molecular mechanism in cancer. The LBD of ERα is shown in agonist and antagonist-
bound conformations with helices shown as barrels. A) Upon agonist (estradiol) binding H12
(shown in orange) forms a co-activator binding groove. This so-called transcription activation
function 2 means co-activators with an LXXLL binding motif can assemble, and gene expression
is activated. If this input signal is out of control, overstimulated cell growth occurs, and tumours
can form. B) When an anti-estrogen like tamoxifen binds, H12 localises into the co-activator
binding groove. AF-2 is inhibited, and none of the downstream effects occurs. Adapted from
L. Strömich [202].

Inhibiting ERα thus becomes a treatment strategy against BC tumours, which makes the recep-

tor an important target for drug development [241], leading to ERα-focused therapeutic strategies

for BC being developed as early as the 1960s [239]. The concept of anti-estrogen chemotherapeu-

tics like tamoxifen is based on the antagonist-bound conformation, which inhibits AF-2 and all
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downstream effects (Fig. 4.3B).

Different classes of chemotherapeutics

Tamoxifen was developed in 1966 and is the earliest example of an anti-estrogenic BC ther-

apy [242]. However, much research has been done since, and there are now several classes of

chemotherapeutics active against ERα. The selective estrogen receptor covalent antagonists

(SERCAs) bind covalently to the binding site in the LBD and show potency against cancer

mutants [243]. Another class comprises proteolysis-targeting chimeras (PROTACs), which tag

ERα for degradation through ubiquitination [244]. The two most common classes by far, which

have undergone several generations of inhibitor optimisation are listed below:

Selective estrogen receptor modulators (SERMs) are one commonly used class against

ERα [245]. They are called modulators because they can have agonistic as well as antagonistic

function, dependent on the tissue they work in [246]. Examples of this class are tamoxifen, ralox-

ifene, bazedoxifene and lasofoxifene. The mode of action relies on forcing the localisation of H12

into the co-factor binding groove, yielding the antagonist-bound conformation and the conse-

quent inhibition of ERα function. This conformation of H12 has been structurally confirmed

for SERMs like raloxifene [219], 4-hydroxytamoxifen [235], lasofoxifene [247] and bazedoxifene [248].

Selective estrogen receptor degrader/downregulators (SERDs) are drugs that do not

display any agonist activity and lead to the degradation of ERα. The earliest member of that

class is fulvestrant (Faslodex), developed as second-line∗ endocrine therapy approved for usage

in BC [249]. Upon binding of fulvestrant, ERα dimerisation and localisation into the nucleus

is impaired, and the protein is in an unstable conformation, leading to its degradation [250].

Other SERDs showing a similar mechanism of action are in various stages of development and

approval: AZD9496 [251], GDC-0810 [252], RAD1901 [253] and AZD9833 [254]. Structures are solved

for AZD9496 (PDB id: 5ACC [255]) and AZD9833 (PDB id: 6ZOR [254]) and show the dimeric

ERα LBD with H12 in antagonist-bound conformation.

∗Second-line therapies are coming into play once a patient shows recurrent tumour growth that is resistant
against first-line BC chemotherapeutics.
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Cancer mutations and overcoming resistance

Every new class and generation of ERα inhibitors aims to overcome the disadvantages of pre-

vious anti-estrogens. This search for new therapeutic agents is often fuelled by the acquired

resistance against prior hormonal therapies [256], and a range of somatic mutations implicated

in endocrine resistance has been described (reviewed in Dustin et al. [257]). Most of them are

located in the LBD, and some of the most prevalent ones lead to estrogen hypersensitivity or

estrogen-independent activity. Two well-explored and structurally solved mutations are Y537S

and D358G which are known to stimulate AF-2 [258]. These mutations are proposed to stabilise

H12 in an agonist-bound conformation without requiring a ligand-binding event. LEU536 is

a nearby, much less studied position whose mutations have also been found in many cancer

genomes [257].

To continue BC treatment after the emergence of mutation-driven resistance against primary

therapies, a major focus of ERα research is the search for new inhibitors and novel therapeutic

approaches. Computational explorations of the protein aid the continuous efforts to find new

target sites and methods, as they are often a fast and inexpensive way of obtaining predictions

that allow to guide rational drug design (see Sec. 2.1). Bafna et al. [259] extensively reviewed

the scope of computer-aided drug design (CADD) for ERα, highlighting alternative target-

ing options like the DBD and the C-terminal F-domain. For the LBD, the estrogen binding

pocket remains the main focus for development of new therapeutics belonging to the SERM,

SERD or covalent inhibitor classes described above. However, some studies have explored the

potential of other structurally important sites like the co-activator groove [260]. Another possi-

bility is targeting the LBD dimer interface to disrupt ERα dimerisation which is essential for

functionality [226].

A molecular dynamics study by Fratev [261] has shown the interplay between dimerisation and

the localisation of H12 into agonist and antagonist-bound conformations. This study further

suggests that estrogens and anti-estrogens control H12 conformations over inter-dimer interac-

tions [261]. The work by Chakraborty and colleagues explored the possibilities of targeting ERα

by disrupting the LBD dimer interface. Based on in silico design, they developed helical peptide
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grafts to bind against the dimer interface motifs located in H10, H11 and prevent dimerisa-

tion [97,98]. Although targeting the dimer interface with helical peptides has been suggested as

early as 2001 [262], to the best of our knowledge no further work has been done on this inhibition

mechanism.

Objective

ERα has a key role in BC development and progression, and current day therapies focus on

the inhibition of its activity. To tackle resistance of recurrent tumours, finding novel drugs and

targeting mechanisms against ERα is of high importance. This Chapter examines the molecular

mechanism of ERα with our graph analysis on atomistic resolution. In the scope of this Thesis,

this study system provides a good starting point as it is well described and allows us to show

the validity of our approach in homodimeric proteins. We further describe new strategies to

inhibit AF-2 of ERα, including a detailed investigation of the dimerisation process and how it

can be disrupted. We also include an analysis of cancer mutations resistant to certain classes

of chemotherapeutics. In doing so, we show how bond-to-bond propensities can be applied to

understand resistance mechanisms and which insights can be gained to guide the development

of future BC therapies.

4.2 Bond-to-bond propensities validate the molecular mech-

anism of ERα

The results in this Section have previously been described by L. Strömich [202].

They are shortly summarised here, as they are the basis for further studies that

were done in the scope of this Thesis and are presented from Section 4.3 onwards.

The prevalent role of ERα in BC and the continuous search for alternative targeting strategies

motivated us to employ our atomistic graph analysis across the protein. Firstly, we aimed to

elucidate the connectivity and signalling differences between the agonist and antagonist-bound
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conformations of the ligand-binding domain (LBD). The structures were obtained from the

PDB and prepared as described in Appendix A.1.1. It is important to note here that the

structural file of the agonist-bound confirmation (PDB id: 1G50 [227]) contained a fully solved

homodimer, while the antagonist-bound confirmation was deposited as one protein chain (PDB

id: 3ERT [235]) and the second monomer was modelled based on symmetry information in the

.pdb file. As a result, we detect minor differences between residues in the two monomers in the

agonist-bound conformation and hence, provide all results as average between the two chains.

After atomistic graphs were constructed as described in Section 3.1.2, we ran Markov transient

(MT) and bond-to-bond propensity (BBP) analyses sourced from the respective bound ligands.

We chose to source in a symmetrical fashion from both dimer halves to mirror the binding events

that would happen in vivo∗. Details of the used source residues can be found in Appendix A.1.1.

As shown in previous studies [159,161], MT analysis is especially powerful in proteins with catalytic

activity. The MT random walker efficiently highlights atoms and residues, which contribute to

a fast signal propagation and might be involved in allosteric signalling [159]. The propagation

of these random walks can be captured for every Markov time step as shown for selected steps

in the agonist-bound conformation of the ERα LBD in Figure 4.4 and Figure B.2 for the

antagonist-bound structure. When we sourced the MT analysis from the ligands in the ERα

LBD, we did not detect any divergent patterns in the t1/2 times. Instead, we can see a signal

propagation that diffuses uniformly through the graph without highlighting particular residue

areas or paths. As ERα is a receptor protein and hence does not confer enzymatic catalysis,

these observations tie in with what we know about the general use case of MT analysis for

catalytically active proteins of interest [159,161].

Based on these first MT results, we decided to focus on the study of the ERα LBD with the

means of BBP analysis and present these results in the following.

∗To the best of our knowledge, the binding of estrogens and anti-estrogens to ERα has always been described
to happen simultaneously and there are no experimental or computational studies that describe the effect of
one sided binding events.
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Figure 4.4: MT time steps in the ERα LBD when sourced from EST. The ERα
LBD (PDB id: 1G50 [227]) is shown in an all-atom stick representation. Atoms are coloured by
probability (0 - grey to 1 - red) of the random walker being at this node at a given Markov
time step t. Shown are different time steps in the MT analysis, as indicated.

4.2.1 Connectivity towards H12

BBP analysis was sourced from the bound ligands to search for residues that are strongly

connected to the molecules that regulate ERα activity. Figure 4.5 provides an overview of the

results of this first analysis which was previously presented by L. Strömich [202] and hence is only

shortly summarised here. We provide the full data distribution of the residue propensities ΠR

over the distance from the source residues for both agonist and antagonist-bound conformations.

In the case of the agonist-bound conformation we find high propensity connectivities between

the bound EST molecules and the residues of H12 (Fig. 4.5A, C). On a residue level, we find

that primarily hydrophobic amino acids in H12 like leucine and methionine score highly in the

agonist-bound conformation (Fig. 4.5E).

For the antagonist-bound structure on the other hand, bond-to-bond propensities did not have

high values for the connectivity of OHT and H12 (Fig. 4.5B, D). On a single residue level,

all residues that are part of H12 have a low quantile score with the highest one of 0.54 for

LEU544 (Fig. 4.5F) . We need to keep in mind here that the rearrangement of H12 between the

two conformations also leads to a shift in residues that form H12 from 539-547 in the agonist-
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Figure 4.5: BBP analysis across agonist and antagonist-bound structures of ERα
when sourced from binding site ligands. A) and B) Propensity ΠR over distance from
source for each residue in ERα LBD in agonist and antagonist-bound conformations. H12
residues are highlighted for comparison. Coloured by QS 0 - blue to 1 - red. C) and D)
Residue QS mapped onto structures of agonist (PBD id: 1G50 [227]) and antagonist-bound
conformations (PDB id: 3ERT [235]). Ligands are shown as green sticks, and H12 is highlighted
with an orange circle. Highlighted in cyan is the upper part of the protein that contributes to
the dimer interface. E) and F) Detailed sequence for H12 residues coloured by QS. Figure
adapted from L. Strömich [202].

bound conformation to 536-544 in the antagonist-bound conformation. This structural shift

complicates comparing the bond-to-bond propensity results of H12 on the single residue level.

Scoring the whole helix instead (as described in Sec. 3.1.5), allowed us to compare the he-

lices between conformations. In the agonist-bound conformation, H12 has an average QS of

0.59. However, in the antagonist-bound conformation H12 scores with an average QS of 0.26.

These results provided a first indication that bond-to-bond propensities can be a useful tool in
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validating the molecular mechanism of ERα.

The previous work by the author of this Thesis [202] also investigated whether this connectiv-

ity is bi-directional and looked at whether H12 also influences the binding of estrogens and

anti-estrogens. To this end, BBP analysis was sourced from H12 residues in the agonist and

antagonist-bound conformations of the ERα LBD. Figure 4.6 summarises the results of this

comparative analysis. It was found that the binding site ligands are differentially connected to

H12. For the agonist-bound conformation, the bound EST molecules are amongst the highest

scoring residues with a QS of 1.0 (Fig. 4.6A). In the antagonist-bound conformation, on the

other hand, the bound OHT compounds are less connected to H12 and found to have a QS of

0.76. This lowered connectivity of H12 to the bound anti-estrogens in comparison to the bound

estrogens indicates that a bi-directional signal perturbation is at place between the ligands and

H12. Taken together with the results presented above, bond-to-bond propensities successfully

validate the molecular mechanism in the ERα LBD where the ligand binding and subsequent

positioning of H12 is crucial for AF-2 of the protein [225].

4.2.2 Importance of dimer interface connectivity

Lastly, our previously reported studies [202] included observations on the dimer interface of the

ERα LBD. As described above, ERα function is dependent on dimerisation of two identical

monomers into a homodimer [218–220]. When comparing the BBP results in the two conformations

(Fig. 4.5C, D) we detected an area of high QSs in the upper part of the proteins (cyan circle).

These areas located in the upper part of the structures contribute to the dimerisation of the

protein [97] and score highly in both the agonist and antagonist-bound conformations, as shown

in Figure 4.7.

From these first BBP analyses in the ERα LBD we learned that the dimerisation site plays

an important role in the intra-structural connectivity of the protein, which is in line with the

observation that ERα functions as an obligate homodimer [218–220]. Taken together, we found

these first results to validate the molecular mechanism in ERα as described in literature [226].

These results gave us confidence that BBP analysis can be fruitfully applied in the ERα system,
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Figure 4.6: BBP analysis across agonist and antagonist-bound structures of ERα
when sourced from H12. A) and B) Propensity ΠR over distance from source for each
residue in ERα LBD in agonist and antagonist-bound conformations. Ligands are highlighted
for comparison (EST - 17β-estradiol, OHT - 4-hyrdoxytamoxifen). Coloured by QS 0 - blue
to 1 - red. C) and D) Residue QS mapped onto structures of agonist (PBD id: 1G50 [227])
and antagonist-bound conformations (PDB id: 3ERT [235]). Ligand-binding site is highlighted
in yellow. Figure adapted from L. Strömich [202].

and in this Thesis, the methodology was applied in further analyses to reveal in-depth details

about the dimer interface and how it might contribute to resistance in cancer mutants.

4.3 Signal connectivity in the structural features of the

dimer interface

Based on our first observations, which suggested a role of the dimer interface in signalling

connectivity within the ERα LBD, we investigated the dimer residues in more detail. Fig-

ure 4.8A summarises the dimer interface (as defined by PDBePisa [78]) in the agonist and
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Figure 4.7: The dimer interface in ERα is highlighted by BBP analysis sourced
from binding site ligands. A) and B) Residue QS mapped onto structures of agonist
(PBD id: 1G50 [227]) and antagonist-bound conformations (PDB id: 3ERT [235]) viewed from
the top. Ligands are shown as green sticks, and the interface is circled in cyan. Figure adapted
from L. Strömich [202].

antagonist-bound conformations. The dimer interface (orange in Fig. 4.8B, C) is larger in

the agonist-bound conformation with 47/46 residues per monomer∗ vs 2x 38 residues in the

antagonist-bound conformation. Helices 5/6, 8, 9, 10 and 11 contribute to the interface for both

conformations. Appendix A.1.1 contains the definition of the structural features in the interface

and Tables C.1 and C.2 list the interface residues in both conformations. In the agonist-bound

conformation PDBePisa also detects that the C-terminal residues of H12 (HIS547 onwards) are

part of the interface. These residues might aid in the stabilisation of H12 in the agonist-bound

conformation and further strengthen the interface.

We chose to investigate the interface in relation to the bound ligands to determine how ligand

binding is coupled with dimer connectivity. To this end, we sourced BBP analysis from the

EST and OHT molecules in the agonist and antagonist-bound conformations, respectively.

We then determined the average QS of the interface over all residues and only over the residues

that form hydrogen bonds across the interface as determined by PDBePisa [78]. In the agonist-

bound conformation the whole interface scores with an average QS of 0.61, while the residues

involved in hydrogen bonding (n=21) have an average QS of 0.60. In the antagonist-bound
∗The difference here can be explained due to the fully solved structure which amongst others contained two

missing C-terminal residues for chain C.
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Figure 4.8: The ERα LBD dimer interface and BBP QS results in different struc-
tural features. A) An overview of the dimer interface in agonist and antagonist-bound
conformations as determined by PDBePisa [78], residue details can be found in Tables C.1 and
C.2. B) and C) The LDB in agonist (PDB id: 1G50 [227]) and antagonist-bound (PDB id:
3ERT [235]) conformations with the two monomers shown in green and blue and the interface
highlighted in orange. D) QS distribution of all interface residues in the agonist (yellow) and
antagonist-bound (green) conformations. Residues that form hydrogen bonds or salt bridges
are shown as a subcategory of all interface residues (bond-forming). E) QS distribution of all
interface residues split into different structural features in the agonist (yellow) and antagonist-
bound (green) conformations. H - helix, L – loop.

conformation we detect slightly higher average QSs of 0.67 for all residues and 0.76 for the

hydrogen bond-forming ones (n=18). These results indicate that hydrogen bonds play a more

important role in the dimerisation of the antagonist-bound LBD than in the agonist-bound

one.

However, looking at the whole data distribution in Figure 4.8D we found that the residue QSs
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are overall similarly distributed. Hence, we decided to zoom more closely into the interface and

investigate the QS distribution for the individual structural elements, as shown in Figure 4.8E.

It becomes apparent that some helices are more critical in the dimer connectivity than others,

with H8, H10 and H11 being the highest-scoring ones overall.

One step further takes us to the single residue level, where we investigated the highest-scoring

residues as listed in Table 4.1. As can be seen from the colour code, almost all residues are

located on H10 and H11 in both the agonist and antagonist-bound conformation. We propose

targeting these areas might have the highest potential for disrupting ERα activity. This could

be done in two ways: either by targeting the highest scoring residues with a small molecule

inhibitor, thereby disrupting ligand binding, or by introducing a peptide binder onto the high

scoring helices. This latter strategy has indeed been proposed for H10 and 11 residues in work

by Chakraborty et al. [97].

Table 4.1: Top-scoring residues in the ERα dimer interface. Top 10 residues with the
highest QS in BBP analysis when sourced from different elements in the agonist and antagonist-
bound conformations. EST - 17β-estradiol; OHT - 4-hydroxytamoxifen; light red - H10 residues;
orange - H11 residues.

Agonist-bound Antagonist-bound
EST H12 OHT H12

HIS501 B HIS501 B ARG515 A ASP484 B
HIS501 C HIS501 C ASP484 B ILE487 B
THR483 C ILE487 C ASP484 A LEU479 B
LYS481 C MET437 B ARG515 B ILE487 A
ILE487 C ILE487 B ASP480 B LEU479 A
LEU504 C MET522 B ASP480 A ILE510 A
LYS481 B LEU504 C LYS520 B ASP480 B
MET522 C THR483 C LYS520 A THR483 B
THR483 B MET437 C GLN502 A ASP484 A
ILE487 B LEU504 B GLN502 B ASP480 A

The results we presented and discussed above show that the signalling that involves the dimeri-

sation site is not conferred over all residues in the interface but rather over singular critical

residues that can be determined with bond-to-bond propensities. This observation is in line

with how F. Vianello [163] established the applicability of the methodology to explore protein-

protein interaction sites. We propose that a change in these high scoring residues between
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different conformations or ligand binding events could indicate alternate signalling paths in the

protein. We explore this notion further in the following Section, which investigates the binding

of different chemotherapeutics in the ERα LBD cancer mutant L536R.

4.4 Conferring resistance in cancer mutations over the

dimer interface

Many mutations in the LBD of ERα have been described in the BC context and are thought

to confer resistance against chemotherapeutics. The most common ones are located in the

hinge region just before H12 at residues L536,Y537 and D538. We investigated these cancer

mutations and the cellular response to different chemotherapeutics alongside our collaborators.

The experimental work was done by Fui Lai in the group of Simak Ali and provided insights

into the effect of different drugs on cells expressing mutant ERα∗. To investigate the inhibitory

potential of different classes of anti-estrogens, the group established breast cancer cell lines

(MCF-7 Luc cells) carrying an altered ESR1 gene which led to the expression of several ERα

mutants at positions 536, 537 and 538. The cell cultures were then treated with increasing

concentrations of chemotherapeutics over several days and cell growth was monitored. These

experiments allowed to determine the half maximal inhibitory concentration (IC50) of each

anti-estrogen on the respective cell type. By comparing these IC50 values with wild type MCF-

7 Luc cells, the group of Simak Ali established which mutants showed an unexpected resistance

pattern, as summarised in Figure 4.9A for a range of SERMs and SERDs in L536R mutant

cells.

As highlighted in Figure 4.9B, Fui Lai and Simak Ali specifically detected an interesting pattern

in inhibition between different SERDs. For Faslodex and AZD9496 cell growth of L536R ERα

expressing cells was equally as inhibited as in the cells expressing wild type ERα. However, for

AZD9833, GDC-0810 and RAD1901 cell growth was uninhibited compared to the wild type

∗This work was part of a large screen of several cancer mutants. More details can be found in Section A.2
and in Figure B.3
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Figure 4.9: Effect of chemotherapeutics on L536R ERα mutant. A) Two classes
of chemotherapeutics were investigated regarding their inhibitory effects on breast cancer
cells: selective estrogen receptor modulators (SERMs) and selective estrogen receptor de-
graders/downregulators (SERDs). Their half maximal inhibitory concentration (IC50) on wild
type (MCF-7 Luc) cells was measured by increasing the concentration of the shown chemother-
apeutics in the cell culture over 6 days. The IC50 values were also determined for three clones
(CL1 - 3) carrying the L536R ERα mutant. The lower panel shows the subsequent fold differ-
ences in IC50 between WT and mutant clones. Values highlighted in orange show >10-fold
difference from the IC50 value determined for MCF7 cells, with the cells in red identifying
>20-fold difference in sensitivity to the drugs. B) Zoom into the fold changes between mu-
tant clones and WT cells. Highlighted in green is the section that shows that L536R ERα is
sensitive for treatment with some SERDs like AZD9496 but resistant to others like AZD9496.
C) Overview of the binding characteristics of two differentially acting SERDs. Shown is the
binding mode in the ERα LBD for AZD9496 (PBD id: 5ACC [255]) and AZD9833 (PDB id:
6ZOR [254]), and binding site residues are listed. Cells carrying the L536R ERα mutant were
found to be sensitive to inhibition with AZD9496 but resistant to AZD9833, as shown in (A)
and (B). Experimental data was provided by Fui Lai and Simak Ali as described in detail in
Appendix A.2.
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cells suggesting that the cancer mutant L536R confers resistance against these chemotherapeu-

tics. Investigating the underlying molecular mechanism of this differential resistance might aid

in developing future drugs that are robust to cancer mutations.

