
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uexm20

Experimental Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uexm20

Schemes in Lean

Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon
Fernández Mir & Scott Morrison

To cite this article: Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon
Fernández Mir & Scott Morrison (2022) Schemes in Lean, Experimental Mathematics, 31:2,
355-363, DOI: 10.1080/10586458.2021.1983489

To link to this article: https://doi.org/10.1080/10586458.2021.1983489

© 2021 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 25 Nov 2021.

Submit your article to this journal

Article views: 3856

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uexm20
https://www.tandfonline.com/loi/uexm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10586458.2021.1983489
https://doi.org/10.1080/10586458.2021.1983489
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2021.1983489
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2021.1983489
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2021.1983489&domain=pdf&date_stamp=2021-11-25
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2021.1983489&domain=pdf&date_stamp=2021-11-25
https://www.tandfonline.com/doi/citedby/10.1080/10586458.2021.1983489#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10586458.2021.1983489#tabModule

EXPERIMENTAL MATHEMATICS
2022, VOL. 31, NO. 2, 355–363
https://doi.org/10.1080/10586458.2021.1983489

Schemes in Lean

Kevin Buzzarda, Chris Hughesa, Kenny Laua, Amelia Livingstona, Ramon Fernández Mirb, and Scott Morrisonc

aDepartment of Mathematics, Imperial College London, London, UK; bSchool of Informatics, University of Edinburgh, Edinburgh, UK; cSchool of Mathe-
matics and Statistics, University of Sydney, Sydney, Australia

ABSTRACT
We tell the story of how schemes were formalized in three different ways in the Lean theorem prover.

KEYWORDS
Scheme, lean, formal proof

1. Introduction and overview

1.1. Varieties and schemes in algebraic geometry

Before 1960, algebraic geometry was done via the theory of algebraic varieties, finite-dimensional objects defined over a fixed
algebraically closed field, or “universal domain.” The standard reference text was Weil’s 1946 book “Foundations of algebraic
geometry” [9], and in the final chapter “Comments and discussions,” Weil remarks that “it would be very convenient to have…a
principle of reduction modulo p,” a phenomenon which Weil would have known well should exist but which was extremely
inconvenient to do in this setting.

Schemes were introduced by Grothendieck in the 1960s (following earlier ideas of Chevalley, and building on ideas of Zariski) as
the building blocks for a new algebraic geometry. Grothendieck did not need to work over a fixed base field; his foundations worked
with general commutative rings rather than algebraically closed fields, enabling reduction modulo p to become possible. Given a
general “geometric object” (e.g., a topological space), one can consider the set of continuous real-valued functions on this object,
and pointwise addition and multiplication turn this space of functions into a commutative ring. Grothendieck’s observation was that
one could make a construction in the opposite direction: starting with an arbitrary commutative ring R, he constructed a geometric
object Spec (R) called an affine scheme; this was a topological space equipped with a sheaf of functions OX on this space, such that
OX(Spec (R)), the “allowable” functions on Spec (R), was R again. Grothendieck defined a general scheme by gluing affine schemes
together (following Weil, who in [9] had defined an abstract variety by gluing affine varieties together1). This new viewpoint proved
incisive—ten years later the Weil conjectures, questions about the number of points which algebraic varieties have over finite fields,
were being proved using machinery such as étale cohomology, which had been developed using schemes.

1.2. Formalising schemes—the history

As mentioned in the abstract, schemes were formalised three times in [3]; each formalization was better-behaved than the one before.
The first formalization was by the first three authors (KB, CH, and KL), and it evolved in late 2017 and early 2018 from the

Thursday evening Xena Project meetings at Imperial College London, where undergraduates learn how to formalise mathematics in
Lean (KB is the staff member running the meetings; CH and KL were, at the time, first-year mathematics undergraduates). It started
with KL formalising the theory of localization of rings as a project, and with KB suggesting that schemes would be a natural way
to take the theory further in Lean. It was their first attempt to formalise anything non-trivial in a theorem prover (and its ultimate
success inspired KB to see exactly how far Lean could be pushed, eventually resulting in [1]). However, some poor (in retrospect)
design decisions were made when it came to the theory of localization, and in this first iteration these decisions resulted in messy
infrastructure which would not scale. It quickly became clear that an extensive rewrite was needed. It also became apparent that such
a formalization had never been embarked upon before in any other theorem prover (parts of the theory of affine schemes had been
formalised, but nothing approaching the definition of a scheme)—this perhaps says something about the interests of mathematical
formalization community, at least pre-2017. The (abandoned) project is still currently online at [2].

AL and RFM then joined the project, with AL developing a very robust theory of localization in the form which was needed,
and RFM rewriting the definition of a scheme from scratch as part of his 2018–2019 MSc project supervised by KB. RFM ultimately
produced a definition which was usable—indeed several other basic results from the Stacks project website [8] and Hartshorne’s
algebraic geometry textbook [6] were also proved in this iteration, mostly by KL. This version is currently online at [4].