Based on this experimental data and available structures, we decided to investigate the apparent

difference between SERDs by comparing AZD9496 [251] and AZD9833 [254]. Figure 4.9C describes

the differences between the two drugs. The binding site interactions between the drugs and

the ERα LBD were determined from literature [254,255]. For AZD9496 these are five residues:

L346, D351, E353, R394, L525. For AZD9833 the binding mode is slightly different with only four

contributing residues: D351, E353, R394, V533. Both binding modes also contain a water molecule

that aids in hydrogen bonding contacts between the GLU353 and ARG294 residues. From the

data provided by Fui Lai and Simak Ali, we can deduce that L536R ERα is sensitive towards

inhibition with AZD9496 but shows resistance for treatment with AZD9833.

As there is no structure available for L536R, we mutated the ERα LBD (PDB id: 1G50 [227])

in silico using PyRosetta [263]. In the absence of a bound ligand, we source BBP analysis from

the binding site residues which has been found to be an adequate alternative approach [54].

Using the binding site residues as listed in Figure 4.9C allows us to simulate a binding event

of these drugs to the L536R mutant ERα LBD. Figure 4.10 shows the results of this analysis

where we colour the structures by residues QS. We detect a ”bridge” of high scoring residues

from the ligand-binding sites over the dimer interface for the run sourced from the AZD9833

binding site residues (Fig. 4.10B). This area is less connected in the analysis sourced from the

AZD9496 binding site residues (Fig. 4.10A).

Table 4.2 details which residues are involved in this interface ”bridge” hotspot. We list residues

that are high scoring with a QS >0.95 in the AZD9833 binding site run. Towards the interface,

these residues are all located on H11, where especially ASN519 and LYS520 score much lower

in the AZD9496 binding site sourced analysis. The residues oriented towards the binding site

are located in H5/6, H7 and H8 and the results show PHE425 as the residue with the highest

discrepancy between the AZD9496 analysis and the AZD9833 one.

Given the experimental observations shown in Figure 4.9B we propose the detected interface
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Figure 4.10: BBP analysis of the L536R ERα LBD mutant sourced from two drug
binding sites. The L536R mutation (shown as pink spheres and sticks) was introduced into
the ERα LBD (PDB id: 1G50 [227]). The source residues are shown in green and were chosen as
the binding site residues of AZD9496 (A) and AZD9833 (B). QS results are mapped onto the
structures from 0 - blue to 1 - red. Highlighted in orange is the identified interface ”bridge” as
identified in the AZD9833 run, which is absent in the AZD9496 run. Drug response is indicated
in a green box below.

”bridge” to be involved in L536R ERα resistance against AZD9833 but not AZD9496. The

resistance mechanism here might be based on increased dimer stability. Our analysis further

allows us to highlight single residues that might be of particular interest in modulating this

dimer stability. We propose ASN519, LYS520 and PHE425 as the first target points in overcoming

ongoing resistance in BC tumours that show L536R mutated ERα.
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Table 4.2: Interface ”bridge” residues in L536R ERα LBD. QS of residues with a
QS >0.95 in the BBP analysis sourced from AZD9833 binding site are listed with the equivalent
values in AZD9496 analysis. The structural features in which the residues are located are
indicated. The residues with the largest difference between the two runs are highlighted in
blue.

Source AZD9496 binding site AZD9833 binding site

Towards interface
H11

His516 0.93 0.99
Met517 0.98 0.97
Asn519 0.72 0.99
Lys520 0.73 0.98
Met522 0.95 1

Towards binding site
H5/6, H7, H8

Trp383 0.96 0.99
Arg412 0.91 0.96
Phe425 0.83 1
Asp426 1 0.99

4.5 Conclusions

The work presented here is a continuation of previous studies by the author of this Thesis [202].

One of the primary outcomes of this earlier work, was the validation that our methods can be

used to investigate the LBD of ERα. Bond-to-bond propensities had confirmed the molecular

mechanism of AF-2 of ERα in three parts:

• In the case of the agonist-bound conformation a connectivity between estradiol and H12

was detected which is absent in the antagonist-bound conformation (Fig. 4.5). When

comparing H12 connectivity between the conformations, the results showed that H12 in

the agonist-bound conformation scores more than twice as high as H12 in the antagonist-

bound conformation.

• The analyses sourced from H12 detected a bi-directionality that highlighted the estradiol

residues in the agonist-bound conformation which was less apparent for the tamoxifen

residues in the antagonist-bound conformation (Fig. 4.6).

• A first exploration of the connection between ligand binding and dimer formation was

done to explore the obligatory dimerisation in ERα [226]. To this end, BBP analysis
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detected a connectivity between ligand binding and the dimer interface that was mainly

present in the upper part of the protein (Fig. 4.7).

In this Thesis, we followed up on these preliminary results and characterised and investigated

the dimer interface in more detail. We were interested to see whether we would detect any

differences between the two conformations. The calculated QSs that were obtained from BBP

analysis allowed us to investigate the dimer interface at different resolutions. We zoomed into

the different structural features starting from the whole interface and ultimately onto the single

residue level. In line with what is described in literature [226], we saw that both agonist and

antagonist binding are connected to a strong interface connectivity in the ERα LBD. We found

that overall H10 and H11 score the highest in the dimer interface (Fig. 4.8) and these areas

have been previously studied for peptide inhibitors of the dimerisation process [97,98]. On the

single residue level, we do detect slightly different high scoring residues between agonist and

antagonist-bound conformations (Tbl. 4.1). These residues might serve as targets for selective

small molecule inhibitors against the agonist-bound conformation.

On the other hand, we did not detect any paths of significant fast signalling within the protein in

either conformation when employing Markov transient analysis. The signal, which is modelled

by a random walker on the atomistic protein graph, is rather evenly diffusing away from the

ligands. As ERα is a nuclear hormone receptor that does not have enzymatic activity, these

results tie in with previous use cases of Markov Transients in the group. So far, MT analysis

has been shown to be successful in detecting allosteric sites and signalling pathways primarily

in catalytically active proteins, as is further shown in Chapters 5 and 6.

Lastly, we showed that our methodologies can be fruitfully applied to shed light on the molecular

details of resistance mechanisms. We studied the cancer mutant L536R and found motivation

in the inhibitor patterns detected by experimental work done by our collaborators Fui Lai and

Simak Ali. We propose that the differential effect that certain SERDs have on the L536R ERα

mutant is due to a change in dimer interface connectivities. L536R is resistant to AZD9833,

and our results suggest that is due to dimer stabilisation over residues in the lower part of the

interface (Fig. 4.10). Exploring this avenue further provides prospects for targeting strate-
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gies that disrupt the dimer interface, and hence, overcome acquired resistance against current

therapies.

Following on from here, we demonstrate the application of Markov Transients and bond-to-bond

propensities in conjunction to study a highly relevant protein in the context of COVID-19 in

Chapter 5. By investigating the molecular signalling within the homodimeric main protease

of SARS-CoV-2, we can provide insights into alternative targeting approaches that involve the

dimerisation site as well as putative allosteric hotspots. In Chapter 6, we go one step further

and explore a heterodimeric protein system that is crucial for cell cycle regulation. The cyclin-

dependent kinases 4 and 6 are important drug targets in BC, and their interactions with D-type

cyclins provide a crucial protein interaction that can be exploited in inhibition approaches.



Chapter 5

The main protease of SARS-CoV-2

The work in this Chapter was submitted to the Journal of Molecular Biology

and is available as a preprint with DOI: 10.1101/2020.11.06.369439. Parts of the

work in this Chapter were done by Nan Wu and this is indicated throughout.

This Chapter describes the case study of another homodimeric protein that has implications

for a highly topical disease. The main protease (Mpro) of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) is an important drug target to combat coronavirus disease 2019

(COVID-19). We applied our atomistic graph analysis to study the protease’s molecular mech-

anism which involves the dimer interface and identify putative allosteric hotspots. As Mpro

is a catalytically active protein, we applied both Markov transient (MT) and bond-to-bond

propensity (BBP) analyses.

5.1 A virus causing a global pandemic

Since the end of 2019, the world has been greatly impacted by a novel multi-organ disease

called COVID-19. The ongoing global pandemic has seen over 285 million cases of infection
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and almost 5.5 million deaths by the end of 2021∗. COVID-19 is caused by SARS-CoV-2† which

was first identified in patients with pneumonia in late 2019 in China [264–267].

SARS-CoV-2 belongs to the coronavirus family, members of which are responsible for a wide

range of respiratory tract diseases in humans and animals. Given the close phylogeny amongst

them and their ability to infect animals and humans, the potential for a zoonotic disease event

has been noted before [268]. Two notable coronaviruses that have caused large outbreaks in the

past two decades are severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle

East respiratory syndrome coronavirus (MERS-CoV). The severe acute respiratory syndrome

(SARS) pandemic happened in 2002/2003 and resulted in approximately 8000 cases and 770

deaths‡, [269]. The Middle East respiratory syndrome (MERS) pandemic was primarily ob-

served in 2013-2015 but smaller outbreaks have been continuously reported since [270]. Until

2021, the WHO has recorded roughly 2500 MERS infections and 880 deaths§. Although the

WHO reported their status as a global threat, no vaccine or drug is available against SARS or

MERS [271]. The ongoing global health emergency caused by COVID-19 renewed the interest in

finding therapeutics that target coronaviruses in a safe and efficient manner.

5.1.1 Proteolytic cleavage is essential for viral replication

Coronaviruses belong to the family of RNA viruses with a positive sense, single-stranded RNA

(+ssRNA) genome that is enveloped in a viral capsid. The most prominent feature of the capsid

is the spike protein that sticks out from its surface and prompts the name coronavirus. Figure

5.1 provides an overview of the coronavirus life cycle. The spike proteins bind to receptors on

human cells and allow viruses to enter the cells where the viral genome is released. The +ssRNA

is in the same orientation as human mRNA, and thus, the host cell ribosomes can directly

translate the viral genome into a long polypeptide. After cleavage of the polypeptide into

viral proteins (discussed in more detail below), the RNA-dependent RNA-polymerase (RdRp)
∗Data obtained from the official World Health Organization (WHO) COVID-19 dashboard: covid19.who.int

(Accessed: 31.12.2021)
†The virus was originally named 2019-nCov for 2019 novel coronavirus but was later classified and renamed

SARS-CoV-2 [264].
‡WHO details on SARS: who.int/health-topics/severe-acute-respiratory-syndrome
§WHO details on MERS: who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers

https://covid19.who.int
https://www.who.int/health-topics/severe-acute-respiratory-syndrome
https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers
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complex is translocated into the endoplasmic reticulum (ER). In the next step, the transcription

of viral genomic and subgenomic RNA is facilitated by the RdRp complex. The subgenomic

Figure 5.1: The coronavirus life cycle. A) The spike protein (S) on the virus surface allows
binding to receptors on a human cell. B) Upon entry to the cell, the viral genome, which comes
as a +sense RNA molecule, is translated into a polypeptide by host cell ribosomes. C) This
polypeptide is cleaved into viral proteins by two viral proteases (green highlight): papain-like
protease, and the main protease which is the focus of this Chapter. D) The RdRp complex
is assembled from viral proteins and locates into the ER. The complex is then involved in the
transcription of viral genomic and subgenomic RNA. E) The subgenomic RNA gets translated
into structural and accessory proteins. M - membrane glycoprotein; E - envelope protein; S -
spike protein. F) During assembly, the viral RNA genome is encapsulated within structural
proteins. G) The mature viruses are released from the host cell via exocytosis. Adapted from
“Life Cycle of Coronavirus”, by BioRender.com (2022)∗.

RNA is subsequently translated into structural and accessory proteins that are needed for the

assembly of new virions. Once enough viral material is produced, the assembly step encapsulates
§Retrieved from app.biorender.com/biorender-templates

https://app.biorender.com/biorender-templates
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the viral genomic RNA stabilised by nucleocapsid phosphoproteins. The outer virus shell is

composed of three structural proteins: the spike protein, the envelope protein and the membrane

glycoprotein. Fully assembled viruses are then released from the host cell via exocytosis [272].

One of the crucial steps of this viral replication process is the initial cleavage of the polyprotein

encoded by the viral genome into functional proteins (Figure 5.1 green box). The main protease

(also known as 3CL protease) cuts the polyproteins at 11 cleavage points, making it an essential

protein for viral replication. Figure 5.2 shows the structure of the SARS-CoV-2 Mpro (PDB id:

6Y2E [5]), which follows a chymotrypsin-like fold for domains I and II and has an extra domain

III that is involved in regulating dimerisation [273]. The active centre for catalysis consist of

a histidine and a cysteine residue at positions 41 and 145, respectively. This catalytic dyad

can be extended to a triad over a catalytically important water molecule (Fig. 5.2B). When

research activity around SARS-CoV-2 picked up in the first quarter of 2020, structures for the

Mpro were amongst the first ones to be deposited. It quickly became apparent that the SARS-

CoV-2 Mpro is closely related to the earlier isoform of SARS-CoV. The proteins share a 96 %

sequence identity as well as a close structural alignment [5] (Fig. 5.2C,E), and most residues

involved in catalysis, substrate recognition and dimerisation are conserved [274]. Hence, many

of the insights that were gained in the structure of the SARS-CoV Mpro can be transferred into

the context of the new coronavirus.

Learnings from SARS-CoV Mpro

The first structure of the SARS-CoV Mpro was deposited in 2003 (PDB id: 1UJ1 [275])∗, and

the protein has been studied since. The active site consists of HIS41 and CYS145†, which are

needed for proteolytic cleavage. The substrate binding site, which is located between domains

I and II, facilitates peptide binding for which selectivity for the cleavage pattern is achieved

over sub-pockets. One of these sub-pockets is formed by the interaction of GLU166 with the

N-terminal residue SER1. The interaction of the binding site with the N-terminal region, the

so-called N-finger (residues 1-8), is facilitated by positioning of the N-finger between the dimer
∗The first general coronavirus Mpro structure was released just a year earlier for the transmissible gastroen-

teritis (corona)virus [276].
†The residue numbering is consistent between the SARS-CoV and SARS-CoV-2 Mpro.
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Figure 5.2: The structure of the SARS-CoV-2 Mpro dimer. A) The Mpro dimer (PDB
id: 6Y2E [5]) with the active site residues on both monomers shown as sticks and spheres. One
monomer is shown more transparent to visualise how the monomers come together to form a
dimer. Colours are according to domain: Domain I residues 10 to 99 - dark green, domain II
residues 100 to 182 - dark blue, domain III residues 198 to 303 - orange, loops in light green.
B) Zoom-in of the active site with histidine 41 and cysteine 145 forming a catalytic dyad which
is extended to a triad by a water molecule nearby. C) Structural alignment of SARS-CoV (red;
PDB id: 2DUC [277]) and SARS-CoV-2 (blue) with two residues that are mutated between the
viruses highlighted. D) Important structural features are highlighted on the structure of SARS-
CoV-2 Mpro: green - N-finger (residue 1-8); orange - ASN214; red - GLU166. E) Structural details
and root mean square deviation (RMSD) as calculated in PyMol [191]. Adapted from Strömich
et al. [55].
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halves [278], as shown in Figure 5.2D. This positioning explains the importance of dimer forma-

tion in achieving Mpro activity [275,279]. Dimer formation is facilitated in large parts over the

extra domain (domain III, orange in Fig. 5.2A) and residues in this domain have been found

to regulate dimerisation and activity of Mpro [273,280]. Chou et al. [280] highlighted residues ARG4

and GLU290 as forming an essential salt bridge that stabilises the dimer interface. Shi and

Song [281] extended the list of functionally important residues in mutational studies to include

the regions 288-290, 298-300 and ASN214, of which mutations to alanine all decreased Mpro

activity. ASN214 was also subject of investigation to determine its crucial role in achieving

Mpro activity by interacting with N-finger residues [282] (Fig. 5.2D).

Another important region at the interface contains positions 284/285/286 which have been

proposed to play a role in conferring dimerisation enhanced activity when mutated to ala-

nine [281,283]. Notably, two of these positions are mutated to smaller residues from SARS-CoV

to SARS-COV-2: a threonine to an alanine at position 285 and an isoleucine to a leucine at

position 286 (Fig. 5.2C). These smaller residues lead to a closer dimer packing [5]. However,

contrary to what was found in alanisation studies of these positions in SARS-CoV [281,283], the

SARS-CoV-2 Mpro does not show an increased activity [5].

5.1.2 Inhibiting Mpro to tackle COVID-19

The main protease of SARS-CoV-2 is one of the most prominent drug targets in the fight against

COVID-19. Indeed, the first United States Food and Drug Administration (FDA) approved

SARS-CoV-2 specific oral medication against COVID-19 targets Mpro∗. Developed by Pfizer

under the trade name Paxlovid, nirmatrelvir binds covalently to the active site residue CYS145

of the SARS-CoV-2 Mpro [284]. Furthermore, Mpro is an attractive drug target due to its unique

substrate cleavage pattern resulting in less side effects [285]. Given the acute motivation to find

inhibitors against the SARS-CoV-2 Mpro, we have seen many studies, which often incorporated

computational methodologies, aiming to tackle the active site (reviewed in Yang and Yang [286]

and Macip et al. [287]).
∗The FDA approval was announced on 22.12.2021: www.fda.gov/media/155049/download

https://www.fda.gov/media/155049/download
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New targeting approaches outside of the active site

In this work, we want to focus on alternative targeting approaches of the SARS-CoV-2 Mpro.

We hope to provide an additional perspective to drug design strategies, allowing for more

specificity and robustness to resistance, while widening the chemical search space.

Allostery in the previous SARS-CoV Mpro has been described mainly in the context of domain

III impacting dimerisation and subsequently the catalytic activity [273,281–283] as detailed above.

Using a computational approach, Kidera et al. [288] observed similar allosteric behaviour between

domain III and catalytic activity in SARS-CoV-2 in a structural ensemble study. Work by an-

other group [289,290] further studied the long-range impact of distal residues onto the dimerisation

process and on SARS-CoV Mpro activity. However, to the best of our knowledge there is no

description of an allosteric site in the SARS-CoV Mpro.

With the recent surge in research focusing on the SARS-CoV-2 Mpro, more attention has been

given to distal regions of the protein that might impact proteolytic activity. Some distal regions

have been identified in large-scale fragment and drug screens with crystallographic approaches.

El-baba et al. [291] made use of an extensive data set from an X-ray crystallographic fragment

screen that was published in the first quarter of 2020 [292]. They focused on binding events

distal from the active site and used mass spectrometry based kinetic essay to confirm allosteric

inhibition of Mpro. They chose candidate compounds from the fragment screen which were

readily available and binding non-covalently in distance from the active site. The impact of

these compounds was investigated in two dimensions: disruption of the proteolytic activity and

perturbation of the equilibrium between monomeric and dimeric states of the apo protein. One

of the fragments they found to be allosterically active was located in the dimer interface close to

the N-finger residues MET6 and PHE8. Their results suggested that the fragment could work

in two ways: by disrupting dimerisation or by impacting activity over interactions with the

N-finger [291]. In another recent fragment-based screen, which used nuclear magnetic resonance

(NMR) spectroscopy, Cantrelle et al. [293] also identified a binding event at the dimer interface,

which they confirmed to resemble the binding pose described by El-baba et al. [291].

Another study that used a crystallographic screening approach was done by Günther et al. [294].
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The authors used a chemically more complex library of drug compounds to give a more refined

insight into Mpro targetability. They identified two allosteric sites, one directly adjacent to the

substrate-binding site, but the binding of 5 compound hits that they identified is oriented away

from the active site residues towards the dimer interface. The second allosteric site is located

between domains II and III, and binding here leads to a conformational change of ASP153 and

TYR154. They further validated the antiviral potential of the proposed allosteric compounds in

cell-based assays [294]. For this purpose, the authors used Vero E6 cells and infected them with

SARS-CoV-2. They then measured the load of viral particles to determine whether a compound

could disrupt viral replication. They found that one of the compounds binding to allosteric

site 1 (pelitinib) had a high antiviral activity, while the compound binding to allosteric site 2

(AT7519) was moderately active. Independently, Du et al. [295] proposed allosteric inhibition

of the SARS-CoV-2 Mpro with repurposed drugs and used docking to model a binding pose

between domain II and III.