CONTACT Kevin Buzzard k.buzzard@imperial.ac.uk Department of Mathematics, Imperial College London, London, UK
1Note that Whitney had defined an abstract real manifold ten years earlier in [10], by gluing together open subsets of Euclidean space in the now familiar way.
© 2021 The Author(s). Published with license by Taylor and Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/10586458.2021.1983489
https://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2021.1983489&domain=pdf&date_stamp=2022-07-12
mailto:k.buzzard@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0/

356 K. BUZZARD ET AL.

However, sheaves were defined “by hand” in this iteration; there was one definition for a sheaf of types (or sheaf of sets,
depending on your foundations), one for a sheaf of Abelian groups and another one for a sheaf of rings. The contribution of
SM was to build enough abstract category theory in Lean to enable a third definition using this category-theoretic language.
At this point, a design change was also made; the definition of the sheaf on Spec (R) was changed from the definition in [8]
to the equivalent definition in [6]. This was the version which finally made it into Lean’s mathematics library, in commit
b79fc0379ae786153fc22ce5ee6751505e36a3d9 of mathlib [7, src/algebraic_geometry/Scheme.lean].
The current mathlib documentation for schemes (perhaps more readable for people who do not want to look directly at the code)
is available at the Lean community website.

1.3. Organization of the article

Most of the formalization was plain sailing, but occasionally we ran into unexpected problems. The layout of this paper is as follows.
In the next section, we go over the details of some of the mathematics involved. In the three sections after that we explain the three
approaches to formalising the material, emphasising the parts which did not go smoothly and explaining how this affected future
design decisions.

2. Mathematical details

Convention: all rings are commutative and have a 1; all ring homomorphisms send 1 to 1.
Let X be a topological space. A presheaf of rings F on X is a way to associate a ring F(U) to each open subset U ⊆ X, and a

ring homomorphism ρUV : F(U) → F(V) to each inclusion V ⊆ U of open subsets of X, such that ρUU is the identity for all
opens U, and ρWU = ρVU ◦ ρWV if U ⊆ V ⊆ W. In other words, F is a contravariant functor from the category of open subsets
of X to the category of rings. If f ∈ F(U) and V ⊆ U, we write f |V as shorthand for ρUV(f). The model example to keep in mind
is where F(U) is defined to be the ring of continuous functions U → R, and ρVU sends a continuous function on U to its res-
triction to V .

A presheaf of rings F is said to be a sheaf of rings if elements of F(U) can “be defined locally.” More precisely, a presheaf of rings
F is a sheaf of rings if for every open set U and every open cover U = ⋃

i∈I Ui of U by open sets Ui, the sequence

0 → F(U) →
∏

i∈I
F(Ui) →

∏

i,j∈I
F(Ui ∩ Uj) (‡)

is exact, where the map F(U) → ∏
i F(Ui) sends f to (f |Ui), and the map

∏
i F(Ui) → ∏

i,j F(Ui ∩ Uj) sends (fi) to the element
whose value at (i, j) is fi|Ui∩Uj − fj|Ui∩Uj . In words, the exactness of (‡) is the assertion that if you have a collection of elements
fi ∈ F(Ui) which agree on all overlaps Ui ∩ Uj, then there is a unique f ∈ F(U) whose restriction to Ui is fi for all i. A topological
space X equipped with a sheaf of rings OX is called a ringed space.

If (X,OX) is a ringed space, then to each point u ∈ X one can associate the stalk OX,x := lim−→x∈U OX(U) of “functions defined
near x”, a filtered colimit of rings and hence also a ring. If this ring is local (that is, has a unique maximal ideal) for every x ∈ X we
say that (X,OX) is a locally ringed space.

A fundamental construction in this area is the following. Given a ring R, let Spec (R) denote the set of its prime ideals. The Zariski
topology is a natural topology on Spec (R): for I an ideal we define V(I) to be the prime ideals of R containing I, and the V(I) as I
varies are the closed sets of Spec (R). We shall explain later how to use the theory of localizations of rings to construct a presheaf of
rings OR on Spec (R) and to prove that it is a sheaf. The ringed space (Spec (R),OR) is locally ringed, and is called the affine scheme
associated to the ring R.

A scheme is a locally ringed space (X,OX) with the property that X can be covered by opens Ui such that the induced locally
ringed space (Ui,OX|Ui) is isomorphic to (Spec (Ri),ORi) for some ring Ri.

If R is a ring then Spec (R) is a scheme, because it can be covered by the open affine subset U = Spec (R).

To KB’s naive eyes in 2017, everything here looked straightforward. But in fact, there were several gotchas involved in turning this
into a formal definition. The rest of this article describes them, and how they were dealt with in Lean.