Computational approaches to study allosteric sites in SARS-CoV-2 Mpro

Due to the relative novelty of the field, experimental literature on allosteric regions and regu-

lation in the SARS-CoV-2 Mpro is still limited. But that has been more than compensated by

the wealth of computational studies aiming at providing insights into allosteric behaviours of

Mpro. As described in the previous Section, preliminary studies have detected allosteric sites

are primarily located between domains II and III or on the dimer interface. The methodologies

used to identify allosteric sites range from molecular dynamics (MD) [296–299] to normal modes

in elastic network models [300,301]. Furthermore, repurposing studies using molecular docking

and subsequent MD on these allosteric regions have been published [302–309]. However, the surge

of docking approaches, in particular, should be taken with a grain of salt as they were recently

found unreliable in many studies against the SARS-CoV-2 Mpro [62].

Objective

This Chapter demonstrates the application of our methodologies to a topical study case in the

context of a highly relevant disease. As the main protease is essential for replication of SARS-
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CoV-2, a detailed understanding of intra-protein connectivity might shed light on new targeting

approaches. Given the catalytic activity of coronavirus proteases, we also see grounds to apply

Markov Transients in addition to bond-to-bond propensities to study the protein structure.

Similar to what was shown in Chapter 4, we explored the interface connectivities in the obligate

homodimeric protease. We built upon the knowledge provided by studies of the earlier SARS-

CoV protein isoform and focus on mutated residues that impact the dimerisation. We aimed

to provide insights into the differences between the two isoforms and how these differences are

related to the dimer interface.

Furthermore, we demonstrated another feature of our methodologies by exploring allosteric

signalling in the SARS-CoV-2 Mpro. Exploiting allosteric behaviours is a valuable alternative

drug targeting approach as discussed in Section 1.3.1, and we decided to elucidate these concepts

in the setting of a viral protease. This approach is in line with work done by our group in various

study cases and allosteric benchmarking sets over the years [51,54,149,159,161,162]. By applying BBP

and MT analyses on Mpro we aimed to identify allosteric sites that allow modulation of the

proteolytic activity and could be a strategy for a drug against COVID-19.

5.2 Insights into the molecular mechanism of the SARS-

CoV-2 Mpro dimer

We chose to investigate the apo form of the SARS-CoV-2 Mpro to get an idea of the molecular

mechanisms of the protein that are intrinsically encoded in the native structure. Mpro is a

functionally obligate dimer, and thus available structures are of the protein in dimeric form, as

shown in Figure 5.2A. For the study of the SARS-CoV-2 Mpro, we considered one of the first

solved structures in apo form, which was deposited in March 2020 with the PDB id 6Y2E [5]

at a high resolution of 1.75 Å. The dimer was modelled using the symmetry information in the

.pdb file from a monomeric protein chain. Further into this Chapter we also present results on

the apo form of the SARS-CoV Mpro for which the PDB structure 2DUC [277] with a resolution
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of 1.70 Å was chosen. This entry contained the fully solved dimeric protein which resulted in

slight structural differences between the dimer halves and all results presented here are of the

average between the two chains. For further details on how the PDB structures were processed,

see Appendix A.1.2.

In a first explorative step, we sourced our analysis from the active site residues HIS41 and

CYS145 in both dimer halves (Fig. 5.2B). Bond-to-bond propensities then allow us to find

areas of the protein that are strongly coupled to the active site and might provide starting

points for regulation of Mpro. Figure 5.3 summarises the BBP analysis results.

We identified two main areas of interest, by investigating residues with a high residue QS. The

first protein area is located towards the back of the protein with respect to the active site and

stretches over domains I and II (Fig. 5.3A). With a QS of 0.98 or above, LYS100, TYR101 and

PHE103 are especially high scoring residues. We discuss this highly connected area in more

detail in the following Sections.

The second area showing high scoring residues is located at the dimer interface and contains

residues from both monomers. SER1 and ARG4 from one monomer and HIS172 and GLU290

from the other monomer are scoring highly with a QS of 0.97. SER1 and HIS172, as well as ARG4

and GLU290, form interface bridges that are important for the catalytic activity of Mpro [280].

SER1 and ARG4 are further part of the N-finger, which is packed between the dimer halves

and contributes to the peptide binding area [276].

These first results indicated that the dimer interface was picked up as an area of interest for

the activity of the SARS-CoV-2 Mpro with our methodologies. We found further indications for

the importance of the dimerisation interface by investigating mutations between SARS-CoV

and SARS-CoV-2, as described below.
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Figure 5.3: BBP analysis of Mpro sourced from active site residues. A) and B)
Residue QS from BBP analysis mapped onto the structure of SARS-CoV-2 Mpro (PDB id:
6Y2E [5]) in two orientations. Source residues shown in green, and high scoring residues (QS >
0.95) shown as sticks. Two areas of interest were identified for which residues are indicated.
C) Residue wise data distribution of BBP over distance from the source. The same residues
are indicated. Adapted from Strömich et al. [55].
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5.3 The dimer interface under the regulation of muta-

tions

SARS-CoV is the coronavirus that was responsible for the 2003 SARS pandemic and has been

studied since. At the beginning of the pandemic in early 2020, drawing on the knowledge

that was gathered around structures of SARS-CoV Mpro was a valuable approach as only few

structures were solved for the SARS-CoV-2 isoform. The two proteins are also closely related

with 96 % sequence similarity [5] and close structural alignment (RMSD of 0.58 Å) as shown

in Figure 5.2C and E. Taken together, the conserved sequence and structure draw particular

attention to residues that are mutated between the isoforms as they might exhibit functional

relevance. Several of these mutations are located at the dimer interface and have been picked

up as high scoring in the BBP analysis described above. ALA285 (QS: 0.77) and LEU286 (QS:

0.77) are two residues of interest as they have been described to be responsible for closer dimer

packing [5]. The equivalent residues in SARS-CoV (THR285 and ILE286) have also been shown

to have an impact on catalytic activity when mutated alongside position 284 [283].

Given the importance of positions 285 and 286 and their mutational change from SARS-CoV to

SARS-CoV-2, we chose to investigate their impact on the dimer interface in Mpro. The dimer

interface, as shown in Figures 5.4A, B, was defined with PDBePisa [78] and was found to be

smaller in SARS-CoV (41 residues per monomer, Tbl. C.4) than in SARS-CoV-2 (52 residues

per monomer, Tbl. C.3). To understand the impact of the mutated residues, we ran BBP

analysis from positions 285/286 in both dimer halves. Figures 5.4C, D show the residue QS

results mapped onto the structures and provide a first comparison between the two structures.

Although, we detect large overlaps of the hot and cold scoring regions, we find differences in

the dimer interface connectivities.

Similar to what we found in Chapter 4, we do not detect a difference on the whole dimer

interface level (Fig. B.5) but instead find shifts in high scoring residues. As shown in Figure

5.4E we detect a higher proportion of dimer interface residues amongst subsets of the highest

scoring residues for SARS-CoV-2 than for SARS-CoV. When looking at the top 100 highest
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Figure 5.4: Differences in dimer interface between SARS-CoV-2 and SARS-CoV.
A) and B) Dimer interface (orange) is formed between two identical monomers (green and
blue) in the structures of SARS-CoV-2 (PDB id: 6Y2E [5]) and SARS-CoV (PDB id: 2DUC [277]).
Dimer interfaces were calculated with PDBePisa [78]. C) and D) BBP analyses sourced from
positions 285 and 286, which are mutated between the two viruses. Structures are coloured
by residue quantile score; source residues are shown as green spheres and high scoring residues
(QS >0.95) as sticks. E) Number of interface residues in the top 10 to top 100 highest scoring
residues in SARS-CoV-2 (orange) and SARS-CoV (green). Residues that form a bond in the
interface are a subset of all interface residues.

scoring residues, we find 42 are interface residues in SARS-CoV-2, while in the SARS-CoV

Mpro only 30 interface residues are amongst the top 100. We distinguish between residues

involved in forming bonds (hydrogen bonds or salt bridges) and ones that are not as defined by
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PDBePisa [78]. Our results suggest that the smaller residues ALA and LEU at position 285/286

for SARS-CoV-2 in contrast to THR and ILE for SARS-CoV, lead to a strengthened interface

connectivity. These smaller residues were proposed to lead to a higher activity of the protease

in mutational studies of the SARS-CoV Mpro [283]. However, a comparison of the wild type

protein activity between SARS-CoV-2 and SARS-CoV did not confirm a heightened activity in

the new viral protease [5].

In line with what we proposed in Chapter 4, our methodologies allow us to pick out particularly

high scoring residues in the interface that might be of importance. Table 5.1 lists the top 10

scoring residues in the BBP analysis sourced from residues 285/286. We find that for SARS-

CoV-2 and SARS-CoV, some of the N-finger residues appear in this list: SER1, PHE3 and

ARG4. These residues are critical in modulating the catalytic activity, as their interface packing

brings them into contact with GLU166 in the opposite monomer, which is also picked up as high

scoring in our results. The interaction between the N-finger (especially SER1) and GLU166

leads to the formation of an extended binding pocket for substrate recognition [276], and this

connection was revealed for both SARS-CoV-2 as well as SARS-CoV with our methodologies.

Table 5.1: Top scoring residues in the Mpro dimer interface. Top 10 residues with
the highest QS in BBP analysis when sourced from residues 285/286 in the SARS-CoV-2 and
SARS-CoV Mpro. Orange - N-finger residues.

SARS-CoV-2 SARS-CoV
ARG4 B GLU166 A
ARG4 A PHE305 A
SER1 A PRO122 B
SER1 B SER123 A

PRO122 B ARG4 B
PRO122 A PHE3 B
GLN306 B SER1 B
PHE3 A SER10 B
PHE3 B GLN299 B

GLU166 A VAL125 B

Another residue that has been identified in SARS-CoV to be of high importance for the catalytic

machinery of Mpro is ASN214 [282]. The MD studies by Shi et al. [282] showed that the catalytic

impact of ASN214 is conferred over the N-finger residues. We pick up ASN214 as high scoring

in SARS-CoV-2 (QS: 0.85) as well as SARS-CoV (QS: 0.73) and further identified the N-finger
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as important for connectivity in the dimer interface as shown in Table 5.1.

Taken together, our results suggest that the dimer interface plays a vital role in conferring Mpro

activity. Our analysis sourced from the active site residues picks up many of the residues in

the dimer interface that have been described before to play a role in modulating the catalytic

activity. However, from the opposite direction when sourcing from interface residues ALA285

and LEU286, we did not detect an immediate link to the active site residues HIS41 (QS = 0.22)

and CYS145 (QS = 0.35). We instead describe a two-step connectivity from the dimer interface

residues 285/286 over the N-finger residues towards the extended peptide-binding pocket that

seems to be at play here. Although we see a strengthened dimer interface connectivity in

SARS-CoV-2, we propose the overall activation dynamics that have been studied at length in

SARS-CoV [281–283] are transferable onto the SARS-CoV-2 Mpro.

5.4 Identification and scoring of putative allosteric sites

The previous Section discussed the connectivity towards and within the dimerisation interface

and bond-to-bond propensities revealed important residues that are involved in conferring the

catalytic activity of the SARS-CoV-2 Mpro. Targeting these residues or disrupting the dimerisa-

tion process might be fruitful targeting strategies for drugs against COVID-19. Another avenue

of drug targeting is the modulation of protein activity over binding at allosteric sites. We have

shown the application of our methodologies for the purpose of allosteric site prediction in many

study systems [54,149,159,161] and established a web server to allow the study of allosteric behaviour

by the community [51]. We predict allosteric hotspots in the main protease of SARS-CoV-2 with

BBP and MT analyses.
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5.4.1 Bond-to-bond propensities identify a hotspot in the dimer in-

terface

In Section 5.2, we identified two main areas of interest which contain high scoring residues.

Investigating these areas in more detail and taking into consideration the surface exposure

allowed us to identify allosteric hotspots. We further applied a scoring step with a structural

bootstrap as described in Section 3.1.5 to assess the statistical significance of identified hotspots.

This first identification step and hotspot scoring was done by Nan Wu. Downstream scoring

steps of the active site and all visualisations, were performed by the author of this work.

Allosteric hotspot 1 is located at the back of the monomer in relation to the active site and

contains residues from domains I and II as shown in Figure 5.5A. Hotspot 1 (highlighted in

yellow in the figure) contains nine residues that are listed in Table 5.2 with corresponding QS.

We also list the solvent-accessible surface area (SASA) of each residue to provide an indication

of their exposure and targetability. Overall, hotspot 1 has an average QS of 0.97, which is

significantly higher than an average QS of 0.53 (95 % CI: [0.53-0.54]) that a random site of the

same size would have.

Allosteric hotspot 2 stretches over both monomers as it contains residues that are located

at the dimer interface (shown in pink, Fig. 5.5B). Amongst other residues (listed in Tbl. 5.2),

hotspot 2 contains ARG4 in contact with GLU290 of the respective second monomer. The salt

bridge that is formed between these residues is important for the dimerisation and activity of

Mpro [280]. Hotspot 2 has an average QS of 0.96 in comparison to a random site score of 0.52 for

a site of the same size (95 % CI: [0.51-0.53]).

We further investigated whether we detect a bi-directionality in connectivity between these

identified hotspots and the active site. For this purpose, we performed BBP analyses when

sourced from the hotspot residues. When sourcing the analysis from the hotspot 1 residues,

we detect an average QS of 0.64 for the active site∗. This is above a random site score of 0.47

∗As a scoring of only two residues provides a very narrow picture of the connectivity, we used a definition
as described in Section A.1.2 for the active site for all site scoring analysis.
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Figure 5.5: Allosteric hotspots in SARS-CoV-2 Mpro identified with BBP analysis.
Surface representation of SARS-CoV-2 Mpro (PDB id: 6Y2E [5]) in two orientations and coloured
by QS from BBP analysis sourced from active site residues (green). A) Hotspot 1 (yellow) is
located on the back of the monomer in relation to the active site in domain I and II. B) Hotspot
2 (pink) is located in the dimer interface bridging both monomers. We provide a zoom into the
hotspots with a transparent surface to highlight important residues for which full details are
given in Table 5.2. Adapted from Strömich et al. [55].

(95 % CI: [0.47-0.48]) and lets us conclude that the bi-directional coupling between hotspot 1

and the active site is significant.

The same analysis for hotspot 2 results in an average QS of 0.49 for the active site which is

only slightly above a random site score of 0.48 (95 % CI: [0.47-0.48]). We conclude that there

is no straight coupling between hotspot 2 in the dimer interface and the active site. This is

conclusive with our findings about the dimer interface reported above, where we show that

the coupling between the interface and the active site is conferred over the N-finger residues.

Hence, we think that hotspot 2 might still be an interesting target point for drug design as it

provides the possibility to indirectly impact the active site catalysis. Furthermore, this hotspot

might provide scope for disrupting the dimerisation, which is essential for Mpro activity.
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Table 5.2: Allosteric hotspots in Mpro as determined with BBP analysis. QSs are
given for each residue and solvent-accessible surface area (SASA) was determined in PyMol [191].

Hotspot Residue QS SASA [Å2]

Hotspot 1

LEU30 0.98 0.00
LEU32 1.00 0.00
ASP33 0.96 137.86
ASN95 0.92 13.79
THR98 0.92 72.01
LYS100 1.00 293.05
TYR101 1.00 118.61
PHE103 0.98 128.62
PHE159 1.00 0.00

Hotspot 2

ARG4 0.97 68.49
ARG131 0.99 36.50
ASP197 0.89 101.57
THR199 0.93 65.26
ASP289 0.98 27.98
GLU290 0.97 25.86

5.4.2 Markov transient analysis identifies two more hotspots

Motivated by the catalytic activity in Mpro and the complex communication patterns that we

detected between the active site, the dimer interface and the N-finger, we chose to apply Markov

Transient analysis to the structure of the SARS-CoV-2 Mpro. We sourced our analysis from the

active site residues HIS41 and CYS145 to obtain complementary insights to the BBP analysis

discussed above.

Figure 5.6 summarises the results that were obtained by MT analysis. Markov Transients

highlighted primarily one area of interest, which stretches over domains I and II in the back of

the monomer with respect to the active site (Figure 5.6A). In domain I, we detect VAL35 and

ASP92 with a QS of 0.95 as the highest scoring residues. We find CYS156 with a QS of 1.0 and

ASP153 with a QS of 0.98 amongst the top scoring residues for domain II.

When investigating this large area in more detail, we identified two allosteric hotspots that are

shown in Figure 5.6C.

Allosteric hotspot 3 is shown in cyan in Figure 5.6C is located on the back of the monomer
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Figure 5.6: MT analysis of Mpro sourced from active site residues and identification
of allosteric hotspots. A) Residue QS from MT analysis mapped onto the structure of SARS-
CoV-2 Mpro (PDB id: 6Y2E [5]). Source residues shown in green, and high scoring residues (QS
> 0.95) shown as sticks. Two hotspot areas of interest were identified for which residues are
indicated. B) Residue wise logarithmic data distribution of t1/2 over distance from the source.
The same residues are indicated. C) Surface representation of the structure coloured by atom
QS. Both hotspots are located on the back of the monomer in relation to the active site. Hotspot
3 (cyan) is located in domain II. Hotspot 4 (orange) is located in domain I. We provide a zoom
into the hotspots with a transparent surface to highlight important residues for which full
details are given in Table 5.3. Adapted from Strömich et al. [55].

with respect to the active site and is formed exclusively by domain II residues as listed in Table

5.3. Interestingly, the highest scoring residue at position 156 is a cysteine which could be a

valuable target point for covalent drug binding. Overall, hotspot 3 has an average QS of 0.87,

significantly higher than a random site score of 0.50 (95 % CI: [0.49-0.50]).

Allosteric hotspot 4 is formed by 11 residues in domain I and is highlighted in orange in

Figure 5.6C. Table 5.3 lists all residues in hotspot 4, which average to a site QS of 0.87. Again,

this hotspot scores significantly higher than a random site of the same size would with a QS of
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0.49 (95 % CI: [0.49-0.50]).

Table 5.3: Allosteric hotspots in Mpro as determined with MT analysis. QSs are
given for each residue and solvent-accessible surface area (SASA) was determined in PyMol [191].
Highlighted in blue is a cysteine residue that can be targeted for covalent binding.

Hotspot Residue QS SASA [Å2]

Hotspot 3

LYS100 0.89 145.96
LYS102 0.75 113.04
ASN151 0.97 31.34
ILE152 0.93 5.95
ASP153 0.98 113.04
TYR154 0.59 132.10
ASP155 0.92 25.18
CYS156 1.00 24.76
VAL157 0.76 0.00
SER158 0.89 15.97

Hotspot 4

ASP33 0.93 68.93
ASP34 0.93 45.79
VAL35 0.95 19.56
TYR37 0.85 21.65
ARG76 0.83 170.23
ILE78 0.85 93.58
LYS90 0.82 89.29
VAL91 0.64 0.71
ASP92 0.95 80.04
THR93 0.87 60.17
ALA94 0.90 63.23

For hotspot 3 and 4 we follow the same reverse approach as we did for hotspot 1 and 2 and

source an MT analysis from the hotspot residues. The data we obtain from these runs is

subsequently used to score the active site to investigate bi-directional connectivity. When we

source MT analysis at hotspot 3, we obtain an active site score of 0.66, which is above a random

site score of 0.53 (95 % CI: [0.52-0.53]). These results indicate a reciprocal connectivity between

hotspot 3 and the extended active site (defined in Sec. A.1.2). In the case of hotspot 4 as the

source, the active site scores with an average QS of 0.52, almost the same as a random site

score of 0.50 (95% CI: [0.50-0.51]). We follow that there is no immediate link between hotspot

4 and the active site. However, previous studies in multimeric proteins by members of our

group [162,163] suggest that there might be another dynamic or structural element at work that

is yet to be uncovered.
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Although studied for a much longer time, to the best of our knowledge there have been no

reports of allosteric sites in the Mpro of SARS-CoV. Hence, we chose to cross examine our

findings in the structure of the SARS-CoV Mpro. Apart from the differences discussed in the

context of the dimer interface in Section 5.3, we do not detect major shifts in the overall

connectivity patterns found by BBP and MT analyses. Indeed, the detected allosteric hotspots

seem to be consistent between the two isoforms, as shown in Tables C.5 and C.6 for all hotspot

residues and as a visual comparison in Figure B.4. These results provide preliminary indications

that these identified hotspots might find applications in more than one disease caused by

coronaviruses.

5.4.3 Indications for hotspot targetability

The identified allosteric hotspots might provide valuable starting points to develop drugs for the

treatment of COVID-19. We take our results one step further and try to provide first insights

into the targetability of the found putative allosteric sites. To this end, we use data produced

in the first half of 2020 by the Diamond Light Source in Oxford∗. The project produced an

extensive PDB data set of small fragments bound to Mpro and we made use of this structural

data set as described below. We further cross-check our results with recent studies of the

SARS-CoV-2 Mpro that found indications of allosteric sites in crystallographic drug screens [294]

and mass spectrometry activity experiments [291].

The Diamond Light Source X-ray crystallographic fragment screen led to the deposition of 96

PDB structures with small fragments bound to the SARS-CoV-2 Mpro [292]. Out of these 96

fragments, 48 were covalently bound to the active site, and 23 were non-covalent active site

binders. However, for this work we are more interested in fragments that bind distal from the

active site. Nan Wu identified 25 of such distal binding hits. Subsequently, these were further

narrowed down to 15 fragments with atoms within 4 Å of any of the identified hotspots. Figure

5.7 provides an overview of where these fragments bind relative to the identified hotspots. To

model the effect of a binding event at our identified hotspots, we use the structures of Mpro

∗The main protease project at the Diamond Light Source: www.diamond.ac.uk/covid-19/for-scientists/
Main-protease-structure-and-XChem.html

https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.html
https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.html
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bound to relevant small fragments as a proxy. We then sourced BBP and MT analyses from

the small fragments and evaluated their connectivity towards the active site.

Figure 5.7: Fragments in proximity to identified allosteric hotspots. Close-up of the 4
hotspots with the colour code as in the figures above: yellow - hotspot 1, pink - hotspot 2, cyan -
hotspot 3, orange - hotspot 4. Compounds from the X-ray crystallographic fragment screen [292]

within 4 Åof the hotspots are shown in different colours and their PDB ids are indicated.

Table 5.4 presents the scoring of the active site in BBP and MT analyses sourced from each

small fragment as indicated with their respective PDB id. We also indicate which fragment

is in proximity to which hotspot and provide a random site score for each scoring to allow a

significance assessment. The active site scores significantly higher than a random site would

for several fragments. We identified the fragment with the PDB id 5RE8 to be of particular

interest as it shows a high connectivity to the active site in both BBP and MT analyses. This

fragment is bound in proximity to hotspots 1 and 4 and indicates that this extended region has

an allosteric link to the active site.

El-baba et al. [291] took the same X-ray crystallographic fragment screen data as a basis for

mass spectrometry experiments with distal binding fragments, and their results provide further

support for our analysis. One result they reported is for fragment 5RGJ, which they found to

slow substrate turnover rates of Mpro. This fragment binds close to hotspot 1 (yellow in Fig.

5.7) and is found to have a significant connectivity to the active site in both BBP and MT

analysis (Tbl. 5.4).
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Table 5.4: Scoring of the active site when BBP and MT analyses are sourced
from small fragments bound to Mpro. Small fragments identified to bind close (<4 Å) to
identified hotspots are listed with their PDB id [292]. Colours for hotspots are indicated as used
in the plots above. Highlighted in orange are fragments mentioned in the text. Active site score
pR,active site as defined in Eq. 3.11, random site score ⟨pR,surr⟩E as in Eq. 3.12.

Source BBP
pR,active site

BBP ⟨pR,surr⟩E
[95 % CI]

MT
pR,active site

MT ⟨pR,surr⟩E
[95 % CI]

5RED 1 0.63 0.49 [0.48, 0.49] 0.65 0.54 [0.54, 0.55]
5REI 1 0.73 0.48 [0.47, 0.49] 0.57 0.56 [0.55, 0.56]
5RGJ 1 0.65 0.46 [0.46, 0.47] 0.65 0.53 [0.53, 0.54]
5RGR 1 0.67 0.49 [0.48, 0.50] 0.67 0.54 [0.54, 0.55]
5RF5 1 0.65 0.48 [0.47, 0.49] 0.62 0.54 [0.53, 0.54]
5RF0 2 0.44 0.52 [0.51, 0.53] 0.56 0.55 [0.54, 0.56]
5RGQ 2 0.35 0.49 [0.48, 0.50] 0.52 0.52 [0.51, 0.52]
5RE5 4 0.40 0.49 [0.48, 0.49] 0.51 0.53 [0.53, 0.54]
5RE7 4 0.53 0.45 [0.44, 0.46] 0.58 0.50 [0.49, 0.51]
5RFC 4 0.42 0.48 [0.47, 0.48] 0.49 0.52 [0.52, 0.53]
5RGG 4 0.24 0.51 [0.50, 0.52] 0.41 0.53 [0.53, 0.54]
5RF9 1 3 0.69 0.50 [0.49, 0.51] 0.69 0.54 [0.53, 0.54]
5RE8 1 4 0.70 0.47 [0.46, 0.48] 0.74 0.50 [0.49, 0.51]
5RF4 1 4 0.64 0.45 [0.45, 0.46] 0.67 0.51 [0.50, 0.51]
5RFD 1 4 0.64 0.47 [0.46, 0.47] 0.58 0.52 [0.52, 0.53]

Furthermore, El-baba et al. [291] found that one of the dimer interface binding fragments (PDB

id: 5RFA [292]) destabilises dimerisation and can act as an inhibitor of SARS-CoV-2 Mpro.

Fragment 5RFA is located at 5.8 Å from hotspot 2 and overlaps spatially with fragment 5RGQ

which is within our proximity cutoff of <4 Å to hotspot 2. This dimer interface binding pose has

been confirmed by another recent fragment screen study [293]. 5RGQ as well as the other interface

binding fragment 5RF0 show no direct connectivity to the active site in neither BBP nor MT

analyses (Tbl. 5.4). These results are in line with our observations presented above, that the

dimer interface residues show no immediate link to the active site but might impact protease

activity over the N-finger residues. Hence, we propose that targeting the dimer interface hotspot

starting from fragments like 5RGQ and 5RF0 would be a fruitful approach for disrupting

dimerisation and Mpro activity.

In a similar approach to the X-ray crystallographic fragment screen described above, Gün-

ther et al. [294] used two repurposing drug libraries to perform a crystallographic screen of the
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Mpro. Using a library of chemically more complex molecules, this study goes a step further

towards predicting drugability than a fragment library. They describe two allosteric sites and

subsequently investigated the antiviral activity of successfully binding agents in cell-based as-

says. Again, we can find overlap between our results and what was reported in the study by

Günther et al. [294]. Their allosteric site 2 is located between the catalytic domain II and the

dimerisation domain III and contains the following residues: the loop 107-110, residues ASN151,

ASP153, TYR154, VAL202, ILE249, THR292, PHE294 and ARG298. With regard to our results,

this allosteric site 2 overlaps with our hotspot 3 at residues ASN151, ASP153 and TYR154.

Taken together, these studies provide preliminary validation of our findings and strengthen

the confidence in our predictions. The combination of small fragment data and our allosteric

hotspot locations can be used as a starting point for designing allosteric modulators against

the SARS-CoV-2 Mpro. Although our approach allows us to predict allosteric perturbations,

we cannot say whether a binding at our hotspots will lead to up or down regulation. However,

the experimental results discussed above [291,294] suggest that binding in proximity to hotspots

1, 2 and 3 would lead to a decreased viral activity.

5.5 Conclusions

We presented the application of our graph analytical methods onto a topical study system in

the virus responsible for the global COVID-19 pandemic. By studying the SARS-CoV-2 Mpro

with BBP and MT analyses, we provided insights into the molecular mechanism underlying

its activation dynamics. We further describe two approaches for the targeted inhibition of the

protein independent of active site binding.

We validated activation mechanisms proposed in the previously studied SARS-CoV Mpro and

show that the same concepts apply to the new isoform in SARS-CoV-2. Mutations between

the two isoforms informed our approach and we detected a related strengthening in dimer

interface connectivities from SARS-CoV to SARS-CoV-2 (Fig. 5.4E). The general dynamics of

Mpro which involve mandatory dimerisation and signalling over the N-finger residues towards
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the binding pocket, were detected for both SARS-CoV and SARS-CoV-2 (Tbl. 5.1). These

results strengthened the notion that the dimerisation process represents a viable approach when

trying to disrupt Mpro to inhibit viral replication. This could be achieved over designing peptide

binders against the dimer interface as recently proposed by ElSawy et al. [310] in a computational

study of the SARS-CoV Mpro.

The importance of the dimer interface as a targeting approach was further strengthened when

we detected an allosteric hotspot (hotspot 2, Fig. 5.5B) in that location. Using BBP and MT

analyses in a complementary approach, we detected a total of four allosteric hotspots that are

highly connected to the active site. Especially for hotspot 1 (Fig. 5.5A) and 3 (Fig. 5.6C), we

found a bi-directional connectivity towards the active site. Notably, we found indications in

experimental work based on crystallographic screens that binding in proximity to these hotspots

might lower proteolytic activity and viral replication [291,294].

We hope that building on these results will lead to the development of small compounds which

can allosterically regulate the main protease of SARS-CoV-2. This will have major implications

for the development of a drug against COVID-19. Targeting these sites might be transferable to

other coronaviruses and provide an even larger therapeutic potential. Ultimately, the suitability

of our allosteric hotspots as drug binding sites and whether a binding event achieves allosteric

modulation needs to be confirmed in experimental studies. Given the acute threat by COVID-

19, the research field is progressing rapidly, and we can hope for further studies in the direction

of allosteric modulation in the near future.

This Chapter ties in with what we presented in Chapter 4 in the approach to investigate

dimer interfaces. Again, we were able to demonstrate that not the whole interface but rather

particularly high scoring residues are involved in the molecular mechanism of the dimeric SARS-

CoV-2 Mpro. We also introduced a more classic approach of applying our methodologies by

predicting four allosteric hotspots that hold potential for the modulation of Mpro activity.

In the next step, we expand these concepts onto a lesser studied system in Chapter 6 and

demonstrate the whole range of insights that we can gain from atomistic graph analyses.



Chapter 6

Cyclin-dependent kinases 4 and 6

This Chapter builds on the work presented in Chapters 4 and 5 in that we study another dimeric

protein complex. However, we went one step further and applied our atomistic graph analysis

approach to a heterodimeric protein system. Cyclin dependent kinases (CDKs) 4 and 6 are

essential regulators of the cell cycle and function together with D-type cyclins. This Chapter

shows how our methodologies can be applied in a less-studied system to deliver predictive

results. We investigated the dimer interface and highlight differential signalling clusters that

Markov transient (MT) and bond-to-bond propensity (BBP) analyses detect. Furthermore, we

explored the effect of different chemotherapeutics and highlight how our approach can aid in

understanding differential inhibitor behaviour.

6.1 The cell cycle regulators

Nuclear hormone receptors which we encountered in Chapter 4, are one big part of the signalling

pathways in our cells. However, they are mainly interacting with our DNA and initiating gene

expression. There is no way around another major protein family on the level of controlling

proteins: protein kinases. Their main function is that of a switch where they activate or inhibit

their substrates by phosphorylating them. On the genomic level, we talk about the so-called

’kinome’ which encompasses 518 putative protein kinase genes [311]. Given the ubiquitous nature

99
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of kinase regulation, it follows that these proteins are implicated in a wide range of diseases,

and in cancer in particular [312]. This, together with the fact that kinases constitute up to 22 %

of the druggable genome [313], make them a major area of research in drug discovery [314].

Kinases are often classified by their phosphorylation mechanism, and one such class comprises

the serine/threonine kinases, named after the residues that they target on their substrates.

Amongst those, we find the CDKs. This family consists of 20 members, which are characterised

by their need to bind to a cyclin protein for activity [315]. CDKs are commonly divided into

two groups: the ones that fulfil a function in transcription regulation, and cell cycle CDKs.

Figure 6.1 shows the cell cycle and highlights the CDKs involved in regulating the different

phases. CDKs 1, 2, 4 and 6 directly regulate the cell cycle, and CDK7 is indirectly involved

by acting as a CDK-activating kinase (CAK) for them [6]. The essential cyclin protein partners

are different for each CDK and play an important role in substrate selectivity, which ties

into how the cell cycle is regulated [316]. While CDK2 and 1 are widely studied proteins, and

their activation mechanism is well understood, CDK4/6 have been much less in the centre

of attention, and hence this work focusses on elucidating the mechanisms that underly their

activity and inhibition.

6.1.1 CDK4/6 - drivers of the G1 phase

Oscillating activities of CDKs drive the cell cycle. In the first growing phase (G1 phase), the

entry into a new cell cycle is stimulated by mitogenic signals that initiate the gene expression of

CDK4/6 and D-type cyclins. Once they reach certain concentrations and become active, the G1-

phase progresses, and they trigger the activity of CDK2 until the G1/S checkpoint is reached [6].

Although CDK4/6 seem to be functional homologs in the cell cycle and can compensate for

each other [317], we can assume that they have diverging roles in different contexts. Indeed it

has been found that CDK6 fulfils a role in differentiation in different tissues [318].

To this day, it is not fully understood how CDK4/6 are activated, and Figure 6.2 attempts

to provide an overview of what is known to date. What is clear is that a multi-layered in-

put is at play which reflects the needs of a tightly regulated cell cycle progression under the
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Figure 6.1: The human cell cycle. Shown are the different phases of the cell cycle. In the
G1 stage the cell increases in size, in the S stage the DNA is copied, in the G2 stage the cell
prepares for division which happens in the M stage. The respective CDKs and corresponding
cyclins are also indicated. In the case of CDK4/6, inhibitors of CDK4 (INK4) and the cancer
therapeutics palbociclib, abemaciclib and ribociclib act as inhibitors. CDK interacting protein
(Cip)/kinase inhibitory protein (Kip) proteins can have both an activating and an inhibiting
effect on CDK4/6. Adapted from “Cell Cycle Deregulation in Cancer”, by BioRender.com
(2022)†.

influence of a variety of internal and external growth factors [315]. In CDK2, we see a much

broader field of research, and the activation cycle has been studied extensively. To achieve full

activity, CDK2 requires cyclin binding and phosphorylation of a threonine in the activation

loop (T160) by CDK-activating kinases (CAKs) [6]. Although it was originally proposed that

cyclin binding would be followed by phosphorylation [319], recent literature seems to argue on

the side of a phosphorylation event, followed by cyclin binding [320–322]. However, a semi-active

state of the CDK2 - cyclin A/E complex is possible where cyclin binding triggers structural

rearrangements [19].

†Retrieved from app.biorender.com/biorender-templates

https://app.biorender.com/biorender-templates
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For CDK2 these steps are under inhibition of CDK interacting proteins (Cips) and kinase

inhibitory proteins (Kips) [323,324].

Figure 6.2: Activation pathway of CDK4/6. The CDK4/6 activation pathway is depicted
with CDKs in dark blue and cyclins in dark green. Monomeric CDK4/6 can be inhibited by
small-molecule inhibitors or protein partners like INK4 (depicted in red). Several signals are
required for activation of CDK4/6. In a first step, D-type cyclins are recruited, a process which
is facilitated or interrupted by Cip/Kip interactions. CDK-activating kinases (CAK) lead to
phosphorylation on CDK4/6, a flexible process in the inactive state of cyclin bound CDK4/6.
After the recruitment of substrate proteins (light green) which is again facilitated by Cip/Kip
proteins, the complex becomes active (halo around proteins), ATP (shown as simplified chemical
structure) is recruited, and the substrate is phosphorylated. Phosphate depicted in yellow‡.

Contrastingly, these same inhibitory proteins (Cip/Kip) fulfil a stabilising and activating role

for CDK4/6 and D-type cyclins under certain conditions [324]. The inhibitor role for CDK4/6

is fulfilled by inhibitors of CDK4 (INK4) proteins, which prevent cyclin binding (reviewed

in Sherr and Roberts [323] and Pavletich [319]). It is proposed that this allosteric inhibition

is counteracted by the Cip/Kip proteins p21 and p27. Although p21 and p27 can act as

inhibitors for CDK4/6 [325,326], they are also required to assemble an active CDK4/6 - cyclin D

complex [325,327].

Another difference that becomes quite apparent when comparing the structures of CDK2 and
‡Created with biorender.com

www.biorender.com
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CDK4 bound to their cyclin partners is the much smaller dimer interface [19], as discussed in

Section 6.1.2 below. In CDK4, the interaction with D-type cyclins occurs at a smaller interface

with the cyclin in an ’elevated’ orientation [328,329]. The position of the cyclin leaves the complex

in an inactive state, with the activation loop in a more flexible conformation. It is proposed

that this flexibility is needed to facilitate a fine tuning of the G1 progression which is achieved

by continuous phosphorylation by the CAK CDK7 [329]. Indeed it has been shown that CDK7

needs to be continuously active to keep CDK4/6 phosphorylated [330] (Figure 6.2 middle).

To push the complex to a fully active state, the help of Cip/Kip proteins p21 and p27 is required

again. It has also been proposed that the binding of substrate proteins of the complex is required

for final structural rearrangements that allow activity [329]. Whether there is a sequential order

to the above-described steps or whether it is more of a dynamic coming together of the various

input signals and binding partners in the CDK4/6 - cyclin D1 complex remains elusive.

After full activation is achieved, CDK4/6 phosphorylate a comparatively small substrate set of

transcription factors and the main substrates retinoblastoma proteins (pRBs) [331]. pRBs are

essential regulators of the cell cycle and important tumour suppressor proteins [332]. Hence, a

CDK4/6 induced dysregulation of their function has implications for almost all cancer types [333].

CDK4/6 as targets in breast cancer

In general, dysregulations of the cell cycle are a hallmark of cancer growth and tumour pro-

gression [6,334]. To a large part, this dysregulation is connected to a malfunctioning of cell cycle

kinases [335], which makes them an attractive drug target [336]. For this work, we want to focus

on the effects that CDK4 and 6 have on cancer development and progression, and on the need

for selective inhibitors against them. The general role of CDK4/6 in the cancer context is

the inactivation of the tumour suppressor pRB through phosphorylation. pRB then in turn

no longer inhibits the function of E2F transcription factors that stimulate gene expression of

a wide range of target genes, amongst other CDK2 and cyclin E, which are required for cell

cycle progression [337]. D-type cyclins and CDK4/6 have also been shown to have further cell

cycle-independent roles in cancer cells (reviewed in Gao et al. [53]), strengthening the need for
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effective inhibitors.

Connecting to the work we presented in Chapter 4, the aforementioned cyclin D - CDK4/6 -

pRB pathway has been shown to be abnormally activated in breast cancer (BC). Cyclin D1,

cyclin D3 and CDK4 amplifications and mutations are commonly observed in BC subtypes [338]

and are proposed to further play a role in conferring resistance against anti-estrogen thera-

pies [339]. Moreover, it is known that CDK4/6 and cyclin D1 are involved in BC metastasis

either as single agents [340] or as CDK-cyclin complex [341]. Taken together, this makes targeting

CDK4/6 and D-type cyclins a prominent therapeutic route in BC patients [339]. Three widely

studied examples that have been approved for hormone receptor positive/HER2-negative BC

treatment are abemaciclib, palbociclib and ribociclib. These small compounds bind competi-

tively to the ATP binding site and exclusively inhibit CDK4/6 but not other CDKs [342]. They

are commonly prescribed as combination therapy with tamoxifen or fulvestrant in hormone

receptor-positive BC patients (reviewed in Gao et al. [53] and Susanti and Tjahjono [343]). How-

ever, as seen for other chemotherapeutic agents, BC cells have shown intrinsic and acquired

resistance mechanisms against CDK4/6 inhibitors [344]. In line with our work in Chapter 4,

we aim to understand the inhibitor mechanisms and how they interrupt CDK activation on

an atomistic level. In doing so, we provide scope for alternative targeting mechanisms once

current options in recurrent tumours are exhausted.

6.1.2 Structural features of CDK4/6

Like most protein kinases, CDKs follow the highly conserved ’kinase fold’, which is made up

of two principal regions: the N- and C-lobe [345]. Figure 6.3 highlights the important structural

elements in CDK2, 4 and 6 that have been extensively reviewed by Wood and Endicott [19]. The

binding site, located between the N- and C-lobe, is where adenosine triphosphate (ATP) binds,

which is supported by magnesium ions. The binding site (light orange in Fig. 6.3) consists

of the glycine-rich loop (G-loop), which contributes to the binding of the phosphate moieties.

The hinge region bridges between the N- and C-lobe and binds to the adenosine binding site.

The DFG motif (dark orange in Fig. 6.3) is also involved in binding the phosphates and sits at
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the start of the activation loop. For a detailed rationale behind choosing binding site residues

used for this study, see Appendix A.1.3. The activation loop (red in Fig. 6.3) is highly flexible

Figure 6.3: Structural features in CDKs and complexes. A) Monomeric structures for
CDK2 (PDB id: 1HCL [346]) and CDK4 and 6 (both modelled with AlphaFold [49]). Highlighted
in colour are the following elements: light orange - binding site residues (excluding DFG motif);
dark orange - DFG motif; red - activation loop; blue - phosphorylation site; green - Cα helix.
For a complete list of the residues constituting these structural features, see Table C.7. B)
CDK2 in complex with cyclin A2 (PDB id: 1FIN [347]) and CDK4 in complex with cyclin D1
(PDB id: 2W9Z [328]). The cyclin binding partner is shown in blue, the activation loop and Cα
helix are coloured as above.

and located between the highly conserved DFG and APE motifs. This loop blocks the ATP

binding site in an inactive (DFG-’out’) conformation until binding partners stabilise it in a
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DFG-’in’ conformation where it serves as an assembly platform for substrate peptides. This

loop also contains the phosphorylation site (blue in Fig. 6.3), which is a threonine at the

position 160 in CDK2, 172 in CDK4 and 177 in CDK6. The Cα helix (green in Fig. 6.3) is part

of the interaction site where cyclin binds. It also contains the structurally important PSTAIRE

motif§, which relocates into the binding site upon activation.

These elements are rearranged upon binding of cyclin proteins to CDK2 but not to CDK4/6.