3. The first definition

We begin with a discussion of localization, and the construction of the sheaf of rings on the topological space associated to a ring.
Let R be a ring and let S be a submonoid of (R, ×) (for some reason mathematicians often call S a “multiplicative subset”; it contains 1
and is closed under multiplication so it is precisely a submonoid). The localization R[1/S] of R at S is a ring equipped with a canonical
map i : R → R[1/S] and having the following universal property: for any ring A and any map f : R → A such that f (s) ∈ A× for all

https://github.com/leanprover-community/mathlib/blob/master/src/algebraic_geometry/Scheme.lean
https://leanprover-community.github.io/mathlib_docs/algebraic_geometry/Scheme.html

EXPERIMENTAL MATHEMATICS 357

s ∈ S, there is a unique extension f̃ : R[1/S] → A of f to R[1/S] making the obvious diagram
R[1/S]

∃!f̃

���
��

��
��

��

R

i

��

f
�� A

commute. The special case where S is the submonoid {1, f , f 2, f 3, . . .} generated by f ∈ R has its own notation R[1/f].
Standard arguments involving universal objects show that R[1/S] is uniquely defined up to unique isomorphism, if it exists. In fact,

these latter arguments do not even assume that S is a submonoid; in general the localization at a general subset S of R is the localization
at the submonoid of R generated by S. Existence is shown by an explicit construction: one puts an appropriate equivalence relation
on R × S (an element (r, s) is thought of as representing the fraction r/s) and puts a ring structure on the quotient. All of this was
formalised in Lean with little fuss.

The construction of the topological space Spec (R) was equally uneventful. Next, a decision had to be made about how to put a
sheaf of rings on Spec (R); there are several constructions in the literature. The prevailing philosophy of KB at the time was “always
follow the Stacks project.”2 The approach in the Stacks project is as follows. Let X be a topological space. In [8, Tag 009H] it is
explained how to set up the theory of presheaves and sheaves on a basis for the topology on X, and in [8, Tag 009N] it is shown
how to extend a sheaf on a basis for X to a sheaf on X. Formalization of these results, and their extension to sheaves of rings, was
straightforward. Indeed, this part of the formalization went like a dream—one line of very abstract categorical mathematics would
correspond to one line of Lean code. These arguments reduced the question to defining a sheaf on the basis of Spec (R) consisting of
open sets of the form D(f), where f ∈ R and D(f) is the set of prime ideals not containing f . A set of the form D(f) is called a basic
open set. Note that D(f) is open, because it is the complement of the closed set V(I) where I = (f).

3.1. Definition of OX(D(f)), and “canonical maps”

This was a part of the story where things did not go as smoothly as envisaged. The first problem was this. Say R is a ring, and f , g ∈ R
have the property that D(f) = D(g), that is, a prime ideal contains f if and only if it contains g. This can certainly happen in non-
obvious ways – for example if x ∈ R and f = x2 and g = −x3, then a prime ideal contains g if and only if it contains x, and so if and
only if it contains f . The literature happily defines OX(D(f)) to be R[1/f] – see for example this commit of [8, Tag 01HT]:

If f , g ∈ R are such that D(f) = D(g), then by Lemma 01HS above there are canonical maps Mf → Mg and Mg → Mf which are
mutually inverse. Hence we may choose any f such that U = D(f) and define M̃(U) = Mf .

(Here Mf is a module-theoretic generalization of R[1/f]). No definition of “canonical” is supplied. The same is seen in Grothendieck’s
original work—in [5], section 1.3.1 of Chapter I, it is written

on sait que Af et Mf s’identifient canoniquement á S′−1
f A et S′−1

f M

(again with no definition of “canoniquement”) and in 1.3.3 we see “un homomorphisme canonique fonctoriel Mf → Mg”, and the
first usage of “Mf = Mg” to denote a “canonical” isomorphism rather than a set-theoretic identity. Having established that R[1/f] =
R[1/g] (for this new “canonically isomorphic” meaning of =) Grothendieck defines OX(D(f)) = R[1/f] and OX(D(g)) = R[1/g]
and continues.

This becomes an issue in Lean, because in our formalization we have rings R[1/f] and R[1/g] which are most definitely not equal;
certainly the universal property gives isomorphisms between them, but one of these rings is a quotient of R × {1, f , f 2, f 3, . . .} and
the other is a quotient of R × {1, g, g2, g3, . . .}. If you like to think set-theoretically, you can think of an element of R[1/f] as being a
subset (an equivalence class) of R ×{1, f , f 2, . . .} and an element of R[1/g] as being a subset of R ×{1, g, g2, . . .}. In particular, R[1/f]
and R[1/g] are visibly not equal.

One solution to this problem would be to throw the axiom of choice at it. For each open set U ⊆ Spec (R) which is known to be of
the form D(f) for some f (possibly infinitely many), we choose some “special” fU such that U = D(fU) and define OX(U) := R[1/fU].
This of course works, but we envisaged that this definition would be frustrating to work with down the line.

Reid Barton on the Lean chat suggested the following approach instead, which was what we ultimately chose. If the open set U
is known to be of the form D(f), then define SU to be the submonoid {g ∈ R | U ⊆ D(g)} of elements of R which are non-zero on
U, and define OX(U) := R[1/SU]. This has the advantage that no choices are involved; it bears the hallmark of a construction in
constructive mathematics, where a rule of thumb is that if you can’t figure out a natural way to choose one object from a set, then
choose all of them.

This defines a presheaf of rings OX on the basic open subsets D(f) of Spec (R), and by taking limits one can extend this definition
to give a presheaf of rings on all of Spec (R). Amusingly, we then realized that to define schemes, this presheaf construction was all
we needed.

2The Stacks project [8] covers a huge swathe of algebraic geometry and its prerequisites. As the project was largely a collaboration by KB with undergraduates,
the fact that the Stacks project is freely available online was helpful as it was accessible to everyone. Moreover, the Stacks project is careful to use “Tags,”which
never change, to refer to particular theorems or sections of the material, so it is easy to cross-reference.

https://stacks.math.columbia.edu/tag/009H
https://stacks.math.columbia.edu/tag/009N
https://github.com/stacks/stacks-project/commit/453818f0a1fa56e0b830cec409289383ba1a38a1
https://stacks.math.columbia.edu/tag/01HT

358 K. BUZZARD ET AL.

3.2. Defining schemes

We defined a scheme to be a topological space X equipped with a sheaf of rings OX , for which X had a cover X = ⋃
i Ui such that

each Ui was isomorphic to Spec (Ri) for some ring Ri.
This isomorphism is in the books usually stated as an isomorphism of locally ringed spaces. However a locally ringed space is just

a topological space equipped with a presheaf of rings and satisfying some extra axioms, so in particular an isomorphism of locally
ringed spaces is the same as an isomorphism of spaces equipped with presheaves of rings. We have already defined a presheaf of rings
on Spec (R), so we are almost done. It remains to define the pullback presheaf of rings on Ui, and this is easy: if ι : Ui → X is the
open immersion, then for V ⊆ Vi open, the corresponding subset ι(V) ⊆ X is an open subset of X, so we define the presheaf ι∗OX
by ι∗OX(V) = OX(ι(V)). It was straightforward to check that ι∗OX is a presheaf of rings on Ui, and our definition of a scheme was
complete. Note that we did not need to demand that our original ringed space was locally ringed – this follows from the fact that it
is locally affine. In particular, our definition is mathematically equivalent to the usual definition, although the proof of this involves
theorems which were not at this time formalised.

Our original definition was met with some skepticism by the computer scientists in the Lean community, however, and not for
this reason above. A definition with no unit tests might contain an error. It was suggested that we prove a theorem about schemes,
to provide evidence that our definition was correct. We decided to prove the theorem that an affine scheme was a scheme. Although
the result sounds trivial, some work remains: a scheme is a space equipped with a sheaf of rings, and we have thus far only equipped
Spec (R) with a presheaf of rings. To prove that affine schemes are schemes should be essentially equivalent to proving that the
presheaf OX of rings on Spec (R) is a sheaf.

3.3. Proving OX is a sheaf on Spec (R)

Again, we followed the Stacks project. Here, we ran into a serious technical issue, and one might even argue that this issue is typically
overlooked in the literature—it seems to be a very good example of a situation where mathematicians pay no attention to the details
of what is happening, knowing that things are going to work out. When formalising, one has to check these details.

Let us explain the main problem. We need to check the sheaf axiom for OX considered as a sheaf on the basis D(f) of open sets
in Spec (R). A formal argument involving compactness reduces us to the case of a cover of a basic open by finitely many basic opens,
so all that remains is checking that the sheaf axiom (‡) holds for a cover of a basic open set by finitely many basic open sets.

The argument in [8, Tag 01HR] now proceeds like this:
Step 1: If D(f) is a basic open in Spec (R), then D(f) is canonically isomorphic to Spec (R[1/f]), and the isomorphism identifies

basic open subsets in Spec (R[1/f]) with the basic open subsets in Spec (R) contained within D(f). This reduces us to the case of
checking that the sheaf axiom (‡) holds for finite covers of Spec (R) by basic opens;

Step 2: One can now translate the statement into a purely ring-theoretic lemma [8, Tag 00EJ].
We proceeded in reverse order, with CH proving the ring-theoretic lemma first. Let us state it here:

Lemma 3.3.1 (Tag 00EJ). Let R be a ring, and say f1, f2, . . . , fn ∈ R generate the unit ideal. Then the following sequence is exact:

0 −→ R α−→
⊕

i
R[1/fi] β−→

⊕

i,j
R[1/fifj].

Here, the map α is the obvious one, and the map β sends ri to the element whose (i, j) component is ri − rj.
It was only after we applied this to make progress with Step 1 that we understood the subtleties in what was left. The “canonical”

identification of basic opens in Spec (R[1/f]) with basic opens in Spec (R) involved, when identifying global sections, an identification
of R[1/f][1/g] with R[1/fg]. Of course, these rings are canonically isomorphic, but they are not equal. In short, we had a proof of
exactness of

0 → R[1/f] →
⊕

i
(R[1/f])[1/fi] →

⊕

i,j
(R[1/f])[1/fifj]

and we needed3 a proof of exactness of

0 → R[1/f] →
⊕

i
R[1/ffi] →

⊕

i,j
R[1/ffifj].