This differential mode of action can be partially explained by the different binding modes that

lead to a larger binding interface in CDK2 than in CDK4 [316] where the cyclin is in an ’elevated’

position (Fig. 6.3B). This latter binding mode is also proposed in CDK6. Unfortunately, there

is no structure available for CDK6 in complex with a human D-type cyclin as of today. However,

structures of CDK6 with a viral cyclin are available (Fig. A.1) and show the complex in an

active conformation similar to that of the CDK2 - cyclin A/E complex [348]. This complex does

not contradict the assumption that CDK6 - cyclin D would be in an inactive conformation, as

the viral mechanism overcomes the normal cell cycle regulation in the G1 phase and is resistant

to inhibition [348].

The cyclin parts in the complexes belong to a 30-member family of proteins that share little se-

quence homology (reviewed in Tatum and Endicott [316]). Instead, they are structurally defined

by the cyclin-box motif, which can be present in either one or more copies in the cyclin. In the

cell cycle, CDK4/6 bind exclusively to D-type cyclins, which contain one cyclin-box motif [349].

Another relevant structural feature is the RXL binding site (highlighted in Fig. 6.5 and Tbl.

6.1) which forms a hydrophobic pocket where substrates and co-factors can assemble. It was

first described in 1996 by Russo et al. [350] and structurally confirmed in CDKs for co-factors

like Cip/Kip proteins [327,350] and substrates [351]. This protein-protein interaction (PPI) site is

essential for the activity of the complex, as is the RXL motif on the substrate side [352].

From a structural perspective, CDK4/6 are much less studied than CDK2. This is also mirrored

in how many structures are available in the protein data bank (PDB): 426 structures for CDK2

(UniProt id: P24941), whereas only 13 structures for CDK4 (UniProt id: P11802) and 18

§PSTAIRE in CDK2, PISTVRE in CDK4 and PLSTIRE in CDK6
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structures for CDK6 (UniProt id: Q00534) are available.¶ An overview of available structures

and which ones were used in this project is given in Appendix A.1.3 and Figure A.1. To

make basic comparisons between CDK2 and CDK4/6, we chose to use AlphaFold, a deep

learning structure prediction tool [49]. In a recent effort in collaboration with the EBI, a publicly

accessible database for modelled protein structures was established. We used this resource to

obtain the monomeric structures of CDK4‖ and CDK6∗∗. More details can be found in Appendix

A.1.3 and Figure A.2.

Objective

In this Chapter we demonstrate the application of Markov transients in conjunction with bond-

to-bond propensities to explore the connectivities and dimer interactions within CDK - cyclin

complexes. The overarching aim of this Chapter is to provide detailed insights into the activa-

tion mechanism of CDK4/6 and D-type cyclins as well as investigate the inhibition patterns of

chemotherapeutics.

First, we contrasted the connectivities in monomeric CDK4 with CDK2 to identify general

differences between the two kinases. Next, we investigated the heterodimers that are formed

between CDK4 and cyclin D1 and D3, and described how the activation of CDK4/6 might be

achieved in a stepwise manner. We also took this opportunity to identify extended hotspots

(similar to what we presented in Chapter 5) on the dimer that might hint towards PPI sites as

assembly points for substrates and co-factors. Finally, we extended our analysis onto structures

that contain approved cancer therapeutic molecules. We aimed to shed light onto the inhibitory

mechanisms in CDK6 and provide first insights into the atomistic signalling differences between

three approved chemotherapeutics. We extended this analysis on an inhibited CDK2 structure

to compare the mechanisms. This ties in with Chapter 4, where we demonstrate that our

methodologies allow us to explore the mechanisms that underly inhibitory molecules.

¶As of 28.11.2021
‖Entry accessible at: alphafold.ebi.ac.uk/entry/P11802

∗∗Entry accessible at: alphafold.ebi.ac.uk/entry/Q00534

https://alphafold.ebi.ac.uk/entry/P11802
https://alphafold.ebi.ac.uk/entry/Q00534
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6.2 Differences in cyclin binding site are revealed in mono-

meric CDK2 and 4

In a first step, we were interested to see whether we could detect differences in the connectivities

in the monomeric forms of CDK4 and CDK2. To perform this comparison, we had to use a

modelled structure for CDK4, which we obtained from AlphaFold [49]. For CDK2, we used the

apo monomeric form in inactive conformation at 1.8 Å [346]. One of the activating factors for

CDKs is a phosphorylation event in the activation loop. To mimic this signal, we sourced

our methodologies from this phosphorylation site: THR172 and THR160 for CDK4 and CDK2,

respectively.

In a first step, we focused on Markov Transients as we gained from the work in Chapters 4

and 5 that this method is particularly powerful in catalytically active proteins, which is the

case for CDKs. In general, we see the results from BBP analyses support the same patterns,

hence they will only be shortly summarised in the following Sections with full results in the

Appendix. Where the results of the two methodologies show diverging patterns, they will be

discussed in detail.

We evaluate the MT analysis results across the different structural features that convey activity

in CDKs (see Fig. 6.3). Figure 6.4 gives an overview of the results where we highlight different

aspects. As detected by MT analysis, the most apparent difference between CDK4 and CDK2

is the signal transmission towards the Cα helix. For CDK4, the average QS of the Cα helix

is 0.75 as opposed to 0.58 for CDK2. These results suggest a faster signalling towards the

interaction site where the cyclin partners bind. Within the Cα helix, the PISTVRE/PSTAIRE

motif is of particular interest as it contributes to the structural rearrangements required for

CDK activity [19]. The single residue level (Fig. B.7) shows that this motif is more of a hotspot

for CDK4 (average QS = 0.71) than for CDK2 (average QS = 0.51). Figure 6.4B and C allow

a direct comparison of the QS results across the structures and highlight the high scoring Cα

helix (green circle in the Figure). The scatterplots in Fig. 6.4B and C provide an overview

of the data distribution for all residues which shows that the Cα helices are reached faster in
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CDK4 than in CDK2 with an average t1/2 of 1076.07 in comparison to 2004.93, respectively.

This lowered connectivity towards the Cα helix can also be seen when looking at the BBP

results (Fig. B.6). Here, we detect a decrease in average QS from 0.57 in CDK4 to 0.37 in

CDK2.

On the other hand, we find a common feature in both CDK4 and CDK2 in the fast signal

propagation towards the activation loop with average QSs of 0.73 and 0.77, respectively. The

activation loop is highlighted in orange on the protein structures in Figures 6.4B and C. Here,

we show that our results are in line with the observation that the activation loop is an essential

structural element of the catalytic activity of CDKs. Again, this trend is supported by the

BBP analysis (see Fig. B.6 and B.7) where the activation loops have an average QS of 0.71

(CDK4) and 0.63 (CDK2).

Taken together, this first investigation of the monomeric from of CDK4 provided us with

valuable insights into the signalling within the protein when sourced from the phosphorylation

site. The high scoring Cα helix is in line with the activation mechanism of CDK4 that requires

cyclin D to bind to the kinase at this site. Moreover, we detect a high signal connectivity towards

the activation loop, which is an essential element of catalytic activity. When contrasting these

results with CDK2, the main point that stands out is the lowered connectivity towards the Cα

helix. This changed communication pattern might be due to a different activation mechanism

in CDK2, where a recruitment of cyclin D might be less dependent on a phosphorylation event

at this position.

6.3 Signalling and interactions in the CDK4 and D-type

cyclin complexes

To further elucidate the molecular mechanism of CDK4 activity, we chose to investigate CDK4

bound to its cyclin partner proteins D1 and D3. This approach also ties into the overall scope

of this work to investigate dimeric proteins in disease. We apply our methodologies to study
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Figure 6.4: Markov transient analysis of monomeric CDK4 and 2 when sourced
from the phosphorylation site. A) Average QS results for Markov Transients are shown for
each structural element in CDK4 and CDK2. B) and C) The structures of CDK4 (AlphaFold
model [49]) and CDK2 (PDB id: 1HCL [346]) are shown in two orientations with residues coloured
by QS. Residues with a QS > 0.95 are shown as sticks. The source residues are shown as
green sticks. Highlighted with a green circle are the Cα helices, and with an orange circle the
activation loops. The scatterplots show t1/2 values over the distance from the source for each
residue in the protein. Cα residues are highlighted as larger dots with a black outline.

a heterodimeric system with CDK4 and the two D-type cyclins (1 and 3). We investigate

the different activation signals that are proposed to come together to confer CDK4 - cyclin D

activity: the phosphorylation event in the kinase activation loop, binding of ATP at the kinase

binding site (Fig. 6.3) and the association with co-factors and substrates which bind at the

cyclin RXL site (Fig. 6.5 and Tbl. 6.1). For ease of reading, we present our results on the CDK4
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- cyclin D1 complex (PDB id: 2W9Z [328]) in the following Sections. While we found that the

CDK4 - cyclin D3 complex (PDB id: 3G33 [329]) largely follows the same patterns, we highlight

differences where they have been detected. As shown in Figure 6.5, both complexes are solved

in the same orientation with the D-type cyclins binding higher than seen in other CDKs as

visualised in Figure 6.3B. This cyclin position leaves CDK4 in an inactive conformation, with

the activation loop blocking the active site [19].

Figure 6.5: CDK4 in complex with two D-type cyclins. A) and B) CDK4 - cyclin D1
(PDB id: 2W9Z [328]) and CDK4 - cyclin D3 (PDB id: 3G33 [329]) are shown with CDK4 in blue
and the respective cyclins in green. Both complexes are in the inactive conformation, with the
activation loop blocking the active site. Highlighted as an orange surface is the RXL site on
cyclin D1 and D3, a hydrophobic binding site for substrates and co-factors (residues are listed
in Table 6.1).

In a first approach, we mimicked the two activation signals that happen on the kinase side:

phosphorylation at position 172 and the binding of ATP. Figure 6.6 shows the results of the

MT analysis, which was chosen as the first methodological step here based on the catalytic

nature of the protein complex. The MT results allow us to detect areas of the protein which

are particularly fast connected to a chosen source. In both scenarios, we detect a fast signal

propagation towards the RXL site on cyclin D1 (Fig. 6.6C and D). When we source the signal

from the phosphorylation site, we detect the cyclin D1 RXL site with an average QS of 0.83,

which is significantly higher than a random site score of 0.48 (95 % confidence interval (CI):

[0.46,0.49]). Interestingly, this is one of the only occasions in our study of CDK4 - cyclin D
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complexes where we see a difference for the complex bound to cyclin D3. For that complex,

the average QS of the RXL site is 0.69 when sourced from the phosphorylation site (Fig. B.8).

Although still higher than a random site score of 0.49 (95 % CI: [0.47,0.50]), we think this might

hint towards a slightly different prioritisation in input signals between the CDK4 - cyclin D1/3

complexes.

For the run sourced from the ATP binding site residues, we detect a similarly strong connectivity

towards the RXL site with an average QS of 0.85 compared to 0.48 (95 % CI: [0.46,0.49]) for

a random site score. As further shown in Figure 6.6E and F, residues PRO54, SER55, MET56,

LYS58 and ILE59 in this binding site are particularly high-scoring, each of them scoring an

average QS ≥ 0.88. Taken together, we detect a fast connectivity between the kinase activation

events and the RXL site on the cyclin partner. These results indicate that a substrate or co-

factor binding event at the RXL site is important to achieve catalytic activity of the complex.

Interestingly, we detect a two-step process when investigating the instantaneous communication

in the protein with BBP analysis. Figure 6.7 shows the results when mimicking a phosphoryla-

tion event and ATP binding. Other than in the MT analysis above, we do not pick up on the

cyclin D1 RXL site when sourcing the signal from ALA172. However, we detect a connectivity

towards the binding site residues (Fig. 6.7C). A sequence view of the residues that belong to

the binding site (Fig. 6.7E) allows us to understand the signal in more detail. Especially high

scoring are the hinge residues at position 93 - 97 and the D158-F159-G160 motif. When the signal

is sourced from these binding site residues in the next step, we detect a high scoring RXL site

on cyclin D1, as shown in Figure 6.7D. The RXL site has an average QS of 0.82 in comparison

to a random site score of 0.54 (95 % CI: [0.54,0.55]). When looking at the single residue level

of the RXL site (Fig. 6.7F), we can see high QSs for ARG57 and VAL60, two residues that

were not picked up as high scoring in the MT analysis. This shows that Markov Transients

and bond-to-bond propensities can be used to highlight different functionally relevant details

on the residue level while complementing each other in detecting larger sites of interest.

Taken together, these results indicate a multi-factorial activation process in D-type cyclin con-

trolled CDK4/6. In the monomeric forms of CDK4 and CDK6, we detect a particularly fast
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Figure 6.6: Markov transient analysis of CDK4 - cyclin D1. Shown on the left are
the results of the analysis sourced from the phosphorylation site ALA172 and on the right when
sourced from the binding site residues. Colours are according to QS from 0 - blue to 1 - red.
A) and B) Data distribution of all residues with t1/2 values over the distance from the source.
RXL site residues are highlighted as larger dots with a black outline. C) and D) The complex
(PDB id: 2W9Z [328]) is shown in two orientations with residues coloured by QS. Residues with
a QS > 0.95 are shown as sticks. The source residues are shown as green sticks. Highlighted
with a yellow circle are the RXL sites on cyclin D1. E) and F) Detailed sequence for the RXL
site residues coloured by QS.

signal propagation towards the Cα helix (Fig. B.10), a binding interface for D-type cyclins.

When this cyclin partner is bound, we saw a strong connectivity from the phosphorylation site

and the ATP binding site towards the RXL site on the cyclin. As the RXL site is where sub-

strate and co-factor proteins bind, our results indicate that these signals need to come together
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Figure 6.7: Bond-to-bond propensity analysis of CDK4 - cyclin D1. Shown on the
left are the results of the analysis sourced from the phosphorylation site ALA172 and on the
right when sourced from the binding site residues. Colours are according to QS from 0 - blue
to 1 - red. A) + B) Data distribution of all residues with propensity

∏
R values over the

distance from the source. Binding site (A) and RXL site (B) residues are highlighted as larger
dots with a black outline. C) and D) The complex (PDB id: 2W9Z [328]) is shown in two
orientations with residues coloured by QS. Residues with a QS > 0.95 are shown as sticks. The
source residues are shown as green sticks. Highlighted in orange is the binding site in CDK4
(C) and with a yellow circle the RXL site on cyclin D1 (D). E) Detailed sequence of the binding
site residues in CDK4 coloured by QS. Especially the hinge region (93-97) and the DFG motif
(158-160) are scoring highly. F) Detailed sequence for the RXL site residues coloured by QS.

for full activation of the complex. Interestingly, this process seems to be equally fast for the

phosphorylation and the ATP binding signal as revealed by Markov Transients. On the other

hand, for bond-to-bond propensities, we have a two-step process that suggests a strong connec-
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tivity between the phosphorylation site and the binding site and in the next step between the

binding site and the RXL site.

6.3.1 Markov Transients reveal protein-protein interaction sites in

CDK4 - cyclin D complexes

F. Vianello [163] recently demonstrated in great detail that BBP analysis can be extended from

the prediction of allosteric sites onto PPI sites. This stems from the notion that protein-protein

interactions are a form of allosteric signalling where the input signal is not given by a small

molecule but by a protein binding partner [163]. In a similar line of argumentation, we extend

Markov Transients to the study of PPIs.

As demonstrated in Chapter 5, MT analysis is a powerful tool to identify putative allosteric

sites in catalytically active proteins. We here demonstrate the use of MT analysis to predict

hotspot regions on the CDK4 - cyclin D complex. Again, we use the results that we obtain from

runs sourced from the activity triggering input signals, i.e. the phosphorylation site ALA172

and the binding site residues. As shown in Figure 6.8 we detect two large hotspot regions on the

complex. The first region, which was uncovered in the run sourced from the phosphorylation

site, is found on the CDK4 C-lobe as highlighted in cyan in Figure 6.8A.

It is known that the CDK4 - cyclin D complexes require additional protein partners to stabilise

an active complex [19,353]. We propose the detected hotspot area might serve as an assembly

surface for further protein partners.

In the results we obtained when using the binding site residues as source signal, we detect a

large extended hotspot area that spans from CDK4 to cyclin D1 (Fig. 6.8B). Interestingly, this

hotspot aligns with the binding site of the Cip protein 21 (p21) and the Kip protein 27 (p27)

as solved in the structures by Guiley et al. [327]. Figure 6.8B shows the MT analysis results

on the CDK4 - cyclin D1 complex overlaid with p21 in orange (PDB id: 6P8H [327]) and p27

in green (PBD id: 6P8E [327]). Our results align exactly with how the p21 and p27 fragments

bridge over CDK4 to cyclin D1 where they bind to the cyclin RXL site with their RXL motives:
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Figure 6.8: Protein-protein interaction sites predicted with Markov transient anal-
ysis. A) Kinase-front surface view of the CDK4 - cyclin D1 complex (PDB id: 2W9Z [328])
coloured by QS when sourced from the phosphorylation site ALA172. Highlighted in cyan is
an extended hotspot region that we propose to be a PPI site. B) Surface view of the same
complex coloured by QS when sourced from the binding site residues. Overlaid are the p21
(orange, PDB id: 6P8H [327]) and p27 (green, PDB id: 6P8E [327]) fragments. The RRL/RNL
motives are shown as sticks.

R19-R20-L21 for p21 and R30-N31-L32 for p27. These results further validate that MT analysis

is a powerful tool to predict allosteric signalling and hotspots of all sizes and hence can have

applications in predicting PPIs.

6.3.2 Bi-directional activity is detected from RXL site

To complement the picture of CDK4 - cyclin D1 activity, we also sourced our methods from

the RXL site on the cyclin. This hydrophobic pocket is required for substrate and co-factor
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assembly [327,351]. Table 6.1 lists the residues contained in the RXL site for cyclin D1 and D3††.

Table 6.1: RXL site in cyclin D1 and D3.

Cyclin Residues
D1 PRO54, SER55, MET56, ARG57, LYS58, ILE59, VAL60, ALA61
D3 MET56, ARG57, LYS58, MET59, LEU60, ALA61

MT analysis sourced from the RXL site highlights all structural features discussed above as

being part of the activation process, as shown in Figure 6.9. The Cα helix can now be more

clearly detected than in the runs sourced from the kinase phosphorylation site and binding site

(Fig. 6.8), and it scores highly with an average QS of 0.79. For the binding site, we detect an

average QS of 0.72. Interestingly, the signal is now mainly detected in the G-loop residues G13-

V14-G15-A16-Y17-G18, as shown in Figure 6.9C. These residues have been identified as binding

partners to the phosphate moieties of ATP, and their high QSs might indicate a catalytic signal

that is now initiated towards the phospho-groups. The activation loop is scoring moderately

high, however the phosphorylation site ALA172 is one of the highest scoring residues with a QS

of 0.92. We further detect a fast signal propagation towards the area on the C-lobe that we

proposed as a potential PPI site in Section 6.3.1. In Figure 6.9B we highlight the hotspot in

accordance with what we showed in Figure 6.8A.

Taken together, these results might indicate that once a substrate assembles at the RXL site on

the cyclin, signalling steps are initiated within the kinase, which might be supported by further

proteins assembling at the highlighted PPI on the C-lobe (Fig. 6.8A and 6.9B). We then also

see a high connectivity towards the structural features in the kinase that confer activity and

propose that this might be the final step towards complex activity.

††The results in the CDK4 - cyclin D3 complex are in line with the patterns found for the CDK4 - cyclin D1
complex as shown in Figure B.9
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Figure 6.9: The RXL site as a source in MT analysis of CDK4 - cyclin D1. A) The
complex (PDB id: 2W9Z [328]) is shown in the front orientations with residues coloured by QS
(0 - blue to 1 - red). Residues with a QS > 0.95 are shown as sticks, and source residues are
shown as green sticks. B) Two surface visualisations of the complex analogous to the results
presented in Fig. 6.8. Highlighted in cyan is an extended hotspot region that we propose to be
a PPI site. C) Detailed sequences for functionally important features on the kinase coloured
by QS. Ph - phosphorylation site.

6.3.3 The CDK4 - cyclin D1 interface shows distinct regions for

signal transduction

In this work, we are interested to see how dimer interfaces can contribute to activity in protein

dimers. We visualise the dimer interface between CDK4 and cyclins D1 and D3 in Figure
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6.10. These interfaces were calculated with PDBePisa [78], which distinguishes between interface

residues that form bonds (hydrogen bond, disulphide bond or salt bridge) across the interacting

protein chains and ones that do not. For the CDK4 - cyclin D1 interface (PDB id: 2W9Z [328]),

PDBePisa reports an area of 1138.4 Å2 for the CDK4 side and 1146.1 Å2 for the cyclin D1 side.

A total of 66 residues are involved in the interaction as listed in Table C.8. For the CDK4 -

cyclin D3 interface (PDB id: 3G33 [329]) the interface is a little smaller with 63 residues involved

(Tbl. C.9), forming an interface area of 1113.4 Å2 on the CDK4 side and 1085.9 Å2 on the cyclin

D3 side.

Figure 6.10: The interface between CDK4 and cyclins D1 and D3. A) CDK4 in
complex with cyclin D1 (PDB id: 2W9Z [328]). B) CDK4 in complex with cyclin D3 (PDB id:
3G33 [329]). CDK4 is coloured in blue and the respective cyclin in green. Shown as light red
surface is the CDK4 interface contribution and the cyclin D1/D3 one is shown in orange.