To a mathematician, essentially nothing needs to be done here. A mathematician might say “the diagrams are the same; one is
exact, so the other is” and this would be an acceptable proof. Pressed for more details, a mathematician might offer the following

3Strictly speaking we needed a little more than this; in our situation fi ∈ R[1/f] rather than R, however this special case (a cover of U coming from a cover of X)
is already enough to illustrate the problem we had.

https://stacks.math.columbia.edu/tag/01HR
https://stacks.math.columbia.edu/tag/00EJ

EXPERIMENTAL MATHEMATICS 359

explanation:

0 ��

=
��

R[1/f] ��

=
��

⊕
i(R[1/f])[1/fi] ��

=
��

⊕
i,j(R[1/f])[1/fifj]

=
��

0 �� R[1/f] ��
⊕

i R[1/ffi] ��
⊕

i,j R[1/ffifj]

Here all the vertical maps are canonical and all the horizontal maps are defined in a natural way and hence the squares will all
obviously commute.

However, in Lean this needs to be checked! Lean has no concept of what it means for an isomorphism to be canonical (and looking
at the Wikipedia page on canonical maps one indeed discovers that there seems to be no formal definition of the word), and we needed
to explicitly check that the squares in the above diagram commute.

So it came to pass that one line in the Stacks project tag 01HR (“Thus we may apply Lemma 10.22.2...We conclude that the
sequence is exact”) became several hundred lines of Lean code. In retrospect, it would have been much easier to do a diagram chase.
However, we had a belief that “everything would follow immediately from the universal property” and instead went down this route,
which was more troublesome than one might expect, because for example the homomorphism β above is not a ring homomorphism
and hence the universal property cannot be used! We ultimately resorted to proving a lemma showing that there was at most one
R-algebra map from R[1/S] to R[1/T] and used this to finish. We proved that the squares commuted, and deduced that the presheaf
of rings on Spec (R) was a sheaf. Our goal of proving that affine schemes were schemes was now in sight.

3.4. Interlude: the univalence axiom

Lean does not have the univalence axiom; indeed this axiom contradicts the axiom in Lean saying that all proofs of a theorem of the
form A = B are equal. The importance of equality in mathematics is that if A = B, and if C(A) is any theorem statement or proof
about A, then because A = B we have access to the corresponding C(B) about B. This process, in a formal proof system, is called
substitution, or rewriting. Univalent systems have a rich concept of equality, where things can be equal in more than one way, whilst
preserving this substitution property. The univalence axiom essentially says that if A and B are structures like rings then there’s a
bijection between isomorphisms A → B and proofs of A = B.

In particular, in a univalent system, the ring isomorphism R[1/fg] ∼= R[1/f][1/g] can be promoted to an equality (for this richer
concept of equality) and now it looks on the face of it that a rewrite would be able to make progress. However, univalence does not
solve the problem which we encountered here. After the substitution in a univalent system, we would have a proof of exactness of
one diagram, and we want to prove exactness of another diagram, and the diagrams now have the same objects, however we need to
check that they have the same morphisms! Checking this of course boils down to checking that the squares commute, so the lion’s
share of the work still needs to be done. In our original definition of a scheme, we did the diagram chase “manually.” However, in our
second iteration of the definition, we will introduce ideas which enable us to avoid this rewriting problem completely.

3.5. Affine schemes are schemes

With the proof that Spec (R) is a ringed space, we can now attempt to prove that it is a scheme. This provided one final surprise
in our formalization, and again Reid Barton explained the way around it. Our cover of Spec (R) by affines is just the identity map
ι : Spec (R) → Spec (R), and all that remains is to show that the presheaves OX and ι∗OX on Spec (R) are isomorphic. This boils
down to the following: if U is an open subset of Spec (R) then we need to produce an isomorphism between OX(U) and OX(ι(U))

which commutes with restriction maps.
Our first attempt to do this was the following. Note that ι is the identity map. Hence ι(U) = U, and thus OX(ι(U)) = OX(U).

Let’s define the isomorphism to be the identity map. Checking that the diagrams commute should then be straightforward.
But it was not straightforward; one now has to check that ρι(U)ι(V) = ρUV , and replacing ι(U) with U in a naive manner caused

Lean to give motive is not type correct errors. Ultimately we were able to get this working, but what is going on here?
Mathematically there seems to be no issue.

We learnt from Mario Carneiro what the problem was. The fact that ι(U) = U is a trivial theorem, but, perhaps surprisingly, it is
not true by definition. The definition of ι(U) is that it is the set of x ∈ X such that there exists u ∈ U with u = x. Hence in particular
x ∈ ι(U) ⇐⇒ x ∈ U (this is true by definition), and hence ι(U) = U, because two sets are equal if and only if they have the
same elements (this is the axiom of set extensionality). We have proved that ι(U) = U, but along the way we invoked an axiom of
mathematics and in particular the equality is not definitional. This means that rewriting the equality ι(U) = U can cause technical
problems with data-carrying types such as OX(ι(U)) which depends on ι(U) (although in our case they were surmountable). This
is a technical issue with dependent type theory and can sometimes indicate that one is working with the wrong definitions.