We score the interface residues to get an idea of the overall connectivity between the two

monomers relative to the source site. We took the same source sites as mentioned in the

Sections above to evaluate if and how the different binding events and activation signals are

conferred over the dimer interface. We did this analysis for Markov Transients and bond-to-

bond propensities to see whether we can distinguish between a catalytically relevant effect and

a strong perturbation connectivity. Table 6.2 lists the average QS of the dimerisation site

for three different sources: the phosphorylation site on CDK4, the binding site residues on

CDK4 and the RXL site on cyclin D1. We find that the average QSs of the interface residues
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are higher when the signal is sourced from the binding site or RXL site in comparison to the

phosphorylation site. We proposed above that the phosphorylation event might occur at an

earlier stage in the activation process of the CDK4 - cyclin D complex, hence at this stage, the

dimer interface might not yet contribute to the energetic flow in the complex. When in the

next step, a substrate or co-factor is recruited to the RXL site, or ATP binds at the binding

site, the interface becomes more important in the signalling process.

The pattern we see in the CDK4 - cyclin D3 complex supports these results as can be seen in

Table C.10.

Table 6.2: Average QS of CDK4 - cyclin D1 interface when sourced from different
sites. Phosphorylation site is ALA172 and a full list of binding site residues is given in Table
C.7. RXL site residues are listed in Table 6.1

Source site
Methodology Phosphorylation site Binding site RXL site
Markov Transients 0.44 0.59 0.59
Random Site Score [95% CI] 0.47, [0.47,0.48] 0.48, [0.48,0.49] 0.51, [0.50,0.51]

Bond-to-bond propensity 0.47 0.55 0.56
Random Site Score [95% CI] 0.55, [0.54,0.55] 0.52, [0.51,0.52] 0.54, [0.54,0.55]

Although we detect differences in the dimer interface QSs depending on where the input signal

is injected, the overall scores are low. This becomes apparent when comparing the interface

scores to the respective random site scores in Table 6.2. Similarly to what we proposed in

Chapters 4 and 5, our methodologies tend to pick up the most important interface residues

which confer signalling rather than the whole interaction surface. Investigating the highest

scoring residues as predicted by our methods provides a focus lens towards the parts of the

dimer interface that can be targeted for disruption of the dimerisation process. Table 6.3 shows

the top scoring interface residues according to MT and BBP analyses when sourced from the

different sites where activation signals are induced.

The signals stemming from sites on the kinase, i.e. the phosphorylation site and the ATP

binding site, highlight a cluster of residues towards the front of the interface just above the Cα

helix (Fig. 6.11A). When we source our analysis from the RXL site on the protein, the highest

scoring residues are mainly on the cyclin site of the dimer apart from two residues which are
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Table 6.3: Top scoring residues in the CDK4 - cyclin D1 interface. Top 10 residues
with the highest quantile score in MT and BBP analysis when sourced from different elements.
Residues in chain A belong to cyclin D1, and chain B constitutes CDK4. Ph - phosphorylation
site (ALA172); Green - Cα residues; light red - common residues of MT analysis; orange -
common residues of BBP analysis

Markov Transients Bond-to-bond propensities
Ph binding site RXL site Ph binding site RXL site

GLU43 B CYS78 B THR116 A PHE130 B ASP76 B PHE66 B
GLY42 B ALA79 B ASN151 A PHE66 B PHE130 B GLU67 B
GLU44 B GLY42 B THR53 B LYS33 A ARG5 B PHE130 B
LEU59 B GLU44 B ASN146 A GLU67 B GLU64 B LYS112 A
ASN41 B GLU43 B LYS149 A ALA30 A ARG61 B TRP150 A
ALA58 B ARG82 B TRP150 A ARG61 B PHE66 B VAL57 B
ALA133 B ARG5 B ALA153 A MET31 A TRP150 A GLU64 B
ARG55 B SER81 B LEU152 A ARG62 B ILE87 B LYS33 A
ALA65 B ASN41 B MET113 A GLU64 B VAL89 B ALA30 A
GLU67 B GLU135 A VAL57 B ALA34 A LYS33 A ASN151 A

part of the Cα helix (THR53 and VAL57).

Interestingly this pattern is shifted towards the back of the interface for the highest scoring

residues in the bond-to-bond propensity analysis. Residues LYS33 of cyclin D1 and GLU64,

PHE66 and PHE130 of CDK4 are located towards the back of the interface (Fig. 6.11B). These

results suggest that the signalling between CDK4 and cyclin D1 is conferred over two distinct

clusters at the dimer interface. The front of the interface, near the Cα helix (which includes

the PISTVRE motif), might contribute to a fast signal propagation as indicated by Markov

Transients. These residues might provide a good starting point for an inhibitory event that

disrupts the catalytic machinery of the protein. On the other hand, the back of the interface was

especially high scoring in the bond-to-bond propensity analysis, indicating a strong coupling

in this part of the interface. This residue cluster could hold potential for binding events that

disrupt the dimerisation process.

Given the complementary role of CDK4 and 6 in the cell cycle and their synonymous interaction

profile, it is fair to assume that the insights we gathered from the CDK4 - cyclin D complexes

are transferable onto CDK6 bound to cyclins. However, final validation of this would require a

structure of CDK6 in complex with a D-type cyclin, which has not been solved yet.
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Figure 6.11: Two areas of interest in the CDK4 - cyclin D1 dimer interface were
identified in the MT and BBP analyses. The structures of CDK4 - cyclin D1 (PDB id:
2W9Z [328]) are coloured by QS in the MT (A) and BBP (B) runs sourced from the binding
site and shown in two orientations. The residues shown as sticks were identified as important
in the interface from MT analysis (light red circle) and BBP analysis (orange circle). Residues
as listed in Table 6.3. The cyclin is shown with a grey surface to visualise the interaction site.

6.4 The inhibition of CDK6 with cancer therapeutics

We learned from the monomeric forms that a first step in activating CDK4/6 would be the

recruitment of the cyclin partners. We observed this when sourcing our methodologies from

the phosphorylation site as demonstrated in Section 6.2 for CDK4. The results for monomeric

CDK6 are consistent with those presented above, and the respective data is shown in Figure



Chapter 6. Cyclin-dependent kinases 4 and 6 123

B.10.

In the next step, we are looking at inhibitor patterns and whether we can detect a divergence

from what we saw in the monomeric structures. We are particularly interested in CDK4/6-

specific inhibitors approved for treatment in BC: palbociclib, abemaciclib and ribociclib [342].

These drugs are active against CDK4/6 in vivo and are often used in combination therapies

with anti-estrogens [53,343]. However, there are already indications of resistance mechanisms

against these inhibitors [344] which stimulates a continuous need for alternative drug targeting

strategies. This Section aims to shed light into their inhibitory mechanisms on an atomistic

scale.

6.4.1 Chemotherapeutics in CDK6

Chen et al. [354] did a comparative study of CDK inhibiting drugs in which they solved the

structure of monomeric CDK6 bound to the approved compounds palbociclib, abemaciclib and

ribociclib as shown in Figure 6.12. Unfortunately, these structures have gaps in the loop areas,

which are often flexible regions of the proteins that are hard to solve in static X-Ray crystallog-

raphy [355]. For our purposes, we need a fully connected graph and hence modelled these loops

using Chimera [356]. Full details of the loop closing workflow can be found in Appendix A.1.3

and the resulting loops are shown in orange in Figure 6.12. After loop modelling, the structures

were close in overall RMSD as listed in Figure 6.12D. We use these structures as the basis for

our investigation into the molecular mechanisms of CDK6 inhibition by these compounds.

Figure 6.13 summarises the results of the MT analyses when sourced from the phosphorylation

site THR177. We detect the highest variation in connectivity towards the Cα helix, where cyclin

binding would happen. As we proposed in Section 6.2, the high scoring Cα helix in monomeric

CDK4 and 6 indicates the need for cyclin binding stimulated by the phosphorylation event.

We here see an overall much slower signal propagation towards the helix from an average

t1/2 of 999.72 in apo CDK6 to 2835.83, 6058.13 and 2515.52 in CDK6 bound by palbociclib,

abemaciclib and ribociclib, respectively (Fig. 6.13C). However, when we consider the single

residue QSs of the Cα helix which consider the distance from the source, we detect some
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Figure 6.12: Structures of CDK6 bound to three inhibitors. The structures are shown
for CDK6 bound to palbociclib (A, PDB id: 5L2I [354]), abemaciclib (B, PDB id: 5L2S [354]) and
ribociclib (C, PDB id: 5L2T [354]). The compounds are shown as green sticks, and modelled
loops are shown in orange. The panel below shows the inhibitor binding mode in the binding
site for all three ligands (E, F, G from Chen et al. [354]). For abemaciclib (F) a water molecule
that contributes to the binding was kept in the structure for all analyses. Distances are shown
in Å. D) Pairwise RMSDs for all three structures were calculated with PyMol [191].

intriguing patterns. Although, the inhibitors on average decrease the connectivity towards

the helix, there are large differences, especially between abemaciclib and ribociclib. In the

case of inhibition by abemaciclib, the Cα helix becomes a cold spot with an average QS of

0.12. However, for ribociclib the Cα helix scores much higher with an average QS of 0.92.

Intriguingly, these patterns align with the data presented by Chen et al. [354] where they found

abemaciclib > palbociclib >> ribociclib in terms of inhibition of pRB phosphorylation and cell

proliferation of BC cells.
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Figure 6.13: Markov transient analysis of monomeric CDK6 in apo and inhibited
form when sourced from the phosphorylation site. A) Average quantile score (QS)
results for Markov Transients are shown for each structural element in CDK6 in apo and
inhibited forms. A zoom into the sequence of the Cα helix is provided to the right. B) The
structures of monomeric CDK6 (AlphaFold model [49]) and inhibited forms with palbociclib,
abemaciclib and ribociclib (PDB ids: 5L2I, 5L2S, 5L2T [354]) are shown from the back view
with residues coloured by QS. Residues with a QS > 0.95 are shown as sticks. The source
residues are shown as green sticks. Highlighted with a green circle are the Cα helices. C) Data
distribution in the different structures which show t1/2 values over the distance from the source
for each residue in the protein. Cα residues are highlighted as larger dots with a black outline.
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The effects that might explain CDK6 inhibition seem to be primarily conferred via fast signalling

pathways as we can pick them up with Markov Transients. For bond-to-bond propensities, we

see similar patterns between apo CDK6 and the inhibited structures but to a lesser extent (see

Fig. B.11). For the uninhibited structure of CDK6 the Cα helix scores with an average QS

of 0.54. The same score was found for the structure in complex with palbociclib, while the

QS was lowered to 0.24 when CDK6 was bound to abemaciclib. While the structure bound to

ribociclib had a higher average QS of 0.80 for the Cα helix.

6.4.2 Comparison to inhibition in CDK2

To provide first insights into the mechanisms underlying selective inhibition of the cell cycle

kinases, we chose to run our methods on an inhibited structure of CDK2. Figure 6.14 provides

an overview of the structure, which was chosen based on the high resolution and because

there are no gaps in the structure (PDB id: 2B54 [357]). The inhibitor was part of a chemical

optimisation series of pyrazolopyrimidines and was found to have an inhibitory effect on the

catalytic activity of CDK2 - cyclin E as well as CDK4 - cyclin D1 [357]. The structure is in the

inactive conformation, with the activation loop blocking the binding site and preventing the

assembly of substrate peptides.

Following the approach for the study of monomeric CDK6 with and without inhibitors, we

sourced an MT analysis from the phosphorylation site THR160. Figure 6.15 shows the results

of the analysis. We do not detect a remarkable difference when comparing the apo results to

the inhibitor bound structure. All structural features are equally well reached via fast signal

propagation, with the activation loop being highlighted here. As discussed in Section 6.2, the

activation loop is an important feature of CDK2 activation as it needs to undergo structural

rearrangements to allow the binding of ATP and substrate assembly [19]. When we compare

these results to the patterns we have detected in CDK6 (Sec. 6.4.1, Fig. 6.13), we see no

disruption to the Cα helix signalling in CDK2. Based on these results, we can assume that the

inhibition in CDK2 must be conferred over a different mechanism which is yet to be revealed.

These Sections aimed to provide first insights into the differential inhibition patterns in CDK4/6
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Figure 6.14: CDK2 bound to inhibitor DIN232305. Shown is the structure of CDK2
bound to an inhibitor molecule shown as green sticks (PDB id: 2B54 [357]). On the right is a
close up of the inhibitor binding mode in the binding site including a water molecule. On the
right, from Markwalder et al. [357].

versus CDK2. We showed here that the inhibition in CDK6 is likely connected to a disruption

in the signal going towards the Cα helix where the cyclin binding partner binds. These insights

were obtained with MT analyses in CDK6 apo and inhibited structures which found a much

slower signal propagation in the structures bound to chemotherapeutics. This disruption cannot

be detected in the CDK2 structures, where the overall signal patterns are very similar for the

apo and inhibited protein.

We would like to point out that it needs to be kept in mind that large loops of the CDK6 inhib-

ited structures were modelled (Fig. 6.12). Among others, the loop where the phosphorylation

site is located. While interesting preliminary results that go towards elucidating the inhibitory

mechanism in CDK6 were presented here, further investigation in fully solved structures is

needed.
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Figure 6.15: Markov transient analysis of monomeric CDK2 in apo and inhibited
form when sourced from the phosphorylation site. A) Average quantile score (QS)
results for Markov Transients are shown for each structural element in CDK2 in apo and
inhibited form. B) and C) The structures of monomeric CDK2 (PDB id: 1HCL [346]) and
bound to DIN232305 (PDB id: 5L2I [357]) are shown with residues coloured by QS. Residues
with a QS > 0.95 are shown as sticks. The source residues are shown as green sticks. D)
Detailed sequence for the activation loop residues coloured by QS.

6.5 Conclusions

This Chapter saw the application of our atomistic graph analysis in a less-studied system where

fewer structural data is available. We detailed the molecular interactions between CDK4/6 and

their binding partners, cyclin D1 and D3, showing that the activation mechanism of CDK4

might be more reliant on a cyclin binding event at the Cα helix upon phosphorylation. In

contrast, the monomeric form of CDK2 showed a lower connectivity towards the Cα helix (Fig.
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6.4), indicating a weaker interdependency between phosphorylation and cyclin binding.

Molecular activation mechanism of the CDK4 - cyclin D complex

We also studied the heterodimeric CDK4 - cyclin D complex. By mimicking the different

activation signals on CDK4 and cyclin D, we described the multi-factorial activation process of

the complex:

• We detected rapid communication towards the cyclin D RXL site from the phosphoryla-

tion site, as well as from the binding site when applying MT analysis (Fig. 6.6). In the

BBP analysis where we investigated the instantaneous perturbation connectivity, we de-

tect a two-step process, from the phosphorylation site, over the ATP binding and towards

the RXL site on cyclin D1/3 (Fig. 6.7). This Section demonstrated the complementary

nature of MT and BBP analyses, where we found that they detect the same functionally

important sites while highlighting different aspects on the residue level.

• MT analysis further allowed us to reveal extended regions of high scoring residues. Similar

to what was shown by F. Vianello [163] for BBP analysis, we propose these hotspot regions

are protein-protein interaction sites. We found preliminary validation for this prediction

when showing that the positioning of p21 and p27 is in agreement with an extended

hotspot that bridges from CDK4 to cyclin D3 (Fig. 6.8B).

• We further sourced our analyses from the RXL residues on cyclin D1. We found a

high connectivity towards the functionally important elements in CDK4, including the

proposed PPI for assembly of further co-factors (Fig. 6.9).

Taken together, these observations support the idea that multiple signals are required to facili-

tate the activity of the CDK4 - cyclin D complex. Our first analysis (Sec. 6.2) suggests a strong

connectivity between the phosphorylation and cyclin binding sites. Once cyclin is bound and

we investigate the patterns in the heterodimeric complex, we can not deduce a strict sequential

order from our results. Instead, we propose that the phosphorylation event and the binding of
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ATP come together dynamically with a substrate binding at the RXL site and potential further

co-factor assembly to achieve the full complex activity.

Targeting the dimer interface

Tying in with our work from Chapters 4 and 5, we were able to highlight specific residues in

the dimer interface between CDK4 and cyclin D1 that could be target points for a drug design

distal from the active site. Interestingly, we found two distinct areas of the interface that

were important in respective MT and BBP analyses. These differential residues might provide

anchor points for two distinct targeting approaches. One approach might lead to disruption of

the catalytic machinery (Fig. 6.11A) and another one (Fig. 6.11B) that disrupts the strong

coupling between the complex partners and maybe leads to the inhibition of dimerisation.

Cancer therapeutics in CDK6

Section 6.4.1 saw the study of monomeric CDK6 inhibited by three FDA approved cancer

therapeutics: palbociclib, abemaciclib and ribociclib. We detected an overall much slower

communication towards the Cα helix where a cyclin binding event could be the first signal

towards activation (Sec. 6.2). We further showed that the detected connectivity patterns

towards the Cα helix (Fig. 6.13) overlap with experimentally found inhibitory activity of the

drugs [354]. However, we would like to point out that the three CDK6 structures had missing

loop regions that we modelled to run our analysis on full-length structures (Fig. 6.12). While

we detect intriguing first results for the inhibition of CDK6, further confirmation in fully solved

structures is required.

The results we obtained from studying an inhibited structure of CDK2 provide first indications

that a different inhibition mechanism is at play in the monomeric CDK2. Our atomistic graph

analysis can detect preliminary differences between the inhibition of CDK4/6 and CDK2, which

rely on the connectivity towards the Cα helix where cyclin binds (Fig. 6.15). Notably, this

confirms what is found for the approved cancer therapeutics which inhibit CDK4/6 but not

CDK2.
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Overall, we saw that the main differences between the CDK proteins and their intra-protein

connectivity were revealed with MT analysis. This observation aligns with what we observed in

Chapters 4 and 5: Markov Transients are a valuable tool in catalytically active proteins where

they reveal fast signalling connectivities. Bond-to-bond propensity analyses in CDK4/6 showed

weaker tendencies but still contributed to revealing differential concepts in connectivity between

the sites of activation. Especially regarding the dimer interface, the complementary usage of

both methodologies allowed us to reveal distinct areas of intra-molecular communication.



Chapter 7

Conclusion

This Thesis constitutes the application of atomistic graph analysis of proteins for the purpose

of exploring alternative drug-targeting approaches. We studied three protein systems impor-

tant to the disease systems coronavirus disease 2019 (COVID-19) and breast cancer (BC). Our

work provides targeted approaches for their inhibition in an efficient manner. Broadly, we

demonstrated how information on biological concepts like allosteric modulation and dimer in-

teractions, can be gained from graph-based computational studies rooted in physicochemical

descriptions of a system. We provide detailed insights into molecular mechanisms, and we hope

that our results provide valuable guidance for rational drug design.

Alternative drug targeting mechanisms are of considerable importance in closely related protein

families and systems that develop resistance against common drugs, as often seen in recurrent

tumours. To overcome the limitations of active site targeting [17], we introduced two alternative

targeting mechanisms in Chapter 1: interruption of the dimerisation process in functionally

obligate dimers and allosteric inhibition. By extending the scope of computer-aided drug design

(CADD) onto dimer interfaces and allosteric sites, the chemical search space is widened, and the

scope for drug design in traditionally ”undruggable” targets is expanded. The increase of data

availability and constant advancements in techniques motivate the importance of CADD, and

Chapter 2 describes the significance of computational methodologies in exploring alternative

drug design concepts.

132



Chapter 7. Conclusion 133

This work applies an all-atom yet efficient computational framework to study three dimeric

protein systems and describes their potential for alternative drug targeting. We build our

atomistic graph analysis of dimeric proteins on work by B. Amor [168] and F. Vianello [163]

and apply two complementary methodologies: Markov transient (MT) [159] and bond-to-bond

propensity (BBP) [149] analyses. These methods provide a measure for fast and strong coupling

within a protein and find residues and sites that are crucial for modulating protein activity. We

here extended the application onto dimeric proteins that are more complex with multi-layered

signalling processes that contribute to their functionality. In doing so, we can validate known

molecular mechanisms, provide insights into activation signals, and find hotspots for allosteric

modulation or dimer disruption.

The following Sections summarise the main findings in the three study systems and highlight

how each protein can be targeted with alternative drug targeting for disease. We also explore

open questions and future directions that arise from our work.

7.1 Summary of biological results

Estrogen receptor α

Firstly, we studied estrogen receptor α (ERα), which modulates the cellular response to es-

trogens and is a key factor in the context of BC [3]. In Chapter 4, we applied atomistic graph

analysis to study the homodimeric ERα ligand-binding domain (LBD), where natural agonists

and antagonistic chemotherapeutics bind, and that is essential for the transcription activation

function 2 (AF-2). We studied the ERα LBD with MT and BBP analyses and found that the

former did not show signalling patterns beyond a uniform diffusion process from the source

sites. This is in line with previous work in our group that detected that Markov Transients are

primarily applicable in enzymatic proteins [159,161] and motivated us to focus on bond-to-bond

propensities in the non-catalytic ERα.

We built on our previous work [202] that validated the molecular mechanism of ERα under the

regulation of agonists and antagonists and confirmed the importance of helix 12 (H12) posi-



Chapter 7. Conclusion 134

tioning and the dimerisation. We further explored the dimer interface that is formed in the

homodimeric ERα ligand-binding domain (LBD) and showed how bond-to-bond propensities

can highlight critical residues in the interface. We propose that these residues might be tar-

get points for inhibiting the functionally essential dimerisation process, as has been proposed

before [98].