Fortunately, in our case, Reid Barton pointed out the following extraordinary trick to us: we can define the map OX(ι(U)) →
OX(U) using restriction rather than trying to force it to be the identity! Using restriction means that we need to supply a proof that
U ⊆ ι(U), but this is trivial (and who cares that it uses an axiom, we are not trying to rewrite anything). The fact that the diagram

https://en.wikipedia.org/wiki/Canonical_map

360 K. BUZZARD ET AL.

commutes now just boils down to the fact that restriction from ι(U) to V via U equals restriction from ι(U) to V via ι(V), which
follows from the presheaf axiom of transitivity of restrictions. This is certainly not the way that one would usually think about this,
but it works fine.

3.6. Conclusions

The main problem with this first approach was the issue with localizations. The ring R[1/S] was defined as an explicit ring, and
theorems were proved about it; later on when it came to apply these theorems, it turned out that in our application we only had a
ring isomorphic to R[1/S] rather than our explicit definition on the nose. These issues were solved in our second approach.

4. The second definition

Apparently there’s a saying in computer science: “Build one to throw away.” Having done this, we now knew what we should be doing;
we had to develop a better theory of localization. We now describe how we did this.

4.1. Localization

The error we had initially made was to only define “the” localization R[1/S] of a ring R at a submonoid S. The localization is defined
up to unique isomorphism, but pinning it down as an explicit set (or more precisely an explicit type, as Lean uses type theory
rather than set theory) turned out to be a bad idea. What we needed instead is a predicate is_localisation_by S on ring
homomorphisms R → T, saying that R → T is isomorphic to R → R[1/S] in the category of R-algebras, or in other words that T is
isomorphic to R[1/S] in a manner compatible with the R-algebra structure. We will refer to this predicate by saying that the R-algebra
T is a localization of R at S, as opposed to “the” localization of R at S.

AL noted that in fact localizing rings at submonoids was not the primitive notion: in fact, as Bourbaki taught us, one should be
localizing monoids at submonoids, and attaching ring structures later on. AL developed an entire formalised theory of localization
of monoids, with both the “explicit” constructions M[1/S] and the “predicate” approach, showing that the explicit constructions
satisfied the predicate, and proving universal properties both for the explicit construction and the predicate construction. These files
now form the foundation of the theory of localization in mathlib.

4.2. The sheaf on an affine scheme, again

RFM rewrote schemes from scratch, tidying up the code along the way and also moving away from the disastrous design decision
of calling Lean files by their Stacks project tags (tags should be mentioned in docstrings, not filenames; filenames serve a useful
organizational purpose). The refactoring to using predicates instead of explicit constructions meant that there was no longer any
need to make the substitution of R[1/f][1/g] into a lemma explicitly naming R[1/fg]; all one has to do is to prove that R[1/f][1/g]
satisfies the predicate for being a localization of R at the submonoid generated by fg, which is straightforward. This shortened the
definition by hundreds of lines of code.

The hard work, or so we thought, would be in reproving the ring-theoretic lemma [8, Tag 00EJ] (Lemma 3.3.1) in this more general
form. The issue here is that CH’s original formalization was an explicit computation involving the rings R[1/fi] and R[1/fifj]; what
we now needed was to reprove this lemma for all rings satisfying the localization predicate instead. The beefed-up lemma would then
apply in situations where the original lemma did not, meaning that the diagram chase described in section 3.3 would no longer be
necessary.

4.3. The localization predicate

Definitions are important when formalising. Here are two definitions of being “a localization of R at S”:

Definition 1. An R-algebra T is a localization of R at S if there exists an R-algebra isomorphism T ∼= R[1/S].
Definition 2. An R-algebra T is a localization of R at S if it satisfies the universal property of R[1/S]: if R → A is any ring
homomorphism sending S into A×, there exists a unique map T → A making the diagram commute.

These definitions are mathematically equivalent, so to a mathematician they may as well both be the definition. However Neil
Strickland proposed a third definition:

Definition 3 (Strickland). An R-algebra f : R → T is a localization of R at S if it satisfies the following three conditions:

• f (S) ⊆ T×;
• Every t ∈ T can be written as f (r)/f (s) for some r ∈ R and s ∈ S;
• The kernel of f is the annihilator of S.

https://stacks.math.columbia.edu/tag/00EJ

EXPERIMENTAL MATHEMATICS 361

It is not difficult to prove that Strickland’s definition of the predicate is equivalent to the other two. Indeed an explicit computation
using the explicit construction of R[1/S] as a quotient of R × S shows that it satisfies Strickland’s predicate, and conversely any R-
algebra T satisfying Strickland’s predicate admits a map from R[1/S] (by the universal property and the first condition), which can
be explicitly checked to be surjective (from the second condition) and injective (from the third condition).