Notably, we found the dimer interface to be further implicated in resistance mechanisms that

have been described for the BC L536R mutation of the ERα LBD. Based on experimental

data provided by Fui Lai and Simak Ali, we investigated the differential inhibitory effects

that two recently developed selective estrogen receptor degraders (SERDs) have on the L536R

mutant. Our results indicate that the experimentally observed differential resistance might be

conferred over dimer interface stability and that targeting the dimerisation process might help

to overcome resistance in recurrent tumours.

SARS-CoV-2 main protease

The global pandemic of COVID-19 that started in early 2020 led to an unprecedented focus

of scientific efforts to target proteins of the severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) to combat the disease. Chapter 5 explores the homodimeric main protease

(Mpro) of SARS-CoV-2 to identify targeting strategies that inhibit viral replication by interfering

with the proteolytic machinery. We found that bond-to-bond propensities were valuable in

studying the underlying molecular mechanism that includes the dimerisation process. Similar to

what we found for the ERα LBD interface, we detected high scoring residues that are involved

in indirect activation of Mpro. These studies were guided by previous results in the former

severe acute respiratory syndrome coronavirus (SARS-CoV) that caused an outbreak of SARS

in 2002/2003 [285]. We were able to confirm for both viruses that residues that are important for

dimerisation communicate with the N-finger residues which connect to the substrate-binding

site.

We further demonstrated the application of MT and BBP analyses in a more traditional ap-

proach [54,149,159,161,162] to predict four putative allosteric hotspots that can be targeted for alter-
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native inhibition approaches. Notably, one of these hotspots is located in the dimer interface

and targeting this area might have a dual advantage as it could also be used to interrupt

the obligatory dimerisation of Mpro. We went on to confirm the targetability of our hotspots

by integrating data from a recent crystallographic fragment screen [292] and established which

fragments exhibit a direct connectivity towards the active site. These results provide relevant

insights into allosteric regulation in the SARS-CoV-2 Mpro, and we are confident that they are

valuable starting points for rational drug design.

CDK4/6 and D-type cyclins

The cell cycle is under tight regulation from the interplay between kinases and cyclins [6]. They

form heterodimeric complexes essential for functionality and are implicated in a wide range of

cancer types [335]. In Chapter 6, we explored the G1-phase cyclin-dependent kinases (CDKs)

4 and 6, which form complexes with D-type cyclins and are less studied than other CDKs,

like CDK2. Our atomistic graph analysis revealed the interplay of multi-factorial input signals

required to achieve activation. Further, we revealed that Markov Transients predict extended

hot areas on the protein surface that we propose to be PPI sites for co-factor assembly.

This Chapter also demonstrated how MT and BBP analyses complement each other in pre-

dicting hotspots on the protein while highlighting different high scoring residues. In terms of

the interface between CDK4 and cyclin D1, these results revealed two areas that might confer

different communication signals within the complex and could exhibit differential effects when

targeted. Given the limitations placed on our approach by the availability of structural data,

the results found for CDK4 in complex with D-type cyclins await confirmation for the CDK6

- cyclin D complex.

However, with available structures of CDK6, we were able to present insights into the differential

mechanisms of chemotherapeutic inhibition in cell cycle kinases. Again, our results need to

be considered in light of structure availability as we had to model large loop regions in the

structures. Nonetheless, we were able to confirm experimental inhibition patterns [354] and are

confident that Markov Transients provided valuable insights into the inhibition mechanism.
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Furthermore, we did not pick up the same weakened communication with the Cα helix in

CDK2 and postulate that a different inhibition mechanism is at play in CDK2.

In conclusion, we have shown that atomistic graph analysis is a valuable tool for studying

the intra-structural communication in dimeric protein complexes. This Thesis confirms the

molecular mechanisms in disease-relevant proteins and explores how they can be modulated by

targeting allosteric sites and dimer interfaces. The prediction of allosteric sites in proteins has

been demonstrated extensively by our group for Markov Transients [159,161] and bond-to-bond

propensities [149,162]. We further confirmed the validity of this application in large benchmarking

sets [54] and published our approach for public use as a web server [51]. The computational

efficiency of the approach allows us to react quickly to new threats like COVID-19, and we

show that we can provide valuable insights into resistance mechanisms of cancer mutations. We

hope this Thesis will guide targeted drug design, and we describe below which experimental

studies could benefit from our results.

7.2 Open questions and future work

7.2.1 Suggested future experiments

We have shown numerous times that our atomistic graph analysis is an efficient tool to study

communication within proteins and predict allosteric signalling and sites. Over the years, our

group performed a range of benchmarking studies on state-of-the-art data sets available at the

time [54,149] and in-depth explorations of biological systems [149,159,162,163] with predictions that

were experimentally verified in vitro and in vivo [161].

Furthermore, the results we presented in this Thesis are in agreement with experimental ob-

servations in multiple instances. Especially for Chapter 4, we detail how our results overlap

with experimental data and with what has been described as the molecular mechanism of ERα

in literature [3]. Over the course of the last year, we have seen an increase in studies of the

SARS-CoV-2 Mpro that describe allosteric effects and sites which overlap with our results as
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presented in Chapter 5. Thus we are confident in the predictive power of our methodologies

and hope that they give rise to rationally guided experiments.

Possible experiments that would confirm our results can be guided by the hotspots and high

scoring residues that have been presented in this work. Generally, these experiments would

require the design of small molecules that can bind in proximity to the allosteric hotspots or

high scoring residues in the dimerisation sites. For the latter, these molecules could be extended

towards inhibitory peptide design, leading to dimerisation disruption.

For ERα, it would be of high interest to see whether the observation that differences in drug

resistance in the cancer mutant L536R are conferred over dimer stability, can be confirmed. To

this end it might be fruitful to study dimer dissociation rates of ERα constructs while bound

to different SERDs. This approach has been under discussion with our collaborators, the group

of Simak Ali in the Department of Surgery & Cancer at Imperial College London.

For the allosteric hotspots that we predicted in the SARS-CoV-2 Mpro, it would be exciting

to see whether a small molecule can be designed to bind at the high scoring residues. Good

starting points for chemical modifications could be the fragments that are binding in proximity

to our hotspots and for which structural data was made available through a crystallographic

screen [292]. Once such molecules are designed, it would be intriguing to see whether a binding

event leads to up or down-regulation of Mpro. Studies exploring the activity of fragments or

drugs binding distal from the active site have so far found that they exhibit inhibitory allostery

on Mpro [291,294]. This gives us confidence that it would be viable to study our allosteric hotspots

with experimental means.

For CDK4 in complex with cyclin D we identified two differing residue clusters at the dimer

interface with MT and BBP analyses. It would be most interesting to see whether an inhibition

targeted at these high scoring residues would lead to a differential effect. We propose that the

residues identified with MT analysis might lead to a disruption of the catalytic machinery, while

the high scoring BBP residues might impact the dimer stability.
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7.2.2 Impact of different inhibitors

We have shown in Chapters 4 and 6 that our methodologies can fruitfully be applied to in-

vestigate how binding of chemotherapeutics affects the connectivity within protein structures.

Our explorations in that regard are limited by available structures of proteins in complex with

inhibitors. To overcome this limitation, it would be of high interest to use docking approaches

to create structures of proteins bound to a range of different modulators. As described shortly

in Section 2.1, docking can be used in virtual screenings to explore which molecules would bind

to a given target [60]. However, it can also be used to model the structure of a specific ligand

bound to a target protein and determine the binding pose. Such a knowledge-guided docking

experiment benefits from a known binding area as well as already bound template ligands to

guide the simulation. For the LBD of ERα as well as the monomeric forms of the different

CDKs, this information is available and could be used to set up docking experiments. Specific

questions that come to mind based on the results that we presented in these systems are the

following:

• Which impact do other SERDs have on the connectivity in mutated structures of ERα?

Structures were only available for the ERα LBD bound to AZD9496 and AZD9833,

and thus, no information can be provided for other SERDs. However, our collaborators

obtained experimental data on their inhibitory values, and it would be interesting to see

whether we detect the same effect over the dimer interface connectivities.

• Do we see differences between CDK4/6 versus CDK2 when inhibited with palbociclib,

abemaciclib or ribociclib? These three cancer inhibitors have been approved for therapy

based on their specific inhibition of CDK4 and 6. Unfortunately, there is no structural

data available for these inhibitors bound to CDK2, for which they show weaker or no

inhibitory behaviour [354]. It would be interesting to see whether we can elucidate the

different mechanisms in a direct comparison of CDKs bound to palbociclib, abemaciclib

and ribociclib.
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7.2.3 Elucidation of different allosteric mechanisms in proteins

This work saw the application of two complementary approaches on atomistic graphs. MT

analysis allows us to study which areas of the protein are reached the fastest by an input signal

at a source site [159]. BBP analysis finds the areas of the protein that are coupled the strongest

to the source site [149]. In Chapters 5 and 6, we found that the methodologies find similar

signalling clusters in the protein but highlight different patterns on the single residue level. We

further stated that Markov Transients are more applicable in proteins of catalytic activity, as

shown by previous studies in our group [159,161].

Nonetheless, it would be interesting to explore these observations in larger datasets. As done

for bond-to-bond propensity in work by Wu et al. [54], Markov transient analysis could be

benchmarked in a large dataset of known allosteric proteins. This would provide us with

quantitative measures for how well Markov transient analysis is performing overall and whether

trends in the predictive pattern are skewed towards enzymatic proteins.

Ultimately, these large-scale studies do not only serve as an evaluation of the predictive power

of our methodologies, but they can also teach us about allosteric mechanisms that are at play.

By studying for which proteins allosteric sites can and cannot be predicted, we obtain a dataset

of protein features that can be used for classification approaches. This will teach us about the

applicability and limitations of our methodology but can also aid in defining different classes

of allosteric mechanisms as described in Section 1.3.

7.2.4 In silico mutational analysis

As shortly mentioned in Section 2.2 in the context of PPI interactions, mutational studies are

a widely applied tool to detect which residues are crucially involved in signalling patterns. In

the context of our work, we could set up in silico alanine mutations of every position in the

protein and run our atomistic graph analysis on the so created structures. These scans would

result in high-dimensional output data that can be compared with statistical means to detect
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outliers in two aspects. Firstly, it would be possible to detect positions that change the global

connectivity within the whole protein or towards specific structural features. This approach

has been used in ribosomal protein S6 kinase 4 (RSK4) to determine which residues impact

the Markov transient signalling propagation between allosteric and orthosteric sites the most,

which led to the detection of allosteric paths [161]. In the case of ERα, the data could be analysed

with regard to H12 residues, which would allow identifying positions that have a particular high

communication towards the helix. These positions might stabilise AF-2 over connecting to H12

and could foreshadow future resistance mechanisms.

Secondly, a full alanisation scan and subsequent atomistic graph analysis would identify posi-

tions that are impacted the most by alterations in the protein. The residues that are the most

sensitive to mutations might constitute topologically relevant positions in the protein. It would

further be possible to evaluate whether these positions are chemically important by mutating

them into residues other than alanine and evaluating the physicochemical perturbation that

would be introduced into the atomistic graph.

ProteinLens 2.0

In Section 3.2.2, we introduced ProteinLens, an interactive web server that makes our atomistic

graph analysis accessible to the community. The web server was published in a first version

to include the current graph construction process as coded in BagPype [160], and MT and BBP

analyses. It further includes a scoring functionality that allows the user to investigate sites of

interest against the backdrop of the whole protein [51].

For future versions of the web server, we would envision providing additional functionality to

the user. For example, we think it would be interesting to include a feature that allows the

user to explore the impact of mutations on signalling within the protein. In recent years it

has been repeatedly proposed that the impact of single residue mutations might be conferred

over allosteric effects in proteins [358,359]. Our methodologies would be ideal for exploring these

effects by incorporating mutated residues into the graph. Our methodologies would then allow

the user to investigate how a chosen mutated position influences the allostericity within the
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protein and highlight differentially perturbed residues or paths.



Appendix A

Methodological Details

A.1 Structure details and pre-processing

The general workflow for structure curation followed the steps listed below:

1. Download files from the PDB in .pdb format∗.

2. Clean A/B confirmations of side chains. Sometimes side chain atoms are indicated

with an alternate location record. We used a python script to choose the A conformation

coordinates for all residue with double records.

3. Adjust biological assemblies. Some PDB files contained the wrong number of protein

chains in the asymmetric unit cell for the dimeric assembly they were meant to represent.

If that was the case, we either deleted surplus chains or modelled the missing dimer halves

based on the symmetry information contained in the file header (REMARK 350). We used

MakeMultimer.py, a python script that is freely available online†, to replicate asymmetric

unit cells.

4. Curating water molecules that are functionally important. Generally, all solvent

water molecules are stripped from the structures before graph construction as Reduce, the
∗Details of the current .pdb file format v.3.30 can be found at: wwpdb.org/documentation/file-format-

content/format33/v3.3.html
†Available at: watcut.uwaterloo.ca/tools/makemultimer/

142

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://watcut.uwaterloo.ca/tools/makemultimer/
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command line tool that we use for protonation, can not add hydrogens to single oxygen

atoms. However, when described in the publication of a structure that a water molecule

is involved in the function or binding mode of a protein, we curated these molecules to be

included. We manually added hydrogen atoms with the AddH functionality in Chimera [356]

to all water molecules and kept the relevant ones in the structure as indicated for each

protein below.

5. Modelling missing loops and residues. Missing residues and residues with miss-

ing atoms are indicated in REMARK 465 and REMARK 470, respectively. We modelled all

non-terminal missing loops in Chimera [356] using the Refine/Model Loops option that

integrates the computational tool Modeller [360]. In each run, we obtained five models

and we diverged from the default settings by setting the number of adjacent residues that

were allowed to moved to 0. The model with the best scores [360] and highest overlap with

a close full-length structure was chosen. For missing side chain atoms we used PyRosetta

to model their conformation [263]. The regions that we modelled are indicated for each

protein below.

For Chapters 5 and 6 of this work, steps 2) and 3) were integrated in the BagPype graph

construction workflow [160]. In the Sections below we provide details on the structures used for

each study system.

A.1.1 Estrogen receptor alpha

For a basic comparison between agonist and antagonist-bound conformations of the ERα ligand

binding domain (LBD) we use the PDB entries 1G50 [227] bound to estradiol (2.9 Å resolution)

and 3ERT [235] (1.9 Å resolution) bound to 4-hydroxytamoxifen, a commonly used chemothera-

peutic. For the agonist-bound structure, we deleted chain A as it was not part of the homodimer

and renumbered the residue identifiers from 1304 - 1549 to 304 - 549 in chain B and from 2304

- 2547 to 304 - 547 in chain C. The estradiol molecules were recorded at position 600 in both

chains (EST600).
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For the antagonist-bound structure, we modelled the second monomer based on the symmetry

matrix using MakeMultimer.py. We further modelled side chain atoms for 11 residues in each

monomer and added hydrogens to one water molecule in each binding site with the residue

identifier 2. The 4-hydroxytamoxifen ligands are recorded at position 600 in chain A and B

(OHT600).

Structural features

A structural feature that was investigated in both the agonist and antagonist-bound confor-

mations was helix 12 (H12). In the agonist-bound conformation, H12 stretches from residue

identifiers 539 - 547 [219]. For the antagonist-bound conformation, a shift in H12 is recorded to

include residues 536 - 544 [235]. For the investigation of the dimer interface, we looked at the

whole interface as well as the different structural features that make up the interface. Table

A.1 lists the structural features in agonist and antagonist-bound conformation as defined in the

HELIX section of their respective .pdb files.

Table A.1: Structural features in ERα LBD dimer interface. Residues in each struc-
tural element are shown for agonist and antagonist-bound conformation.

Structural element Agonist-bound Antagonist-bound
Helix 5/6 371-394 372-395
Helix 7 413-418 412-417
Helix 8 421-437 424-438
Helix 9 441-456 442-455
Loop 10 457-464 456-465
Helix 10 465-492 466-492
Helix 11 496-531 497-528
Helix 12 539-547 536-544

A.1.2 SARS-CoV-2 Mpro

We used two main protease structures, one in SARS-CoV-2 and one in SARS-CoV. The SARS-

CoV-2 Mpro structure was solved to 1.75Å and deposited in the PDB as entry 6Y2E in March

2020 [5]. One water molecule at position 582 was kept as it is in close proximity to HIS41. The

second monomer was modelled with MakeMultimer.py.
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For the SARS-CoV Mpro we chose PDB entry 2DUC which contained no gaps or missing residues

and was solved to 1.7 Å [277]. We kept the two water molecules at positions 342 in chain A and

312 in chain B.

Structural features

For the purpose of scoring the connectivity towards the active site, Nan Wu defined an extended

region as follows. We used all 23 structures from a recent crystallographic fragment screen [291]

with fragments non-covalently bound to the binding site of Mpro. We then used PyMol [191]

to find all residues with atoms within 4 Å of any of the 23 fragments. Ultimately, the active

site region we scored contained the following residues: THR25, THR26, HIS41, CYS44, THR45,

SER46, MET49, TYR54, PHE140, LEU141, ASN142, SER144, CYS145, MET162, HIS163, HIS164,

MET165, GLU166, LEU167, PRO168, ASP187, ARG188, GLN189 and THR190.

A.1.3 Cyclin-dependent kinase 4 and 6

As described in Chapter 6, there is only a limited number of structures available in the PDB [48].

Figure A.1 provides an overview of available structures according to the proposed activation

steps. The only structures available of the dimeric complex were CDK4 with cyclin D1 and D3

as described below.

For Chapter 6.2, we compared monomeric structures. For CDK2 we chose PDB entry 1HCL at

1.8 Å resolution [346]. Residues 37-40 were modelled as described above. Monomeric structures

for CDKs 4 and 6 were not available in the PDB and were instead obtained from AlphaFold [49].

Figure A.2 shows the monomeric structures downloaded from AlphaFold. The terminal regions

that were modelled with low and very low confidence were deleted from the structures.

For CDK4 in complex with cyclin D1 we chose PDB entry 2W9Z with a resolution of 2.45 Å [328]

as it contained only one small gap in the kinase chain. This gap (residues 241-244) was closed

with MODELLER in Chimera. The structure is mutated at the phosphorylation site 172 from
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Figure A.1: Available structures of CDK4/6. The CDK4/6 activation pathway is de-
picted with CDK structures in dark blue and cyclin structures in dark green. Blue and yellow
boxes depict structures that are available for CDK4 and CDK6, respectively. The dashed line
indicates modelled structures which were obtained from AlphaFold [49]. Orange - Cip/Kip pro-
teins; red - inhibitors (small molecules and INK4 proteins); light green - substrate; yellow circle
- phosphate; purple - viral cyclin; CAK - CDK-activating kinase; ATP shown as simplified
chemical structure.∗

THR to ALA.

For the second complex used in this work, we used PDB entry 3G33 [329] which contained CDK4

bound to cyclin D3 at 3 Å resolution. The file contained two dimers and we deleted chain A and

D to obtain one dimer. We further renamed chain B to A and chain C to B and renumbered the

kinase residues to match with the numbering in structure 2W9Z for ease of comparison. The

3G33 structure contained one gap in the cyclin monomer from 217-219, which was modelled

with the approach described above. Missing atoms were added with PyRosetta [263] for nine

residues.

Chapter 6.4 investigates monomeric structures of CDK6 and CDK2 bound to different chemother-

apeutics. Table A.2 lists the three CDK6 structures obtained from the work by Guiley et al. [327].

The gaps were closed as described above and missing atoms were added with PyRosetta [263].
∗Created with biorender.com

www.biorender.com
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Figure A.2: AlphaFold prediction of monomeric CDK4/6 structures. Downloaded
from alphafold.ebi.ac.uk/entry/P11802 for CDK4 and alphafold.ebi.ac.uk/entry/Q00534 for
CDK6. Structures are coloured by modelling confidence score as defined by AlphaFold [49]:
dark blue - very high (score > 90); light blue - confident (90 > score > 70); yellow - low(70 >
score > 50); orange - very low (score < 50).

Table A.2: Characteristics of monomeric CDK6 structures with inhibitors.

PDB id Inhibitor Resolution [Å] Gaps Missing atoms
5L2I Palbociclib 2.75 47-54, 85-92, 167-180, 255-256 1 residue
5L2S Abemaciclib 2.27 48-54, 85-92, 168-180 6 residues
5L2T Ribociclib 2.37 48-56, 85-92, 168-180 5 residues

For entry 5L2S we kept one water molecule at position 1011 as it contributed to ligand binding.

For an inhibited structure of CDK2 we chose the PDB entry 2B54 at a resolution of 1.85 Å [357].

The structure contained no gaps or missing atoms and the inhibitor DIN-232305 was recorded

at position 300.

Structural features

As there is no structure available for CDK4/6 bound to the natural ligand ATP, we defined

binding site residues based on an alignment with the binding site of CDK2. Echalier et al. [361]

performed a detailed alignment of binding site residues and their conservation across multiple

https://alphafold.ebi.ac.uk/entry/P11802
https://alphafold.ebi.ac.uk/entry/Q00534
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members of the CDK family. Based on their work, we focused on the first shell binding site

residues that form highly conserved motifs. We decided to apply a narrow definition of the

binding site here, as we have shown in a recent study that the algorithm performs better with

a small but relevant residue set [54]. A full list of binding site residues that were used in this

work is shown in Table C.7.