So which definition should one use? This is not a mathematical question, it is what is known as an implementation issue, or a
design decision. Ultimately of course the goal is to prove that all of the definitions are equivalent. But where does one start? One
would like to fix one of them and then develop an interface, or API, for it. This is a collection of basic theorems about our predicate
(some deducing it, some using it) which will ultimately lead to a formal proof that it is equivalent to the other two definitions. In
particular, one will sometimes have to verify the predicate, and one will sometimes have to use it.

Strickland’s predicate had advantages over the other two definitions when it comes to using it. In particular, it does not involve
quantification over all rings. Using a property involving quantification over all rings often involves having to construct a ring with
nice properties and then applying the universal property to that ring. For example, we invite the reader to prove that any R-algebra T
satisfying the universal property of being a localization (Definition 2) also has the property that the kernel of R → T is the annihilator
of S. The shortest way we know how to do this from first principles is to first show that the explicitly constructed ring R[1/S] satisfies
the universal property, secondly to prove that two rings satisfying the universal property are isomorphic as R-algebras, and finally to
do an explicit calculation of the kernel of the map R → R[1/S] to prove the result. Of course there is no problem formalizing this
proof, but it gives an idea as to how much work it is to build an API for definition 2.

Ultimately one has to fix one definition of the predicate, and then prove that it is equivalent to the other two; there will always be
some work involved. But “API building” turned out to be easiest with Strickland’s definition, which is the one RFM used.

4.4. Reproving 00EJ

What remains to be done is to reprove Lemma 3.3.1 not for our rings R[1/f] but more generally for rings satisfying Strickland’s
predicate. To our surprise, this turned out to be very easy. Indeed, the only facts about the R-algebras R[1/S] used in the Stacks
project proof in 20174 were precisely the ones isolated by Strickland! The refactoring was hence far easier than expected. In some
sense, what happened here was that we made the statement of the lemma more general, and noted that the same proof still worked.

4.5. Definition and usage

RFM also set up the theory of locally ringed spaces, enabling us to define a scheme as a locally ringed space which was locally affine.
The proof that an affine scheme is a scheme now also needs a new proof, namely that the stalks of OX were local rings. This needed
some of the theory of filtered colimits, but this did not present any particular problems.

KL used the definitions of the project in this form to do the “gluing sheaves” Exercise II.1.22 in Hartshorne’s algebraic geometry
textbook [6] and also to prove that Spec was adjoint to the global sections functor on locally ringed spaces [8, Tag 01I1]. However
when it came to start thinking about porting our definition into Lean’s mathematics library, we ran into a problem. Part of our code
was still sub-optimal: we had a definition of a sheaf of types, and a definition of a sheaf of rings. These notions should be unified
under some more general notion of a sheaf of objects in a category. Thus the third definition was born.

5. The third definition: sheaves done correctly.

5.1. Category theory in mathlib

SM has been the main driving force behind a gigantic category theory library in Lean. In the early 2018, a combination of his work
not yet being mature enough, and there not being much infrastructure to support easily working on branches of mathlib, meant
that we had developed our own definitions of sheaves rather than using category theory. By 2020 this was no longer the case, and SM’s
definition of a presheaf taking values in a category was the natural thing to use for the “official” definition of a scheme. We had seen
with our own eyes the problems of having one definition of presheaves of types and another definition of presheaves of rings—we
were constantly having to prove results for presheaves of types and then prove them again for presheaves of rings. Ultimately we had
to completely refactor the sheaf part of the story, but we took this opportunity to introduce category theory more generally. Another
advantage of the third definition is that rather than working in a new project with mathlib as a dependency, we worked directly
on a branch of mathlib, and ultimately the code ended up as part of mathlib meaning that it will not quickly rot and die, as
is very common with Lean code which is not in mathlib (mathlib is not backwards compatible—it is still in some sense an
experimental library and occasionally big design decisions are changed in an attempt to make it better).

4note now that the proof has been changed; the proof formalised in our project is the one from algebra.tex in the Stacks project as it stood in late 2017
after commit 39135dd.

https://stacks.math.columbia.edu/tag/01I1

362 K. BUZZARD ET AL.

5.2. Changes made to the definition

We go through the final definition, pointing out how it differs from the previous version. In this definition, a scheme is an object in the
category LocallyRingedSpace which is locally isomorphic to an affine scheme. The abstract nonsense presented no surprises;
the work left, when defining a scheme and proving that affine schemes are schemes, is to define the sheaf of rings on Spec (R) in this
language. This time it was decided to not follow the Stacks project approach via sheaves on a basis, but to instead define the sheaf
directly following [6], where an element of OX(U) is a dependent function taking u ∈ U to an element of Ru, the localization of R at
the prime ideal u, subject to the condition that locally the function can be written as r/s with r, s ∈ R and s not vanishing near u. The
advantage of this approach is that it is clear that OX is a sheaf; the ring-theoretic Lemma 00EJ is not used at all in this approach.
Indeed, in this set-up, 00EJ is used to prove OX(Spec (R)) = R.