A.2 ERα mutations and chemotherapeutics

The experimental details in the following Sections were kindly provided by Simak

Ali and Fui Lai. Experiments were designed by Simak Ali and Fui Lai and

performed by Fui Lai.

Tissue culture and growth assays

MCF7-Luc cells (hereafter referred to as MCF7; Cambridge Bioscience, Cambridge, UK)

and derived mutant ESR1 clones were authenticated by short tandem repeat profiling using

the AmpFlSTR Identifiler Plus kit (Applied Biosystems, Warrington, UK), as described [362].

Mycoplasma negativity was maintained by regular testing using the MycoAlert Mycoplasma

Detection Kit (Lonza, UK). Cell lines were routinely cultured in Dulbecco’s Modified Ea-

gle’s medium (DMEM) containing 10% fetal calf serum (FCS) and penicillin-streptomycin-L-

glutamine (PSG). For estrogen depletion, the cells were transferred to DMEM lacking phenol

red and containing 5% dextran-coated charcoal-stripped FCS (DSS) for 72 h. Stock solutions of

17β-estradiol (EST) and anti-estrogens, prepared in DMSO, were added to the culture medium

at a dilution of 1 in 1000. An equal volume of DMSO was added to the vehicle controls. Cell

growth was measured using the sulphorhodamine B (SRB) assay, as described previously [363],

or imaging using the IncuCyte ZOOM (Essen Bioscience, Welwyn Garden City, UK). For the

latter, three images per well were acquired every 12 hours for a period of 6-9 days, and conflu-

ency (%) was calculated using the IncuCyte ZOOM software package (Essen Bioscience). For

determination of the half-maximal effective concentration (IC50) values, cells were seeded in
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96-well culture plates and treated with increasing concentrations of anti-estrogens for 6 days.

Cell growth was determined using the SRB assay. IC50 values were calculated from non-linear

regression curve fitting using GraphPad Prism v9. Doubling times were calculated in Prism,

using the exponential growth equation.

Generation of ER-mutant MCF7 cell lines using CRISPR-Cas9 genome editing

The MCF7-Y537S A4 clone (here referred to as Y537S CL3) has been previously described [363].

The other ESR1 mutant lines were generated using the same approach, following site-directed

mutagenesis of an 1,803 bp fragment of the ESR1 gene flanking the exon 8 coding region, except

that MCF7 cells were transfected with the hCas9 and donor template plasmids, together with

the CRISPR sgRNA CRISPR4834192 or CRISPR4834193. These CRISPRs, targeting intron

7 of ESR1, were designed using a web-based software∗. Single colony cloning and screening of

genomic DNA using mutant-specific PCR was undertaken as previously detailed [363]. PCR of

genomic DNA followed by Sanger sequencing was used to confirm integration of the appropriate

mutation in the ESR1 gene locus.

∗Available at: zlab.bio/guide-design-resources

https://zlab.bio/guide-design-resources
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Supplementary Figures

Figure B.1: AlphaFold prediction of monomeric ERα structure. Downloaded from
alphafold.ebi.ac.uk/entry/P03372. Structures are coloured by modelling confidence score as
defined by AlphaFold [49]: dark blue - very high (score > 90); light blue - confident (90 > score
> 70); yellow - low(70 > score > 50); orange - very low (score < 50).
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Figure B.2: Markov transient time steps in the antagonist-bound ERα ligand bind-
ing domain when sourced from the OHT molecules. The ERα LBD (PDB id: 3ERT [235])
is shown in an all atom stick representation. Atoms are coloured by probability (0 - grey to
1 - red) of the random walker being at this node at a given Markov time step t. Shown are
different time steps in the Markov transient analysis as indicated.

Figure B.3: Effect of chemotherapeutics on ERα cancer mutants. A) and B) IC50
values (nM) generated for a variety of mutant clones, together with the fold difference in IC50
between WT (MCF7) cells and mutant clones. Values highlighted in orange show >10-fold
difference from the IC50 value determined for MCF7 cells, with the cells in red identifying
>20-fold difference in sensitivity to drug. Experimental data and figure provided by Fui Lai
and Simak Ali.
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Figure B.4: Consistency of allosteric hotspots between SARS-CoV-2 and
SARS-CoV. Surface representations of the SARS-CoV-2 (PDB id: 6Y2E [5]) and SARS-CoV
(PDB id: 2DUC [277]). Coloured by QS from BBP analysis (for A, B) and MT analysis (for
C) sourced from active site residues. A) Hotspot 1 as described in Figure 5.5A. B) Hotspot 2
as described in Figure 5.5B. C) Hotspots 3 and 4 as described in Figure 5.6C. Adapted from
Strömich et al. [55].
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Figure B.5: Scoring of whole dimer interface in SARS-CoV-2 and SARS-CoV.
Shown are QS distributions for the interface residues in SARS-CoV-2 and SARS-CoV Mpro.
Bond forming interface residues are a subclass of interface residues, which from hydrogen bonds
and salt bridges.

Figure B.6: Bond-to-bond propensity analysis of monomeric CDK4 and 2 when
sourced from the phosphorylation site. A) Average quantile score (QS) results for bond-
to-bond propensities are shown for each structural element in CDK4 and CDK2. B) and C)
The structures of CDK4 (AlphaFold model [49]) and CDK2 (PDB id: 1HCL [346]) are shown in
two orientations with residues coloured by QS. Residues with a QS > 0.95 are shown as sticks.
The source residues are shown as green sticks.
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Figure B.7: Residue-wise MT and BBP results in CDK2 and 4 coloured by quantile
score when sourced from the phosphorylation site. Shown are structural features in the
kinases with one box per residue (for a full list of residues in these structural features see Tbl.
C.7). PISTVRE/PSTAIRE helix residues are indicated. X - residue not present.
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Figure B.8: Markov transient analysis of CDK4 - cyclin D3. Shown on the right are
the results of the analysis sourced from the phosphorylation site THR172 and on the left when
sourced from the binding site residues. Colours are according to QS from 0 - blue to 1 - red.
A) and B) Data distribution of all residues with t1/2 values over the distance from the source.
RXL site residues are highlighted as larger dots with a black outline. C) and D) The complex
(PDB id: 3G33 [329]) is shown in two orientations with residues coloured by QS. Residues with
a QS > 0.95 are shown as sticks. The source residues are shown as green sticks. Highlighted
with a yellow circle are the RXL sites on cyclin D3. E) and F) Detailed sequence for the RXL
site residues coloured by QS.
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Figure B.9: The RXL site as a source in Markov transient analysis of CDK4 -
cyclin D3. A) The complex (PDB id: 3G33 [329]) is shown in the front orientation with
residues coloured by QS (0 - blue to 1 - red). Residues with a QS > 0.95 are shown as sticks,
and source residues are shown as green sticks. B) Two surface visualisations of the complex
analogous to the results presented in Fig. 6.8. Highlighted in cyan is an extended hotspot
region that we propose to be a PPI site. C) Detailed sequences for functionally important
features on the kinase coloured by QS. Ph - phosphorylation site.
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Figure B.10: MT analysis of monomeric CDK structures when sourced from the
phosphorylation site. A) Average quantile score (QS) results for Markov Transients are
shown for each structural element in CDKs 4, 6 and 2. A zoom in into the sequence of the
Cα helix is provided to the right. B) and C) and D) The structures of CDK4, CDK6 (both
AlphaFold models [49]) and CDK2 (PDB id: 1HCL [346]) are shown in back orientation with
residues coloured by QS. Residues with a QS > 0.95 are shown as sticks. The source residues
are shown as green sticks. Highlighted with a green circle are the Cα helices. The scatterplots
show t1/2 values over the distance from the source for each residue in the protein. Cα residues
are highlighted as larger dots with a black outline.
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Figure B.11: BBP analysis of monomeric CDK6 in apo and inhibited form when
sourced from the phosphorylation site. A) Average quantile score (QS) results for bond-
to-bond propensities are shown for each structural element in CDK6 in apo and inhibited
forms. A zoom-in into the sequence of the Cα helix is provided to the right. B) The structures
of monomeric CDK6 (AlphaFold model [49]) and inhibited forms with palbociclib, abemaciclib
and ribociclib (PDB ids: 5L2I, 5L2S, 5L2T [354]) are shown from the back view with residues
coloured by QS. Residues with a QS > 0.95 are shown as sticks. The source residues are shown
as green sticks. Highlighted with a green circle are the Cα helices.
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Supplementary Tables

Table C.1: Dimer interface residues in the agonist-bound ERα LBD. Residues deter-
mined by PDBePisa [78]. H - hydrogen bond, HS - salt bridge

Chain B Bond Chain C Bond

CYS381 CYS381

GLU385 GLU385

MET427 GLU423

ALA430 MET427

THR431 ALA430

SER433 THR431

ARG434 H SER433 H

MET437 ARG434

ILE451 MET437

ASN455 H ILE451

SER456 ASN455 H

GLY457 SER456

TYR459 GLY457

THR460 TYR459 H

LEU469 THR460

159
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Table C.1 continued from previous page

Chain B Bond Chain C Bond

LYS472 H LEU469

ASP473 LYS472

HIS476 ASP473

LEU479 HIS476

ASP480 H LEU479

LYS481 ASP480 H

THR483 LYS481

ASP484 H THR483

ILE487 ASP484 H

LEU497 ILE487

GLN498 H LEU497

GLN500 GLN498

HIS501 GLN500

GLN502 H HIS501

LEU504 GLN502 H

ALA505 LEU504

GLN506 H ALA505

LEU508 GLN506 H

LEU509 H LEU508

ILE510 LEU509 H

LEU511 ILE510

SER512 H LEU511

HIS513 SER512 H

ARG515 H HIS513

HIS516 ARG515 H

ASN519 HIS516
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Table C.1 continued from previous page

Chain B Bond Chain C Bond

LYS520 ASN519

MET522 LYS520

GLU523 MET522

HIS547 GLU523

ARG548 HIS547

LEU549

Table C.2: Dimer interface residues in the antagonist-bound ERα LBD. Residues
determined by PDBePisa [78]. H - hydrogen bond, HS - salt bridge

Chain A Bond Chain B Bond

GLU385 GLU385

MET427 MET427

ALA430 ALA430

THR431 THR431

ARG434 ARG434

MET437 MET437

ILE451 ILE451

ASN455 H ASN455 H

SER456 SER456

TYR459 TYR459

THR460 THR460

LEU469 LEU469

LYS472 LYS472

HIS476 HIS476

LEU479 LEU479

ASP480 H ASP480 H
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Table C.2 continued from previous page

Chain A Bond Chain B Bond

LYS481 LYS481

THR483 THR483

ASP484 H ASP484 H

ILE487 ILE487

LEU497 LEU497

GLN498 H GLN498 H

HIS501 HIS501

GLN502 H GLN502 H

LEU504 LEU504

ALA505 ALA505

GLN506 H GLN506 H

LEU508 LEU508

LEU509 H LEU509 H

ILE510 ILE510

LEU511 LEU511

SER512 SER512

HIS513 HIS513

ARG515 ARG515

HIS516 H HIS516 H

ASN519 H ASN519 H

LYS520 LYS520

GLU523 GLU523
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Table C.3: Dimer interface residues in the SARS-CoV-2 Mpro. Residues determined
by PDBePisa [78]. H - hydrogen bond, HS - salt bridge

Chain A Bond Chain B Bond

SER1 HS SER1 HS

GLY2 GLY2

PHE3 PHE3

ARG4 HS ARG4 HS

LYS5 LYS5

MET6 MET6

ALA7 H ALA7 H

PHE8 PHE8

PRO9 PRO9

SER10 H SER10 H

GLY11 H GLY11 H

LYS12 LYS12

GLU14 H GLU14 H

MET17 MET17

GLY71 GLY71

LEU115 LEU115

ALA116 ALA116

TYR118 H TYR118 H

ASN119 ASN119

GLY120 GLY120

SER121 H SER121 H

PRO122 H PRO122 H

SER123 SER123

GLY124 GLY124

VAL125 H VAL125 H
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Table C.3 continued from previous page

Chain A Bond Chain B Bond

TYR126 TYR126

GLN127 H GLN127 H

CYS128 CYS128

ALA129 ALA129

LYS137 H LYS137 H

GLY138 GLY138

SER139 H SER139 H

PHE140 H PHE140 H

LEU141 LEU141

GLU166 HS GLU166 HS

GLY170 GLY170

HIS172 HIS172

THR280 THR280

GLY283 GLY283

SER284 SER284

ALA285 ALA285

LEU286 LEU286

GLU290 HS GLU290 HS

ARG298 ARG298

GLN299 H GLN299 H

CYS300 CYS300

SER301 SER301

GLY302 GLY302

VAL303 VAL303

THR304 H THR304 H

PHE305 H PHE305 H
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Table C.3 continued from previous page

Chain A Bond Chain B Bond

GLN306 H GLN306 H

Table C.4: Dimer interface residues in the SARS-CoV Mpro. Residues determined by
PDBePisa [78]. H - hydrogen bond, HS - salt bridge

Chain A Bond Chain B Bond

SER1 SER1 HS

GLY2 GLY2

PHE3 PHE3

ARG4 H ARG4 HS

LYS5 LYS5

MET6 MET6

ALA7 H ALA7 H

PHE8 PHE8

PRO9 PRO9

SER10 H SER10 H

GLY11 H GLY11 H

LYS12 LYS12

GLU14 H GLU14 H

LEU115 ASN72

ALA116 LEU115

SER121 ALA116

PRO122 TYR118

SER123 H SER121

GLY124 PRO122 H

VAL125 H SER123

TYR126 GLY124
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Table C.4 continued from previous page

Chain A Bond Chain B Bond

GLN127 VAL125 H

CYS128 TYR126

LYS137 H GLN127 H

GLY138 CYS128

SER139 ILE136

PHE140 H GLY138

LEU141 SER139

GLU166 HS PHE140

PRO168 LEU141

GLY170 ASN142

HIS172 ASP155

THR285 GLU166

ILE286 THR285

GLU290 HS ILE286

GLN299 GLU290

GLY302 ARG298 H

VAL303 GLN299

THR304 CYS300

PHE305 H SER301

GLN306 PHE305
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Table C.5: Allosteric hotspots in the SARS-CoV Mpro as determined with BBP
analysis. QSs are given for each residue and solvent-accessible surface area (SASA) was
determined in PyMol [191].

Hotspot Residue QS SASA [Å2]

Hotspot 1

LEU30 0.95 22.89
LEU32 1.00 1.35
ASP33 0.89 69.14
ASN95 0.95 6.90
THR98 0.98 154.30
LYS100 0.97 156.31
TYR101 0.98 69.11
PHE103 0.98 60.19
PHE159 1.00 0.00

Hotspot 2

ARG4 0.54 89.49
ARG131 0.99 7.96
ASP197 0.91 36.91
THR199 0.76 32.12
ASP289 0.98 15.28
GLU290 0.83 12.88
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Table C.6: Allosteric hotspots in the SARS-CoV Mpro as determined with MT
analysis. QSs are given for each residue and solvent-accessible surface area (SASA) was
determined in PyMol [191]. Highlighted in blue is a cysteine residue that can be targeted for
covalent binding.

Hotspot Residue QS SASA [Å2]

Hotspot 3

LYS100 0.91 156.31
LYS102 0.78 136.75
ASN151 0.98 30.43
ILE152 0.93 7.47
ASP153 0.99 62.00
TYR154 0.83 192.09
ASP155 0.85 54.97
CYS156 0.98 17.69
VAL157 0.71 0.00
SER158 0.89 18.84

Hotspot 4

ASP33 0.94 69.14
ASP34 0.96 53.76
VAL35 0.92 18.11
TYR37 0.91 8.60
ARG76 0.84 156.72
ILE78 0.87 69.36
LYS90 0.64 110.37
VAL91 0.63 1.34
ASP92 0.95 72.23
THR93 0.89 66.96
ALA94 0.91 67.31
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Table C.7: Alignment of structural features in CDKs. Residues are listed with residue
name and number for each structural feature. Orange - DFG motif (in binding site and acti-
vation loop); green - PSTAIRE motif; blue - phosphorylation site; X - residue not present

Structural feature CDK2 CDK4 CDK6

Binding site GLY 11 GLY 13 GLY 20

GLU 12 VAL 14 GLU 21

GLY 13 GLY 15 GLY 22

THR 14 ALA 16 ALA 23

TYR 15 TYR 17 TYR 24

GLY 16 GLY 18 GLY 25

PHE 80 PHE 93 PHE 98

GLU 81 GLU 94 GLU 99

PHE 82 HIS 95 HIS 100

LEU 83 VAL 96 VAL 101

HIS 84 ASP 97 ASP 102

ASP 145 ASP 158 ASP 163

PHE 146 PHE 159 PHE 164

GLY 147 GLY 160 GLY 165

Cα helix PRO 45 PRO 50 PRO 55

SER 46 ILE 51 LEU 56

THR 47 SER 52 SER 57

ALA 48 THR 53 THR 58

ILE 49 VAL 54 ILE 59

ARG 50 ARG 55 ARG 60

GLU 51 GLU 56 GLU 61

ILE 52 VAL 57 VAL 62

SER 53 ALA 58 ALA 63

LEU 54 LEU 59 VAL 64
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Table C.7 continued from previous page

Structural feature CDK2 CDK4 CDK6

LEU 55 LEU 59 LEU 65

Activation loop ASP 145 ASP 158 ASP 163

PHE 146 PHE 159 PHE 164

GLY 147 GLY 160 GLY 165

LEU 148 LEU 161 LEU 166

ALA 149 ALA 162 ALA 167

ARG 150 ARG 163 ARG 168

ALA 151 ILE 164 ILE 169

PHE 152 TYR 165 TYR 170

GLY 153 SER 166 SER 171

VAl 154 TYR 167 PHE 172

PRO 155 X X

VAL 156 GLN 168 GLN 173

ARG 157 MET 169 MET 174

THR 158 ALA 170 ALA 175

TYR 159 LEU 171 LEU 176

THR 160 THR 172 THR 177

HIS 161 PRO 173 SER 178

GLU 162 VAL 174 VAL 179

VAL 163 VAL 175 VAL 180

VAL 164 VAL 176 VAL 181

THR 165 THR 177 THR 182

LEU 166 LEU 178 LEU 183

TRP 167 TRP 179 TRP 184

TYR 168 TYR 180 TYR 185

ARG 169 ARG 181 ARG 186
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Table C.7 continued from previous page

Structural feature CDK2 CDK4 CDK6

ALA 170 ALA 182 ALA 187

PRO 171 PRO 183 PRO 188

GLU 172 GLU 184 GLU 189

Table C.8: Dimer interface residues between CDK4 and cyclin D1. Residues deter-
mined by PDBePisa [78]. H - hydrogen bond, HS - salt bridge

CDK4 Bond Cyclin D1 Bond

ARG5 LEU23

ASN41 ARG26

GLY42 VAL27

GLU43 ALA30

GLU44 H MET31

GLY48 LYS33 HS

LEU49 H ALA34

ILE51 THR37

THR53 PHE108

VAL54 VAL109

ARG55 H LYS112 H

VAL57 MET113

ALA58 LYS114

LEU59 GLU115

ARG61 H THR116

ARG62 H PRO118

GLU64 LEU119

ALA65 H THR120

PHE66 ALA121 H
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Table C.8 continued from previous page

CDK4 Bond Cyclin D1 Bond

GLU67 HS PRO134

MET75 GLU135

ASP76 LEU138

VAL77 GLN139

CYS78 GLU141 H

ALA79 H LEU142

SER81 VAL145

ARG82 ASN146 H

ILE87 LYS149 H

VAL89 TRP150

PHE130 ASN151

ALA133 LEU152

ALA153 H

ALA154

MET155

ASP159

Table C.9: Dimer interface residues between CDK4 and cyclin D3. Residues deter-
mined by PDBePisa [78]. H - hydrogen bond, HS - salt bridge

CDK4 Bond Cyclin D3 Bond

VAL39 ARG26

ASN41 SER30

GLY42 LEU31

GLY43 ARG33

GLY45 LEU34

GLY46 ARG37 HS



Appendix C. Supplementary Tables 173

Table C.9 continued from previous page

CDK4 Bond Cyclin D3 Bond

GLY47 TYR38

GLY48 LEU109

LEU49 LYS112 H

ILE51 LEU113

THR53 ARG114

VAL54 GLU115 H

ARG55 H THR116

VAL57 PRO118

ALA58 THR120

LEU59 ILE121

ARG61 H GLU122

ARG62 PRO134

GLU64 HS ARG138

ALA65 ASP139

PHE66 GLU141

MET75 VAL142

ASP76 LEU145

VAL77 GLY146

CYS78 LYS149 H

ALA79 TRP150

THR80 ASP151

SER81 LEU152

ILE87 ALA153

VAL89 ALA154

PHE287 VAL155

ASP159
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Table C.10: Average QS of CDK4 - cyclin D3 interface when sourced from different
sites. Phosphorylation site is THR172 and a full list of binding site residues is given in Table
C.7. RXL site residues are listed in Table 6.1.

Source site
Methodology Phosphorylation site Binding site RXL site
Markov Transients 0.40 0.53 0.55
Random Site Score [95% CI] 0.46, [0.46,0.47] 0.47, [0.47,0.48] 0.50, [0.50,0.51]

Bond-to-bond propensity 0.44 0.52 0.54
Random Site Score [95% CI] 0.53, [0.52,0.53] 0.49, [0.48,0.49] 0.52, [0.52,0.53]
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