5.3. Sheaves and categories

SM defined the notion of a sheaf on a topological space taking values in any category which has products. The sheaf condition on a
presheaf is that the usual “sheaf condition diagram” is an equalizer. It is then a theorem that a sheaf of rings is a presheaf of rings whose
underlying presheaf of types is a sheaf of types. Since then, Bhavik Mehta has defined the concept of a sheaf of types on an arbitrary
site, and more generally the notion of a sheaf of objects of an arbitrary category on a site. All of this work is now in mathlib. These
definitions open the door to defining and proving theorems about the étale cohomology of schemes in Lean.

5.4. A word on mathlib

We mentioned above that this definition of a scheme made it into Lean’s mathematics library mathlib, which means that all the
code in it was subject to scrutiny by the library maintainers. A reasonable analogy would be that mathlib is like a journal, and the
maintainers are like the editors. After three iterations of the definition of a scheme, it was in good enough shape for a “pull request”
to be made to mathlib. (A pull request is the open-source project equivalent of submitting an article to an editor!) Note that the
multiple iteration procedure discussed in this article is not usual – but we were beginners in 2017 with very little information to guide
us on how to make schemes on a computer, and KB’s poor initial design decisions were because of this. Nowadays we have a much
better understanding of how to put modern mathematics into Lean’s dependent type theory.

The advantage of getting the definition into mathlib is that now it is guaranteed to compile for the duration of Lean 3’s lifespan,
because if someone makes changes to the library which break it, it will be down to that same someone to fix it. This is in stark contrast
to the first two definitions, which compile with very old versions of Lean and mathlib, and would almost certainly not compile
with modern versions.

6. Conclusion

We formalised the definition of a scheme, and along the way learnt a lot about how to formalise localization in dependent-type theory.
The definition is now in Lean’s mathematics library mathlib (see here).

Acknowledgments

We are very grateful to Mario Carneiro, Reid Barton and Neil Strickland, all of whom provided major insights to help us on our way.

Declaration of Interest

No potential conflict of interest was reported by the author(s).

Funding

The first author was supported in part by EPSRC grant EP/L025485/1. Scott Morrison was supported in part by Australian Research Council grant ARC
DP200100067.

References

[1] Buzzard, K., Commelin, J., Massot, P. (2020). Formalising perfectoid spaces, Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20–21, pp. 299–312.

[2] Buzzard, K., Hughes, C., Lau, K. (2018). Formal verification of parts of the Stacks project in Lean, https://github.com/kbuzzard/lean-stacks-project.
[3] de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J. (2015). The lean theorem prover (system description). Automated Deduction—CADE-

25 -25th International Conference on Automated Deduction, Berlin, Germany, August 1–7, 2015, Proceedings, pp. 378–388.
[4] Fernández Mir, R. (2019). Schemes in Lean (v2), https://github.com/ramonfmir/lean-scheme.

https://github.com/leanprover-community/mathlib/blob/b77916dbb7bf5ad0c769b642a4dfde0f2531e49c/src/algebraic_geometry/Scheme.lean#L36-L38
https://github.com/kbuzzard/lean-stacks-project
https://github.com/ramonfmir/lean-scheme

EXPERIMENTAL MATHEMATICS 363

[5] Grothendieck, A. (1960). Eléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. no. 4, 228.
[6] Hartshorne, R. (1977). Algebraic geometry, New York: Springer-Verlag, Graduate Texts in Mathematics, No. 52.
[7] The mathlib community, (2020). The Lean mathematical library, Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs

and Proofs, CPP 2020, New Orleans, LA, USA, January 20–21, pp. 367–381.
[8] The Stacks Project Authors. (2021). Stacks Project. Available at: https://stacks.math.columbia.edu.
[9] Weil, A. (1946). Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications, Vol. 29. New York: American

Mathematical Society.
[10] Whitney, H. (1936). Differentiable manifolds. Ann. Math. (2) 37(3):645–680.

https://stacks.math.columbia.edu

	Abstract
	1. Introduction and overview
	1.1. Varieties and schemes in algebraic geometry
	1.2. Formalising schemes—the history
	1.3. Organization of the article

	2. Mathematical details
	3. The first definition
	3.1. Definition of OX(D(f)), and ``canonical maps''
	3.2. Defining schemes
	3.3. Proving OX is a sheaf on Spec(R)
	3.4. Interlude: the univalence axiom
	3.5. Affine schemes are schemes
	3.6. Conclusions

	4. The second definition
	4.1. Localization
	4.2. The sheaf on an affine scheme, again
	4.3. The localization predicate
	4.4. Reproving 00EJ
	4.5. Definition and usage

	5. The third definition: sheaves done correctly.
	5.1. Category theory in mathlib
	5.2. Changes made to the definition
	5.3. Sheaves and categories
	5.4. A word on mathlib

	6. Conclusion
	Acknowledgments
	Declaration of Interest
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

